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Abstract

The aim of this paper is to develop hesitant Pythagorean fuzzy interaction aggregation operators based on the hesitant
fuzzy set, Pythagorean fuzzy set and interaction between membership and non-membership. The new operation laws can
overcome shortcomings of existing operation laws of hesitant Pythagorean fuzzy values. Several new hesitant Pythagorean
fuzzy interaction aggregation operators have been developed including the hesitant Pythagorean fuzzy interaction weighted
averaging operator, the hesitant Pythagorean fuzzy interaction weighted geometric averaging operator and the generalized
hesitant Pythagorean fuzzy interaction weighted averaging operator. Using the Bonferroni mean, some hesitant Pythagorean
fuzzy interaction Bonferroni mean operators have been developed including the hesitant Pythagorean fuzzy interaction
Bonferroni mean operator, the hesitant Pythagorean fuzzy interaction weighted Bonferroni mean (HPFIWBM) operator, the
hesitant Pythagorean fuzzy interaction geometric Bonferroni mean operator and the hesitant Pythagorean fuzzy interaction
geometric weight Bonferroni mean (HPFIGWBM) operator. Some properties have been studied. A new multiple attribute
decision-making method based on the HPFIWBM operator and the HPFIGWBM operator has been presented. Numerical

example is presented to illustrate the new method.

Keywords Hesitant fuzzy set - Pythagorean fuzzy set - Multiple attribute decision-making - Bonferroni mean

Introduction

Fuzzy decision-making has been studied and applied exten-
sively [1-3]. Pythagorean fuzzy set [4,5] is the extension
of intuitionistic fuzzy set [6]. In intuitionistic fuzzy set,
the sum of membership and non-membership is no more
than 1, while in Pythagorean fuzzy set, the square sum
of membership and non-membership is no more than 1.
Hence, Pythagorean fuzzy set has larger feasible region than
that of intuitionistic fuzzy set. Thus, it is more powerful
and flexible in modeling fuzzy and uncertain informa-
tion. Pythagorean fuzzy set has been studied and applied
extensively [7-21]. Some aggregation operators have been
developed in Pythagorean fuzzy environment. Liang et al.
[22] proposed the Pythagorean fuzzy Bonferroni mean
operator and the weighted Pythagorean fuzzy Bonferroni
mean operator. Zhang et al. [23] presented some general-
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ized Pythagorean fuzzy Bonferroni mean operator and the
generalized Pythagorean fuzzy Bonferroni geometric mean
operator. Yang and Pang [24] developed some Pythagorean
fuzzy interaction Maclaurin symmetric mean operators. Rah-
man et al. [25] defined some interval-valued Pythagorean
fuzzy aggregation operators including the interval-valued
Pythagorean fuzzy weighted geometric operator, the interval-
valued Pythagorean fuzzy ordered weighted geometric oper-
ator, and the interval-valued Pythagorean fuzzy hybrid geo-
metric operator. Wei and Lu defined some Pythagorean fuzzy
power aggregation operators in [26] and presented some dual
hesitant Pythagorean fuzzy aggregation operators in [27].
Garg presented the generalized Pythagorean fuzzy Einstein
weighted average operator and the generalized Pythagorean
fuzzy Einstein ordered weighted average operator in [28]
and developed the Pythagorean fuzzy geometric interactive
aggregation operators using Einstein operations in [29]. Du
et al. [30] defined interval-valued Pythagorean fuzzy lin-
guistic variable set and defined interval-valued Pythagorean
fuzzy linguistic ordered weighted averaging operator and
generalized interval-valued Pythagorean fuzzy linguistic
ordered weighted average operator. Wei [31] defined some
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Pythagorean fuzzy interaction aggregation operators and
some Pythagorean fuzzy interaction geometric aggregation
operators. Some multiple attribute decision-making meth-
ods in Pythagorean fuzzy environment have been developed.
Zhang and Xu [32] extended the TOPSIS method to accom-
modate Pythagorean fuzzy values. Ren et al. [33] proposed
Pythagorean fuzzy TODIM approach. Chen [34] presented
Pythagorean fuzzy VIKOR methods based on the generalized
Pythagorean fuzzy distance measure. Pythagorean fuzzy set
has been extended to accommodate interval values [35,36],
linguistic arguments [37,38], probabilistic information [39],
etc.

Hesitant fuzzy set [40] is the extension of fuzzy set and
intuitionistic fuzzy set. In hesitant fuzzy set, each member-
ship may include several possible values. Hesitant fuzzy
set has been extended to accommodate intuitionistic fuzzy
set [41], linguistic arguments [42], linguistic intuitionistic
fuzzy values [43-47]. Hesitant Pythagorean fuzzy sets was
defined [48] and some hesitant Pythagorean fuzzy Hamacher
aggregation operators have been developed including the
hesitant Pythagorean fuzzy Hamacher weighted average
operator, hesitant Pythagorean fuzzy Hamacher weighted
geometric operator. Khan et al. [49] proposed maximizing
deviation method for Pythagorean hesitant fuzzy numbers
in which information about attribute weights is incomplete.
Garg [50] defined some hesitant Pythagorean fuzzy weighted
aggregation operators and hesitant Pythagorean fuzzy geo-
metric aggregation operators. But in real decision-making
process, there are still cases that can not be dealt with
using existing methods. For example, in evaluating some
car, the experts gave evaluation values of power, noise and
speed as {(0.9, 0.0)}, {(0.6, 0.5)}, {(0.8,0.3), (0.7, 0.4)}. If
the attribute weight vector is (0.25, 0.35, 0.40). Then, using
the existing operation laws of hesitant Pythagorean fuzzy
values, the weighted averaging values can be calculated as
{(0.7904, 0), (0.7541, 0)}. There is only 0 non-membership
and the other two non-memberships are not 0, but they
have no effect on the final results. To overcome this short-
coming, we propose some interaction operation laws for
hesitant Pythagorean fuzzy values by considering inter-
action between membership and non-membership. Then,
we first develop some aggregation operators including the
hesitant Pythagorean fuzzy interaction weighted averaging
(HPFIWA) operator, hesitant Pythagorean fuzzy interac-
tion weighted geometric averaging (HPFIWGA) operator
and the generalized hesitant Pythagorean fuzzy interaction
weighted geometric averaging (GHPFIWA) operator. The
Bonferroni mean was first introduced by Bonferroni [51],
which can capture inter-relationship among arguments to
be aggregated. Yager [52] provided an interpretation of
Bonferroni mean as involving a product of each argument
with the average of the other arguments. Beliakov et al.
[53] developed generalized Bonferroni mean. Beliakov and

