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Abstract

Intuitionistic trapezoidal fuzzy multi-numbers (ITFM-numbers) are a special intuitionistic fuzzy multiset on a real number
set, which are very useful for decision makers to depict their intuitionistic fuzzy multi-preference information. In the ITFM-
numbers, the occurrences are more than one with the possibility of the same or the different membership and non-membership
functions. In this paper, we define ITFM-numbers based on multiple criteria decision-making problems in which the ratings
of alternatives are expressed with ITFM-numbers. Firstly, some operational laws using t-norm and t-conorm are proposed.
Then, some aggregation operators on ITFM-numbers are developed. Also, the ranking order of alternative is given according
to the similarity of the alternative with respect to the positive ideal solution. Finally, a numerical example is given to verify

the developed approach and to demonstrate its practicality and effectiveness.

Keywords Intuitionistic fuzzy set - Intuitionistic fuzzy number -

multi-numbers - Multi-criteria decision making

Introduction

In 1986, the theory of intuitionistic fuzzy set was first
presented by Atanassov [1] to deal with uncertainty of imper-
fect information. Since the intuitionistic fuzzy set theory
was proposed by Atanassov [1], many researches treat-
ing imprecision and uncertainty have been developed and
studied: for example, trapezoidal fuzzy multi-number [2],
intuitionistic fuzzy sets [3-11], methodology for ranking
triangular intuitionistic fuzzy numbers [12-23], intuition-
istic trapezoidal fuzzy aggregation operator [21,24-29],
interval-valued trapezoidal fuzzy numbers aggregation oper-
ator [30-33], interval-valued generalized intuitionistic fuzzy
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numbers [26,34], entropy and similarity measure of intuition-
istic fuzzy sets [35,36] and so on.

“Many fields of modern mathematics have been emerged
by violating a basic principle of a given theory only because
useful structures could be defined this way. Set is a well-
defined collection of distinct objects, that is, the elements of
a set are pair wise different. If we relax this restriction and
allow repeated occurrences of any element, then we can get
a mathematical structure that is known as Multisets or Bags.
For example, the prime factorization of an integer n > 0
is a Multiset whose elements are primes. The number 120
has the prime factorization 120 = 233'5! which gives the
Multiset {2, 2,2, 3,5} [37]. As a generalization of multi-
set, Yager [38] proposed fuzzy multiset which can occur
more than once with possibly the same or different mem-
bership values. Then, Shinoj and John [37,39,40] proposed
intuitionistic fuzzy multiset as a new research area. Many
researchers studied intuitionistic fuzzy multisets. Ibrahim
and Ejegwa [41] and Ejegwa [42] extended the idea of modal
operators to intuitionistic fuzzy multisets. Rajarajeswari and
Uma [43] developed normalized geometric and normalized
hamming distance measures on intuitionistic fuzzy multisets.
Ejegwa [44] gave a method to convert intuitionistic fuzzy
multisets to fuzzy sets. Ejegwa and Awolola [45] proposed a
application of intuitionistic fuzzy multisets in binomial dis-
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tributions. Deepa [46] examined some implication results and
Das et al. [47] proposed a group decision-making method.
Rajarajeswari and Uma [48-52] introduced some measure
for intuitionistic fuzzy multisets. Also, Shinoj and Sunil
[53] and Ejegwa and Awolola [54] gave algebraic structures
of intuitionistic fuzzy multisets, called intuitionistic fuzzy
multigroups, and its various properties were examined. Also,
the same authors proposed the topological structures of the
sets in [55].

From the existing research results, we cannot see any study
on intuitionistic trapezoidal fuzzy multi-numbers (ITFM-
numbers). The ITFM-numbers are a generalization of trape-
zoidal fuzzy numbers and intuitionistic trapezoidal fuzzy
numbers which are commonly used in real decision prob-
lems, because the lack of information or imprecision of
the available information in real situations is more serious.
So the research of ranking ITFM-numbers is very neces-
sary and the ranking problem is more difficult than ranking
ITFM-numbers due to additional multi-membership func-
tions and multi-non-membership functions. Therefore, the
remainder of this article is organized as follows. In “Pre-
liminary”, some preliminary background on intuitionistic
fuzzy multiset and intuitionistic fuzzy numbers is given.
In “Intuitionistic trapezoidal fuzzy multi-number”, ITFM-
numbers and operations are proposed. In “Some aggregation
operators on ITFM-numbers”, some aggregation operators
on ITFM-numbers by using algebraic sum and algebraic
product is given in Definition 2.3. In “An approach to
MADM problems with ITFM-numbers”, we introduce a
multi-criteria making method, called ITFM-numbers multi-
criteria decision-making method, by using the aggregation
operator. In “Application”, case studies are proposed to ver-
ify the developed approach and to demonstrate its practicality
and effectiveness. In “Comparison analysis and discussion”,
some conclusions and directions for future work are initiated.

Preliminary

Let us start with some basic concepts related to fuzzy set,
multi-fuzzy set, intuitionistic fuzzy set, intuitionistic fuzzy
multiset and intuitionistic fuzzy numbers.

Definition 2.1 [56] Let E be a universe. Then a fuzzy set X
over E is defined by

X ={(ux(x)/x):x € E},

where py is called membership function of X and defined
by ux : E — [0.1]. For each x € E, the value pux(x)
represents the degree of x belonging to the fuzzy set X.

Definition 2.2 [57] #-norms are associative, monotonic and

commutative two-valued functions ¢ that map from [0, 1] x
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[0, 1] into [0, 1]. These properties are formulated with the
following conditions:

1. £(0,0) = 0 and r(ux,(x), 1) =
MXl(x)v x €E,
2. 1f o, () < fx, () and pox, (¥) < pox, (x), then

11 pux, () =

F(pex, (X)), px, (X)) < t(uxsx), x, (x)),

t(px, (%), x, (X)) = t(ux, (x), ux, (x)),

4 t(ux, (), t(x, (X)), mx;(x))) = t(t(px, (x), x,)(x),
x5 (x)).

et

Definition 2.3 [57] s-norm are associative, monotonic and
commutative two-placed functions s which map from [0, 1]x
[0, 1] into [0, 1]. These properties are formulated with the
following conditions:

1. s(1,1) = 1 and s(uy,(x),0) =
ux,(x),x € E,

2. if ux, (x) < pxs(x) and px, (x) < px,(x), then

S(x, (), mx, (%)) < s(xs (), x, (X)),

s(ux, (), ux,(x)) = s(ux, (x), ux, (x)),

4 s(ux, (x), s(x, (X)), mx3(x))) = s(s(ux, (X), hx,)(x),
x5 (x)).

