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Abstract
Purpose of Review This review presents cutting-edge
methods and current and forthcoming satellite remote sensing
technologies to map aboveground biomass (AGB).
Recent Findings The monitoring of carbon stored in living
AGB of forest is of key importance to understand the global
carbon cycle and for the functioning of international economic
mechanisms aiming to protect and enhance forest carbon
stocks. The main challenge of monitoring AGB lies in the
difficulty of obtaining field measurements and allometric
models in several parts of the world due to geographical
remoteness, lack of capacity, data paucity or armed conflicts.
Space-borne remote sensing in combination with ground
measurements is the most cost-efficient technology to
undertake the monitoring of AGB.
Summary These approaches face several challenges: lack of
ground data for calibration/validation purposes, signal
saturation in high AGB, coverage of the sensor, cloud cover
persistence or complex signal retrieval due to topography.
New space-borne sensors to be launched in the coming years
will allow accurate measurements of AGB in high biomass
forests (>200 t ha−1) for the first time across large areas.

Keywords Forest biomass . Carbon . In situ data . Optical .

SAR . LiDAR

Introduction

Forests cover approximately 30% percent of the global land
surface and play a key role in the global carbon cycle. The
world’s forests store approximately 45% of terrestrial carbon
[1]. Most of this carbon is stored in trees in the form of AGB
through the process of photosynthesis. AGB includes all vege-
tation above the ground (i.e. stems, branches, bark, seeds,
flowers and foliage of live plants) and approximately 50% of
its composition is carbon [2]. AGB is usually measured in met-
ric tons of dry matter per hectare (e.g. t ha−1 or Mg ha−1) or in
metric tons of carbon per hectare (e.g. t C ha−1 or Mg C ha−1).

Intergovernmental organisations and international agree-
ments such as the United Nations Framework Convention
on Climate Change (UNFCCC) in 1992 and its extension in
1997 with the Kyoto Protocol have recognised the importance
of monitoring and reducing the amount of greenhouse gases
(GHG) emitted to the atmosphere from anthropogenic activi-
ties. During the 21st Conference of Parties of the UNFCCC in
2015, the first comprehensive climate agreement (Paris
Agreement) was achieved, for which the parties aim to hold
the increase in the global average temperature to below 2 °C
and to pursue efforts to limit the temperature increase to
1.5 °C. Carbon dioxide (CO2) is one of the most significant
trace gases, which can alter global biogeochemical cycles such
as the global carbon cycle. The heating derived from the in-
crease of CO2 in the atmosphere can also produce changes in
weather patterns [3]. In most tropical countries, deforestation
is the main source of CO2 from terrestrial ecosystems and the
second largest anthropogenic source after fossil fuel combus-
tion [4].
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The global monitoring of forest AGB is essential to under-
stand the carbon cycle and to reduce carbon emissions.
However, its amount and spatial distribution is still uncertain
due to the difficulties in measuring AGB at the field scale [5].
Remote sensing techniques, especially space-borne sensors,
collect data correlated to the spatial distribution of AGB
across large regions, nationally and even globally, in a cost-
efficient manner [6, 7]. Aside from a long series of passive
optical remote sensors, researchers and practitioners can also
use active sensors such as Synthetic Aperture Radar (SAR)
and Light Detection and Ranging (LiDAR).

Global and regional biophysical forest parameter maps
such as forest area, canopy cover, growing stock volume
(GSV), AGB and canopy height can be generated using re-
mote sensing techniques with spatial resolutions in the range
of 25 m to 1 km (e.g. [8, 9–14, 15••, 16, 17•, 18–21]).
However, these approaches face challenges related to the ab-
sence of well-distributed in situ data for calibration at scales
useful for remote sensing [22] and the limited sensitivity of
satellite sensors to AGB [23]. Each satellite sensor has differ-
ent strengths and weaknesses related to spatial resolution, sen-
sor technology, number of spectral bands, revisit times and
cost. In this review, operational and imminent remote sensing
technologies with a focus on space-borne sensors are present-
ed together with current state-of-the-art approaches to estimate
carbon stocks in forest AGB.

In Situ Data

AGB is measured accurately and directly by destructive in situ
sampling methods. This is a laborious, expensive and impracti-
cal approach for large scales [24]. Non-destructive in situ
methods such as forest inventories make use of allometric
models to predict AGB. Forest inventories are broadly used
for AGB monitoring as their accuracy lies between 2 and 20%
[25]. Biophysical parameters like tree height and diameter at
breast height (DBH) are commonly measured in forest invento-
ries and related scientific studies and are used to estimate AGB
from allometric equations. Some countries have also developed
modelling approaches based on forest stand variables such as
tree species, site indices and ecological regions to predict AGB
across wide areas [26]. Most forest inventories were developed
to estimate commercial growing stock volume of stems,
neglecting other biomass components like branches and leaves.
Biomass expansion factors (BEFs) are used to convert growing
stock into non-inventoried tree components. The use of BEFs
involves a two-step process, stem volume estimation followed
by the application of the expansion factors. Therefore, allometric
equations are preferred over BEFs as the calculation is limited to
one step, reducing the error propagation in the process.

As the field samples used to create allometric models are
delimited to the study area, their applicability is usually

restricted to specific species and sites [27–30]. Allometry
varies with climatic conditions, vegetation structure, tree spe-
cies and growth-form of trees [31–33], and therefore different
forest biomes and even regions within biomes will show var-
iations in allometry. The selection of appropriate equations is a
crucial step when using allometry as a method. An inappro-
priate choice of allometric model can become the most impor-
tant error source in the estimation of AGB [34]. These errors
are mostly a consequence of using allometric equations out-
side the diameter range [34] or in a different area [35] from
which those equations were developed. The small sample of
tree measurements commonly used to generate these models
can result in uncertainties ranging from −4 to +193% [36].
Important variations obtained in C stock have been found,
with overestimations of up to 93% when using different bio-
mass allometric equations in the same study area [37].

