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Abstract
Cytokines, many of which signal through the JAK–STAT (Janus kinase–Signal Transducers and Activators of Transcription) 
pathway, play a central role in the pathogenesis of inflammatory and autoimmune diseases. Currently three JAK inhibitors have 
been approved for clinical use in USA and/or Europe: tofacitinib for rheumatoid arthritis, psoriatic arthritis and ulcerative colitis, 
baricitinib for rheumatoid arthritis, and ruxolitinib for myeloproliferative neoplasms. The clinical JAK inhibitors target multiple 
JAKs at high potency and current research has focused on more selective JAK inhibitors, almost a dozen of which currently are 
being evaluated in clinical trials. In this narrative review, we summarize the status of the pan-JAK and selective JAK inhibitors 
approved or in clinical trials, and discuss the rationale for selective targeting of JAKs in inflammatory and autoimmune diseases.
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Key Points 

Janus kinase (JAK) inhibitors target multiple cytokines 
simultaneously and present a viable treatment option in 
inflammatory and autoimmune diseases. Currently three 
pan-JAK inhibitors, tofacitinib (rheumatoid arthritis, pso-
riatic arthritis, ulcerative colitis), baricitinib (rheumatoid 
arthritis), and ruxolitinib (myeloproliferative neoplasms), 
have been approved for clinical use.

Recent research has focused on the development of selec-
tive JAK inhibitors as inhibition of specific JAK kinase may 
decrease adverse effects, and thus increase safety and efficacy.

Phase II clinical trials of moderately selective JAK inhibi-
tors demonstrate efficacy and adverse effects comparable to 
pan-JAK inhibitors but more data are needed, especially on 
highly selective inhibitors, to define the potential of selective 
JAK targeting in inflammatory and autoimmune diseases.

1  Introduction

Cytokines play pivotal roles in essential cellular functions 
such as proliferation, invasion, survival, inflammation, and 
immunity, and thereby have a central role in the pathogen-
esis of immunological diseases and cancer, either through 
their normal functions or due to deregulated signaling. 
Inhibition of cytokine functions by, for example, mono-
clonal antibodies against cytokines or their receptors have 
been successfully used for the reduction of chronically 
elevated cytokine signaling and uncontrolled cytokine 
effects. In recent years there has been growing interest 
towards modulating the key intracellular components of 
cytokine signaling, especially the Janus kinase (JAK) fam-
ily of non-receptor tyrosine kinases that transduce signals 
from multitude of cytokines and growth factors [1]. Pres-
ently, three JAK inhibitors are approved for clinical use 
and almost a dozen others are in clinical trials for the treat-
ment of autoimmune diseases and hematopoietic disorders.

In mammals, the JAK–STAT (Signal Transducers and 
Activators of Transcription) pathways are constituted of 
four JAK kinases (JAK1–3 and tyrosine kinase 2 [TYK2]) 
and seven STATs (STAT1–6, including homologs STAT5a 
and STAT5b). The signaling cascade is initiated by 
cytokine binding to its receptor and subsequent associa-
tion/rearrangement of the receptor subunits, which enables 
JAK activation by trans-phosphorylation (Fig. 1). Once 
activated, JAKs phosphorylate the receptors, allowing 
STATs to bind to the receptor and become phosphoryl-
ated by JAKs. The phosphorylated STATs (pSTATs) form 
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either homo- or heterodimers, which translocate into the 
nucleus where they bind their cognate promoter elements 
to regulate transcription of target genes. The flexibility in 
the STAT dimerization increases the range of gene-specific 
binding sites as well as contributing to the efficiency of 
the nuclear translocation, and thus to variation in biologi-
cal responses [2, 3]. Each cytokine receptor recruits and 
employs a specific combination of JAK kinases, which has 
important implications in therapeutic targeting of JAKs in 
various disease entities (Fig. 2) [4]. 

JAKs are structurally conserved and consist of 
four domains: N-terminal FERM  (4.1  protein,  ezrin, 
radixin, moesin) together with an Src Homology 2 (SH2)-
like domain form the major receptor interaction moiety 
[5]. This is followed by a pseudokinase domain (JAK 
homology  2 [JH2]), and a C-terminal tyrosine  kinase 
domain (JAK homology 1 [JH1]), which is an active kinase 
that phosphorylates target proteins on tyrosine residues. 
JH2 is the most characteristic feature of JAKs and it shows 
sequence homology to classical protein kinases but lacks 

key catalytic residues. JH2 has an important regulatory 
function in controlling JAK activity in the absence of 
cytokine but also in inducing signaling upon cytokine 
binding [6, 7]. JH2 is a mutational hotspot for clinical 
JAK mutations causing immunologic and neoplastic dis-
eases [4, 8]. Characteristics of the structural features of 
pseudokinases are reviewed elsewhere, e.g., by Hammarén 
et al. [9]. Here we discuss the cytokine signaling pathways 
in autoimmune and inflammatory diseases and summarize 
the efficacy and safety of the existing clinical JAK inhibi-
tors as well as the more selective JAK inhibitors currently 
in clinical trials.

2 � Inflammatory and Autoimmune Diseases: 
Rationale for Janus Kinase (JAK) Targeting

Inflammatory and autoimmune diseases are chronic diseases 
whose initiation is influenced by both genetic and environ-
mental factors and which are characterized by disease flares 
and remission periods. Cytokines play a crucial role in the 
pathogenesis of the inflammatory diseases, each of which 
show typical cytokine profiles (see Table 1). Different T cell 
subtypes become activated by certain cytokines in initiation 
of the disease, and drive the inflammation through cytokine 
production (Fig. 2). Additionally, a network of lymphoid 
and myeloid cells also contribute to the cytokine profiles. 
For example, natural killer (NK) cells and macrophages 
secrete proinflammatory cytokines, attract and activate other 
immune cells, whereas myeloid cells (including dendritic 
cells) may induce overproduction of type I interferons (IFNs) 
leading to the production of antibodies by B cells [10–12]. 
Therefore, it is not surprising that in the recent decade a 
number of antibodies targeting cytokines or their receptors 
have entered the clinic (Table 1). The success of biologic 
drugs validates a number of cytokine signaling pathways, 
many of which signal through JAKs and STATs, as relevant 
drug targets for small-molecule inhibitors. Currently there 
are no curative therapies for inflammatory and autoimmune 
diseases, although clinical remission has become a realistic 
target, e.g., in rheumatoid arthritis (RA) and inflammatory 
bowel disease (IBD). The story of JAKinibs started after the 
characterization of JAK3 as a key regulator of lymphocytes 
and the development of tofacitinib. The promising results of 
tofacitinib on efficacy and safety spurred several other drug 
development programs on different JAKs, and the identifica-
tion of somatic activating mutations, particularly in JAK2, 
further stimulated the development activities. Currently, 
three JAK inhibitors, tofacitinib, baricitinib, and ruxoli-
tinib, have been approved for clinical use in the USA and 
Europe. All these drugs represent the first-generation adeno-
sine triphosphate (ATP)-competitive JAKinibs and target the 
JH1 tyrosine kinase domain in an active conformation. The 

Fig. 1   Schematic presentation of the JAK–STAT (JAK1/JAK3–
STAT5) pathway. The panel on the left presents the inhibition mecha-
nism of an ATP-competitive JAK inhibitor. Inhibitor that competes 
with ATP blocks nucleotide binding and inhibits kinase activity and 
the phosphorylation of downstream effectors. ATP adenosine triphos-
phate, JAK Janus kinase, STAT​ Signal Transducers and Activators of 
Transcription, γc common gamma chain, P phosphate.
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highly conserved structure of the ATP-binding pocket in the 
active conformation makes it challenging to develop specific 
inhibitors, and subsequently the first-generation JAKinibs 
target several JAKs.