50, ux,(x)) =

b

t-norm and 7-conorm are related in a sense of logical dual-
ity. Typical dual pairs of non-parameterized 7-norm and
t-conorm are compiled below [57]:

1. Drastic product:

by (i x, (X), tx, (X))

_ min{ﬂxl(x)» MXx, ()}, maX{/’LXl (X)MXZ(X)} =1
o, otherwise )

2. Drastic sum:

swpx, (), mx, (x))

_Jmax{ux, (x), ux,(x)}, min{uyx, (px,(x)} =0
1, otherwise ’

3. Bounded product:

t1(ux, (), mx, (x)) = max{0, wx, (x) + ux, (x) — 1}.

4. Bounded sum:

s1(x, (), px, (x)) = min{l, pux, (x) + wx, (x)}.

5. Einstein product:

tr5(ux, (x), x, (x))
195'¢} ()C) . MXz(-x)
2 =[x, (X) + px, (0) — px, (x) - px, (0]
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6. Einstein sum:

mx, (x) + px, (x)
1+ px, (x) - px, (x)

s1.5(xy (%), mx, (x)) =
7. Algebraic product:

f(ux, (x), x, () = pux, (x) - (x, (x).

8. Algebraic sum:

s2(x (), px, (X))
= px, (X) + px, (x) — px, (x) - px, (x).

9. Hamacher product:

12.5(px, (X), 1x, (x))
— MXI(X) 'MXQ(x)
MXx, ()C) + 125'¢) (.X) — KX, (-x) ¢ ()C) ’

10. Hamacher sum:

s2.5(mx, (x), px,(x))
_ X () + px, () = 2.ux, (X) - pox, (x)
1_MX1(X)'/*LX2(X) .

11. Minumum:

13(px, (x), wx,(x)) = min{ux, (x), wx,(x)}.
12. Maximum:

s3(ux, (x), wx, (x)) = max{ux, (x), wx, (x)}.

Definition 2.4 [58] Let X be a non-empty set. A multi-fuzzy
set A on X is defined as:

A= {{x, py(x), p3(x), ... ph(0)) s x € E}.

where u; : X — [0,1] foralli € {1,2,...
uh() = () = - = phoforx € E.

, p} such that

Definition 2.5 [1] Let X be a nonempty set. An intuition-
istic fuzzy set (IFS) A is an object having the form A =
{(x; pa(x),va(x)) : x € X}, where the function g : X —
[0.1T,vg : X — [0.1] defines, respectively, the degree of
membership and the degree of non-membership of the ele-
ment x € X to the set A with 0 < pa(x) + va(x) < 1 for
eachx € X.

Definition 2.6 [39,40] Let X be a non-empty set. A intuition-
istic fuzzy multiset IFM on X is defined as:

IFM = {{x : (uh (), ph (), ..o, 1k (o), W) (),
Vi), ..ovF ) ix e X ),

where u; : X — [0,1] and v; : X — [0, 1] such that
0 < ply(x)+vi(x) < lforalli € {1,2,..., p}andx € X.
Also, the membership sequence is defined as a decreas-
ingly ordered sequence of elements, that is, (i k (x), u,i (x),
- /Lf;(x)), where ,ui\(x) > u%(x) > > uﬁ;(x) and the
corresponding non-membership sequence will be denoted by
(v:‘ (%), vi x),..., v/f (x)) such that neither decreasing nor
increasing function x € X andi = (1,2, ..., p)

Definition 2.7 [7] Let & be an intuitionistic trapezoidal fuzzy
number; its membership function and non-membership func-
tion are given, respectively, as

Gyt aSx<b
Nas b<x<c

ng(x) = (:1)[%) and
o c<x<d
0, otherwise,
%’ ap<x<b
Vg, b<sx=c

vg(x) = — )+ (dy—

& (x) %, c<x <d
1, otherwise,

where 0 < uz; < 1;0<v; < 1l;uz +v; <l;a,b,c,d €
R.Then,& = {([a, b, ¢, d]; ug), [a1, b, c, di]; vz)) is called
an intuitionistic trapezoidal fuzzy number. For convenience,
leta = ([a, b, c,d]; nug, vz).

Definition 2.8 [7] Let & = ([a, b, c, d]; ug,, vg,) and @ =
(la, b, ¢, d]; g, , va,) be two intuitionistic trapezoidal fuzzy
numbers, and A > 0, then

l. a1 @ ap = ([a1 + a2, b1 + by, c1 + ¢2,d1 + da; pug, +
My — M Mas s Vo Vo?2>;

2. a1®ar = (la1az, biby, cic2, dida); g, ey s Va; Ve —
Vi, Vi )5

3. A& = ([Aa, Ab, Ac, Ad]; 1 — (1 — ,u&))‘, (v&))‘);

4. @ = ([a*, b, c* dM; (ua) 1 — (1 —vg)™).

Definition 2.9 [59] Let A = {(ai, by, c1,d1);na), B =
((az, b2, c2,d2);mB), 0 < a1 < by < ¢ < d <1,
0 <ay < by <cy <dy <1 Then, the degree of similarity
S(A, B) between the generalized trapezoidal fuzzy numbers
P(A) and P(B) is calculated as follows:

S(A, B) = (1 _ Z?l4ai_bi|) «

where S(A, B) € [0, 1]; P(A) and P(B) are defined as fol-
lows:

min{P(A), P(B)}4+min{na.np}
max{P(A), P(B)}+max{na.np}’
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P(A) = \/ (a1 — a2)? + (na)? Example 3.2 The ITFM-numbers function
(@3 — an?) + () + (@3 — @) + (@5 — an), G-03) 1<x<3
0.3 3<x<6
— — )2 2 L (x) = =" =
P(B) = /(b1 — b2)? + (1) D=1 005 g o
b3 — b + ) + by — ba) + (bs — by). 0 otherwise,
(3—x)+(1).5(x—2) 2<x<3
P(A) and P(B) denote the perimeters of the generalized sl )05 3<x<6
trapezoidal fuzzy numbers A and B , respectively. Ax) = w 6<x<7
1 otherwise,
e . a-n
Intuitionistic trapezoidal fuzzy 00 ©0.6) ; i o z 2
multi-number A0 =1 o =r=
T(0.6) 6<x<8
Definition 3.1 Let 7y, 9, € [0,1] (i € {1,2,..., ppand 0 otherwise,
a,b,c,d € Rsuchthata < b < ¢ < d. Then, an intu- %1'2(’“2) 2<x<3
itionistic trapezoidal fuzzy multi-number (ITFM-numbers) 92 (x) = 0.2 3<x<6
a=(lab,c.dl;my,ni ....n0), @193 ....9D)isa AT T ) o9020m0 6 < 7
special intuitionistic fuzzy multiset on the real number set 1 otherwise,

R, whose membership functions and non-membership func-
tions are defined as follows, respectively:

D02 1<x<3

Gy, a<x<b Py |02 3<x<6
j nL, b<x<c M=) 6002 6<x<8
) =1 & —y and 0 o
(d—c) n&, C <X = otherwise,
0, otherwise, —(3_x)+(1)'7(x_2) 2<x<3
(b—x)+0% (x—ay) 0.7 3<x<6
—Goap . @1 =x<b PR =1 (-54077-x) 6<x<7
i 05, b<x<c 1 =
vy (x) = ()g—c)+z9f (d1—x) 1 otherwise
@ ¢<x=d
L otherwise. is the ITFM-numbers with ([2, 3, 6, 8]; (0.3,0.6, ..., 0.2),

0.5,0.2,...,0.7))

Note that the set of all ITFM-numbers on R will be denoted
by I'. Definition3.3 Let A = ([ay. by, c1.di]: (0. n2. ... nE).