Several international consortia such as AfriTRON [38],
RAINFOR [39], ForestPlots [40] and CTFS-ForestGEO [41]
aim to coordinate long-term monitoring of forest plots. They
have established permanent sample plot networks across tropical
forests using robust protocols for measurements and continuous
monitoring of plots and created databases to be used in ecolog-
ical studies. These plot networks are essential for calibrating and
monitoring remote sensing approaches in tropical forest areas.

In temperate and boreal forested areas, there is good avail-
ability of forest inventory ground data as well as allometric
equations [42]. Unfortunately, these data are unavailable in
many developing countries in tropical regions with large areas
of natural forests due to the geographical remoteness, lack of
capacity, data paucity or armed conflicts. The Congo Basin is a
clear example of the scarcity of ground samples. Even though
the Congo basin is one of the largest forested areas in the
world, only a small number of plots has been measured and
few allometric equations have been developed for the forests of
this region [43]. As a result, data availability and subsequently
allometric models are the key limiting factors for quantifying
AGB. Methods based on or assisted by remote sensing tech-
nology aiming to estimate forest biomass over large scales (i.e.
global, biome and continental levels) should focus on devel-
oping methods which can be applied in areas with data avail-
ability problems while accounting for regional variability.

Capabilities and Limitations of Earth Observation
Data

Before the introduction of remote sensing technologies, sev-
eral approaches were used to produce AGB maps. The most
well-known, simple and fast is the biome-average approach.
The biome-averages are single values of biomass per unit area
(e.g. t ha−1). These biome-averages are applied to broad forest
types or biomes and have been mostly calculated and updated
from analyses of country-level carbon stock data archived by
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the United Nations Food and Agricultural Organization
(FAO). Unfortunately, estimates based on national forest in-
ventories from some developing countries are not always re-
liable. Additionally, the different sampling designs used by
those inventories are not taken into consideration when esti-
mating these values, which might lead to large uncertainties
and biases. However, the main advantage of using biome-
averages is that the values are readily available at no cost,
hence becoming the simplest starting point for a country to
assess the relative amount of carbon stocks [4].

Three broad types of remote sensors on board of Earth
observation platforms are generally used to map AGB: pas-
sive optical, LiDAR and microwave. Each type of sensor has
different characteristics which make them suitable for moni-
toring forest vegetation. Passive sensors use the reflected sun-
light emitted by the sun to obtain measurements, while active
sensors generate their own signal, which is reflected, refracted
or scattered from the Earth’s surface before being received by
the sensor. The correlation between the signal received by any
type of sensor and AGB can present regional variations due to
factors such as forest structure, species composition and wood
density, allometry, atmospheric effects and vegetation mois-
ture (e.g. [44, 15••]).

Passive Optical

Vegetation indices estimated through passive optical imagery
(e.g. leaf area index, normalised difference vegetation index)
are most sensitive to the photosynthetic parts of vegetation
[45]. As a result, those indices are also indirectly related to
AGB by means of an empirical relationship between foliage
and total AGB. The signal from optical sensors is therefore
sensitive to variations in canopy structure, and several
methods use this relationship to model AGB across the land-
scape [4, 46]. This relationship involves a certain amount of
error as the AGB of vegetation is mostly composed of non-
photosynthetic parts.

Optical sensors have great advantages for global vegetation
monitoring. The incident electromagnetic radiation that is not
absorbed or scattered by the atmosphere can be absorbed,
transmitted or reflected by the vegetation. The reflected radi-
ation from the targets is measured by the remote sensor.
Vegetation causes diffuse reflection due to its roughness and
can be easily differentiated from other surfaces due to chloro-
phyll causing reflectance in the visible green light spectra and
strong reflectance in the near-infrared, as well as absorption in
the red and blue sections of the visible spectrum [45].

A multispectral sensor usually has between 3 and 10 broad
bands, while hyperspectral sensors have hundreds to thou-
sands of narrow bands. Some studies have used a
hyperspectral satellite to map AGB over small areas (e.g.
[47, 48]), but this is challenging for large areas due to

processing requirements and the reduced number of
hyperspectral satellites.

Optical sensors have been operating for a long time and rich
data archives are available for studying vegetation dynamics.
For example, the Landsat and NOAA AVHRR missions have
acquired observations over the last 40 years. Another advan-
tage of optical sensors is that their high to coarse resolution
imagery can usually be obtained for free or at low cost. The
main shortcoming of optical imagery is cloud cover obscuring
the observations of the land surface. This is not crucial in
boreal or temperate latitudes, but can be a problem in tropical
areas where only a few days in a year are cloud-free.Moreover,
as passive sensors, they can only collect meaningful imagery
during daylight, which reduces the number of potential revisit
times in comparison with active sensors like SAR or LiDAR.
Thus, the chances to obtain a cloud-free image are lowered.

Several studies have mapped AGB calibrating the algo-
rithm with field observations and using high to coarse resolu-
tion multispectral optical imagery to upscale the measure-
ments over the landscape (e.g. [49, 14, 11, 50]). The use of
high-resolution sensors is usually restricted to small areas due
to acquisition costs, revisiting times and the large volume of
data needed to cover extensive areas. Coarse resolution sen-
sors such asMODIS have a 24-h revisiting time in comparison
with moderate resolution sensors such as Landsat with a 16-
day revisiting pass. As a result, coarse resolution optical sen-
sors have more chances to have cloud-free observations. It
should be noted that in partly cloudy conditions, there is a
chance of cloud contamination in a coarse resolution pixel
where a moderate or high-resolution sensor might capture both
cloudy and cloud-free pixels over the same area. Multi-
temporal radiometrically consistent cloud-free datasets can
be generated by high and moderate resolution sensors, but it
can be technically demanding and time-consuming [49, 51].
The rapid development of high performance computer facili-
ties (HPC) and cloud computing (e.g. Google Earth Engine)
currently allows the generation of such datasets at moderate
resolutions for large areas [52, 53••, 54]. The revisiting time of
moderate resolution sensors is also improving with new oper-
ational programmes such as Sentinel-2, which with two satel-
lites operating simultaneously (2A and 2B), will reduce poten-
tial repeat coverage to 5 days between acquisitions over equa-
torial regions and up to 2 days over regions in higher latitudes.