Dieliase ¢llodi ay .
bes Shenas Q) Springer

James [54] extended the generalized Bonferroni mean to
intuitionistic fuzzy environment. Zhu and Xu [55] proposed
the hesitant fuzzy Bonferroni mean operator. Yang et al.
[56] developed the Pythagorean fuzzy interaction partitioned
Bonferroni mean operator. But Bonferroni mean for hesitant
Pythagorean values considering interaction between mem-
bership and non-membership has not been studied yet. Yang
et al. [57] proposed g-rung orthopair fuzzy partitioned Bon-
ferroni mean operators. To model interaction among hesitant
Pythagorean fuzzy values and interaction between member-
ship and non-membership at the same time, we develop some
hesitant Pythagorean fuzzy interaction Bonferroni mean
operator including the hesitant Pythagorean fuzzy inter-
action Bonferroni mean (HPFIBM) operator, the hesitant
Pythagorean fuzzy interaction weighted Bonferroni mean
(HPFIWBM) operator, the hesitant Pythagorean fuzzy inter-
action geometric Bonferroni mean (HPFIGBM) operator and
the hesitant Pythagorean fuzzy interaction weighted geomet-
ric Bonferroni mean (HPFIWGBM) aggregation operator.
The objective of the paper is to develop some hesitant
Pythagorean fuzzy interaction Bonferroni mean operators.
To do so, the structure of the paper is as follows. In “Pre-
liminaries”, some basic concepts on Pythagorean fuzzy set,
hesitant fuzzy set have been reviewed. Some interaction oper-
ational laws for hesitant Pythagorean fuzzy values have been
defined and some properties have been studied. In “Hesitant
Pythagorean fuzzy interaction aggregation operators”, some
hesitant Pythagorean fuzzy interaction aggregation operators
have been defined. In “Hesitant Pythagorean fuzzy interac-
tion Bonferroni mean operators”, some hesitant Pythagorean
fuzzy interaction Bonferroni mean operators have been pro-
posed. In “An approach to Pythagorean fuzzy multiple
attribute decision-making based on new interaction aggre-
gation operators”, a new multiple attribute decision-making
method based on the HPFIWBM operator and the HPFI-
WGBM operator has been presented. In “An illustrative
example”, numerical example is presented to illustrate the
new method. Conclusions are presented in the final section.

Preliminaries

Definition 1 [40] Let X be a fixed set. A hesitant fuzzy set
(HFS) H on X in terms of a function that when applied to X
returns a subset of [0, 1],

H={{x,hgkx))|x € X}, (D

where hp(x) is a set of values in [0,1], denoting the pos-
sible membership degrees of element x € X to set H. For
convenience, & g (x) is called a hesitant fuzzy element (HFE).

Definition 2 [4] Let X be a fixed set. A Pythagorean fuzzy
set P on X can be represented as follows
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P ={{x, (upx),vp(x)) | x € X}, @)

where up(x) X — [0,1] is the membership func-
tion and vp(x) X — [0, 1] is the non-membership
function. For each x € X, it satisfies the following
condition 0 < (up(x))? + (vp(x))* < 1. mp(x) =
V1= (up(x))? — (vp(x))? is the indeterminacy degree of x
to X. For simplicity, (up(x), vp(x)) is called a Pythagorean
fuzzy number (PFN), denoted by (i p, vp), where up, vp €
[0, 1].7mp = /1 — (up)? — (vp)?and0 < (up)*+(vp)? <
1.

Definition 3 [32]Leta = (g, Vo), @1 = (@1, vi) anday =
(m2, v2) be three PENS, the operations are as follows

(1) a1 ®ay = (Juf + p3 — uiu3, viv),
(2) a1 ® @y = (uip2, \/vi + v — vivd),

3) ka = (1 — (1 — >, 5, k>0,
@) of = (uk, V1 =1 = v2)k), k> 0.

Definition 4 [48,50] Let X be a fixed set. A hesitant
Pythagorean fuzzy set P on X can be represented as follows

P = {{x, (hp(x), gp(x))) | x € X}, A3)

where hp(x) = {wi} is the set of all the possible mem-
berships of element x € X and gp(x) = {v;} is the set
of all the possible non-memberships of element x € X,
wi €[0,1], v; € [0, 1]. Let u™ = max{u;}, v = max{v;},
(w2 + (V)2 < 1. For convenience, (hp(x), gp(x)) is
called a hesitant Pythagorean fuzzy element (HPFE).

Definition 5 [50] Let f =g, fi = (g fr =
(ha, g2) be three HPFEs, A > 0. The hesitant Pythagorean
fuzzy operation can be defined as

(1
hef,= U
Iiky €h1,viky €81, 10k, €2, vk, €82
X{ <\/ Wiy + Wk, = Wi Moy V1k1vzk2> }
2
hefh= U

Mk €h1,Vik; €81, MoKy €2, V21y €82

X { (l‘l’lkl M2ky s \/vlzkl + U%kz - U12k1 U%kz)} ’
3 2f = Uy cines {(,/1 — (-, (v,%ﬂ) }

@ = Uy cimes {((um, J1-a- v,%)x)}.

In the following, we present hesitant Pythagorean fuzzy inter-
action operation laws as follows.

Definition 6 Let f = (h, ), fi = (h1, &), fo = (h2, &)
be three HPFEs, A > 0. The hesitant Pythagorean fuzzy
interaction operations can be defined as

(D
1® =z U
tiky €h1.v1ky €81 12ky €R2 V2, €82
2 2 2 2
X {(\/Mlk, T Mok, = Wik Mok, s
2 2 2 .2 2 .2 2 2
X \/vlkl + V2, Vikg Yok, — Mk Y2k, ~ Vik /*21@)} )
(2)
1® f2= U
kg €h1.V1ky €81 128y €D2 Vo) €82
2 2 2 2
X { <(M1k1 T Wog, — Mk Mok,
2 2 2.2 \1/2 2 2 2 2
—Vik, Mok, — K1k, Vak,) ’\/vllq t Vo, ~ Vik v2k2) }
(3)

= U (\/l—a—uz)&
ukeh,vieg

x \/(1 - — (1 — (2 + v,?))*)} :

U {<\/<1 — )k (= (4] )

k€, e EG
x /1 —(1— v,%)’\)}.

The f1 & f> and f1 ® f> can be rewritten as follows

fief= U

kg €h1,viky €81, 12k, €D, V205 €22
2 2
x {(\/1 — (= i) = 1)

x \/<1 — )= g ) = A= wd, +vE N0 — @3, + v%km)} .

fiefh= U

Wik €h1,Vik) €81 M2ky ER2 V) €82
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1/2
x { (((1 —vE A =3 = (A= (ud, +vE DA — (13, + v%kz))> ,
x 1= =3 )1 - vgkz))}.

The results of above operations are still HPFEs. The proofs
of (1) and (3) are given as follows and others can be proved
similarly.

Proof

feh= U

kg €h1.v1k, €81, 1oky €R2 V21, €8
2 2 2 2
X { <\/M1k1 + Mg, = Mg Mok, »
2 2 2 2 2 2 2 2
X \/Vlk. T V2, T Vi Vak, T Mk Yok, V1k1“2k2>} ;
2
2 2 2 2
(\/Mlkl + Mok, — /’lell’szz)

2 > 2 2 2 2 2 2
+ ((Vig, + Vak, = Vik Yok — Mk, Yok, Vik Mok,

_ 2 2 2 2 2 2
= Mgy T Uy — Mg Mok, T+ Vigg t Vg,

)1/2)2

2 2 2 2 2 2
= V1K V2, = M1k Vaky, — Vik M2k,
=1-(—pf)U = u3y,)
2 2 2 2
+ (1 - Mlkl)(l - Mzkz) -1~ (:U“lkl + Vlkl)) *
x (1= (43, + v3,))
=1— (1= (ufg, + ViD= (U3, + V3)-

: 2 2 2 2
Since 0 < 'u21k1 + 1)21k1 <10 25 “21(22"‘ Vi, = 1, then
0=<1- (H’lk] + "lkl))(l - (MZIQ + v2k2)) <land0 <
L= (= (e, + v (0 = (13, +v3,)) < 1. Hence,
f1 @ f> is still an HPFE.
3)

W= U

pkeh,vieg
x {(,/1 — (1= pd*,

U=t — (- +v§)>k>} ,

2
<\/1 —a —u;%)*)
2
+(\/<1 — D — (L~ (W + v@)k)

=1—(=u)+ 0 —pud* =1 =@+
=1—(—(ul+vH)

Since 0 < pp+vp < 1,0 < (I — (g +v))* < 1,
0 < 1—(1—(u2+v?)* < 1. Then, the A f is still an HPFE.
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Theorem 1 Let f = (h. 2), fi = (h1. &) and fr = (hy. &2)
be three HPFEs, then we have

() fieh=heh

2) (®L=L®N
(3) k(fi @ f2) = kf1 @ kfo,
(4) k(i ® f) =kfi ®kfa,
(5) (ki +k) f =k f®kaf,
(6) fkl ® sz — f(k1+k2).