@303, .. 90 B = (la. ba, ca. ol (0 5 - ).
(191,19%, ...,19/1;)) € A and y # 0 be any real number.
Then,

e

. A+ B = ([a1 +az, b1 + by, c1 +ca, di +dal; (s, nh), s, n3), ..o s(h b)), @), 9b), 102, 02), .. 1F,

E)).
B
A= B = (la1—dy, by —c2,c1 —ba,dy —axl; (s, nh)y s, n3)s -y s, nh)), (t @k, 00, 13, 92), ... 1 (@],
).
laiaz, biba, cica, didal; (. npy). .. 1. 0. (L. Op). ... 55, 95)) (di > 0.dy > 0)
A - B = { (laida, bica, ciba, dvan); (t(nly. n), ... 1. np)). (s@ ), 9F). ... s@5. 95)) (di <0,dy > 0) .

(

(

(ldidz, cic2, biby, arazl; (t(ny, np). ..., (g, sy, g, ..., s@R.95)) (di <0,dy < 0)

(la1/dy. bi[ca. c1/ba, di/al; (t(ny. mp). - 1y nf)). (s} Op). ... s(@5. 95)) (di > 0.dy > 0)

A/B = { (l(di/dy, c1/c2, by /ba, ar/az); (k. k). ...t n)), (s@ L. 9h). ... s, 95)) (d <0.dr > 0) .
(Idi/az. c1/ba. bi[ca, ar/dal; (t(nY. np). .. 1 (0. nh)). (s} Op). ... 55, 95)) (di <0.dy <0)

yA = (lyai, ybi,ycr.ydil;: 1 — (1 —=nl)7 1= (1 =n)"), 1= (1 —=n)"), (@)Y, @D7..... @)y = 0).

6. AY = ([a], b}, cl,dl1; ()7, 1), ., D), A=A =), 1= =027, ..., =1 ="y > 0).
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In the following example, we use the Einstein sum and
Einstein product is given in Definition 2.3.

Example3.4 Let A = ([2,4,7,9]; (0.2,0.5,...,0.7), (0.6,
0.3,...,0.1)), B = {([1,2,3,6];(0.6,0.1,...,0.9), (0.3,
0.8,...,0.01)) eT.

I.A+ B = (3,610, 15]; (0.71428,0.57142, ...,
0.98159), (0.14062, 0.21052, ... ., 0.00052)).

2. A—B = ([1,2,4,3]; (0.71428,0.57142, ..., 0.98159),
(0.14062, 0.21052, . . ., 0.00052))).

3. A-B =([2,8,21,54]; (0.0909, 0.0344, . .., 0.61165),
(0.76271, 0.88709, . .., 0.10989)).

4. A/JB = ([2/6,4/3,7/2,9]: (0.0909,0.03448, ...,
0.61165), (0.76271, 0.88709, . . ., 0.10989)).

5.4-A = (8, 16,28, 36]; (0.5904, 0.9375, ..., 0.9919),
(0.1296, 0.0081, ..., 0.0001)). 3 - B = ([3,6,9, 18];
(0.936,0.271, ..., 0.999), (0.027,0.512, . ..,
0.000001)).

6. A2 = ([4,16,49,81]; (0.04,0.25, ...,0.49), (0.84,
0.51,...,0.19)).

Definition3.5 Let A = a = ([a, b, ¢, d]; (n}, 73, ...
@k, 9%, ...,9F)) € I'. Then,

k).

1. A s called positive ITFM-numbers if a > 0,

2. A is called negative ITFM-numbers if d < 0,

3. A is called neither positive nor negative ITFM-numbers
ifa>0andd < 0.

Note 3.6 A negative ITFM-number can be written as the neg-
ative multiplication of a positive ITFM-number.

Example3.7 A = ((—7,-4,-3,-1);(0.03,0.45,...,
0.59), (0.64,0.81, ...,0.39)) is a negative ITFM-numbers
this can be written as A = —((1, 3,4, 7); (0.03,0.45, ...,
0.59), (0.64,0.81, ...,0.39)).

Theorem3.8 Let A = ([a1, by, c1,dil; (nk, n4, ... . n%),
@402, 90, B = ([az, by, c2, dal; (g % .- o B,
(O, 9%, ..., 08)) and C = ([a3, b3, c3,d3]; (nh, nZ, ...,

ng),(ﬁl,zﬁ%,...,ﬂg)) € I Then, we have

1. A+ B=B+ A,

22 (A+B)+C=A+(B+0C),

3. A-B=B-A,

4. (A-B)-C=A-(B-0),

S50 M-A+A-A=A1+2r2) A, A1+ A2) >0,
6. ,-(A+B)=X1-A+X1-B,A>0.

Proof In the following proof, we use the Einstein sum and
Einstein product is given in Definition 2.3.

—_

Definition 3.9 Let A = ((a1, b1, c1,d1); (0}, 03, - ..
G
numbers of A is given by:

Based on Definition 3.3, it can be seen that

A+ B = <(al +ax, by + by, c1 +c2,d + dp);

nl +nk nh +nh
1 1" p p ’
L+ my-np) L+ (my - np)
1 1
9y +0p
2-l+op -0k

o4+ 0
2— @) +0p —o) 98]

= ((@+ai,by+bi,c2+ci1,dr+dy);

np + 1) Mg + 0
1 Ly? "2 4 p ’
1+(7IB‘77A) 1+(773'77A)
1 1
Op+ 0,
2-[p+0, —vp-04

9y + 0h >
2— (05 +95 — 05 - 941

= B+ A.

. Based on Definition 3.3, it can be seen that

A-B= <(a102, b1by, c1c2, d1dr);

( nk +nk

L)

2—[n +ng—nk gl
Ny + g
2—[nh +nh—nlh-nk1)’
ok + 05 ok + o8
L+@L-op 1+ -0h
= ((axay, baby, crc1, dody);
Np + 14
2—[nh+nk—ng-nil’
np +nh )

.

2 — [ +nly —np -yl
Op 40, Op + 04
<1+(ﬁlg.ﬁ/§)""’ 1+(ﬁg-ﬂ£))>
= B-A.