Most hyperspectral approaches focus on the retrieval of
vegetation indices that can be correlated to forest biochemical
parameters and leaf area index (LAI) [55–57]. Using
Hyperion data, le Maire et al. [58] was able to estimate canopy
leaf biomass. However, the poor relationship between stem
biomass and vegetation indices has been indicated by some
studies [59, 60]. Nevertheless, the use of hyperspectral data in
combination with other sensors can improve AGB estimations
as shown by Lucas et al. [61] and Swatantran et al. [60].
Hyperspectral remote sensing has the potential to improve
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biomass mapping by providing information on vegetation
health and species composition.

Optical imagery is therefore suitable for forest area mensu-
ration, vegetation health monitoring and forest classification,
but presents limited correlation with forest AGB after canopy
closure. Estimation of AGB by optical sensors has to deal with
a saturation of the signal retrieval at low AGB stocks due to
canopy closure [4]. However, recent studies suggest that there
is correlation of optical imagery (Landsat, MODIS) to AGB
beyond the theoretical saturation, especially in infrared bands
[13, 62, 63] which are sensitive to shadowing and moisture
differences.

Light Detection and Ranging—LiDAR

LiDAR is a technology consisting of active optical sensors
which transmit laser pulses to targets in order to measure dis-
tances. LiDAR remote sensing systems can be classified ac-
cording to the platform in which they are mounted (space-
borne, airborne, ground-based or hand-held), the type of
returned signal (discrete return or full waveform), the scan-
ning pattern (profiling or imaging) and the footprint size (<1m
diameter small footprint, 10–30 m diameter medium footprint
and >50 m diameter large footprint). A LiDAR footprint is an
area illuminated by the laser and from which the waveform-
return signal gives information.

Because LiDAR sensors retrieve canopy height from the
distance measurements between the sensor and the target, they
are not limited by the same signal saturation for the estimation
of AGB as optical and radar sensors, which correlate AGB
with spectral reflectance or radar backscatter signals. A high
LiDAR point density allows for more ground returns to be
obtained through gaps in the canopy. In particular, airborne
and ground-based imaging LiDARs provide direct and very
accurate measurements of canopy height. However, the use of
airborne and terrestrial platforms would be excessively expen-
sive for continental and global scale mapping. The only space-
borne LiDAR sensor to date was the Geoscience Laser
Altimeter System (GLAS) instrument aboard the NASA Ice,
Cloud and land Elevation Satellite (ICESat). ICESat scanned
the globe from 2003 to 2010 following a footprint profiling
pattern along the orbit and produced a global coverage of full
waveform signal large footprints (approximately 65 m in di-
ameter). ICESat sampled millions of such footprints every
172 m along the track. This sensor did not generate images
but provided full-wavelength point information that could be
used after processing for calibration purposes. Canopy height
can be calculated based on the relative time elapsed between
the energy reflected from the top of the canopy and the ground
(waveforms) [64]. However, GLAS waveforms have prob-
lems estimating canopy height over sloped terrain [65].

Several authors have studied LiDAR-derived biophysical
canopy metrics to characterise forest vertical structure [12,

66–71]. Allometric models can then be used with those met-
rics to estimate AGB. AGB estimated using the large-footprint
GLAS sensor has been widely used for calibration/validations
purposes, especially in areas with poor field data availability.
These LiDAR space-borne sensors cannot be used alone to
produce wide area AGB mapping, but they are very useful in
combination with other Earth Observation datasets (e.g. [13,
15••]). There is no LiDAR satellite in orbit at the present time,
but some are in the development stage.

Microwave

Microwave earth observation sensors use the electromagnetic
radiation in the microwave wavelength range to provide infor-
mation about the planet’s land, ocean and atmosphere.
Microwave sensors used in forest biomass studies are either
passive microwave radiometers which measure the natural
microwave emission from earth or active radar altimeters
which transmit microwaves and receive a backscattered signal
from a surface. However, few studies have explored the use of
passive microwave radiometers to estimate forest AGB [72••,
73]. The very coarse spatial resolution allowed by these radi-
ometers (>10 km) makes the calibration and validation of
these approaches difficult and only useful for global scale
studies.

Most studies use a type of active radar called SARwhich is
able to acquire high and moderate resolution imagery. SAR is
a side-looking active radar system. The backscattered signal
contains both an intensity and a phase component. The inten-
sity is a measure of the strength of the returned signal and is
affected by geometric and dielectric properties (essentially the
moisture content) of the surface. The phase describes the
phase angle of the returned radar echo, and it is a combination
of hundreds of interactions with individual scattering objects
within a target area.Microwave wavelengths allow imaging of
the land surface through cloud cover, and with SAR being an
active system, images can also be gathered at night. Airborne
or space-borne SAR systems follow a side-looking design that
uses the Doppler effect of relative motion between the antenna
and its target to provide distinctive long-term coherent signal
variations to generate much higher resolution imagery than
would be possible from a real aperture radar [74].

There are three fundamental physical scattering mecha-
nisms by which a microwave pulse is scattered. These are
volume scattering, double bounce and rough surface (or
‘Bragg’) scattering [75]. Double-bounce scattering occurs
when the signal is reflected from two or three orthogonal
surfaces with different dielectric constants, directly back to
the sensor. This is common from man-made surfaces, such
as in urban environments. Naturally occurring surfaces that
cause double-bounce backscattering include vertical tree
trunks, particularly those in still water as found in mangrove
swamps. Volume or canopy scattering is produced from a

4 Curr Forestry Rep (2017) 3:1–18



cloud of randomly oriented dipoles [75] typically seen in leaf
and branch interactions in forest canopies. Scattering from a
rough surface results in Bragg scattering, with the signal being
scattered in multiple directions. Scattering from still water
results in very low signal intensity, as most of the signal is
reflected away from the sensor.

