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Abstract
The key objective of the proposed work in this paper is to introduce a new version of picture linguistic fuzzy set, so-called 
spherical linguistic fuzzy sets. The novel concept of spherical linguistic fuzzy set consists of linguistic term, positive, 
neutral and negative membership degrees which satisfies the conditions that the square sum of its membership degrees is 
less than or equal to 1. In this paper, we investigate the basic operations of spherical linguistic fuzzy sets and discuss some 
related results. We extend operational laws of aggregation operators and propose spherical linguistic fuzzy Choquet integral 
weighted averaging (SLFCIWA) operator based on spherical fuzzy numbers. Further, the proposed SLFCIWA operator of 
spherical fuzzy number is applied to multi-attribute group decision-making problems. Also, we propose the GRA method 
to aggregate the spherical fuzzy information. To implement the proposed models, we provide some numerical applications 
of group decision-making problems. Also compared with the previous model, we conclude that the proposed technique is 
more effective and reliable.

Keywords  Choquet integral · Spherical linguistic fuzzy Choquet integral weighted averaging (SLFCIWA) operator · GRA 
method

Mathematics Subject Classification  03E72

Introduction

Fuzzy set theory developed by Zadeh [37] plays an impor-
tant role in decision making under uncertain environment. 
Various direct/indirect extensions of fuzzy set have been 
made and successfully applied in most of the problems of 

real-world situation. An important generalization of fuzzy 
set theory is the theory of intuitionistic fuzzy set (IFS), intro-
duced by Attanssov [6], that includes a membership and a 
non-membership degree. In 2010, Zhao [39] propsed gener-
alized aggregation operators for IFSs. Later on, in 1994 
Attanssov [5] introduced interval-valued intuitionistic fuzzy 
set (IvIFS) by extending the membership degree and non-
membership degree to interval number. In 2013, Yager 
strengthened the concept of IFS by proposing Pythagorean 
fuzzy sets (PyFS) [35] which somehow enlarge the space of 
positive membership and negative membership by introduc-
ing some new condition that 0 ≤ P2(x) + N2(x) ≤ 1. In 2014, 
Yager [36] presented an example to state the condition that 
a decision maker gives his support for membership of an 
alternative 
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)
 . This 

fulfils the condition that their sum is bigger than 1 and is not 
presented for IFS, but it is presented for PyFS since �√
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≤ 1 . Clearly, PyFS is more flexible than IFS 
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to deal with the imprecision and ambiguity in the practical 
MADM problems. For more studies, we refer to [15, 24 26].

Such hitches were considered in Yager Pythagorean 
structure by Cuong [10], and he proposed picture fuzzy 
sets (PFS) of the form (P(x),  I(x), N(x)) where the ele-
ments in triplet represent satisfaction, abstain and dissat-
isfaction degrees, respectively, under the condition that 
0 ≤ P(x) + I(x) + N(x) ≤ 1 . This structure of Cuong is con-
siderably closer to human nature than that of earlier con-
cepts. Cuong also established the relations and compositions 
and found the distance between picture fuzzy numbers, also 
he gave the concept of picture soft sets. Cuong [11] in 2015 
introduced the fuzzy logic operators for picture fuzzy sets. 
Singh [28] in 2015 introduced the idea related to correlation 
coefficients for picture fuzzy sets. Cuong [13] in 2016 estab-
lished the classification of representable, t-norm operators 
for PFSs. Son [29] in 2016 introduced the concept about gen-
eralized picture distance measure and gave its applications. 
Wei [34] in 2016 introduced the cosine similarity measures 
for PFSs. Ashraf et al. [2] proposed different approaches to 
deal with multi-attribute group decision-making problems.
For more study we refer [3, 4, 8, 9, 17].

There were certain problems, which could not be expressed 
in terms of numerical values. Experts proposed certain lin-
guistic terms that proved helpful in reducing the real situation 
problems. The great deal of qualitative information arises in 
real decision-making problem, which is simply transferred by 
linguistic terms, like as ”very good”, ”good”, ”fair”, ”bad” 
and ”very bad”, . In some earlier applications, linguistic terms 
were described for triangular fuzzy numbers [1]. To handle 
fuzzy risk analysis, Pei and Shi [25] acknowledged linguis-
tic weighted aggregation operator. A multi-criteria linguis-
tic decision-making model is given by Rodriguez, in which 
experts give their judgment by eliciting linguistic expression. 
Based on the dependent operator, Liu [21] in 2013 derived 
the intuitionistic linguistic generalized dependent ordered 
weighted averaging operator and intuitionistic linguistic gen-
eralized dependent hybrid weighted aggregation operator. 
Wang et al. [31] in 2014 defined the score and accuracy index 
and comparison rules between two intuitionistic linguistic 
numbers. In 2015, Chen et al. [12] proposed a new notion of 
linguistic intuitionistic fuzzy number. Hence, keeping encour-
agement from the evidence that PFSs have the extreme domi-
nant capability to model the approximated and inconclusive 
information in natural-world applications. For more study, we 
refer to [19, 22–24].