The proofs of (2), (4), (5) and (6) can be obtained
similarly. O

P
’ nA)s
.,9%)) € T. Then, the normalized ITFM-
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Z:<[ ai by LetA = (a1, b1, c1,dD); (1, -, n5), (0%, .., 08)) and

aj+bi+ci+d a+bi+ci+d’ B = ((a2, b2, 2, )i (k... n), (0L, ... 9D)) be two
c1 di normalized ITFM-numbers.

ay+bi+ci+d; a+b+c1 + d1i| : Now, we give a theorem for ITFM-numbers inspired by

[59].
1 2 P 1 2 P
(nA’nA""’nA)’(ﬁA’ﬁA"”’ﬂA)) Theorem 3.12 Let A = ([ay. by. 1. dy): (nly. 2. ... n%),
B, 0%, -, 00)), B = (laz, ba, c2, dal; (g, n%;,...,ngx
Example3.10 Assume that A = ((2, 5, 6, 8); (0.01, 035, (01 , }_%; o ﬁg)) and C = ([a3, b3, ¢3, d3]; (77%‘7 nZ, ...
.,0.79), (0.14,0.19, ..., 043)) € I'. Then, normalized ng)’ (.ﬁl , ﬁg’ L ﬁé’)) € T. Then, S(Z, E) satisﬁes the

ITEM-numbers of A can be written as: following properties:

— 2 5 8 _ _
A= < (ﬁ’ 1 %, ﬁ) ; i. Two normalized_ITfM-numbers A and B are identical
ifand only if S(A, B) = 1.

(0.01,0.35,...,0.79), (0.14, 0.19,...,0.43)>. ii. 5(A, B) =5(B, A). _ _
iii. Let A and B be two normalized ITFM-numbers with
B the same shape, the same scale ( i.e.,nlZ = UIF ;72X =
Definition 3.11 Let A_ (a1, b1, c1.dy); (n; nj ), ol = b ok = ol 92 = 92 pf = D)
(19%’ ﬁ% 19 ), B = {(az, b2, c2, da); (77 77— ey 77%), and the same set d, where d = a» — a1 = by — by =
(1&%, 19%. . ﬁg)) € T". Then, the normalized s1m11antymea- 2 —c1=dy—dy then S(A,B) =1—|d|.
sure between A and B is defined as: . ijf(%%f C C, then S(A,C) = S(A, B)and S(A, C) <

S(A,B) =

l~[(1— Iﬂzfal\+|b2*b1|+|62701|+\d27d1|)
P 4

| (min{P(4)!, P(A), P(A)’, P(A), P(B)', P(B), P(B)’, P(B)*)) + min{(nye ... n). (ngp . - n)) + max{ @ . 9). O 90))
" (max(P(A)!, P(A)2, P(A)3, P(A)*, P(B)!, P(B)%, P(B)?, P(BY*) +max{(nf, ... n5), (0, 13, o )} +min{(0 L, .., 08), (04, ... 98} |

where S(A, B) € [0, 1]; P(A) and P(B) are defined as fol-
lows:

: : Proof i.= If A and B are identical, then a; = a,b; =
P(A) = J@ — a)? + (i — 012 ba.ct = cady = dy and k= nl a2 = n2,.

+/(@3 — an)?) + Gl — 012

. nA
e, 19% = z%, 19% = 19% , 0% = 2. Thus, (min{P(A)",
P(A)?, P(A)}, P(A)Y, P(B)l, P(B)z, P(B)*, P(B)*}) =

+as — @) + (@ = o), (max(P(4)!, P(A)%, P(A)’, P(AY.P(B) . P(B).P(B),
. . 4 . 1 P
P(B) = /(b1 — b2)? + (i — 05)? P(B)*)) and min{ (. .. 1), O1. 1. . 7)) = max
. . (i, onE), b onZ, ... 0B} and max{(®L, ... 0L)
+/ (b3 = b)?) + (1 — 912 L e gl Aop
B B (@5 -, 95)) = min{(D, ..., 05), 5. ..., 95)}. The
+(b3 = b2) + (ba — by). degree of similarity between A and B is calculated as fol-
lows:
SA.B) = L. [(1 e —ail+ b —bil+ e *Cl|+|d2*dl|)
p 4
| (min{P(A)', PAY, PA), P(A)', P(B)!, P(B)’, P(B)’. P(B)')) + min{ (.- D). Grgp - )} 4 max{ @D .. D). (O ... D))
" (max{P(A)T, P(A2, P(A)?, P(AY', P(B)!, P(B)2, P(B)°, P(BY*)) +max{(nk, ... nE), (np s nD)) + min{ 0L, .. 98, 0L, 0 8))
=(1-0x1

=1
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< S(A, B) = 1, then In a similar way, it is easy to prove S (A,C)<S(B,C). O

SA,B) = — - "

(mm{P(A)l P(A)?, P(A)}, P, P(BY', P(B)?, P(B)?, P(B)*)) +min{(n, ..., n8), (np, o b)) + max (@@L, ... 08), 0L, ..., 90))
* (max(P(A)1. P(A)2. P(AP. P(A). P(B). P(B. P(B)Y. P(B)*]) + maxl(nk. ... %), (nh w2 nE)) + min{(@L. . 92) (0. 0D
=1

1 [(1_ Iaz—all+|b2—b1|+|02—61|+|d2—d1|)

It implies that a1 = ap,b; = bz, c1 = ¢3,d1 = dr and Example 3.13 Suppose that A = ([0.2, 0.3, 0.4, 0.5]; (();15,
an = ,71?,7% = n%,..-,n§ = ng,ﬂ% = z‘/%,ﬂ% = 0.32,0.36,0.43,0.59), (0.44, 0.37,0.42, 0.53,0.23)), B =
ﬁ%,,__,ﬁg — l«,x% Thus, (min{P(A)!, P(4)2, P(A)3,  ([0.1,0.4,0.5,0.6]; (0.2,0.23,0.34,0.41,0.63), (0.04,
P(A)4, P(B)l, P(B)z, P(B)3, P(B)4}) — (max{P(A)l, 017,027, 029, O38)> € F.Then,

P(A)?, P(A), P(A)4 P(B)1 P(B)?, P(B)*, P(B)“})and
min{(n}, . ... 1%), (1g, 15, - --,nB)}—max{(nA --,nA)