Proof We only prove (1), (3) and (5), and others can be proved
similarly.

(1)
fi®fh= U
tiky €h1,viky €81, 1k, €h2, V2K, €22
x { (\/M%kl + W, = Wik Mg s O,
+ V3, = Vi Vi, — Bk Vak, — Vlzkllu'%kz)l/2>}
= U
kg €h1.v1ky €81, 12ky €MD, V10 €82
x { (\/l‘%kz 1y, — Mo Mg, s 3,
+ Vlzkl - V22k2V12k1 - :u%kzvlzkl - V%kg“%kl)]ﬂ)}
=L
(3)
hef= U

Hiky €h1.vik €81. 12k, €2 V2ky €82

x {(,/1 — (=i A = p3p,),

x\/u — )= g = (= d +vi DU — 1y, + v%kzn)}

=HUWfop Vies))
k(fi®f) = U

kg €1, viky €81, Mty €2 voky €82
x {<\/l — (= i R = i,
><\/(1 — W M = g )k = (1= (udy, + v DR = (1, + v%kz»k)} .

kfi = U

kg €h1,vikg €81
x K\/l — =3 )5 JA =i = (= ey, + 3, W‘)}
= U{ (s vea)}-
kh= U

ok, €h ok, €82




Complex & Intelligent Systems (2019) 5:199-216

203

U= = =0, 37 )|
= Ul i)}
kfi@kfo = U

Wiky €h1.viky €811k €2, Voky €82

x{(/l = (= )R = o) (4 = ) (1= i) = (1=

F i DA = (uhy, + v%kZ»")”?)}

=k(fi ® f).
)

ki +k)f=

pkeh,veg

x{(\/l — (1 phe, (1 — g

—(1 — (uf + v,%))kl”‘z)lﬂ)},

<\/1 — (1= uph,

ukeh,vieg

x /(1 — i —(1—<uk+vk))'ﬂ)},

kf= U {(\/1 — (1 —pdk,

ukeh,vgeg

X \/(1 —uhk — (1= (u? + vk))"Z)}

2)k1+k2
k

ki f =

kif®kyf = U {<\/1—(1—Mk)k1(1—ﬂk)k2,

pkeh,vieg
(1= pp)"1 (1= up)

—(1 = (ug + v (1 — (i + vk>>"2>”2)}

= U {(\/1 — (1 — pp)litha,

pkeh,veeg

x((1 = pph+e —

= (ki + k) f.

— (i} + vyl 12 |

Definition 7 Let f = (h, ) be an HPFE. The score of f can

be defined as
S(f) = Z mi =+ Z Vi “
Mkeh VkEg

The accuracy function can be defined as

Z“k+ ka, )

;,Lk ch Vkeg

A(f) =

where [} is the number of memberships in h and lg is the
number of non-memberships in g.

Definition 8 Let fi, f> be two HPFEs. Then if

(D) IfS(f1) > S(f2), then fi > fa,

(2) 1t S(fl) = S(fz) then
IfA(fl) > A(fz) then f1 > fz,
If A(fi) = A(f2), then fi ~ f>.

To define distance measure between HPFEs more accu-
rately, the two HPFEs should have the same number of
memberships and non-memberships. The HPFEs can be
extended according to the risk attitude of decision-makers. If
the decision-maker is risk seeking, the largest Pythagorean
fuzzy value can be added; if decision-maker is risk averse,
the smallest Pythagorean fuzzy value can be added; and
if decision- maker is risk neutral, the average value of
Pythagorean fuzzy values can be added.

Definition 9 The distance between two extended hesitant
Pythagorean fuzzy values f| = (hy, g1) and f, = (h2, £2)
can be defined as

-~ 1 5
d(fi, f2) = T Z(Iﬂlkl
hy

— Wk, |+ Vi, — V3,172, (6)

where M1k, € h], Vik, € §1, M2k, € hz, Wk, € gz and l;ll is

the number of memberships in the fl

Hesitant Pythagorean fuzzy interaction
aggregation operators

Definition 10 Let f, (i = 1,2,...,n) be a collection of
HPFEs. The hesitant Pythagorean fuzzy interaction weighted
averaging (HPFIWA) operator can be defined as

HPFIWA(f1. f2. ... fu) = @"_w; f. 0

Theorem2 Let f; = (h;, §) = Uvie. ehi v ez (it Vi)
(i=1,2,...,n) be a collection of HPFEs. The aggregated
value of the HPFIWA operator is still an HPFE, that is

HPFIWA(f1, fa, ...,

In)
SR (e

Hik; Eh sVik; €8i

X (1_[5:1(1 — K"
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Proof The theorem can be proved using mathematical induc-
tion.
If n = 2, HPFIWA(f1, f2) = w1 f1 ® w2 f>.

wifii=  J {(,/1 — (1= ), (1= iy )™
tiky €h1.vig, €81
_ (1 _ (M%kl + vlzkl))w1)l/2>}’
wmfph= {(\/1 — (1= pd)"2, (1= p3,)™
2ty €ha . vak, €82
_(1 _ (H’%kz + ngz))w2)1/2> }’

wi fi ® wa fo

= U

[1ky €h1,v1k) €81, 121y €MD V21, €G2

s {((1 = (1= gy )™ (1= )" '2,

(1= )" (1 = 13" = (1= (uy, + 3™
(1= (13, + 312}

5 12
B U {((I_Hi—l(l_ulgki)wi> ’

Wik; €hi,vik; €8

2 ’ Wi
x (Hi=l(1 h M“‘i)
2 .
_Hi=1(1 = (i, + ”izki))wl)l/z)} .
Suppose Eq. (8) holds for n = [, that is

HPFIWA(f1, fa, ..., fi) = ®'_ w; f;

. 12
= U {((1 —1_[[:1(1 —Mizki)wi> )

Wik; €hi,vik; €8i

l
x (Hizl(l — )"
/ 1/2
_l_[i=1(1 - ('u'l'zki + vizki))wi) )} .

Ifn = [4-1, using the interaction operation laws of hesitant
Pythagorean fuzzy value, we can get

HPFIWA(f1, fa, -, fis fir1) = (@ yw; f) @ (wig
Jren),

wist fier = U

M1k €M1V 1k | €8141

X (1= (1= g, )"V (1 = gy, )

2 2 12
~(1 = Wy ipsy + V1t D DY ) ;
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HPFIWA(f1, fo, ..., f1. fi+1)
= (EBlj:ijfj) & (W1 fi+1)

- U

Wik €hi,vik; €8i

) 1
: {(\/1 N Hizl(l N ’uizki)wi’ <l_[i=l(1 - Mizki)wi
_l_[izl(l — (i, + ”izki))u)i)l/2>} ¢

U

Wiikyy g €M1 Vi 1k, €811

) { <\/1 — (- M12+1k1+|)w]+1 (= 'l'le'f'lkH-l)w[Jrl

2 2 1/2
-1 - (/’Ll+1k1+1 + Vl+1k,+l))u”+l) / )}

- U

Wik; €hi,vik; €8i

)
X {<\/1 - Hi:l(l — H,‘Zk’.)wi(l — 'u’12+1k1+1)w1+] :
1
2 i 2
l .
_l_[izl(l — (U, V)"
1/2
2 2

(- (Ml""lklﬂ + vl+lk1+1))w’+|> )}

- U

Hik; eh; \Vik; €8
I+1 2 I+1 2w
" {<\/1 B Hi:l(l = K" (l_[i:l(l = Hik)
1/2
[1+1 .
_l_[izl(l a ('uizki + vizki))u)l) )} .