2.1 � Rheumatoid Arthritis

RA is a chronic inflammatory disease primarily of joints. 
Common symptoms include joint swelling, pain, and stiff-
ness, but it may lead to permanent joint destruction and 
deformity. The exact cause of RA remains unclear; however, 
multiple risk factors including genetic background, smok-
ing, silica, or textile dust inhalation, periodontal disease, and 
mucosal microbiome have been identified [13]. Cytokines 

including tumor necrosis factor (TNF) alpha, interleukin 
(IL)-1, IL-6, IL-7, IL-15, IL-17, IL-18, IL-21, IL-23, IL-32, 
IL-33, and granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF) have important roles in pathogenesis of RA 
[14]. A folic acid antagonist methotrexate that inhibits lym-
phocyte proliferation and the production of proinflammatory 
cytokines by suppression of enzymes critical for, for exam-
ple, DNA and RNA synthesis is a well-established first-line 
treatment for RA [15]. Methotrexate has also been reported 
to modulate JAK–STAT signaling, i.e., to reduce pSTAT1 
and pSTAT5 levels, in human cells [16].

TNF, IL-1, and IL-6 signaling pathways have success-
fully been targeted with biological drugs in RA (Table 1). 
IL-6 signals through JAK1, JAK2, and/or TYK2 (Fig. 2), 

Fig. 2   Cytokines (with particular JAKs that mediate the signaling 
indicated in parentheses) involved in T cell differentiation and func-
tion. As the antigen presenting cell engages with the T  cell recep-
tor, several cytokines are released to promote the differentiation of 
various T cell subtypes. Differentiated T cells produce cytokines that 
contribute to various immune responses and are implicated in inflam-

matory and autoimmune diseases. AA alopecia areata, AD atopic der-
matitis, AS ankylosing spondylitis, CD Crohn’s disease, IFN inter-
feron, IL interleukin, JAK Janus kinase, RA rheumatoid arthritis, SLE 
systemic lupus erythematosus, TGFβ transforming growth factor-β, 
Th T helper cell, Treg regulatory T  cell, TSLP thymic stromal lym-
phopoietin, TYK tyrosine kinase, UC ulcerative colitis
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which phosphorylate and activate STAT3 [17]. The success 
of the IL-6 inhibitor tocilizumab validates JAK1, JAK2, and 
TYK2 as important players in RA pathogenesis and as viable 
drug targets. As the biologics are large proteins, they may 
cause immunogenicity and require either intravenous infu-
sion or subcutaneous injection for dosing; thus, an interest 
in small-molecule inhibitors of the cytokine signaling path-
ways has risen in recent decade. The JAK3/JAK1 inhibitor 
tofacitinib was the first JAK inhibitor approved by the US 
Food and Drug Administration (FDA) (November 2012) and 
European Medicines Agency (EMA) (March 2017) for the 
treatment of moderate to severe active RA in patients who 
had an inadequate response to methotrexate. Tofacitinib as 
a monotherapy (at a dosage of 5 mg twice daily) and in 
combination with methotrexate is efficacious and the clinical 
responses have proven similar to TNF antagonists [18, 19]. 
Tofacitinib has a rapid onset of action indicated by signifi-
cantly higher American College of Rheumatology (ACR) 
20% response criteria (ACR20) in 2–4 weeks compared 
with placebo in combination therapy with methotrexate [18, 

20]. Roughly 75% of patients obtain ACR20 response and 
55% obtain ACR 50% response criteria (ACR50) in tofaci-
tinib monotherapy in 6 months and the effects are generally 
sustained for at least 72 months [21, 22]. Tofacitinib treat-
ment, although generally well-tolerated, may cause infec-
tions that are typical also for biologics, decreases in CD4+ 
T cell count, elevated cholesterol levels, headache, and slight 
reversible increases in serum creatinine levels [21, 23, 24].

The JAK1/JAK2 inhibitor baricitinib was the second 
JAK inhibitor approved for clinical use in RA, first (Febru-
ary 2017) by the EMA and more recently (June 2018) by the 
FDA. Baricitinib is a structural analog of ruxolitinib, a JAK1/
JAK2 inhibitor approved for treatment of myeloproliferative 
neoplasms (MPNs), which is also in clinical trials for RA and 
a number of other autoimmune and inflammatory diseases. 
In methotrexate background, baricitinib has been proven to 
be superior to placebo and the TNF antagonist adalimumab 
for patients with inappropriate response to methotrexate [25]. 
The improvements in the baricitinib arm were statistically 
significant at week 1 compared with placebo and at week 

Table 1   Cytokines implicated in pathogenesis and biologic drugs in autoimmune and inflammatory diseases

AA alopecia areata, AD atopic dermatitis, AS ankylosing spondylitis, BAFF B cell activating factor, CD Crohn’s disease, GM-CSF granulocyte-
macrophage colony-stimulating factor, IBD inflammatory bowel disease, IFN interferon, IL interleukin, PsA psoriatic arthritis, RA rheumatoid 
arthritis, SLE systemic lupus erythematosus, TGF transforming growth factor, TNF tumor necrosis factor, TSLP thymic stromal lymphopoietin, 
UC ulcerative colitis

Disease Cytokines implicated in pathogenesis Biologic drugs References

RA TNF-α, IL-1, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, 
IL-13, IL-15, IL-17, IL-18, IL-21, IL-23, IL-27, 
IL-32, IL-33, IL-35, GM-CSF

TNF: infliximab, etanercept, adalimumab, golimumab, 
certolizumab pegol

IL-1: anakinra
IL-6: tocilizumab

[14, 17, 149, 150]

IBD
 CD TNF-α, IL-6, IL-7, IL-8, IL-10, IL-12, IL-17, IL-18, 

IL-21, IL-23, IL-27,  IL-32, IFN-γ
IL-12/IL-23: ustekinumab
TNF: infliximab, adalimumab, certolizumab pegol

[29, 30, 151]

 UC TNF-α, IL-1, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, 
IL-15, IL-18, IL-21, IL-27, IL-33, TGF-β

TNF: infliximab, adalimumab, golimumab [29, 30, 151]

Psoriasis TNF-α, IFN-γ, IL-1, IL-2, IL-6, IL-8, IL-12, 
IL-13, IL-17, IL-18, IL-19, IL-20, IL-22, IL-23, IL-36

TNF: infliximab, etanercept, adalimumab
IL-17: secukinumab, ixekizumab
IL-17/IL-25: brodalumab
IL-12/IL-23: ustekinumab
IL-23: guselkumab, tildrakizumab

[46, 152]

PsA TNF-α, IL-1, IL-2, IL-6, IL-10, IL-17, IL-22, IL-23, 
IFN-γ

TNF: infliximab, etanercept, adalimumab, golimumab, 
certolizumab pegol

IL-17: secukinumab, ixekizumab
IL-17/IL-25: brodalumab
IL-12/IL-23: ustekinumab

[153]