P(A)' = /(0.2 -0.3)2 +(0.15 — 0.44)2

_ 2 _ 2
B 'B B A A B B s oo
= min{(z&%, e 19;), (1%, e ﬁEP)}. Therefore, normal- +(0.4-0.3)+(0.5-0.2)
ized ITEM-numbers A and B are identical. = 1.01351,
ii.
sam =2 ((1- laz — a1l +1b2 — bi| + |ea — 1] + |d2 — di|
, p "
| (min(P)! PO PAY, PO, P(B)', PBY, P(BY’, P(BY) + min{(ny, . ). (o)) + max{(D o 00, O 90)
" (max{P(A)T, P(A2, P(A)S, P(AY', P(B)!, P(B)2, P(B)°, P(B)*) +max{(nk, ....nP), (b nZ, .. nB)y + min( L, . 0P, 0L, ol
_ {— lay —az| + |by — ba| + |e1 — c2| + |dy — da]
=3 )
L min(P), PP, PAY, PAY P P P, P(BY) + min{( oo ), Ol 1))+ MaX(O 9D, (O 9]
" (max{P(A)T, P(A2, P(A)®, P(AY', P(B)!, P(B)2, P(B)°, P(B)*) +max{(nk, ....nE), (b nZ, .. nB)y + min( L, .. 08, 0L ol
= S(B. A).
ii.
S(A.B) = 1 {— lay —ay| + |by — bi| + |c2 — c1| + |dy — di]|
By =~ "
 min(P@)!, P(A)2, P(A)*, P(AY', P(B)!, P(B), P(B)", P(B)*)) + min{(ng ... 1), O W o W)+ max{(D ... ), (O ... D7)
" (max(P(A)!, P(A)2, P(A), P(A)*, P(B)', P(B)?, P(B)?, P(B)*}) + max{(nk. ..., nP), n% ... P} +min{(dL, .. ﬁP) (191 ..... o))
_ 1 I lay — ai| + |by — bi| + |c2 — c1| + |dy — dy] <1
= )
=1-1d.
ivIfA,B,Cel,thenACBCC < jfn%fn%and
19% > 19% > 29’5 Therefore,
S(A.T) 1 (17 las —ai| + 1b3s — bi| +|c3 — c1| + |d3 — di|
0= "
(mm{P(A)l P(A)2, P(A)3, P(A)%, P(C)!, P(C)2, P(C), P(CY)) +min{Grt, ... nB), (rl 2 . n)h + max{@, . 00), 0L, ... 9 D))
" (max{P(A)T, P(A2, P(A)%, P(A)', P(C)L, P(C)2, P(C)?, P(O)*) +max{(nk, ....nE), (il nZ, .. 0Dy} + min(@ L, . 08, 0L, 0l
<l 1_Idz—all+Ibz—171|+|Cz—61|+|dz—011|
== "
(mm{P(A)‘ P(A2, P(A)%, P(A)%, P(B)!, P(B)2, P(B)}, P(B)*)) + min{(nk, ..., n2), (1 w2, . nE)) + max{(0L, ... 00), ol ... oD))
(max{l"(A)1 P(A?, P(A)}, P(A)*, P(B)!, P(B)?, P(B)*, P(B)*}) + max{(n, ... 8, (s 7o) + min{@L, ..., 00 0L o0))
= S(A, B).
f/
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_ —— 1 0.2 —0.1] +10.3 — 0.4| + (0.4 — 0.5 4 10.5 — 0.6
P(A)? = /(0.2 —0.3)2 + (0.32 — 0.37)2 S(A.B) = 3 - (1 - 1 )

+v/(0.4 —0.5)2 + (0.32 — 0.37)2 min{1.01351, 0.62360, 0.63323, 0.68284, 1.14726, 0.77735,
0.63323, 0.64413, 0.71240, 0.93851})+
+(0.4—-0.3)+(0.5-0.2) min{(0.15, 0.32, 0.36, 0.43, 0.59), (0.2, 0.23, 0.34, 0.41, 0.63)}+
— 0.62360 max{(0.44, 0.37,0.42, 0.53, 0.23), (0.04,0.17, 0.27, 0.29, 0.38)}
- ’ | "max{1.01351, 0.62360, 0.63323, 0.68284, 1.14726, 0.77735,
P(Z)3 — \/(0_2 _ 0.3)2 + (0.36 — 0_42)2 0.63323, 0.64413,0.71240, 0.93851})+
max{(0.15, 0.32, 0.36, 0.43, 0.59), (0.2, 0.23, 0.34, 0.41, 0.63)}+
+\/(0.4 —0.5)2 4 (0.36 — 0.42)2 min{(0.44, 0.37,0.42, 0.53, 0.23), (0.04,0.17, 0.27, 0.29, 0.38)}
+(0.4—0.3)+ (0.5 —0.2) = 038375,
= 0.63323, Definition 3.14 LetA = ((a1, b1, c1, d1); (1, 1%, ..., %),
P(A)* = (0.2 - 0.3)2 + (0.43 — 0.53)? (O 0%, . 90)), B = ((a2, b2, 2, d); (g, 1%, 0B,
+\/(04 _ 05)2 + (043 _ 053)2 (l?%, l?% ey ﬁ§)> e I'. Then, to compare A and B, the
ITFM-numbers positive ideal solution and ITFM-numbers
+(0.4-0.3) +(0.5-0.2) negative solution are defined as:
= 0.68284, + + pt o+ gt Lyt 23+ 34+ Py+
— = , b s B d 5 , s\Ma) 5y s
P(A)° = /(02— 03)2 + (0.59 — 0.23)2 A <[“11 e ] 3((“) (”A; 0ra) 1))
V(0.4 -0.5)2 4 (0.59 — 0.23)2 @, GDOT. GPT.-... OHT)
V(0.4 -0.5)° 4 (0.59 = 0.23) =([1,1,1,11;(1,1,...,1),(0,0,...,0)),
+(0.4-03)+(0.5-02) ry = lay by er L dy L ()T ) T ) T
= 1.14726, ()7 (@D @D @)
P(B)' = V(0.2 -0.3)2 + (0.59 — 0.23)2 = ([0,0,0,0; (0,0,...,0), (1, 1,.... 1)),
+v/(0.4 = 0.5)% + (0.59 — 0.23)2 respectively.
+(0.4—-0.3)+(0.5-0.2) . L »
Definition 3.15 LetA = ((a1, b1, c1,d1); (0, n5. ... . n%),
= 0.77735, @}, 9%, ...,9F)) e Tandr* andr~ be an ITFM-numbers
P(B)? = \/ (0.1 =0.4)2 4+ (0.23 — 0.17)2 positive ideal solution and ITFM-numbers negative ideal
+\/(0.5 T 062+ (023 - 0.17) solution, respectively. Then,
+(0.5-0.4)+ (0.6 — 0.1) 1. If S(A,r") > S(B,rT), then B is smaller than A,
— 0.63323, denoted by A > B,
— 5 5 5 2. IfS(A, rT) =SB, r")ASA,r7) < S(B,r7), then A
P(B)” = ‘/(0-1 —0.4)* +(0.34 - 0.27) is smaller than B, denoted by A < B,
+V(0.5 = 0.6)2 + (0.34 — 0.27)2 3. IFS(A, rT) =S(B,r")AS(A,r7) = S(B,r™), then A
(05— 0.4) + (0.6 — 0.1) is similar to B, denoted by A >~ B.
= 0.64413, Example 3.16 Suppose that
P(B)* = (0.1 —0.4)2 + (0.41 — 0.29)2 _
(B) \/E/(O : 0)6)2 ( 0410 2)9)2 A = ([0.1,0.4,0.6,0.7]; (0.2,0.3, 0.5, 0.7),
+ D —0.6)2+ (041 — 0.
(0.7,0.5,0.4,0.2)),
+(0.4-04) + (0.6 - 0.1) B = ([0.3,0.5,0.7,0.9]; (0.4,0.2,0.1,0.6),
= 0.71240, (0.5,0.4,0.7,0.3)) e T.
P(B)’ = /(0.1 —0.4)2 + (0.63 — 0.38)2

+v/(0.5 — 0.6)2 + (0.63 — 0.38)2
+(0.5—0.4) + (0.6 — 0.1)
0.93851,

Lisllase cllad .
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Then, S(A, rT) = 0,30412 and S(B,rT) = 0,39050 =
S(A,rt) < S(B,r*) = A < B.
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Some aggregation operators on
ITFM-numbers

In the section, we use the algebraic sum and algebraic product
is given in Definition 2.3.