By mathematical induction, Eq. (8) holds for all n. More-
over, for each (u,v) in the HPFIWA operator, we have
pr 4+ =1 - I, - (““izk,- + vl.zki))wi. Since 0 <
,ul.zki + ”i2ki < 1, we have 0 < Mz + 12 < 1. Then, the
aggregated result of the HPFIWA operator is still an HPFE.

If the weight vector is taken as (%, %, %) the
HPFIWA operator reduces to the hesitant Pythagorean fuzzy
interaction averaging (HPFIA) operator as follows

L. ~ 1 ~
HPEIA(f1, f2 o0 ) = = oy fi

Hik; €hi,vik; €8i

" (1_[:;1(1 - Mizk;)% - l_[:lzl(1 - ('uizki + vizk[))%>l/2> }
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Theorem 3 Let f; = (hi, 8i) (i = 1,2,...,n) be a collec-
tion of HPFEs. If all the HPFEs reduces to f = (h, g), the
HPFIWA operator reduces to the following form

HPFIWA(A, fo, ...\ f) = f.

Theorem 4 Let f, = (ﬁi, gi) ( = 1,2,...,n) be a collec-
tion of HPFEs. Let f+ = (1,0), f~ = (0, 1), then

f~ < HPFIWA(f\, fou ..., f0) < .

Example 1 Let fi = {(0.9,0.0)}, /» = {(0.6,0.5)}, fs =
{(0.8,0.3), (0.7, 0.4)} and W = (0.25, 0.35, 0.40). Using

the HPFIWA operator, we can get HPFIWA ( fl, fz, fg) =
{(0.7904, 0.5649), (0.7541, 0.5969)}.

Definition 11 Let ﬁ (i = 1,2,...,n) be a collection of
HPFEs. The hesitant Pythagorean fuzzy interaction weighted
geometric averaging (HPFIWGA) operator can be defined as

HPFIWGA(fi, fa. ... ) = ®"_, f;". ©)

Theorem 5 Let f, = (h;, gi) (i =1,2,...,n) bea collec-
tion of HPFEs. Then, the aggregated result of the HPFIWGA
operator is still an HPFE, which has the following form

HPFIWGA(f1, fa, ...

- U

Wik; €hi,vik; €8i

- {<\/H7_1(1 = Vi) = 1_[7:1(1 = (W, + V)™

s f)

Proof If n = 2, HPFFIWGA(f, f>) = f{"' ® /5.

= U

Hiky €h1,vik, €81

x {(\/(1 — ViU = (1= (e, +vE, )™,

X ‘/1—(1—u12k1)w1)},
- U

H2ky €h2,V2ky €82

x K\/a 200 = (1= (U3, + V),

x ,/1—(1—v§k2)wz>}.

]71w1 ® fzwz
= U

ik €hi vik, €8i
x { (((1 — i) = 03" = (1= (g, A+ Vi)™
x (1= (U3, + 3,2,
x /1= (1 =2, )1 — ugkz)wz>}
- U

Wik; €hi ,vik; €8

- {<\/1_[i2=l(1 B vizki)Wi - 1_[1‘2=1(1 B (Mizki + vizki))wi’

X\/l - Hj:l(l - viz"f)m)} '

Equation (10) holds for n = 2. If Eq. (10) is established
forn =1,1.e.

®_ " = U

Wik; €hi,Vik; €8i

1/2
- { ((1_[;1(1 - v?ki)Wi N ni:l(l B (“izkf + ”izkf))m> ’
i-TLa- i)}

Then forn =+ 1, @{1 7 = (&1, /) @ (711")
By Eq.(10), we have

prrl _ U
+1 -
Wik 4y €RIA 1 Vi1 €814
2 Wi
x {<((1 B I)l+lkl-¢-1)

2 2 1/2
- (1 - (H’l-‘rlkprl + vl+lk1+1))wl+l) / ’

)

&L = (8l ) @ (A1)

- U

Wik; €hi,vik; €8i

« {((1 - (1 ~TT_a- ”iz"f)Wi>>

x(1—(1—=(1— Ul2+1kl+l)w1+1kz+1))

T )

2 2
X (1 B (1 - - (Ml+1k1+1 + vl+1k1+1))wl+l))
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’ <l B <1 - (1 a l_[§=1(1 - Uizki)wi>> *
1/2
" (1 - (1 —a- U12+1k1+1)wk+1))> )}
= U {((Hle(l — Vizki)Wi(] - U12+1k[+1)w/+|

ik €hi,vig,; €8i
l
2 2 i
[T, = G +vi™

12
2 2
(1 — (Ml+1k1+] + vl+1kk+l))wl+l> ,
L 12
I+1 2 .
- U e

Hik; €hi,vik; €8i

1,2
I+1 ,
_l_[izl(l - ('“izki + "izki))m) ’

)

Then, Eq. (10) holds for n = k + 1. Therefore, using math-
ematical induction on n, Eq. (10) holds for all n. Moreover,
for each (u,v) in the HPFIWGA operator, uz +1? =
1= T2 = 2, + v )™ Since 0 < 2, + v} <1,
hence 0 < u? + v? < 1. The aggregated result of the HPFI-
WGA operator is still an HPFE. O

Theorem 6 Let f; = (hi, &) (i = 1,2,...,n) be a collec-
tion of HPFEs. If all the HPFEs reduces to f = (h, g), the
HPFIWGA operator reduces to the following form

HPFIWGA(f1, fo ... fu) = f.

Theorem7 Let f; = (hi, &) (i = 1,2, ..., n) be a collec-
tion of HPFEs. Let f+ = (1,0), f~ = (0, 1), then

f~ < HPFIWGA(fy, fa..... f) < fT.
If the weight vector is taken as (% % el %), the HPFI-

WGA operator reduces to the hesitant Pythagorean fuzzy
interaction geometric averaging (HPFIGA) operator as fol-
lows

o . L
HPFIGA(f1, fo, ... fu) = ®_ ]

Wik; €hi,vik; €8i

: {<\/H:1=1(1 - Uizki)”l - H:l=1(1 = (g, + ”?ki))%’

Lisllase cllad .
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X\/l - l_[;lzl(l - vizki)'l')} :

Example 2 Suppose the Pythagorean fuzzy values are the
same as that in Example 1. Using the HPFIWGA opera-
tor, we can get HPEIWGA(f1, f2, f3) = {(0.7678, 0.3595),
(0.7289, 0.3959)}.

Definition 12 Let f; = (h;, §;) (i = 1,2, ..., n)beacollec-
tion of HPFEs. The generalized hesitant Pythagorean fuzzy
interaction weighted averaging (GHPFIWA) operator can be
defined as

-~ ~ =, 1/x
GHPEIWA(f1, fo, ..., fa) = (ea;!:lw,-fj) . (11)

Theorem 8 Let fl i = 1,2,...,n) be a collection of
HPFEs. Then

GHPFIWA; (f1, fa, ..