Transmitted radar pulses are polarised electromagnetic
waves in either the horizontal (H) or vertical (V) plane, and
the returned signal can also be received in either the horizontal
or vertical plane. Co-polarised SAR data (VV—vertical
transmit/vertical receive—and HH—horizontal transmit/
horizontal receive) are generally less useful than cross-
polarised (HV and VH) SAR data for AGB measurements; a
cross-polarised sensor configuration is sensitive to the chang-
es in polarisation produced by scattering elements within a
tree canopy [76].

Several SAR satellites are currently operational. Each SAR
satellite works within a specific radar frequency band (with a
corresponding wavelength), with an X-, C-, S-, L- or P-band
sensor listed in order of increasing wavelength. Longer wave-
length SARs (i.e. L- and P- band) have a greater ability to
penetrate the surface and canopy cover. The signal interacts
with objects at the same scale or larger than its wavelength,
with smaller objects not affecting the backscatter. As a result,
longer wavelength SAR signals pass through leaves and small
branches in the upper canopy and offer more information
about differences in larger woody material such as stems and
large branches [77] making them more suitable for AGB esti-
mation as large branches and stems comprise the highest per-
centage of AGB in forests. However, smaller antenna size,
higher spatial resolution and reduced power consumption
have favoured the use of shorter wavelengths from space-
borne SAR systems, which are sensitive to smaller canopy
elements such as leaves and small branches.

The sensitivity of L-band SAR backscatter to AGB satu-
rates at around 100–150 t ha−1 [78, 79]. However, some au-
thors have found higher saturation values of more than
250 t ha−1 for L-band [80] and even more than 300 t ha−1

when combined with other SAR datasets such as X-band
[81]. Nevertheless, there is no current satellite sensor in orbit
(neither optical nor radar) that can offer a reasonable relation-
ship between the observations and the high values of AGB
often found in tropical areas (>400 t ha−1) [79, 80, 82–85]. A
P-band SAR such as the planned BIOMASS mission is need-
ed to retrieve very high AGB [86].

Current Methods to Map AGB

Most methods to map AGB can be included in two broad
types based on the spatial scale of the approach: small to
medium scale methods and large scale methods (Table 1).
The first type (small-medium) covers from project size scale

to countrywide scale. These approaches are not usually re-
stricted by ground data or air- and space-borne image avail-
ability, except in some tropical countries. The second type
(large scale) includes spatial scales beyond national borders
such as continental or biome level (large countries will also be
included here). Ground data availability is the main constraint
for calibrating and validating these large scale approaches. At
this level, the use of airborne data would be impractical and
overly costly.

These projects are generally based on a combination of in
situ data and satellite sensors with moderate to coarse spatial
resolutions (25 m to ca. 55 km). A large amount of different
remotely sensed datasets are available, ranging from passive
optical, to LiDAR and SAR from either air- or space-borne
platforms. All these approaches face the limitations of remote
sensing imagery to map forest AGB (i.e. ground data paucity,
signal saturation, cloud cover, topography). Most methods use
a combination of multiple datasets in order to overcome these
limitations. Data synergy approaches enable an exploitation of
the specific strengths of each sensor. However, AGB data
availability to calibrate these methods is still an important
constraint, especially at scales beyond the national level.

Methods to map AGB over large spatial scales can also be
separated into parametric and non-parametric approaches.
Parametric approaches make assumptions on the shape of
the distribution of the data, while non-parametric approaches
make fewer or no assumptions. The use of parametric models
present bigger challenges for upscaling or extrapolating AGB
data, as there are no current satellite observations that can be
reasonably related to AGB across the whole landscape.
Additionally, the assumptions in parametric models of inde-
pendence and multivariate-normality are often violated [87].
As complex ecological systems like forests show non-linear
relationships, autocorrelation and variable interaction across
temporal and spatial scales, non-parametric algorithms often
outperform parametric ones [88]. Examples of parametric
methods are multiple regression analysis (e.g. [13]) or
geostatistical methods such as co-kriging (e.g. [89]), whereas
the k-nearest neighbour technique (e.g. [90]), random forests
[13, 21] and neural networks (e.g. [91]) are examples of non-
parametric methods.

Small-Medium Mapping Scale

The methods used to map AGB from small to medium scale
are generally calibrated with forest inventory plot data.
However, there is an increasing tendency to use airborne
LiDAR as calibration data [105, 106, 109–111]. This type of
approach relates AGB field observations to airborne LiDAR
data, and then calibrates the parameter retrieval from space-
borne sensors using those LiDAR datasets. As mentioned be-
fore, the use of airborne data is only feasible at national level
or below due to logistic and economic constrains.
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A range of non-parametric machine-learning algorithms
are used at national level to extrapolate AGB measured from
forest plots [11, 21, 62, 63, 99, 102–104]. This approach can
combine different types of data from high to coarse resolution.
Passive optical imagery from high-resolution multispectral
sensors such as RapidEye, AVNIR-2, SPOT-5, Pléiades and
WorldView-2 are often used at this scale by means of super-
vised classifications, geostatistical approaches and texture
analyses [50, 112, 113]. Moreover, forest AGB can also be
estimated using canopy height models generated from stereo
photogrammetric approaches [113–116]. Hyperspectral opti-
cal imagery from sensors such as Hyperion on board of the
EO-1 satellite has shown to outperform multispectral optical
imagery when mapping forest biomass and land cover classes
[117]. Nevertheless, hyperspectral data show the best results
when used in combination with other types of data such as
SAR [47] or airborne LiDAR [118, 119]. Regression methods
have also been applied at this level with moderate resolution
imagery in Colombia [108] and Queensland (Australia) [80].
A previous study of AGB stocks at national level used 250 m
spatial resolution imagery (MODIS, DEM and land cover
layers) and forest inventory data to generate AGB maps for
the USA by means of a classification and regression tree
modelling [11]. Kellndorfer et al. [62] used a very similar
approach over the USA but using 30 m resolution Landsat
imagery from the National Land Cover Database, the US
National Forest Inventory and SRTM topographic data.