From now on, we use I, = {l1,2,...,n} and I,, =
{1,2,...,m} as an index set for n € N and m € N, respec-
tively.

Definition4.1 Let A; € I, j € I, be a collection of ITFM-
number. For ITFMWG : ¢" — ¢, if

ITFMWG,, (A, Ay, Az, ... A,)
= (A" x AY? x AF® x ... x AR,

then ITFMWG is called ITFM-numbers weighted geometric
operator of dimension n, where w = (wy, wp, w3, ..., wy)T
is the weight vector of A;, j € I,, with wy € [0, 1] and
Z?:l w; = 1.Especially,ifw = (1/n,1/n,1/n, ..., 1/m)T
then the TFMWG operator is reduced to an intuitionistic
trapezoidal fuzzy multiset geometric averaging ITFMWG)
operator of dimension »n, which is defined follows:

ITFMWG,, (A1, Aa, Az, ..., Ap)
=(A; x Ay x A3 x ... x Ap)'/".

Theorem4.2 Let Aj, j € 1, be a collection of ITFM-
numbers, then their aggregated value by using the ITFMWG
operator is also an ITFM-number and

ITEMWG = l‘[;f:1 AV
([T e T o IT e
l—[jzl d}Uj] : ((szl(nkj)wf,
[T ™ TTwh™)).
(X whpm =TT _ @iy
(X 0h =TT, wh)™)))

Proof The first result follows quickly from Definition 3.3 and
Theorem 3.8. In the following, we prove the second result by
using mathematical induction on . We first prove that Eq. (1)
holds for n = 2. Since

(A" = ((a{". by P d™): (p )™ 3 )™ -
MR )", (@A™, @)Y, (94 )™)
()™ = ((ay?. b5?. 3. dy™); (p,)" (3" ...

A", (B 4", (F)"2, ... (5 )"),

we have
(TEMWG) (A1, A2) = A| X A
= (lay"ay”. by by” ¢y ¢y* dy dy°]:

a2 ()" - (3"
A" )™ )"+ @),
—@ )" @) (P4
F@E)Y = @) @)
@y )"+ @) )" = @) )" - D))"

if Eq. (1) holds for n = k, that is,
ITEMWG = ]_[l';:l Ay
- <[1‘[’;:1 al, ]—[’;21 b, l—[’];l &,
1} (1
Hi:l(ni.i)wj’ Hizl(nﬁj)wj>> ’
(X5 obm T oo
(St i)

then both sides of the equation are multiplied by Ax4; and
by the operational laws in Definition 3 we have

k+1 )
ITFMWG = ]_[ 1 A’;’f
J:

([T T e T
[T | (TS
[T 0k T ™).
(s -TT o e
(Zij i =TT wj;].)w-f)) > ,

i.e., that Eq. (1) holds for n = k 4 1. Therefore, Eq. (1) holds
for all n, which completes the proof of Theorem 4.2 O

Definition4.3 Let A;, j € I, be a collection of ITFM-
numbers and let ITFMWA : ¢" — ¢. If

ITEMWA (A1, A, As, ..., Ay)
= (w1A1 + w2 A + w3A3z + - - +wyA,),

then ITFMWA is called intuitionistic trapezoidal fuzzy mul-
tiset weighted arithmetic operator of dimension n, where

Dieliase cllodi ay .
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w = (Wi, w2, w3, ..., wy)" is the weight vector of A}, j €
I,, with w; € [0, 1] and Zl}:] w; = 1. Especially, if
w = (1/n,1/n,1/n, ..., 1/n)T, then the ITFMWA oper-
ator is reduced to an intuitionistic trapezoidal fuzzy multiset
arithmetic averaging (ITFMWA) operator of dimension n,
which is defined as follows:

ITFMWG,, (A1, A2, Az, ..., Ap)

1
=;(A1+A2+A3+'-~+An).

An approach to MADM problems with
ITFM-numbers

In this section, we define a multi-criteria making method,
called ITFM-numbers multi-criteria decision-making
method, by using the ITFMWG and (ITFMWA) operators.

| — laa—ail+lba=bil+lea—ci|+ld2—di]
Pl

s -1 [(

Now, we can give algorithm of the ITFM-numbers multi-
criteria decision-making method as follows:
5.2 Algorithm:

Step 1 Construct the ITFM-numbers multi-criteria deci-
sion matrix A = (a;j)mxn. for decision;
Step 2 Compute overall values

r; =ITEMWGy, (a1, a2, a;3, aia); (i =1,2,3,4,5).

Note thatif r; foralli € I, is not normalized ITFM-
numbers, then we compute the normalized ITFM-
numbers according to Definition 3.9.

Step 3 Calculate the distances between collective overall
values r; = ([ai, bi, ci,di1; (n} . n7. md. ... 0D,
@} 02,93, ..., 9")) and positive ideal solution
ri+ (or negative ideal solution r; ")

(min{P(A)', P(A)%,P(A)*, P(A)*, P(B)',P(B)?, P(B)*, P(BY*D+min{(nk,...n2). (k. ... nE)Hmax((DL,...00), (01, .... 009} ] -
" max(P(A).P(A)2. P(AY. P(A) . P(B)T P(B. P(B)Y. P(BY D tmax((rl. .nD).(nh D)) rmin(01 0 2).0L 5]

Definition 5.1 Let X = (x1,x2,...,x,) be a set of alter-
natives, U = (uy,uy, ..., u,) be the set of attributes and
. 1 2 3 P 1 2
[Al/] = <[aija bijs Cij, dl/]7 (nij7 771']" 7],']'7 EI nl‘j)v (ﬂij’ ﬁij’
191'3]" e, 175)) be an ITFM-number foralli € I,, and j € I,.
For a normalized ITFM-numbers decision-making matrix

R = (rij)mxn = (laij, bij, cij, dij]; (n,-lj,nl-zj,n?j,---, ni]; ,

1 2 3 P
(191-]-, ﬂij’ ﬁij,-~-719[j)>m><n where 0 < a;; < bjj < ¢;; <
.. 1 2 3 P 1 2 3 P
dij < 1,0 < nij’nijanijv--'snijfﬁij’ﬁij’ﬂij""’ﬁij =
1. Then,
x1 ‘xz DRI xn

uy al argz2 --- dip

us ay azp -+ ayy
[Aij]mxn = .