'7ﬁ1): U

Hik; Ei’iavik[ €8i
(1= (TT_ 0= @@=
1= e, + i) =TT, (= e, +03)
(I, 0 =6y + i) " (- a— (T, a-
X((1 = v, " = (= (i, + Vi )"

n 1\ 12
_Hizl(l N (Mizki + vizki))}\wj)) ) >} . 2

. . N1/
Proof 1fn = 2, GHPFIWA, (f1, fo) = (w1 Frow, f;) :

- U
L=
Hiky €h1,vik, €81

x {<\/<1 — V) = (1= (g, + Vi)Y,

x ,/1—(1—ufkl)wl)},
= U

Waky €h2, V2K, €82

x {<\/<1 — 03" = (L= (e, + v3))™,

x J1—(1 —ugkz)wz>}.
flwl ®f”2w2

Wik; €hi Vik; €8i

x (@ =vhma =i — - iy,
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+v12k1))w1 - (/"L%kz + V%kz))wz)l/Z’

x J1= (= vf m(l - v%kz)“’Z)}

Wik €hi,vik; €8i

x {(\/ [T a—viom —TT_ 0 -, + 3o

Hence, Eq. (12) holds for n = 2. If Eq. (12) is established
forn =1, i.e.

(sami?)” = U

ik; €hi,vi; €8
! 1 2
(M0
(= (g, + v NH"
, /1
_l_[i:1(1 = (i, + Vizkf)))‘wi>)

1 N\ 172
_l_[izl (1 B ('U'izki + l)1‘2/9'))1”1) ’

A
. (1 - (1 - (Hizl“ — (=)~ (1= G, + v?k,.)) )
1 A\ 172
x =TT, 0 - 0k, +92™) )) )}
O

Thenn =1+1,

( &/t f; )W

- U

Wik €hi,vik; €8i

J;1+1 = U

tik; €hi vig; €8

{(((1 V1+1k,+1)

2, DY 1=
wl+1fl)~»H = U

Hik; €hi vik; €8i
x {(( — (1= (1 = vy, )
12
) (= (=7,

2 2 A
—(1- (Ml+lkl+1 + 1)lJrlle)) )

12
2 2 A
—(1 - (/M.,.lkH_l + Vl+1kl+l))wl+l ) )} ,

wi

~ - 1/x
((@5=1 wj fl}") (&) (wl+1 fl)_].]))

P
— (= (Migig,,

) A
vl+lk1+1) )] ’

2
-- (Ml+lk1+1

elflw fl = (@§=1wifik> ® (wir1afy)

- U

Wik €hi,vik; €8i

x {((1 —~ ]_[f: (1= ((1 = v )"
—(1 = (g, VD (4 = vy, )

(= g, + D)

x (Hf._ (1= (1= vi)" = (= (g, + v ) D™
< (1= v, ) = (
_Hi:1(1

1/2
2 2 s
x(1 = (H’l+lk1+l + vl+1k1+1)) ) )}

- U

Wik; €hi,vik; €8i

(T -y

1/2
—( =, +vE ™)

2 2 A
- ('U“l+lk[+| + vl+1k1+|)) )

- ('uik,- + Vizkl.)))\wi

x (Hi:(l — (1= V)" = (1= (ufy, + Vi)D"
1/2
_Hj:(l = (ufy, + "izkf))Wi) >} '
1/2
<@I+}w[f ) = U

Wik; €hi,vik; €8i

* K((l B (Hi+ (1= (1 = v}

(1= (e, + ™)

10 a -, + v?k,.))”")l/k
10—, + v?ki))“’f) "

x (1 = (1 - (]—[f:(l — (=)t
—(1 = (i, + v D™

1 172
I+1 .
_l_[i=1(l N ('uizki + vizki))Wl>> )

Then Eq. (12) holds for n = [ 4 1. Hence, Eq. (12) holds
for all n from mathematical induction. Moreover, for each
(u, v) in the GHPFIWA operator,
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k1 _
/1/2 _|_ U2 — 1 _ HiZI (1 _ (//l/lzk’ + vfki))xwl))l/)\,
Since 0 < 7 +v7 < 1,then 0 < p? +1? < 1. The
aggregated result of the GHPFIWA operator is still an HPFE.

Theorem 9 Let f; = (hi, §i) (i = 1,2,...,n) be a collec-
tion of HPFEs. If all the HPFEs reduce to f = (h, g), the
GHPFIWA operator reduces to the following form

GHPFIWA(f1, fa. ... fu) = f.

Theorem 10 Letfi = (ﬁi, gi) (i = 1,2,...,n) beacollec-
tion of HPFEs. Let f+ = (1,0), f~ = (0, 1), then

= < GHPFIWA(f:., fon ..., f) < f™.

If the weight vector is taken as (% , L , %), the GHPFIWA,,

n 9
operator reduces to the generalized Pythagorean fuzzy inter-
action averaging (GHPFIA) operator as follows

o ) 1\
GHPFIA(f1, f2, ..., fa) = (697:1 ;ﬁ)

- U

1ik; €hi,vik; €8i
k+1 2
(-0
1

—( =, + v )7

ket 5 5 o\
_l_[l:l (1= (i, + vig )

K+ 5 , 1\ 72
[T, =, +vin)

x (1 - (1 - (Hf:(l — (1= )

—(1 = (3, + V3T
k1 S
_Hi; (- (“t‘zki + ”izk,-))ﬁ>> )

Example 3 Suppose the Pythagorean fuzzy values are the
same as that in Example 1. Using the GHPFIWA opera-
tor, we can get GHPFIWA(fi, f», f3) = {(0.5590, 0.1800),
(0.4870, 0.2125)}.

Hesitant Pythagorean fuzzy interaction
Bonferroni mean operators

The Bonferroni mean aggregation operator was defined by
Bonferroni [51] in 1950. It was generalized by Yager [52]
and others.

Dieliase ¢llodi ay .
bes Shenas Q) Springer

Definition 13 Letfi = (h;, g =1,2,...,n)beacollec-
tion of HPFEs. For any p, g > 0 with p+4¢q > 0, the hesitant
Pythagorean fuzzy interaction Bonferroni mean (HPFIBM)
aggregation operator can be defined as

HPFIBM?Y(f1, for ..., fu)

1 n P q ﬁ
= (m @i,jzl,i;éj (fz ®fj )> . (13)

Theorem 11 Let f; = (h;, §)) (i = 1,2, ..., n) be a collec-
tion of HPFEs. Then, the aggregated result of the HPFIBM
operator is still an HPFE, which has the following form

) f‘;’l)
1
1 - -~ ==
_ <—n(n —5 O (' ® ff))

- U

Hik; €hi vik; €8isjk; €h vk €8

-IT; — (1= v2 )P (1 — v )1

x{(((l l—[i,jzl,i#j(l (1= )P A =v5)
1

—(1 = (uiy, + v )P (= (3, + V3 )N 7D

n (2 2 \\p
+1_L,j:1,i;é.i((1 (it + Vitg))

HPFIBMPA(fi, fa, ...