AD IL-4, IL-5, IL-13, IL-31, TSLP IL-4/IL-13: Dupilumab [60]
AS TNF-α, IL-2, IL-6, IL-10, IL-15, IL-17, IL-23 TNF: infliximab, etanercept, adalimumab, golimumab, 

certolizumab pegol
IL-17: secukinumab
IL-23: risankizumab

[154, 155]

SLE TNF-α, IL-4, IL-6, IL-10, IL-12, IL-17, IL-21, IL-23, 
IFN-α, IFN-γ, BAFF

BAFF: belimumab
Type I IFNs: anifrolumab (phase III)

[74, 156]

AA TNF-α, IL-1, IL-2, IL-4, IL-8, IL-9, IL-10, IL-13, 
IL-16, IL-23, IFN-γ

[77, 157]
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2–4 compared with adalimumab, and the measures of effi-
cacy were maintained or improved through week 52 [25]. 
Adverse events were more frequent in the baricitinib and 
adalimumab arms than in placebo arms, and similar between 
the baricitinib and adalimumab arms [25]. Very common 
(≥ 1/10) adverse effects for baricitinib are upper respiratory 
tract infections and hypercholesterolemia, whereas common 
(≥ 1/100 to < 1/10) adverse effects include other infections 
(herpes zoster, herpes simplex, urinary tract infections, gas-
troenteritis), thrombocytosis, nausea, and hepatobiliary dis-
orders [26]. Baricitinib at approved dosages (2 and 4 mg once 
daily) has not been indicated to cause anemia in RA patients 
[27], which is an interesting finding for an inhibitor of JAK2 
that has a major role in hematopoiesis.

2.2 � Inflammatory Bowel Disease

IBD is a chronic inflammatory disorder of the colon and 
small intestine that causes epithelial injury. The impact 
of IBD on quality of life is typically high, with symptoms 
including diarrhea, abdominal cramping, anemia, weight 
loss, and fatigue. IBD comprises independent clinical 
entities of Crohn’s disease (CD) and ulcerative colitis 
(UC), which have differing pathological features, includ-
ing risk factors. For example, smoking is a risk factor for 
CD, whereas it is protective for UC [28]. Furthermore, CD 
and UC have characteristic cytokine profiles [29, 30]. The 
serum level of IL-8 has been reported as being elevated 
equally in CD and UC patients, whereas increases in IFN-y, 
IL-6, and IL-7 are specific for CD, and increases in eotaxin, 
growth-regulated oncogene (GRO), and TNF-α are specific 
for UC [30]. Furthermore, transcription-level characteriza-
tion of T helper (Th) 2- and Th17-related cytokine pro-
files in inflamed mucosal samples of CD and UC patients 
showed increases in IL-12 (p40), IL-18, IL-21, and IL-27 
for both CD and UC [29]. Levels of IL-17, IL-23, and IL-32 
are elevated specifically in CD, whereas IL-5, IL-13, IL-15, 
and IL-33 are elevated in UC patient samples [29]. The 
cytokine profiles support the hypothesis of CD being asso-
ciated with Th1/Th17 immune responses (IFN-γ, IL-17, 
IL-23) and UC with Th2 (IL-5, IL-13, IL-33) (Fig. 2).

Conventional therapies for the treatment of IBD include 
immunosuppressives, namely methotrexate, azathioprine, 
mercaptopurine, aminosalicylates, and corticosteroids [31]. 
In addition, TNF inhibitors are commonly prescribed as first-
line therapies for IBD and the treatment depends on severity 
of disease [32]. A number of biologics targeting IFN-β, IFN-
γ, TGF-β, IL-6, IL-10, IL-11, IL-12/IL-23, IL-13, and IL-17 
signaling have been evaluated in clinical trials for IBD [33], 
many of which (IFN-β, IFN-γ, IL-10, IL-11) resulted in lim-
ited or no efficacy [34–37]. The IL-6 antagonist tocilizumab 
was suggested to have a clinical effect in active CD in a pilot 
study of 36 patients [38]. Furthermore, ustekinumab, which 

targets IL-12/IL-23 signaling, has in multiple clinical trials 
proven efficacious in CD patients who had inadequate response 
for immunomodulators, corticosteroids, or TNF antagonists 
[39], and was approved by the FDA for clinical use. IL-6 sig-
nals through JAK1/JAK2/TYK2 and IL-12/23 through JAK2/
TYK2 (Fig. 2), and therefore targeting these JAKs could result 
in a favorable clinical outcome in the treatment of IBD.

Tofacitinib (10 mg twice daily) was recently (May 2018) 
approved for the treatment of moderate or severe active UC 
by the FDA. It induced remission at the accepted dose at 
week 8 for 18.5% of moderate to severe active UC patients 
(8.2% for placebo), and at week 52 for 40.6% of patients 
(11.1% for placebo) [40]. Tofacitinib also improved health-
related quality of life as early as on week 4 and the effect 
was sustained for at least 52 weeks [41]. The safety profile 
was mainly similar to that in RA patients, but the risks of 
lymphoma and malignancies were slightly elevated [40]. 
Tofacitinib failed to meet its efficacy end-points (proportion 
of clinical responders and clinical remission at week 4) in a 
pilot study for patients with CD, although some indications 
of biological activity were obtained, and response rate in 
placebo group was unexpectedly high [42].

2.3 � Psoriasis and Psoriatic Arthritis

Psoriasis vulgaris, a chronic plaque psoriasis, is an auto-
immune disease characterized by red, itchy, and scaly skin 
lesions located most commonly in the knees, elbows, scalp, 
and trunk. The disease severity is generally characterized by 
the Psoriasis Area and Severity Index (PASI), which com-
bines the assessment of the severity of lesions and the area 
affected into a single score. In clinical trials, PASI is usu-
ally presented as a percentage response rate, e.g., PASI 50, 
PASI 75, PASI 90, PASI 100. Psoriatic arthritis (PsA) devel-
ops for approximately 20–30% of psoriasis patients [43, 44] 
but may also occur in non-psoriatic patients. Like RA, PsA 
causes joint stiffness, swelling, and pain but is specifically 
associated with skin and/or nail lesions. Co-morbidities, 
e.g., diabetes mellitus, cardiovascular disease, depression, 
hypertension, cancer, and/or IBD, are common for psoriasis 
and PsA patients [43]. Pathogenesis of psoriasis arises from 
dysregulated functions of immune cells, mainly dendritic 
cells and Th17 and Th1, and keratinocyte proliferation/
differentiation [45]. Psoriasis is associated with increased 
serum levels of TNF-α, IFN-γ, IL-2, IL-6, IL-8, IL-18, and 
IL-22 despite the patient’s age or gender, whereas increased 
IL-17 is correlated with psoriasis in men [46].