At this scale, more complex techniques applied to SAR
data can estimate other biophysical parameters such as tree
canopy height, which can be used to estimate AGB indirectly
from allometric models. This type of approach does not suffer
from the AGB/signal saturation problem. Multiple SAR im-
ages of an area, if acquired from roughly the same position in
space, and with the same image geometry such as look angle,
polarisation, wavelength and spatial resolution, can be com-
bined to take advantage of the phase information contained
within each complex image, in a process called SAR interfer-
ometry (InSAR). Images can be acquired simultaneously by
two receiving sensors in single-pass InSAR mode (e.g. the
TanDEM-X satellite constellation), or at different times by
the same or different sensors in repeat-pass InSAR mode
(e.g. Sentinel-1A and 1B). While the distance between the
sensors’ positions in space should be sufficiently large to pro-
vide sensitivity to signal phase differences, as this distance
increases, there is spatial decorrelation of the signal, up to a
point called the critical baseline, beyond which the phase of
each image is completely decorrelated with respect to the oth-
er image [120]. From both techniques, it is possible to derive
digital surface models (DSM) from the phase difference. This
approach also requires an accurate digital terrain model
(DTM) of the ground elevation beneath the canopy to estimate
canopy height [68]. A dual wavelength approach could also be
used to estimate a DTM of the ground, but the quality and theT
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type of DTM will determine the accuracy of the AGB estima-
tions (Fig. 1). The phase correlation between two acquisitions
determines the reliability of InSAR measurements and is
known as interferometric SAR coherence. For longer wave-
lengths, lower coherence between repeat-pass image pairs in-
dicates the presence of denser vegetation, as scatter between
image acquisitions increases with forest growing stock vol-
ume [121].

Polarimetric interferometry (PolInSAR) is another SAR
technique which, in contrast to single-polarisation InSAR,
does not rely on an external DTM, as it estimates terrain and
canopy height from the vertical heights of the scattering phase
centres of the different polarimetric scattering mechanisms
[122–124]. Different polarisations interact more strongly with
different scatterers, such as canopy (HV) and trunk (HH).
SAR tomography (TomoSAR) goes beyond the PolInSAR
technique by using a set of multiple baselines of interferomet-
ric SAR images to generate a 3D vertical structure of the
vegetation canopy based on the variation of backscattering
as a function of height [86, 125]. Most of these techniques
are difficult to use over large areas due to the restrictive data
requirements. Better availability of SAR sensors allowing
higher spatial and temporal resolution acquisitions might cir-
cumvent these limitations.

Large Mapping Scale

At large scales, data availability is the main limiting factor of
AGB mapping approaches. Additionally, estimating AGB for
very different ecosystems, such as tropical and boreal forest,
using the same method can be very challenging due to the
variations in forest structure, species composition, wood den-
sity, allometry, atmospheric effects and vegetation moisture.

Two recent map products [13, 15••] established a bench-
mark in the synergistic use of different earth observation
datasets to map AGB across the whole tropical biome. These
studies use AGB estimated from millions of GLAS footprints
to calibrate their methods. The approach by Baccini et al. [13]

relates GLAS waveforms to AGB using a model calibrated by
ground plots directly located under the GLAS footprints, while
Saatchi et al. [15••] use three plot-level continental allometric
models derived from ground data to relate GLAS-derived
Lorey’s height (HL) to AGB. The use of a model for each
continent might better explain the allometric regional variabil-
ity than a single model, but might still introduce a great amount
of uncertainty when applied to different forest biomes. These
studies used machine-learning algorithms such as random for-
est [87] and MaxEnt [126, 127] for upscaling of the AGB
across wide areas, to produce 463 m and 1 km resolution maps,
respectively. Saatchi et al. [15••] reported a relative error of
approximately 30% across the three continents, while Baccini
et al. [13] reported similar figures in terms of root mean square
error (RMSE) (38–50 t ha−1). One of the most innovative fea-
tures of the Saatchi et al. [15••] study was the possibility of
mapping the uncertainty of the AGB estimation on a pixel-
by-pixel basis. Both approaches use MODIS spectral bands
and the SRTM digital elevation model as predictor variables,
and in the case of Saatchi et al. [15••] also Quick Scatterometer
data (QSCAT). These methods aim to take advantage of the full
potential of the information contained in each input band, but
none of these bands on its own can fully explain the variability
of AGB across the landscape.

These two products provide very different results on the
amount and spatial distribution of AGB at finer resolutions
[128] (Table 2 and Fig. 1). Differences when compared to in
situ AGB data or to local AGB maps have also been found
[129, 130] but can be partially explained by the allometric
models used to estimate AGB, different ground and remote
sensing data, modelling techniques, pixel sizes and temporal
coverage. Mitchard et al. [129] found that these maps do not
agree with the spatial distribution of AGB in permanent
Amazon field plots and that the uncertainties quantified in a
comparison with 413 ground plots far exceed those reported
by the studies. Saatchi et al. [131] responded toMitchard et al.
[129] arguing that, aside from methodological flaws in the
interpolation approach, using 413 plots from different periods

Fig. 1 Vegetation carbon content
at Monks Wood National Nature
Reserve derived from the canopy
height models from a LIDAR
DSM and LIDAR DTM, b XVV
InSARDSM and LIDARDTM, c
XVV InSAR DSM and smoothed
interpolated LHH InSAR DTM
(dual wavelength approach).
Warmer colours indicate higher
carbon content (range from 5 to
400 t C ha−1). Adapted with
permission fromBalzter et al. [68]
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between 1956 and 2013 only represent 404.6 ha out of
650 million ha of forest in the Amazon and without a rigor-
ously designed and extensive in situ forest inventory strategy
are not representative of the AGB trends in the region.
Nonetheless, the consistency of both products at coarser scales
suggests that realistic estimates of carbon stocks can be pro-
duced over large regions.