1
2 2 L\ pte
X (1= (a3, + V3 )T )
n 2 2
_l_[i.j=1,i#j((1 = (Wi, +vig )
2 Y R
x (1 — (/’ijj +ij,-)) )"("*U(pﬂl)) ,
(111" (1 p2\p
x(l (1 ni,j:l,i;éj(l (1= V3 )P
x(1=vi ) = (1= (i, + V)"
(1= (3, + 3, )T
Jjkj Jjkj
n 2 2
T o, (O Gl + 03 )"
Lo 1/2
(1= W, + v?kj))q)n(n—w)””) )}
Proof Since
7= U
1ik; €hi,vik; €8
1—v2 )P — (1 — (i3 2 )y
X ( vlk,') ( (I’sz, +vzk,)) )
x‘/l—(l—vizki)l’)},
fi= U

Wjkj€&jsVik; €hj
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x {(\/(1 = Vi) = (L= (g, + V7 ),

i)
refi= U

ik, €hi vig, €8iMjk; eiz,—,u,—kj €§j
< f (@ =vg)ra -2y
—(1 = (Ui, + v NP (= (3, + 050D,
x \/1 — (=3 )P(1 - vf.kj)q)} ,
&} im1iz, (7 © )

- U

ik €hi vik; €8i M jk; €hjvjk; €8,
_ " _ 2 \p 2 \q
X{<(1 Hi,j:l,i;&j(l (1= v )P (=i )
1/2
(= (W, + Vi A = (W v 0D)
n _ 2
x(]‘[i’j:l#j(l (1 —v3)Pa
—Vi ) = (1= G, + Vi) = (W, + v )
n
- 2
[T, 0 i,

172
(1= i, + 3 )) )} ,

1 - -
nin =D Bz @ T

- U

MikiEg’i,vz'kiGfli,ujkjééj,v/'kjEﬁj

_TT1" (1 — 2 V(1 — 2
X{<(l Hi,j:l,i;tj(l (1= vi,)7 v/kj)

2 2 \\p 2 2 gt ) 2

(= (W, + i) = (W, + vh DD )

n
x (Hi,jzl,i;éj(l -
_Vizk,«)p(l _ ”jz‘kj)q

1
—(1 = (g, + V)P (= (g, + i DD 7D
71" (w2 2 \yp
Hi,jzl,iaéj((l (i + Vik))

1 \1/2
X (1= (i, + v} N ) >} :

_ g P oo 4 7
Nt = Bhi=rini U0 © 1))

Wik; €8i>Vik; €his 1 jk; €85V jk; €N

- { (( (1 - l_[?,jzl,i#j(l = (=) (= v )=

1
x (1= (i, + v )P (1= (W, + vy D7D
n
— (42
+HT o, G
1
Lo L
+03 )P (1 — W?k, + vjzkj))q)in(n—l))!’+q
171 (2 2 )P
l_[i,jzl,iaéj((l (i Vi)™
1 — (2 2 q‘n(nfl;(H’) 12
X( (/,ijj +ijj)) ) bra ’
(=TT — (1 —v2 )P
< (1= (1-TT; Ly, 0 = =i
(1= v5) = (= G+ v )" (1~
2 2 q%l
X (Wi + Vg )T

" 2 2 2
T, (O = g + 307 = gy,

Lo\ 12
+u,2~k_,>)qw—w)””) )}

Moreover, for each (i, v) in the aggregated result of the
HPFIBM operator, we have

2 2_ 1 _TT1" 2
wavi=1=T =g,

1
FVENP (L= (i3, + i DD

Since 0 < '“izki + Vizki <land0 < “?kj + ij‘kj < 1, hence
0< pc2+v2 < 1. Then, the aggregated result of the HPFIBM
operator is still an HPFE. O

Theorem 12 Let f; = (h;, §;) (i = 1,2, ..., n) be a collec-
tion of HPFEs. If all the HPFEs reduce to f = (h, g), the
HPFIBM operator reduces to the following form
HPFIBM(f1, fa..... fu) = J.

Theorem 13 Let f, = (fzi, g) (i =1,2,...,n) beacollec-
tion of HPFEs. Let f+ = (1,0), f~ = (0, 1), then

f~ < HPFIBM(fi, fo, ..., f) < f*.

Example 4 Suppose the Pythagorean fuzzy values are the
same as that in Example 1. Using the HPFIBM operator, we

can get HPFIBM( /1, f>, f3) = {(0.7931, 0.3155), (0.7823,
0.3234), (0.7701, 0.3515), (0.7576, 0.3607)}.

Definition 14 Let f; = (h;, 8) (i = 1,2,...,n) be a col-
lection of HPFEs. For any p,q > 0 with p + ¢ > 0, the
hesitant Pythagorean fuzzy interaction weighted Bonferroni
mean (HPFIWBM) aggregation operator can be defined as
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HPFIWBM” Y (f1, fa, ..., fu)

! - -\
- (n(n —D ®?,j=l,i¢j (wi f)? ® (u)jfj)q)> ,
(14)

where (w1, wa, . ..., wy,) is the weight vector satisfying w; >

0, Z?:l w; = 1.

Theorem 14 Let f; = (hi, 3;) (i = 1,2, ..., n) be a collec-
tion of HPFEs. Then, the aggregated result of the HPFIWBM
operator is still an HPFE, which has the following form

HPFIWBMP 4 (i, fo. ..., f)

1

1 n ~ ~ ptq
- <n(n - ®; o1z (Wi f)P ® (wjfj)‘l)>

Hik; €hi vik; €8 Sk Efljsvjkj €8;

_IT1 (1 = (1 = 2 ywi
x{(((l [T, 0-a=-a-u
(1= (U, + VNP A = (1 = p% )
(= (U, + i)D"+

. g —L
—(Wit, Vi) = (W, + v )M TED
n
el
T o, (= G
1
Lol
PP = (13 4 v )iy ) T
n
- —
[, = oy
02 )P — (i, 4R iy )
Vzk,-)) ( (/vL]kj ijj)) ) ,
n
x (1 - (1 -IL,2..0
—(1 = (1= uf )™ + (1= (uf, + v NP
—(1 = @G )7+ (1= Wy,
Ho DYDY+ (4 = (g, + v )" A
(i, + )T
Hjk; Jkj

n
— (2
XHi,j:l,i;ﬁj((l (Wi,

1/2
| 1
PR = iy, + )T ) ) )}

Definition 15 Let f; = (h;, 8;) (i = 1,2,...,n) be a col-
lection of HPFEs. For any p,q > 0 with p + ¢ > 0, the
hesitant Pythagorean fuzzy interaction geometric Bonferroni
mean (HPFIGBM) aggregation operator can be defined as

Lisllase cllad .
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HPFIGBM”Y (f1, fa, ..., fu)
1 ~ ~ 1
T pta B j=rinj PLi © 417D ()

Theorem 15 Let f; = (hi, 3;) (i = 1,2, ..., n) be a collec-
tion of HPFEs. Then

HPFIGBMP(f1, fo. ..., fn)
~r+q Qi j=1,i#j (Pfi Equ;)

- U

Hik; €hi vik; €8isitjk; €h vk €8

x K(l B (1 B H?,j:l,i;éj(l - (=)
—15 )+ (1= (ufy, + v ))P 0

n

—(u2, 42 )))TEn
(i + Vi )0 +1—[i,j:1,i#j((1

— (Wi + VA" = (G,
LN 12
Lo
et )

n
x ((1 B l—[i,jzl,i;éj(l
—(1 = pi )P (= 5 )+ (= (i, +vi NP
1
_(H{%kj + ij‘kj))q)”("_])

n
+1—[i,j:1,i7éj((1 = (g, + )"0
1
Ll
—(Wy, + v DT )

-IT — (U3 2 )P
Hi,jzl)i#j((l (i, +va NP

2 2 1172
—(Mjkj + ij,-))q)”("fl)“’”)) .