A typical first-line therapy for psoriasis is treatment with 
topical corticosteroids, whereas phototherapy and systemic 
non-biological therapies methotrexate or ciclosporin (cyclo-
sporine) are considered as second-/third-line therapies [47]. 
Biologics targeting TNF, IL-12/IL-23, and IL-17 signaling 
have proven efficacious, and are in clinical use for treatment 
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of psoriasis and PsA [48]. The most recent additions to the 
family of biologic drugs are antibodies that specifically tar-
get IL-23 without affecting IL-12 signaling. A phase II ran-
domized trial revealed superiority of an IL-23 monoclonal 
antibody risankizumab to the IL-23/IL-12 inhibitor usteki-
numab in treatment of moderate to severe plaque psoriasis: 
PASI 90 at week 12 was 77% for risankizumab (pooled 90 
and 180 mg dose arms) versus 40% for ustekinumab [49]. 
This indicates that the specific inhibition of IL-23 signaling 
is meaningful in the treatment of psoriasis and the simulta-
neous inhibition of IL-12 might decrease the effectiveness 
[50]. IL-23 blockage effectively suppresses the expression 
of IL-17 and its regulated genes in psoriatic skin lesions [51, 
52]. IL-23 signals through JAK2 and TYK2, which could 
therefore be valid targets for the treatment of psoriasis.

Tofacitinib has been approved for the treatment of PsA, 
whereas the FDA declined to approve the JAK inhibitor for 
psoriasis. Two similarly designed randomized phase III trials 
comparing tofacitinib versus placebo in moderate to severe 
chronic plaque psoriasis patients demonstrated the efficacy of 
oral tofacitinib, with the 10 mg twice daily (BID) being more 
efficacious than the 5 mg BID [53]. The treatment response 
was sustained for most of the patients through 2 years with 
no unexpected safety findings [54]. Serious adverse events 
were reported in 10% of patients and discontinuations due 
to adverse events in 11%, with no dependency of tofacitinib 
dose during 52 weeks [54]. Yet another phase III trial implies 
that the treatment response as well as the rate and nature of the 
adverse events of tofacitinib were similar to those of the TNF 
inhibitor etanercept [55]. The JAK1/2 inhibitor baricitinib has 
also been tested in clinical trials for moderate to severe psoria-
sis. A phase II study demonstrated significant improvements 
with baricitinib at doses of 8 and 10 mg once daily compared 
with placebo at 8 and 12 weeks [56]. Baricitinib was generally 
well-tolerated through the 24-week trial period. At 12 weeks, 
baricitinib treatment was reported to cause small dose-related 
decreases in neutrophil count and hemoglobin levels, as well 
as small increases in creatinine and lipoprotein levels [56]. 
JAK inhibitors have also been explored in psoriasis as topical 
treatments [57–59]. Topical ruxolitinib (1% and 1.5% cream 
twice daily) was observed to be pharmacologically active in 
psoriasis patients and to downregulate transcription of Th1 
and Th17 cytokines in psoriatic skin lesions with no indica-
tions of systemic effects [58].

2.4 � Atopic Dermatitis

Atopic dermatitis (AD) is a chronic inflammatory skin dis-
ease characterized by highly pruritic, red, and swollen skin 
lesions. AD most often affects infants and small children, 
and is associated with other atopic/allergic diseases such as 
allergic rhinoconjunctivitis, allergic bronchial asthma, and 
food allergy [60]. Approximately 80% of AD patients have 

elevated serum IgE levels, which induces mast cell activa-
tion as well as recruitment and activation of Th2 cells, eosin-
ophils, and basophils. Increased Th2 signaling via cytokines 
IL-4, IL-5, IL-13, IL-31, and thymic stromal lymphopoietin 
(TSLP) has a central role in AD pathogenesis [60].

First-line treatment for AD is generally emollients and 
topical corticosteroids [61], and additionally an IL-4/IL-13 
inhibitor dupilumab has been approved for clinical use in AD 
[62]. The key cytokines of AD signal through JAKs, which 
provides a rationale for AD treatment with JAK inhibitors. A 
phase II study was performed for topical tofacitinib in mild-
to-moderate AD with promising results: Eczema Area and 
Severity Index (EASI) was significantly improved compared 
with vehicle in 1 week and pruritus in 2 days [63]. Safety 
and local tolerability of topical tofacitinib was comparable 
with vehicle [63]. Oral tofacitinib has been evaluated in a 
small study of six patients with moderate to severe AD with 
promising efficacy and no severe adverse effects [64]. Oral 
baricitinib has demonstrated efficacy in a recently reported 
phase II trial for moderate to severe AD [65]. The improve-
ments in EASI-50 by baricitinib in 2 and 4 mg doses versus 
placebo were significant as early as at week 4 [65].

2.5 � Ankylosing Spondylitis

Ankylosing spondylitis (AS) is a chronic inflammatory 
arthritis of the spine and sacroiliac joints that predominantly 
affects young men. The role of IL-17-expressing CD4+ 
T cells seems evident in the pathogenesis [66], although a 
recent report pointed out that increased IL-17 levels were 
only significant in male and not in female patients [67]. 
Numerous risk genes have been identified in AS, includ-
ing IL-23 signaling related IL-23 receptor (IL-23R), IL-12 
receptor (IL-12R), TYK2, and STAT3 variants [68–70].

Newly diagnosed AS patients are commonly treated with 
physical therapy and non-steroidal anti-inflammatory drugs 
[71]. Biologics targeting TNF and IL-17 signaling have been 
approved for clinical use in AS, whereas an anti-IL-23 bio-
logic risankizumab failed to meet its primary endpoint in 
terms of efficacy, suggesting that IL-23 signaling alone is not 
a primary driver in pathogenesis [72]. Tofacitinib has been 
evaluated in phase II studies for clinical efficacy in patients 
with AS with promising results. The pan-JAK inhibitor in 
doses of 5 and 10 mg twice daily demonstrated significant 
improvements compared with placebo in clinical outcomes 
with minimal difference between the two tofacitinib doses 
[73]. No unexpected safety findings were observed [73].

2.6 � Other Diseases

Systemic lupus erythematosus (SLE) is an autoimmune dis-
ease characterized by imbalanced regulation of Th1, Th2, 
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and Th17 cells with increased plasma levels of IL-6, IL-10, 
IL-12, IL-17, IFN-γ, IFN-α, and B cell activating factor 
(BAFF), and decreased levels of IL-4 [74]. The symptoms of 
SLE include facial red rash, painful and swollen joints, fever, 
chest pain, hair loss, mouth ulcers, swollen lymph nodes, and 
fatigue. The BAFF inhibitor belimumab has been accepted 
for clinical use in SLE [75], and type I IFN antagonist ani-
frolumab is currently in phase III trials [76]. The activated 
cytokine signaling implies that SLE as well as alopecia areata 
(AA), in which Th1, Th2, Th17 and/or Treg cells  have been 
suggested to play roles in pathogenesis [77, 78], could ben-
efit from certain biologics and JAK inhibitors but none has 
entered the clinics to date. A small pilot clinical trial in mod-
erate to severe AA patients indicated significant scalp hair 
regrowth and improvement of AA for 75% of patients using 
ruxolitinib [79]. Baricitinib (4 mg dose) has proven clinically 
efficacious in reducing signs and symptoms of SLE in a phase 
II randomized placebo-controlled trial [80].

3 � Selective JAK Inhibitors in the Pipeline

3.1 � Illusion of Selectivity

The general characteristics of the JAK–STAT pathway 
are well-established but the exact molecular mechanism 
of JAK activation and downstream signaling in response 
to approximately 60 cytokines and hormones is still not 
exactly known. The various coupling patterns and hierar-
chical activation between JAKs in different receptors as 
well as the regulatory mechanisms are important for future 
pharmacological approaches but the traditional kinase 
inhibitors are still dominating JAKinib development, with 
the TYK2 JH2-targeting inhibitor being the only exception.