The two pantropical carbon maps were fused using a meth-
odology that incorporated research field observations, forest in-
ventory plots and other high-resolution biomassmaps [95•]. The
method was based on bias-removal and weighted-averaging of
the regional maps, and resulted in a pantropical map with a 15–
21% lower RMSE than that of the input maps, and lower bias
(mean bias 5 t ha−1 vs. 21 and 28 t ha−1 for the input maps).

Boreal and temperate forest GSV was mapped at 100 m
and 1 km spatial resolution using hyper-temporal data series
of Envisat ASAR ScanSAR backscatter imagery by means of
a parametric semi-empirical model called BIOMASAR [17•].
The major advantage of this parametric semi-empirical ap-
proach is that the algorithm does not rely on training data.
The high uncertainty of the 100 m resolution map (average
70% relative error) was considerably reduced (average 43%)
when aggregating to coarser pixels of 1 km resolution. The
applicability of this C-band SAR algorithm to tropical areas
with much higher AGB density is unclear, but adapting the
algorithm to use larger SAR wavelengths such as L-band
could potentially overcome this problem. Thurner et al. [18]
used the GSVestimated from this product in combination with
specific wood density information and allometric relation-
ships between biomass compartments (stem, branches, foliage
and roots) to produce a C stock map for the boreal and tem-
perate forests at ca. 1 km spatial resolution.

GSVat 500 m and AGB at 10 km were also mapped con-
tinentally for the whole of the European Union [98] using a
downscaling approach that weighted the land cover class
mean GSV values extracted from forest inventories by frac-
tional cover maps developed using MODIS data. An Africa-
wide map was also produced at 1 km resolution by extrapo-
lating data from forest plots by means of MODIS imagery and
a random forest algorithm, producing a RMSE of 50.5 t ha−1.

Early efforts to monitor forests at global level led to the
Forest Resource Assessments (FRAs) by the United Nations

(UN) Food and Agriculture Organization (FAO). These assess-
ments are based on the analysis of forest inventory information
supplied by each country and supported by expert judgements,
remote sensing and statistical modelling [132, 133]. National
Forest inventories are the most widely used method for in situ
forest monitoring due to its historic roots in national forestry
administrations, its accuracy and low technical requirements.
The approach consists of sample-based statistical methods,
sometimes in combination with remote sensing and aerial imag-
ery. In developing countries where the labour cost is low, the use
of forest inventories could be a relatively cost-effective ap-
proach. However, it was not until 2000 that a single technical
definition for forest was used (>10% crown cover). Changes in
baseline information, inconsistent methods and definitions
through the different FRAs make their comparison difficult
[134]. Several authors have questioned the country-level esti-
mates of forest carbon stocks reported by the FRAs due to in-
adequate sampling for the national scale, inconsistent methods
and in some tropical countries figures that were not based on
actual measurements [4, 135, 136]. These assessments however
do not generate spatial estimations of AGB, but national level
statistics on forest cover, forest state (e.g. GSV), forest services
and non-wood forest products.

First global AGB maps were not based on remote sensing
imagery but on downscaling of FAO forest inventory statistics
using annual net primary production NPP model outputs [93]
and on the assignment of IPCC default AGB averages (estimat-
ed from FAO data) to GLC2000 [137] land cover classes [92].
Following the same fusion approach as Avitabile et al. [95•], a
global map of AGB was generated for the GEOCARBON pro-
ject [94], fusing the boreal map from Santoro et al. [96] and the
pantropical map fromAvitabile et al. [95•] at ca. 1 km pixel size.
Hu et al. [97] recently published a global AGB map based on a
combination of GLAS footprints, forest inventory data, optical
imagery, climate data and land cover layers by means of a ran-
dom forest approach. The AGB estimations of Hu et al. [97]
seem to be much higher than previous global and pantropical
maps (Fig. 2)

Vegetation optical depth (VOD) from Earth’s passive mi-
crowave radiation acquired by the Advanced Microwave
Scanning Radiometer (AMSR-E) sensor was used to map
AGB globally over a long time period (1993–2012) [72••].

Table 2 Total AGB stocks (Pg)
by continent in the tropical biome Continent Saatchi et

al. [15••] (Pg)
Baccini et
al. [13] (Pg)

Avitabile et
al. [95•] (Pg)

Liu et al.
[72••] (Pg)

Hu et al.
[97] (Pg)

Africa 113 129 96 126 96

America 193 234 186 223 257

Asia 107 93 92 79 116

Tropics 413 457 375 428 469

Comparison of AGB stocks for continental regions based on the coverage of the Baccini et al. [13] mapwhich has
the most limited coverage of the maps

Curr Forestry Rep (2017) 3:1–18 9



The main disadvantage from this approach comes from the
low energy of this radiation which only allows coarse resolu-
tions (27.5 km pixel in this study). Additionally, there is no
ground data available at these spatial scales that would allow
calibration of such pixel sizes. In Liu et al.’s [72••] study,
aggregated pixels from the Saatchi et al. [15••] map were used
for calibration. As a result, any of the uncertainties from the
Saatchi et al. [15••] map will propagate into this new product.
Similar approaches are being investigated using ESA’s Soil
Moisture and Ocean Salinity (SMOS) mission [73, 138].