Proof

Wik; €hi Vi, €8i
(1= (= w2r, (@ = g7
—(1 = e + Vi),
afi= U

1k €hj.vik; €8;
(1= =3 @ =)
- - (“ikj + Ufz'kj))q)l/z)} ’

pfi®af;
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- U

wit; €hi Vi €8 i €hjvjk; €8
< {(1= =2 pra - w3 ).
(1= pf )P (1= u5 ) = (1
—(u, + VR = 2, D)
(pfi @ ¢ )T

- U

1ik; €hi vik, €81 ji; €h vk €8

(= a=udora— ) +a -,
VNP (1= (3, + 3 DT — (1

— (Wi + V)" (4 =

+03 DT 2,

(1= (1= (1= pf )P (1 = )

(1= (ufy, + v )P

1
—(Mikj + ij‘kj))q)"("‘”)l/z)} ,

~ ~ 1
®:‘l’j=1,i7éj (pfi ®qf;)"@=D

- U

ik; €hi vi; €8i o ji; €hjvjk; €8
n 3 a2
% {(<Hi,j:1,i7+_j(] (1 = i )P = 1)
1
(=, + Vi )P (L= Wy, + v VD7D
_Hn 1— 2
i,j:l,i;éj(( (Miki
1 1/2
FUE D = (W3 +vh DD )
_ " _ _ 2\
X<l Hi,j:l,i;ﬁj(l (1 = pi)"A
—u3 )+ (= (ufy, + v )P
2 2 _1 12
_(Mjkj + Ujkj))q)”("’l>> s
~ ~ 1
ptaq ® i1.izj (i ®qf;)"@D

Hik; €hi ik, €81 ji; €hj vk €8
—(1=-TT" (1= 2P
X{(<1 (1 l_[i,jzl,i;éj(l (= uip)"d
)T+ (L= (ufy, + v )P
n

— 2 2 q\n nl—
Wi HvE DT+ @

12
Lo
—(Wi, + v NP~ (M?kj + vjz-kj))q)"ml))”“’) ,

n
% ((1 - Hi,jzl,i;é./(l
2 \p 2 \q 2 2 \\p
—(1 = )7 (1= w5 )T+ (1= (i, +vig, NP A
5 SRy -
—(Wjk, + Vi, ) 7D
n 2 2 \\p 2
+1_L_’j=1,i#j((1 = (Wi, +vig D" = (Wi,
1
L L
+v?k_,))q)m)p+q
n 2 2 2
_Hi,jzl,i;éj((l = (Wig; +vig NP (= (1,

| 1/2
+uJ2.kj))q)n<nfl><p+q>) >} .

Moreover, for each (u, v) in the HPFIGBM operator,

2 2_ 4 TT 2
W=t =g

2 \yp 2 NN =
+vip, )P (1 _(/'ijj +ijj)) ) rr=Dip+a) |

. 2 2 2 2

then 0 < u? + v? < 1. Hence, the aggregated result of the
HPFIGBM operator is still an HPFE. O

Theorem 16 Let fi = (hi, i) (i =1,2,...,n) be a collec-
tion of HPFEs. If all the HPFEs reduce to f = (h, ), the
HPFIGBM operator reduces to the following form

HPFIGBM(f1, f>, ..., fa) = f.

Theorem 17 Let f; = (hi, &) (i = 1,2, ..., n) be a collec-
tion of HPFEs. Let f+ = (1,0), f~ = (0, 1), then

f~ < HPFIGBM(f, fo..... ) = T
Example 5 Suppose the Pythagorean fuzzy values are the
same as that in Example 1. Using the HPFIGBM opera-

tor, we can get HPEIGBM( /1, f», f3) = {(0.7804, 0.3457),
(0.7429, 0.4058), (0.7752, 0.3399), (0.7389, 0.3975)}.

Definition 16 Let f; = (h;, §;) (i = 1,2, ..., n)beacollec-
tion of HPFEs. For any p, g > 0 with p+4¢q > 0, the hesitant
Pythagorean fuzzy interaction geometric weight Bonferroni
mean (HPFIGWBM) aggregation operator can be defined as

)

1
FW; ~W;\ n(n—1)
®; j=1in (Pf,-w EB!]fj]) ,

HPEIGWBM? Y (f1, f>, ...
1

_ 16
Py (16)

where (wy, wy, ..
n
0, E i=1 Wi = 1.

., Wy) is the weight vector satisfying w; >
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Theorem 18 Let f; = (h;, &) (i = 1,2, ..., n) be a collec-
tion of HPFEs. (wy, wy, ..., wy) is the weight vector with
w; >0, ", w; = 1. Then

HPFIGWBMP4(f1, fo, ..., fa)

1 n w; )\ 7Ty
= g Shintizi (Pft qf; )

Hik; Eﬁi,wki €8isMjk; eﬁ.f’vjkj €8j
B _ n . . _ 2 w;
(= (=TT 0 0= a =i
(1= Gad, + VRN = (1= )% 4 (1=
03, )" + (1

. R
—(Wi, F VNP = (W, V5 )T D

n
2
[T o, (= G
L 172
oL
FUE (L = iy v ) ) ) :

((1 N Hiszl’#J’“ —¢

—(1 =i )" + (= (g, + v N")P(
—(1 =3 )"+ (= (i,

H5 DT+ (1= (i, + v )P

_(P{%kj + v?kj))qw_/)ﬁ

" _ (2 2 \\pw;
+ [T, (= @y + i 0™ a

1
Lol
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An approach to Pythagorean fuzzy multiple
attribute decision-making based on new
interaction aggregation operators

Suppose there is a multiple attribute decision-making prob-
lem.{Aq, Ay, ..., A, }isthealternative set, {Cy, C3, ..
is the attribute set. The experts evaluate alternatives with
respect to attributes with Pythagorean fuzzy values. If they
are familiar with the attributes, they can give evaluation val-
ues; if they are not familiar with attributes, they can refuse to
give any evaluation values. Hence, the hesitant Pythagorean
fuzzy decision matrix is formed. The proposed method based
on the new hesitant Pythagorean fuzzy interaction aggrega-
tion operators is as follows.
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Step 1. Decision-makers evaluate alternatives with respect
to attributes with Pythagorean fuzzy values and hesitant
Pythagorean fuzzy decision matrix is formed as D =

(fl J Ymxn-
Step 2. Calculate alternatives’ collective evaluation values

using the HPFTIWBM operator or the HPFIGWBM operator
using the following equations.
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Al {(0.9,0.2)} {(0.7,0.3)} {(0.6,0.5)}
Ay {(0.5, 0.6), (0.6, 0.3)} {(0.8,0.3)} {(0.4,0.5)}
A {(0.7,0)} {(0.6,0.2)} {(0.6,0.2), (0.8,0.2)}
Ay {(0.7,0.4)} {(0.8,0.1), (0.7, 0.4)} {(0.5,0.3)}
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where (wip, wa, ..., wy,) is the weight vector of different
attributes with w; > Oand Y ', w; = 1.

Step 3. Calculate each alternative’s S(f;) and A(f;) using
the Eqgs. (4)—(5).

Step 4. Rank alternatives according to the method in Defini-
tion 7.

The new method has the following characteristics: the
evaluation values are given as HPFEs, which are more flexi-
ble and powerful; interaction between membership and non-
membership has been considered; and interaction between
arguments to be aggregated has been modeled using the Bon-
ferroni mean operator.

An illustrative example

Suppose there is an investing company wanting to invest a
large amount of money (adapted from [57]). They invite sev-
eral experts to evaluate several possible companies: Aj—an

artificial intelligent company, Ap—an architecture company,
Az—a catering company and As—a logistics company. They
mainly consider the following attributes: Cq—interest rate,
Cr—risk, Cz3—growth potential. The new method is used to
rank alternatives as follows.

Step 1. The experts evaluate alternatives with respect to
attributes in Pythagorean fuzzy values and the decision
matrix is formed as D = (fjj)a4x3 (Table 1).