JAK inhibitors block downstream signaling of a variety 
of cytokines relevant for several physiological functions. 
Therefore, various adverse effects of JAK inhibitor treat-
ment are expected, and were often predicted based on the 
function of JAKs. The bulk of the safety data concerning 
JAK inhibitors have arisen from tofacitinib trials. In general, 
the studies have shown an acceptable safety profile, with 
infection and cytopenias being the major adverse events 
[81–83]. The risk of infection, as a result of immunosup-
pression, has been shown to be similar to that observed with 
disease-modifying antirheumatic drugs (DMARDs), with 
the exception of varicella zoster virus infection risk, which 
is elevated in tofacitinib patients. The risk of cytopenias is 
due to the blockage of myelopoietic growth factor signaling, 
which occurs through JAK2. Indeed, cytopenias, such as 
neutropenia and anemia, have been observed as an adverse 
effect, but these have typically been mild at lower doses. An 
obvious, and serious, concern regarding long-term block-
ing of the JAK–STAT pathway is the risk of developing 

malignancies. Long-term studies with tofacitinib have, 
however, not shown an increased risk of cancer [21]. Other 
adverse effects of tofacitinib treatment include elevated 
low-density lipoprotein (LDL) and high-density lipopro-
tein (HDL) levels during the first 1–3 months of treatment 
but these show stabilization thereafter and appear not to be 
related to higher risk of cardiovascular adverse events [84]. 
JAK inhibitors have also been linked to increased risk of 
gastric perforation and venous thromboembolism. However, 
the scale of the risk and a clear mechanism for these effects 
are not known [85, 86]. In addition, patients with RA, AS, 
psoriasis, and PsA already have an increased risk of throm-
boembolic events, further complicating the picture [87, 88].

Although the first-generation non-selective JAKinibs have 
proven to be efficacious in clinical trials and in the clinic 
in treating inflammatory and autoimmune diseases, adverse 
effects such as JAK2 inhibition-driven cytopenias have moti-
vated the development of more JAK-specific compounds. 
This could be especially relevant when treating inflammatory 
and autoimmune diseases, which are not life-threatening and 
require a long duration of treatment. The caveat of improved 
selectivity is the possible reduction of efficacy as autoim-
mune diseases are characterized by imbalance of several 
cytokines (Table 1). In addition, achieving and measuring 
selectivity is a long-standing problem in kinase inhibitor 
discovery [89]. The promiscuity of kinase inhibitors arises 
from a highly conserved active site of protein kinases as well 
as their conserved phosphoryl transfer mechanism. Cellular 
ATP concentration is between 1 and 5 mM and kinases can 
have 1000-fold or even higher differences in their Michaelis-
Menten constant (Km) for ATP [90]. Therefore, assay ATP 
concentration can have a large effect on potency measure-
ments. Additional variation to potency measurements arise 
from assay technology, assay conditions (especially cations 
and kinase substrate), and construct selection (e.g., kinase 
domain vs. full-length enzyme). The development of JAK-
selective inhibitors also pose additional challenges. The 
active JH1 domains of JAKs share a high structural simi-
larity around the ATP binding site. Due to heterodimeric 
pairing of JAKs in certain cytokine signaling pathways, 
the dominant role of one JAK over another leads to differ-
ent selectivity profiles in different cytokine pathways [91]. 
Therefore, it is not surprising that discrepancies between 
biochemical and cellular potencies of JAK inhibitors have 
been reported [92]. A comparison of the reported potencies 
of JAKinibs in clinical trials against inflammatory and auto-
immune diseases is presented in Table 2. When evaluating 
the potency of inhibitors, these difficulties in measurements 
need to be taken into account. In Sects. 3.2–3.4 we review 
JAK1-, JAK3-, and TYK2-targeting inhibitors currently in 
clinical trials against autoimmune diseases. The comparison 
of the effects of JAK inhibitors against RA and psoriasis 
from phase II trials are listed in Table 3. 
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3.2 � JAK1‑Targeting Inhibitors

JAK1 functions in several signaling pathways, and due to 
its wide spectrum of functions it is not surprising that JAK1 
knockout mice die shortly after birth due to deficiencies of 
lymphocyte development and failure to respond to several 
cytokines [93]. However, several gain-of-function JAK1 
mutations have been found in patients with different types 
of acute lymphoblastic/myeloid leukemia and both gain-of-
function and loss-of-function (frame-shift) JAK1 mutations 
occur in cancers [94–97].

JAK1-selective inhibitors target the broadest cytokine 
profile among JAKs. JAK1 signals with JAK2 via IFN-γ 
receptor, JAK3 through the gamma chain (γc) receptor 
(via cytokines IL-2, IL-7, IL-9, IL-15, and IL-21), and 
TYK2 via the IFN-α/β receptor and the receptors for the 
IL-10 family of cytokines. JAK1 also pairs with JAK2 and 
TYK2 to signal through glycoprotein (gp) 130-containing 
receptors (cytokines IL-6, IL-11, and IL-27). Therefore, 
one might not expect as favorable a safety profile with 
JAK1-selective compounds as with JAK3 inhibitors, for 
instance. JAK1 has also been suggested to dominate in 
IL-2-induced JAK1/JAK3 and IL-6-induced JAK1/JAK2/
TYK2 signaling pathways, implying that selective JAK1 
inhibition provides sufficient efficacy in treatment of vari-
ous inflammatory diseases [98, 99]. However, selective 
JAK1 inhibitors still spare JAK2-dependent erythropoietin 
(EPO) and thrombopoietin (TPO) pathways responsible 
for adverse effects arising from JAK2 inhibition such as 
anemia, neutropenia, and thrombocytopenia.

Filgotinib (GLPG0634) was the first JAK1-selective 
JAKinib to reach clinical trials. It was developed from an 
in vitro JAK1 kinase domain screening hit via a combination 
of structure–activity relationship studies and structure-based 
design exploiting the differences in the active sites of JAK 
kinases. Filgotinib displayed ≈ 30-fold selectivity over JAK2 
in whole-blood assays, was efficacious in a preclinical mouse 
model for arthritis [100], and was found not to interfere with 
JAK2 signaling in a phase I study [101]. Two phase II stud-
ies investigated filgotinib for the treatment for RA either as a 
monotherapy or in combination with methotrexate [102, 103]. 
In both studies filgotinib displayed dose-dependent clinical 
efficacy with an early onset of action. Filgotinib was well-
tolerated, with infections being the most frequent adverse 
event. Increased hemoglobin was observed in both studies 
and was attributed to reduced inflammation as well as lack 
of JAK2 inhibition. HDL and LDL increases were observed, 
although, unlike with tofacitinib, the LDL:HDL ratio fell. A 
phase II clinical trial of filgotinib in CD has been completed 
[104], in which 47% of patients receiving filgotinib 200 mg 
once daily achieved clinical remission versus 23% on pla-
cebo. No change in LDL was observed, while HDL choles-
terol increased, as did hemoglobin. Recently, results from two 

phase II studies of filgotinib for the treatment of PsA and AS 
were published [105, 106]. Consistent with previous trials, 
filgotinib displayed rapid onset of action and significantly 
improved signs and symptoms of the diseases in both stud-
ies. The safety profiles were similar to previous filgotinib 
studies as were laboratory parameters, including observed 
increases in HDL and hemoglobin levels. Currently, filgotinib 
is in phase III trials for UC, CD, and RA (ClinicalTrials.gov 
identifiers NCT03025308, NCT02914600, NCT02914535, 
NCT02914561,  NCT02914522,  NCT02873936, 
NCT02886728, and NCT02889796).