Um \Aml Am2 - dmn

is called an ITEM-number multi-criteria decision matrix of
the decision maker.

SAB =5 |(

1— laz—ai|+1ba—bi|+|ca—ci|+|dr—di |
P 4

Step 4 Rank all the alternatives A; (i = 1,2,3,...,m)and
select the best one(s) in accordance with S(r;, r ).
The bigger the distance S(r;, ri+) , the better are the
alternatives A;, i € I,.

Step 5 End.

5.3 Algorithm:

Step 1 Construct the ITFM-numbers multi-criteria deci-
sion matrix A = (@;j)mxn; for decision;
Step 2 Compute overall values

ri = ITEMWA,(a;1, ai2, a;3, a;4); (i = 1,2,3,4,5).

Note thatif r; foralli € I, is not normalized ITFM-
numbers, then we compute the normalized ITFM-
numbers according to Definition 3.9.

Step 3 Calculate the distances between collective overall
values ri = ([a;, bi, ci, dil; (o}, 7, m7, ... n]),
@}, 92, 92, ...,9")) and positive ideal solution
rl.Jr (or negative ideal solution r;")

(min{P(A)', P(4)%,P(A)*, P(A)*, P(B)',P(B)*. P(B)*, P(B)' D+min{(n....n2). (. ... ni)}Hmax{(D ... 00), (0 L. 08)) ] -
" max[P(A).P()2. P(AY. P(A)F P(B). P(B)2. P(B). P(B) ) tmax( (k. ..nD).(rn D) minl (0252 01 9.0
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Step 4 Rank all the alternatives A;(i = 1,2,3,...,m)and
select the best one(s) in accordance with S(r;, r ).
The bigger the distance S(r;, rl."’), the better is the
alternatives A;, i € I;,.

Step 5 End.

Application

The anonymous review of the doctoral dissertation in Turkey
universities.

In many Turkey universities, doctoral dissertation will be
reviewed by three experts anonymously and they have same
importance in this review process. They will review dis-

X1
ui
uz

usq
us

X3

([0.2,0.3,0.5,0.7]; (0.7,0.5,0.2, 0.6), (0.02,0.3,0.5, 0.2))

([0.4,0.5,0.7,0.8]; (0.5,0.6,0.2,0.3), (0.2,0.3,0.1, 0.6)
([0.3,0.6,0.8,0.9]; (0.6,0.5,0.1,0.5), (0.3,0.4,0.5,0.1)
([0.1,0.2,0.3,0.4]; (0.4,0.3,0.7,0.5), (0.5,0.6, 0.1, 0.4)
([0.2,0.4,0.6,0.8]; (0.8,0.6,0.1, 0.4), (0.1,0.3,0.5, 0.3)

([0.2,0.3,0.5,0.7]; (0.6,0.3,0.5,0.7), (0.1,0.5,0.4, 0.1))
([0.1,0.4,0.6,0.7]; (0.2,0.5,0.1, 0.8), (0.7,0.3,0.8, 0.1))
uz | ([0.2,0.4,0.5,0.6]; (0.1,0.3, 0.5, 0.2), (0.2, 0.6, 0.1, 0.6))
([0.1,0.3,0.4,0.6]; (0.3,0.2,0.4, 0.6), (0.6, 0.3, 0.5, 0.2))
([0.2,0.3,0.5,0.8]; (0.4,0.3,0.2,0.5), (0.5,0.6, 0.7, 0.3))

)
)
)
)

cialized knowledge for the subject and related area) and
uy; capacity of scientific research (such as independently
scientific research ability; informative citing information;
subject to be explored in depth) us; theses writing(such
as clear concept and logistics, smooth sentences, format
specification, good school ethos) - (whose weighted vec-
tor w = (0.1,0.3,0.2,0.3,0.1)) Our solution is to examine
the university at different time intervals (four times a year:
autumn, spring, winter, summer), which in turn gives rise to
different membership functions for each university.

Step 1 Construct the decision-making matrix A = (@;j)mxn
for decision as:

X2
([0.3,0.5,0.7,0.8]; (0.4,0.3,0.6,0.2), (0.01,0.6,0.3,0.7))
([0.1,0.4,0.6,0.9]; (0.1,0.4,0.3,0.6), (0.1,0.3,0.5, 0.2))
([0.2,0.3,0.6,0.7]; (0.3,0.2,0.5,0.4), (0.5,0.6,0.3, 0.5))
([0.3,0.4,0.6,0.8]; (0.2,0.1,0.3, 0.6), (0.6,0.5, 0.4, 0.3))
([0.2,0.5,0.7,0.9]; (0.3,0.2,0.4, 0.5), (0.5,0.7, 0.6, 0.4))

X4
([0.1,0.2,0.4,0.5]; (0.2,0.3,0.5,0.4), (0.03, 0.1, 0.2, 0.3))
([0.3,0.4,0.5,0.6]; (0.6,0.8,0.4,0.5), (0.1,0.3,0.2, 0.4))
([0.1,0.3,0.4,0.5]; (0.7,0.4, 0.6, 0.5), (0.2,0.5, 0.3, 0.4))
([0.2,0.4,0.5,0.7]; (0.6,0.5,0.4,0.8), (0.2,0.3,0.4, 0.1))
([0.3,0.5,0.6,0.8]; (0.8,0.7,0.6, 0.5), (0.1,0.2,0.3, 0.4))

sertation according to five criteria, including topic selection
and literature review, innovation, theory basis and special
knowledge, capacity of scientific research and theses writ-
ing. Different weights are given to different criteria and the
standards for those principles are as follows. After thor-
ough investigation, four universities (alternatives) are taken
into consideration, i.e., {xi, x2,x3, x4}. There are many
factors that affect the review process and five factors are
considered based on the experience of the department per-
sonnel, including u1; topic selection and literature review
(such as belonging to the leading edge of the subject or
the hot research point has important theoretic significance
and applied value; familiar with the research status and
process for subject.), us; innovation (such as have theoret-
ical breakthrough; have positive influence and impact on
the development of social economy and culture; creativ-
ity points, u3; theory basis and special knowledge (such
as solid and broad theoretical foundation, also have spe-

Step 2 Applying the ITFMWG operator to derive the col-
lective overall preference intuitionistic trapezoidal
fuzzy multiset 7; :

r1 = ([0.16817,0.33178, 0.48255, 0.65678];
(0.27735, 0.28378, 0.40257, 0.45370),
(0.96232, 0.92592, 0.97938, 0.69384)),

ry = ([0.24145, 0.40568, 0.64309, 0.78228];
(0.28958, 0.20773, 0.45870, 0.35515),
(0.93228, 0.94370, 0.92592, 0.94945)),

r3 = ([0.20356, 0.35958, 0.53834, 0.68854];
(0.59552, 0.46395, 0.19472, 0.50804),
(0.95285, 0.88175, 0.88080, 0.92949)),

rgy = ([0.13544, 0.29438, 0.44045, 0.56567];
(0.44028, 0.41406, 0.50864, 0.50801),
(0.96397, 0.80973, 0.81451, 0.90565)).