Step 2. Assume the weight vector of attributes is (0.45, 0.35,
0.20). Calculate the collective evaluation values by using the
HPFIWBM?? operator to get

fi = {(0.5605,0.2174)}, f» = {(0.4238,0.3176),
(0.4240, 0.2861), (0.4368, 0.2272), (0.4392, 0.2623)},
f3 = {(0.4477,0.1012), (0.4995, 0.0880), (0.4975, 0.0988),
(0.5420,0.0862)}, f1 = {(0.4486,0.2522), (0.4621,
0.2264), (0.4638, 0.2229), (0.4753,0.1972)}.

Step 3. The scores of f; are calculated as

S(f1) = 0.2670, S(f>) = 0.1100,
S(f3) = 0.2515, S(f3) = 0.1631.

Step 4. The alternatives can be ranked as
A3>A1>A4>A2.

The optimal alternative is A3.
Comparing with other methods

If the hesitant Pythagorean fuzzy interaction weighted aver-
aging (HPFIWA) operator is used in aggregating, we can
get fi = {(0.8449,0.3123)}, f» = {(0.6979,0.4759),
(0.7228, 0.3785)}, f3 = {(0.7864, 0.1734), (0.7111,
0.1670)}, f1 = {(0.7683,0.2955), (0.7216, 0.1670)}. The
scores of f, (i =1,2,...,4) can be calculated as S(ﬂ) =
0.6163, S(f2) = 0.3199, S(f3) = 0.5331, S(f3) = 0.4334.
Then alternatives can be ranked as A; > A3 > Ay > A
and the optimal alternative is A;. The ranking result is differ-
ent from that based on the HPFIWBM operator. Though the
interaction between membership and non-membership has
been considered, interaction between hesitant Pythagorean
fuzzy elements has not been considered.
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HPFIWA(f1, f>, ..
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If interaction between membership and non-membership
is not considered and we calculate the collective ones
using the hesitant Pythagorean fuzzy weighted averaging
(HPFWA) operator as follows

)

7)

HPFWA(f1, f>, ...

- U

Hik; eh; \Vik; €8
1 Toa—2oye T v 1
X _1_[[:1( — Wik, l’l_[izlviki ’ (18)

We can calculate collective evaluation values using the
HPFWA operator to get fl = {(0.8110,0.2769)}, f» =
{(0.6377, 0.4539), (0.6689, 0.3323)}, f3 = {(0.6964,0),
(0.6951,0)}, f1 = {(0.6964,0.3446), (0.7158, 0.2325)}.
The scores can be calculated as S(f]) = 0.5811, S(fz) =
0.2688, S(f3) = 0.4841, S(f4) = 0.4123. Then, alternatives
canberanked as A > A3z > A4 > Aj and the optimal alter-
native is Aj. From the result, we can see that the aggregated
non-membership of A3 is 0 due to the 0 nonmembership in
evaluation values. Though all the other non-memberships are
not 0, they have no effect on the final result.

If the TOPSIS method is used to rank alternatives, we first
extend decision matrix by adding the minimum Pythagorean
fuzzy value (0.4, 0.5) to make all the evaluation values have
the same number of membership and non-membership. The
hesitant Pythagorean fuzzy positive ideal solution f* and
hesitant Pythagorean fuzzy negative ideal solution f~ can

be determined as f+ = <{(0.9, 0.2), (0.4,0.5)}, {(0.8, 0.1),

3‘];}1)

(0.7,0.4)}, {(0.8,0.1), (0.7, 0.4)}, {(0.8, 0.2), (0.6, 0.2)}),
= ({(0.5, 0.6), (0.6, 0.3)}, {(0.6, 0.2), (0.4, 0.5)}, {(0.6,

0.2), (0.4,0.5)}, {(0.4,0.5), (0.4, 0.5)}> . The weighted dis-

tances between alternative evaluation values and f +, f -
can be calculated using the following equations dl.+ =
wid(fi* fi) + wd(fF fo) + wid(fy', fia). df =
wid(fy, fiD) +wad(fy . fi2) + w3d(f5, fi3). The results
are as d” = 0.0301, df = 0.0495, df = 0.0834,
dj = 0.0390, d; = 0.1653, d, = 0.0289, d; = 0.1630,

Dieliase ¢llodi ay .
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d, = 0.1663. The closeness coefficients can be calcu-
lated by CC; = d-dT to get CC; = 0.8458,CCy =
0.3684, CC3 = 0.6616, CC4 = 0.8101. Then alternatives
can be ranked as Ay > A4 > Az > A, and the optimal
alternative is Aj.

Ifinteraction between memberships and non-memberships
is not considered, the hesitant Pythagorean fuzzy weighted
Bonferroni mean (HPFWBM) operator as follows is used in

aggregating.

HPFWBM(f1, fa, ..., f)

1 . . Fyay )
N (m & jmriny (WIS ® (wjfj)q))

U

Ik €hjovjk; €8;

J <1 - (1 - Hijzl,i;&j(l -(- (UﬁCp)q)W) ﬂ+q) ] .

(19)

X
X

The collective evaluation values can be calculated as f; =
{(0.4713,0.7377)}, f» = {(0.3533,0.8181), (0.3886,
0.7650), (0.3540, 0.8065),  (0.3889,0.7585)}, f3 =
{(0.4066, 0.6147), (0.3806, 0.6147), (0.3998, 0.6147),
(0.3694,0.6147)}, f3 ={(0.4275,0.7107), (0.3944, 0.7517),
(0.4263,0.7264), (0.3923, 0.7753)}. The scores can be cal-
culated as S(f1) = —0.3221, S(f>) = —0.4820, S(f3) =
—0.2257, S(f4) = —0.7377. The alternatives can be ranked
as A3 > A} > A4 > A, and the optimal alternative is
Asz. Though ranking result is the same as that based on the
HPFIWBM operator, but in aggregation process, the effect
of non-memberships has been reduced since there is 0 of
non-membership in the evaluation process. In other decision-
making problems, we may get different ranking results.

The differences between the proposed method and the
existing methods have been summarized in Table 2. In a word,
our proposed method is based on the hesitant Pythagorean
fuzzy values and the Bonferroni mean operator. Moreover,
interaction between arguments to be aggregated is considered
and interaction between membership and non-membership is
also considered.

Conclusions

In this paper, we first define some hesitant Pythagorean
fuzzy interaction aggregation laws for HPFEs, and then
develop some hesitant Pythagorean interaction aggregation
operators. Using the Bonferroni mean operator, we develop
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Table 2 The characteristic
comparisons of different
methods

Methods

Whether consider the inter-
relationships between aggre-
gating arguments

Information by Pythagorean
fuzzy number

Liang et al. [22]

Xu and Yager [58]
Zhang and Xu [32]
Garg [50]

Our proposed method

Yes Yes
No Yes
Yes No
Yes No
Yes Yes

Methods

Whether consider the inter-
actions between member-

Whether information by
hesitant Pythagorean fuzzy

ship and non-membership number
Liang et al. [22] No No
Xu and Yager [58] No No
Zhang and Xu [32] No No
Garg [50] Yes Yes
Our proposed method Yes Yes

some hesitant Pythagorean fuzzy interaction Bonferroni
mean operators. Based on the HPFIWBM operator and the
HPFIWGBM operator, we propose a new multiple attribute
decision-making method. Numerical example is presented to
illustrate the new method.

In the future, we will apply the new aggregation opera-
tors to other complicated decision problems and we will also
develop new interaction aggregation operators for HPFEs.
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