Upadacitinib (ABT-494) was developed as a JAK1-selec-
tive inhibitor by utilizing differences in the non-conserved 
interactions outside the active sites of JAK1 and JAK2. Upa-
dacitinib displays 74-fold and 58-fold in vitro selectivity over 
JAK2 and JAK3, respectively [107]. Results of two phase II 
clinical studies with upadacitinib against RA with patients 
who did not respond to either methotrexate or TNF inhibitors 
have been reported [107, 108]. In both studies upadacitinib 
demonstrated fast response and efficacy as shown by signifi-
cant differences in the ACR20 response rates compared with 
placebo as soon as at week 2 after the start of the treatment. 
Upadacitinib treatment led to dose-dependent elevation of 
LDL and HDL cholesterol levels, while the LDL:HDL ratio 
remained unchanged. Dose-dependent reduction in hemo-
globin levels was also observed, suggesting the possibility of 
JAK2 inhibition, especially at higher doses. A recent phase 
III trial with upadacitinib for RA patients with inadequate 
response to conventional synthetic DMARDs (csDMARDs) 
showed similar results as the previous phase II studies [109]: 
upadacitinib displayed a fast onset of action and the patients 
showed improvements in clinical signs and symptoms of RA. 
LDL and HDL cholesterol levels increased and hematologi-
cal parameters, such as hemoglobin, lymphocytes, and neu-
trophils, remained within the normal range over the course of 
the study. Currently, several phase II and III trials are ongo-
ing with upadacitinib for several indications, such as RA, 
UC, CD, and PsA, with promising results, such as clinical 
remission, acquired from CD trials [110].

Itacitinib (INCB039110) is a JAK1-selective inhibitor 
with > 20-fold selectivity over JAK2 and > 100-fold selec-
tivity over JAK3 and TYK2 [111, 112]. Accordingly, it has 
shown lack of activity in JAK2-dependent cell-based assays. 
Itacitinib has been potent in cellular assays relevant to pso-
riasis and efficacious in preclinical rat adjuvant-induced 
arthritis model [111]. Results from two phase II studies in 
psoriasis and RA demonstrated significant clinical improve-
ments with itacitinib treatment in both cases. The adverse 
effect profile was similar to that of non-selective JAK inhibi-
tors, such as infections and hypertriglyceridemia [111, 113].

Solcitinib (GSK2586184) was developed as a JAK1-
selective inhibitor targeting the ATP-binding site of the 
kinase domain. It was found to be efficacious against 
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Table 2   Clinical-stage Janus kinase inhibitors for the treatment of autoimmune diseases

AA alopecia areata, AD atopic dermatitis, AS ankylosing spondylitis, CD Crohn’s disease, EMA European Medicines Agency, FDA US Food and 
Drug Administration, IC50 concentration of drug producing 50% inhibition, JAK Janus kinase, NA not available, RA rheumatoid arthritis, SLE 
systemic lupus erythematosus, TYK tyrosine kinase, UC ulcerative colitis

Inhibitor JAK selectivity (IC50, nM) Indication Clinical status

JAK1 JAK2 JAK3 TYK2

Ruxolitinib 3.3 2.8 390 18 RA, psoriasis (topical), AD Phase II
Myelofibrosis and polycythemia vera Approved (FDA, EMA)

Tofacitinib 3.2 4.1 1.6 34.0 RA, psoriatic arthritis, UC Approved (FDA, EMA)
Psoriasis, AS Phase III
SLE, CD Phase II

Baricitinib 5.9 5.7 420 60 RA Approved (FDA, EMA)
AD Phase III
SLE, psoriasis Phase II

Oclacitinib 10 18 99 84 For dogs: AD, pruritus Approved (FDA, EMA)
Filgotinib 10 28 810 116 RA, CD, UC Phase III

AS, psoriatic arthritis Phase II
Peficitinib 3.9 5.0 0.7 4.8 RA Phase III

Psoriasis, UC Phase II
PF-04965842 29 803 > 10,000 1250 AD Phase III
Decernotinib 10 10 2.5 10 RA Phase II/III
PF-06651600 > 10,000 > 10,000 33.1 > 10,000 AA, RA, UC, CD Phase II
PF-06700841 NA NA NA NA Psoriasis, UC, AA, CD Phase II
Itacitinib 2 63 > 2000 795 RA, psoriasis Phase II
Upadacitinib 8 600 2300 NA RA, CD, psoriatic arthritis, UC, AD Phase III

AS Phase II
Solcitinib 9.8 108 539 225 Psoriasis, UC, SLE Discontinued
BMS-986165 NA NA NA 0.02 SLE, CD Phase II

Psoriasis Phase III

moderate to severe plaque psoriasis in a phase II study [114]. 
In another phase II study of patients with moderate to severe 
SLE, solcitinib showed no significant effect in the interim 
analysis and the study was declared futile. Subsequently, the 
study was terminated due to eight serious adverse events, 
with six cases of elevated liver enzymes, two of whom were 
diagnosed with drug reaction with eosinophilia and sys-
temic symptoms (DRESS) syndrome [115]. Whether SLE 
or concomitant medications (five patients with elevated liver 
enzymes also received hydroxychloroquine or chloroquine, 
which can induce DRESS syndrome) predisposed patients to 
the adverse effects and what this means for the development 
of JAK1 inhibitors for SLE is still unclear. Shortly after, the 
development of solcitinib was discontinued due to discovery 
of statin (HMG-CoA reductase inhibitor) drug–drug interac-
tions (ClinicalTrials.gov identifier NCT02000453).

PF-04965842 was designed by modifying the tofacitinib 
scaffold and further improving the compound by structure-
guided design for higher selectivity towards JAK1 [116]. 
In a phase II study for psoriasis, PF-04965842 improved 
symptoms and was generally well-tolerated [117]. The 

study was terminated early on due to changes in develop-
ment priorities, but the treatment resulted in statistically 
significant reductions in PASI compared with placebo. 
Treatment with PF-04965842 resulted in decreases in the 
reticulocyte, neutrophil, and platelet counts, suggesting 
some JAK2 inhibition in the clinical setting. Currently, 
PF-04965842 is in phase III trials for AD (ClinicalTrials.gov 
identifiers NCT03575871, NCT03627767, NCT03349060, 
NCT03422822, and NCT03720470).