Carbon trends estimated by Liu et al. [72••] are comparable in
boreal and temperate areas to trends reported by Pan et al.
[139••] calculated using ground observations for the period
2000–2007. However, both studies disagree in their estimations
for tropical areas where the loss of AGB is much larger in the
study of Liu et al. [72••] (Fig. 3). Pantropical carbon maps have

divergent AGB estimations in comparison to ground data [129]
being significantly larger in some regions [63]. This might ex-
plain the larger AGB loss found in tropical regions by Liu et al.
[72••] in comparison to Pan et al. [139••], as the Saatchi et al.
[15••] map was used as calibration of the approach.

Pantropical AGB maps [13, 15••] can differ in their estima-
tions and might not agree with ground observations [63,
128–130]. Understanding the reasons behind these differences
is crucial for improving contemporary retrieval methods.
Initiatives such as the Biomass Geo-Wiki [140] use a
crowdsourcing approach to compare and validate forest AGB
products to address tasks related to gap analysis, cross-product
validation, possible harmonisation and hybrid product develop-
ment. The site allows the analysis of the pantropical carbon
maps [13, 15••, 95•] and other continental and national level
products. A similar initiative, based on the study by Mitchard

Fig. 2 Pantropical carbonmaps from Saatchi et al. [15••], Baccini et al. [13] and the fused version fromAvitabile et al. [95•]. Global maps fromHu et al.
[97] and Liu et al. [72••] are also displayed over the pantropical area
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et al. [128] which compared the tropical carbon maps [13, 15••]
led to the development of the website BComparing Global
Carbon Maps^ [141]. This site allows the interactive compar-
ison between both maps, as well as between other carbon maps
provided by different authors. The Global ForestWatch (GFW)
platform has also been recently developed with the aim to im-
prove forest information from remote sensing and ground ob-
servations [142]. The platform provides information on forest
change, land cover (including AGB), land use, conservation
and human interactions. The main dataset is the 12 years forest
cover loss and gain product developed by Hansen et al. [53••]
and a new AGB map at 30 m resolution based on the method-
ology used by Baccini et al. [13].

Future Scenario

At least three space-borne LiDAR sensors should be opera-
tional in the near future, inspired by the heritage of the ICESat
satellite (GLAS sensor), which was widely used as a
calibration/validation dataset for AGB mapping at biome
and continental levels (Table 3). ICESat-2 will be launched
in 2017 with the Advanced Topographic Laser Altimeter
System (ATLAS) on board. The main objective of this satel-
lite, as with the previous ICESat, is monitoring ice sheet ele-
vation and sea ice thickness. The mission also has a secondary
objective to estimate ground surface height, canopy height and
canopy cover. However, it is not clear whether the ATLAS
sensor will be suitable to estimate canopy height and AGB on
forest areas due to concerns on the noise level of the discrete
return photon-counting system [143, 144]. Additionally, AGB
estimation by ATLAS in sparse forests such as the boreal
taiga-tundras and savannas will be challenging due to the
low sampling rate, the sole use of the green wavelength and
the low sensitivity of the sensor to discern differences in AGB
at 10 t ha−1 intervals [144, 145].

Two other LiDAR sensors specifically designed for forest
s t ructure character isat ion wil l be at tached to the
International Space Station (ISS). The Global Ecosystem
Dynamics Investigation LiDAR (GEDI) mission on board
the ISS should be operational in 2018 [146]. The GEDI in-
strument will be composed of three laser transmitters that
will acquire 14 parallel tracks of 25 m footprints [147]. The
main objective of the GEDImission is to quantify the spatial
and temporal distribution of AGB carbon. The Multi-
footprint Observation LiDAR and Imager (MOLI) should
be operative in 2019 and will also be attached to the ISS
[148]. This sensor will have two aligned nadir-viewing
LiDARs to capture multi-footprints and a multiband imager
(green, red and near-infrared)with 5m resolution. The aimof
this mission is to determine canopy height more precisely by
the synergy between LiDAR and a high-resolution optical
sensor able toprovide informationon crown size and approx-
imate height. Unfortunately, GEDI and MOLI will not be
able to obtain footprints from boreal forests (30% of world’s
forest) due to the orbital characteristics of the ISS.

The forthcoming LiDAR sensors could be a game changer
in the coming years, providing millions of LiDAR footprints
to potentially characterise forest structure and AGB and could
be used for calibration and validation of methods based on
optical and SAR imagery. LiDAR profilers will certainly gen-
erate key datasets for mapping AGB at large scales and be a
realistic solution for the AGB data availability problem.
Approaches such as the ones presented by Saatchi et al.
[15••] and Baccini et al. [13] will also be feasible to replicate.
These approaches are based on non-parametric algorithmic
methods (i.e. MaxEnt and Random Forest), which are often
more suitable to model complex ecosystems such as forests
[15••]. The drawback of these approaches is the lack of
calibration/validation data in several parts of the world.
Semi-empirical methods such as the BIOMASAR algorithm
[17•], which do not require ground data for algorithm

Fig. 3 Comparison of AGB
change in the period 2000–2007
between Pan et al. [139••] and Liu
et al. [72••]
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calibration, would be very promising if adapted to longer SAR
wavelengths such as L-and P-band.

There is a wide range of optical multispectral sensors rele-
vant for monitoring vegetation (e.g. Landsat 7 ETM+, Landsat
8 OLI, Sentinel-2A/3A, SPOT 6/7, MODIS and PROBA-V),
as this has traditionally been the most widespread technology
used by Earth Observation Satellites. In the period between
2017 and 2021, we will see a continuation of programmes
such as Landsat and Sentinel with the new Landsat 9 and
additional Sentinel satellites (2B, 2C, 3B and 3C) being
launched (Table 3). All these new sensors ensure the continu-
ity of the optical archive, which started with the Landsat pro-
gramme more than 40 years ago, as well as the large scale and
coarse spatial resolution sensors AVHRR, MERIS and
MODIS. The Sentinel-2 satellites provide the highest resolu-
tion (10m) operational free-of-charge optical imagery current-
ly available, improving over the 30 m resolution imagery pro-
vided by Landsat satellites. Hyperspectral technology is still
underrepresented on satellite platforms but planned satellites
such as the EnMAP (2018) and PRISMA are very promising.