Step 3 Calculate the distances between collective overall
values r; and intuitionistic trapezoidal fuzzy positive
ideal solution r .
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S(ry, rT) =0.29410,
S(r2, rt) = 0.41407,
S(r3, r*) =0.34198,
S(rg,rT) = 0.27944.

Step 4 Rank all the alternatives A; (i = 1,2, 3, 4) in accor-
dance with the ascending order of S(r;, r7): A4 <
A1 < A3 < Aj, thus the most desirable alternative
is A2.

Step 5 End

Step 1 Construct the decision-making matrix A = (@ )mxn»

for decision as:

X1
up ((0.2,0.3,0.5,0.7]; (0.6,0.3,0.5,0.7), (0.1,0.5,0.4, 0.1))
uz | ([0.1,0.4,0.6,0.7]; (0.2,0.5,0.1, 0.8), (0.7,0.3, 0.8, 0.1))
uz | ([0.2,0.4,0.5,0.6]; (0.1,0.3, 0.5, 0.2), (0.2, 0.6, 0.1, 0.6))
ug | ([0.1,0.3,0.4,0.6]; (0.3,0.2,0.4, 0.6), (0.6, 0.3, 0.5, 0.2))
us \([0.2,0.3,0.5,0.8]; (0.4,0.3,0.2,0.5), (0.5,0.6,0.7, 0.3))

X3

([0.2,0.3,0.5,0.7]; (0.7,0.5,0.2, 0.6), (0.02,0.3, 0.5, 0.2))

([0.4,0.5,0.7,0.8]; (0.5,0.6,0.2,0.3), (0.2,0.3,0.1, 0.6)
[0.3,0.6,0.8,0.9]; (0.6,0.5,0.1,0.5), (0.3,0.4,0.5,0.1)
[0.1,0.2,0.3,0.4]; (0.4,0.3,0.7,0.5), (0.5,0.6,0.1,0.4)

{
(
([0.2,0.4,0.6, 0.8]; (0.8,0.6,0.1,0.4), (0.1,0.3,0.5,0.3)

ideal solution rt.

S(ry,rt) =0.535,

S(r2, rt) = 0.55736,
S(r3, rt) = 0.53694,
S(rg, r) = 0.54450.

Step 4 Rank all the alternatives A; (i = 1, 2, 3, 4) in accor-
dance with the ascending order of S(r;, r7): A| <
A3 < A4 < Aj, thus the most desirable alternative
is A2.

Step 5 End

X2
([0.3,0.5,0.7,0.8]; (0.4,0.3,0.6,0.2), (0.01,0.6,0.3,0.7))
([0.1,0.4,0.6,0.9]; (0.1,0.4,0.3,0.6), (0.1,0.3, 0.5, 0.2))
([0.2,0.3,0.6,0.7]; (0.3,0.2,0.5,0.4), (0.5, 0.6, 0.3, 0.5))
([0.3,0.4,0.6,0.8]; (0.2,0.1,0.3, 0.6), (0.6,0.5, 0.4, 0.3))
([0.2,0.5,0.7,0.9]; (0.3,0.2,0.4, 0.5), (0.5,0.7, 0.6, 0.4))

X4
([0.1,0.2,0.4,0.5]; (0.2,0.3,0.5,0.4), (0.03, 0.1, 0.2, 0.3))
([0.3,0.4,0.5,0.6]; (0.6,0.8,0.4,0.5), (0.1,0.3,0.2, 0.4))
[0.1,0.3,0.4,0.5]; (0.7,0.4,0.6,0.5), (0.2,0.5,0.3,0.4)
[0.2,0.4,0.5,0.7]; (0.6,0.5,0.4,0.8), (0.2,0.3,0.4,0.1)
[0.3,0.5,0.6,0.8]; (0.8,0.7,0.6,0.5), (0.1,0.2,0.3, 0.4)

)
) Ao )
N )
) )

Step 2 Applying the ITFMWA operator to derive the col-

lective overall preference intuitionistic trapezoidal

fuzzy multiset r; :

ri = ([0.71198, 0.80871, 0.86744, 0.92073];
(0.79171, 0.78605, 0.83439, 0.86489),
(0.77639, 0.86405, 0.81024, 0.76144)),

ra = ([0.76035, 0.84044, 0.91663, 0.95280];
(0.78501, 0.74213, 0.85771, 0.82793),
(0.74778, 0.89425, 0.82033, 0.86320)),

r3 = ([0.74037, 0.82344, 0.88767, 0.93018];
(0.90339, 0.86156, 0.74373, 0.87462),
(0.70774, 0.82936, 0.81041, 0.75288)),

r4 = ([0.70015, 0.79739, 0.85439, 0.89614];
(0.086468, 0.84804, 0.87609, 0.87864),
(0.66409, 0.76757, 0.78159, 0.78288)).

Step 3 Calculate the distances between collective overall

values r; and intuitionistic trapezoidal fuzzy positive
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Comparison analysis and discussion

To verify the feasibility and effectiveness of the pro-
posed decision-making approach, a comparison analysis with
TFM-numbers multi-criteria decision-making method, used
by Ulucay et al. [49], is given, based on the same illustrative
example. Clearly, the ranking order results are consistent with
the result obtained in [49] (Table 1).

Conclusion

In this study, we have defined ITFM-numbers and opera-
tional laws, which are mainly based on t norm and t conorm.
The ITFM-numbers are a generalization of trapezoidal fuzzy
numbers, and intuitionistic trapezoidal fuzzy numbers which
are commonly used in real decision problems with the lack
of information or imprecision of the available informa-
tion in real situations is more serious. So the research of
ranking ITFM-numbers is very necessary and the ranking
problem is more difficult than ranking ITFM-numbers due
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Table 1 The ranking results of

different methods Methods

The final ranking

The best alternative(s) The worst alternative(s)

Method 1

Method 2

Ulucay et al. [49]
The proposed method

Ay < Ay
Al < A3
Ay < A3
Ay < Ay

< A3 < Ay Ao Ay
< A4 < Ay Ao Ay
<Al < Ay Ao Ay
< A3 < Ay Ao Ay

to additional multi-membership functions and multi-non-
membership functions. So, some aggregation operators on
ITFM-numbers by using algebraic sum and algebraic product
is given in Definition 2.3. Based on the aggregation operators,
we developed a multi-criteria making method, called ITFM-
numbers multi-criteria decision-making method, by using
the ITFMWG operator. Finally, we have proposed a prac-
tical example to discuss the applicability of ITFM-numbers
multi-criteria decision-making method. In future work, we
shall develop some new method and apply our theory to other
fields, such as medical diagnosis, game theory, investment
decision making, military system efficiency evaluation, and
SO on.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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