3.3 � JAK3‑Targeting Inhibitors

JAK3, together with its dimerization partner JAK1, has an 
important role in maintaining immune homeostasis. JAK3 
binds to the common γc receptor, which drives the develop-
ment of T cells, regulates the growth of B cells, and activates 
NK cell proliferation, among other functions [118–120]. 
Based on the salient role of JAK3 in the regulation of 
immune responses, it is considered to be a relevant target 
for immunosuppression [121]. The role of JAK3 is high-
lighted by the fact that mutations within the IL-7 receptor 
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Table 3   The effect of Janus kinase inhibitors in phase II clinical studies for rheumatoid arthritis and psoriasis

Drug Phase/duration 
(weeks)

Dose Patients ACR20 (%) PASI75 (%) Reference and 
ClinicalTrials.gov 
identifier

Rheumatoid arthritis
Tofacitiniba,b II/12 Placebo 28 14.3 [158] NCT00603512

1 mg BID 28 64.3
3 mg BID 27 77.8
5 mg BID 27 96.3
10 mg BID 26 80.8

Ruxolitinib II/4 Placebo 9 33.3 NCT00550043
5 mg BID 9 33.3
15 mg BID 12 83.3
25 mg BID 10 60
50 mg QD 10 60

Baricitiniba,b IIb/12 Placebo 98 42.1 [148] NCT01185353
1 mg QD 49 54.6
2 mg QD 52 55.2
4 mg QD 52 74.3
8 mg QD 50 77.2

Filgotiniba IIb/12 Placebo 72 29.2 [103] NCT01894516
50 mg QD 72 66.7
100 mg QD 70 65.7
200 mg QD 69 72.5

Filgotiniba,b IIb/12 Placebo 86 44 [102] NCT01888874
50 mg QD 82 56
100 mg QD 85 64
200 mg QD 86 69
25 mg BID 86 57
50 mg BID 85 60
100 mg BID 84 79

Upadacitiniba,b IIb/12 Placebo 50 46 [107] NCT02066389
3 mg BID 50 62
6 mg BID 50 68
12 mg BID 50 80
18 mg BID 50 64
24 mg QD 49 76

Peficitiniba,b II/12 Placebo 72 44.4 [133] NCT01554696
25 mg QD 66 43.9
50 mg QD 78 61.5
100 mg QD 84 46.4
150 mg QD 78 57.7

Decernotiniba,b IIb/12 Placebo 71 18.3 [127] NCT01590459
100 mg QD 71 46.5
150 mg QD 72 66.7
200 mg QD 72 56.9
100 mg BID 72 68.1

Itacitinib II/12 Placebo 8 38 [113] NCT01626573
100 mg BID 8 50
300 mg QD 9 44
200 mg BID 8 50
600 mg QD 7 100
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(IL-7R)–γc–JAK3 axis account for the majority of severe 
combined immunodeficiency (SCID) cases. In addition to 
loss-of-function mutations, several types of leukemia and 
lymphomas arise from activating mutations in JAK3 and the 
excessive STAT activation they entail [122–124]. Because 
its expression is confined to hematopoietic cells, selective 
targeting of JAK3 in autoimmune diseases could escape the 
non-immunological adverse effects, e.g., neutropenia and 
anemia.

Decernotinib (VX-509) was developed via a structure-
guided approach from an HTS screen hit and targets the 
kinase domain of JAK3. It displays five-fold in  vitro 

selectivity towards JAK3 over the other JAKs and even 
higher selectivity in cellular assays [125]. Decernotinib has 
shown efficacy in an animal model for RA and inhibited 
T cell-mediated inflammatory processes in a mouse oxa-
zolone-induced delayed-type hypersensitivity model [126]. 
Two phase II studies have been completed with decernotinib 
for RA: one in combination with methotrexate [127], the 
other in combination with a DMARD [128]. In both stud-
ies decernotinib significantly improved the symptoms com-
pared with placebo. Infections as well as increases in liver 
transaminase, creatinine, and lipid levels were observed as 
adverse effects. Neutropenia was observed in patients in the 

ACR20 American College of Rheumatology 20% response criteria, BID twice daily, PASI75 Psoriasis Area and Severity Index 75% response 
rate, QD once daily, QOD every other day
a Inadequate response to methotrexate
b Methotrexate background

Table 3   (continued)

Drug Phase/duration 
(weeks)

Dose Patients ACR20 (%) PASI75 (%) Reference and 
ClinicalTrials.gov 
identifier

Psoriasis
Tofacitinib IIb/12 Placebo 50 2.0 [159] NCT00678210

2 mg BID 48 25.0
5 mg BID 49 40.8
15 mg BID 48 66.7

Baricitinib IIb/12 Placebo 30 16.7 [56] NCT01490632
2 mg QD 28 28.6
4 mg QD 63 28.6
8 mg QD 56 42.9
10 mg QD 61 54.1

Peficitinib IIa/6 Placebo 29 3.4 [131] NCT01096862
10 mg BID 19 31.6
25 mg BID 21 14.3
60 mg BID 19 26.3
100 mg BID 17 58.8
50 mg QD 19 15.8

Itacitinib II/4 Placebo 12 0.0 [111] NCT01634087
100 mg QD 9 11.1
200 mg QD 9 0.0
200 mg BID 9 22.2
600 mg QD 11 27.3

Solcitinib IIa/12 Placebo 14 0 [114] NCT01782664
100 mg BID 15 13
200 mg BID 16 25
400 mg BID 14 57

BMS-986165 II/12 Placebo 45 7 [147] NCT02931838
3 mg QOD 44 9
3 mg QD 44 39
3 mg BID 45 69
6 mg BID 45 67
12 mg QD 44 75
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methotrexate study, suggesting decernotinib might engage 
other JAKs also [129]. The major metabolite of decernotinib 
is a potent inhibitor of cytochrome P450 (CYP) 3A4, a major 
drug-metabolizing enzyme, which is involved in the metabo-
lism of, for example, statins [130]. This drug–drug interac-
tion might complicate the use of decernotinib, and currently 
there are no ongoing clinical trials with the compound.

Peficitinib (ASP015K) is pan-JAK inhibitor displaying 
moderate selectivity towards JAK3. In a 6-week phase IIa 
study of psoriasis, peficitinib displayed significant improve-
ment in overall disease activity [131]. Peficitinib has also 
been tested against RA either as monotherapy [132] or in 
combination with methotrexate [133] or csDMARDs [134]. 
In these studies, peficitinib showed statistically significant 
reduction of RA symptoms with similar responses as seen 
with non-selective JAKinibs. Also, the adverse events were 
similar to those displayed by non-selective JAKinibs, e.g., 
neutropenia, but an increase rather than a decrease in hemo-
globin was observed. In a recent phase IIb study for UC, 
peficitinib failed to show dose–response, although at higher 
doses it displayed a trend for increased rates of clinical 
response and remission as well as mucosal healing [135]. 
Currently, there are no ongoing peficitinib clinical trials for 
UC and its development status for this condition is uncertain.

PF-06651600 was developed by structure-guided design 
as a selective JAK3 inhibitor. It is the only covalent, irrevers-
ible JAK inhibitor in clinical trials and acts through a non-
conserved cysteine (Cys909) in the JAK3 JH1 ATP pocket 
[136]. PF-06651600 is potent and highly selective inhibitor 
with negligible potency towards other JAKs at physiological 
ATP concentrations allowing a selective inhibition of sign-
aling occurring though γc cytokines [137]. It has also been 
profiled against the kinome and revealed high selectivity at 
1 µM concentration, the only off-targets being the TEC fam-
ily of kinases, which share the cysteine in the same position 
in the active site as JAK3. PF-06651600 is currently in phase 
II clinical trials against RA, CD, UC, and AA. Whether the 
high selectivity of PF-06651600 translates into clinical 
efficacy and, more interestingly, a better side-effect profile, 
remains to be seen.