Governments and space agencies are currently starting to
recognise the advantages of SAR sensors for a wide range of
applications. There are more SAR instruments in space than
ever before, and numbers are to increase steadily in the com-
ing years (Table 3). Radar has several characteristics that are
an advantage for forest monitoring, including cloud penetra-
tion (useful in very cloudy areas, such as over most tropical
forests) and correlating strongly with AGB at long wave-
lengths such as L-band. Current short-wavelength X-band
(2.4–3.8 cm) SAR satellites such as the TerraSAR-X and
COSMO-SkyMed constellations will be complemented by
the Paz Satellite (2017) and the second generation of
COSMO-SkyMed (2018–2019). C-band SAR (3.8–7.5 cm)
satellite programmes such as Radarsat and Sentinel-1A/1B
will also continue with new additions in future years with
the new Radarsat constellation (2018) and Sentinel 1C
(2021). The only S-band satellite (Huanjing 1C) will have a
continuation with NovaSAR-S (2017). Larger wavelengths
such as L-band (15–30 cm) ALOS-2 will have continuation
with the SAOCOM 1A (2017), 1B (2018) and SAOCOM
Companion Satellite (CS) Mission (2018). SAOCOM 1A/
1B will fly in constellation with COSMO-SkyMed forming
the SIASGE L+X-band SAR System. SAOCOM-CS is a
receive-only dual-pol sensor platform designed to fly in for-
mation with SAOCOM-1A/1B. This orbital combination will
allow techniques such as SAR polarimetry, polarimetric SAR
interferometry and SAR tomography. The NASA-ISRO
Synthetic Aperture Radar (NISAR) mission (2021) will be
the first dual-frequency SAR satellite (L- and S- band).

A larger wavelength than L-band is however better suited
to estimating high AGB levels, and the BIOMASS P-band
(30–100 cm) sensor is therefore very promising [86]. The
BIOMASS mission is due to be launched in 2021. ThisT
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mission by the European Space Agency (ESA) has the follow-
ing accuracy requirements at 200 m pixel level: a RMSE of
±10 t ha−1 for AGB below 50 t ha−1 and a relative error of
±20% for AGB above 50 t ha−1. If successful, this will be the
first space-borne P-band SAR and will be sensitive to high
AGB (Fig. 4). The mission however is restricted to measure
outside of the US Space Objects Tracking Radar (SOTR) area
[151]. This means that the sensor will have to be turned off
over North America, Central America and Europe.
Nevertheless, most AGB rich tropical forests worldwide will
still be surveyed by the BIOMASS satellite.

Optical and SAR imagery sense the vegetation by
means of different physical processes which have differ-
ent sensitivity to AGB. SAR imagery has a higher AGB
saturation point than optical imagery according to the lit-
erature [79, 80, 82–85], but recent studies have also found
that optical infrared imagery might have correlation to
AGB beyond its theoretical saturation point [13, 62]. As
the theoretical saturation point of current SAR L-band
imagery lies around 150 t ha−1 [78, 152], we will have
to wait for the P-band BIOMASS mission to be able to

estimate AGB in high biomass regions (over 200 t ha−1).
However, none of these sensors can be used alone for
AGB estimation globally, either because of limitations in
signal saturation, coverage, cloud cover persistence or
complex signal retrieval due to topography. The use of
data synergy approaches makes it possible to exploit the
specific strengths of each sensor. Aiming to better char-
acterise and to reduce uncertainties of AGB estimates by
identifying limitations of current datasets and methods to
estimate AGB and by developing innovative synergistic
mapping approaches; ESA established the Data User
Element (DUE) GlobBiomass project [153]. The project
works in five regions covering boreal, temperate and trop-
ical forest biomes (Mexico, South Africa, Poland, Sweden
and Kalimantan) developing map products for the years
2005, 2010 and 2015 [154] and a global map for the year
2010 [155]. The use of these approaches might allow the
generation of an AGB baseline before the BIOMASS mis-
sion is in orbit.

Conclusion

This review has shown current methods to estimate AGB
using passive and active space-borne remote sensing technol-
ogy. Most approaches are limited by ground data availability
for calibration/validation, signal saturation with AGB, cover-
age of the sensor, cloud cover persistence or complex signal
retrieval due to topography. This highlights the importance of
synergistic approaches which aim to overcome these limita-
tions by exploiting the advantages of several sensors. Several
promising techniques used at small scale (e.g. PolInSAR,
TomoSAR) have not been tested yet at larger scales due to
complexity and data requirements. However, this might
change due to the imminent availability of high spatial and
temporal resolution datasets being acquired by new sensors.
The new generation of optical sensors (e.g. Sentinel-2),
LiDAR profilers (ICESat-2, GEDI and MOLI) and SAR sen-
sors (e.g. BIOMASS, SAOCOM and Sentinel-1) will allow
the estimation of AGB to a spatial and temporal resolution
never seen before and with an unprecedented accuracy.
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Fig. 4 P-band HV backscattering coefficient plotted against
aboveground biomass for experiments conducted at six different forest
sites. The green squares with error bars indicate the mean and standard
deviation of the data points within intervals of ±10 t ha−1 centred on
values of biomass spaced by 20 t ha−1, beginning from 50 t ha−1 and
running out to 270 t ha−1. The solid green line is a regression curve
derived from the combined data reported in the publications prior to
2009. The dashed curves are obtained by replacing the biomass value,
B, by 0.8 × B and 1.2 × B in the regression equation. Reprinted with
permission from Le Toan et al. [86]
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