3.4 � TYK2‑Targeting Inhibitors

TYK2 was first considered mainly as a regulator of the 
IFN-α pathway [138], although TYK2−/− mice showed 
reduced but not abolished IFN-α/β signaling. The biologi-
cal function of TYK2, however, appears to be broader in 
humans than in mice. While in mice TYK2 participates 
in IFN-α, IL-12, and IL-23 signaling, clinical data from 
patients have revealed that human TYK2 profoundly affects 

also signaling via IFN-γ, IL-6, and IL-10 (Fig. 2) [91, 121, 
139, 140]. TYK2 forms dimers with JAK1 and JAK2, and 
it has been shown to be an important player against viral 
infections [140, 141]. In contrast to JAK1 and JAK2, TYK2 
deficiency is not lethal, but the patient suffers from myco-
bacterial and viral infections [142]. The rationale for TYK2 
inhibition in autoimmune diseases arises from antibody 
therapeutics that target TYK2 cytokine signaling pathways 
IL-12/IL-23, IFN-α, and IL-6 (Table 1).

PF-06700841 is described as an ATP-competitive 
selective TYK2/JAK1 inhibitor but selectivity data are 
not currently available. In a phase I dose-ranging study, 
PF-06700841 improved disease activity in patients with 
plaque psoriasis [143]. PF-06700841 was well-tolerated but 
led to decreases in reticulocytes and platelets indicating inhi-
bition of JAK2. The compound is currently in phase II stud-
ies for CD, UC, AA, and plaque psoriasis (ClinicalTrials.gov 
identifiers NCT02969018, NCT03395184, NCT02958865, 
and NCT02974868).

JAK kinases are unique in the kinome (in addition to gen-
eral control nonderepressible 2 [GCN2]) in that they possess 
both kinase and pseudokinase domains. Unlike with inhibi-
tors acting against the active kinase domain, the outcome 
of pharmacological inhibition/stabilization of the pseudoki-
nase domain in JAKs is not fully understood. A compound 
binding to TYK2 JH2 was identified in a screen using IL-
23-stimulated transcriptional assay [144] and was revealed 
to be selective in kinome profiling, the only off-targets being 
JAK1 JH2 and IκB kinase (IKK). Despite binding to JAK1 
JH2, the compound does not inhibit JAK1-mediated IL-15 
receptor signaling. Further research on TYK2 JH2 binders 
resulted in a clinical compound, BMS-986165, having a 
picomolar potency against TYK2 JH2 and efficacy in pre-
clinical mouse models of SLE and IBD [145]. A phase I 
study with 108 participants found BMS-986165 to be safe 
and well-tolerated with no serious adverse events [146]. 
In a recently published phase II study of 267 patients with 
moderate to severe psoriasis BMS-986165 showed clinical 
efficacy at a daily dose of 3 mg and higher [147]. Adverse 
events, most commonly nasopharyngitis, headache, diarrhea, 
nausea, and upper respiratory tract infection, were more fre-
quent in patients receiving the drug compared with placebo 
(55–80% for active treatment groups compared with 51% 
for placebo group), but longer-duration clinical trials with 
more patients are needed to define the safety and durability 
of the clinical effects. Currently, the compound is in phase 
II trials as a monotherapy for SLE and CD, and phase III 
trials for moderate to severe psoriasis (ClinicalTrials.gov 
identifiers NCT03599622, NCT03624127, NCT03252587, 
NCT03611751, and NCT02931838).
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4 � Future Perspectives

Several cytokines play central roles in the pathogenesis of 
inflammatory and autoimmune diseases, and thus therapeu-
tic approaches that target multiple cytokines simultaneously 
present a viable treatment option. Inhibition of JAKs results 
in direct suppression of multiple cytokine signaling path-
ways and affects production of another set of cytokines. For 
example, inhibition of IL-23 signaling through JAK2/TYK2 
suppresses production of IL-17 [51, 52], signaling of which 
is JAK-independent and cannot be directly controlled with 
JAK inhibitors. On the other hand, broad cytokine inhibition 
may lead to unwanted off-target activity and adverse effects. 
For example, signaling through JAK2 has an important role 
in erythropoiesis and JAK2 inhibition might therefore pro-
mote neutropenia, anemia, and thrombocytopenia. However, 
this has not been reported for baricitinib (at doses 2–4 mg 
once daily) in clinical use for RA although baricitinib inhib-
its JAK1 and JAK2 with equal potency, highlighting the dose 
dependency of adverse effects [148].

Highly selective JAK inhibition could increase the preci-
sion of therapy and could lead to decreased off-target activ-
ity and thus increased efficacy and safety. JAK3, for exam-
ple, has a more defined function than other JAKs, which 
participate in multiple cellular processes. JAK3 associates 
only with the common γ-chain receptor, and it is expressed 
selectively in lymphoid and myeloid cells. Consequently, 
specific JAK3 inhibition may be beneficial in suppressing 
inflammatory responses with less interference to off-target 
cellular functions and therefore reduced adverse effects. 
Currently, results from clinical trials with the moderately 
selective JAK3 inhibitors decernotinib and peficitinib are 
available. These inhibitors demonstrate efficacy and adverse 
effects comparable to the pan-JAK inhibitor tofacitinib. 
Data from trials of highly JAK3-selective covalent inhibi-
tor PF-06651600 will, once released, allow the potential of 
selective JAK3 inhibition in the treatment of inflammatory 
and autoimmune diseases to be revealed.

Pan-JAK inhibitor tofacitinib is generally well-tolerated 
at clinically approved doses, and only the increased risk 
of viral infections (herpes zoster) distinguishes its safety 
profile from that of biological DMARDs (bDMARDs). 
Infection-wise, a possible advantage of JAK inhibitors over 
bDMARDs is the relatively short half-life of JAKinibs: in 
case of severe infection, the drug can be stopped and the 
immunosuppressive effect removed. A possible advantage 
of selective inhibitors over pan-JAK inhibitors arises from 
the potentially improved safety profile, which could allow 
the use of higher doses. It is still unknown if patients who 
do not respond adequately to tofacitinib would obtain thera-
peutic response of, for example, JAK1-selective inhibitors. 
Tofacitinib failed to meet its efficacy milestone in patients 

with CD, although some indications of biological activity 
were obtained [42]. Moderately JAK1-selective filgotinib, 
on the other hand, has proven to be efficacious in phase II 
trials in CD [104]. The therapeutic responses of biologics as 
well as JAKinibs in inflammatory and autoimmune diseases 
are difficult to predict based on the current knowledge. Con-
sequently, inhibitors selective for JAK1, JAK3, as well as 
pan-JAK inhibitors are all undergoing clinical trials against 
the same set of diseases.

5 � Conclusions

Several phase II studies suggest that pan-JAK and moder-
ately selective JAK inhibitors are equally effective in treat-
ment of RA but currently there are not sufficient data for reli-
able comparison in other immune-mediated diseases. More 
clinical data, especially for highly selective inhibitors, are 
required to judge the prospects of selective JAK targeting in 
inflammatory and autoimmune diseases.
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