Due to the motivation and inspiration of the above con-
versation in this paper, we propose spherical linguistic fuzzy 
set (SLFS) which is generalization of Pythagorean linguis-
tic fuzzy set and picture linguistic fuzzy set. Adding neu-
tral membership degree in Pythagorean fuzzy set or taking 
square of membership degrees of picture fuzzy set leads us to 
spherical linguistic fuzzy set. In SLFS, membership degrees 

are gratifying the condition 0 ≤ P2(x) + I2(x) + N2(x) ≤ 1 . 
Dealing with MAGDM, in this situation, when the decision 
maker provides the positive, negative and neutral member-
ship degrees of a particular attribute in such a way that their 
sum is greater than one, it is better to use spherical linguis-
tic fuzzy information. Sometimes, the attribute values take 
the form of spherical linguistic fuzzy information and the 
information about attribute weights is completely unknown 
because of time stress, lack of data or knowledge, and the 
expert’s limited knowledge about the problem domain. The 
classic GRA method [14], intuitionistic fuzzy GRA method 
[32, 33] and Pythagorean fuzzy GRA method will fail in 
dealing with the above spherical linguistic fuzzy MADM 
problems with completely unknown weight information. The 
interesting and important research in this article is to derive 
the attribute weights from both the given spherical linguis-
tic fuzzy information and completely unknown attribute 
weight information based on the traditional GRA method. 
Therefore, it is essential to concentrate on this problem. 
The purpose of this paper is to develop the concept of GRA 
methodology for solving MADM problems under spheri-
cal linguistic fuzzy environment, in which the data about 
attribute weights are incompletely known, and the attribute 
values take the form of spherical linguistic fuzzy numbers. 
The remainder of the paper is structured as follows:

In “Preliminaries” section, some revision of the defini-
tions and results of Choquet integral, Pythagorean linguistic 
fuzzy sets and Picture linguistic fuzzy sets is given. In “GRA 
method with incomplete weight information for spherical 
linguistic fuzzy setting” section, the concept of spherical lin-
guistic fuzzy sets is proposed. The GRA method for spheri-
cal linguistic fuzzy MAGDM problems with incomplete 
weight information is stated in “GRA method with incom-
plete weight information for spherical linguistic fuzzy set-
ting” section. In “Descriptive example” section, we explain 
our planned algorithm and proved with help of an example. 
Conclusion is given in “Conclusion” section.

Preliminaries

The section provides the review of basic definition and nota-
tions of linguistic variable, Pythagorean fuzzy sets (PyFSs), 
Pythagorean linguistic fuzzy sets (PLFSs), picture fuzzy sets 
(PFS), picture linguistic fuzzy sets (PLFS) and their opera-
tions. Concept related to fuzzy measure and the Choquet 
integral and some further ideas which will be utilized in the 
later analysis are also be discussed.

Definition 1  [5] Let L = {�p|p = 0, 1,… , l} be  the linguis-
tic term set and the cardinality be odd where �p is the pos-
sible value for a linguistic variable and l is a positive integer. 
That is, a seven linguistic terms set L could be assigned as:  
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L = (�0, �1, �2, �3, �4, �5, �6) = { verypoor, poor, slightly poor,

fair, slightlygood, good, verygood}. Consistently, in such a 
cases, the following characteristics should be held in lin-
guistic term set.

(1)	 The negation operator: neg (Lp) = Lq , where q = l − 1;

(2)	 Be ordered: �p ≤ �q ⟺ p ≤ q;

(3)	 Maximum operator: max(�p, �q) = �p if �p ≥ �q;

(4)	 Minimum operator: min(�p, �q) = �p if �p ≤ �q.

�[0,l] = {�p|�0 ≤ �p ≤ �l}, all the above characteristics also 
get the elements; if �p ∈ L , then it is said as the actual term; 
otherwise, �p ∈ L, it is said as the virtual term. To maintain 
all the given information, Herrera et al. [16] assign the dis-
tinct linguistic title L = (l0, l1,… , ll−1) is spread to a con-
tinuous linguistic title L =

{
l�|� ∈ (0,R)

}
 , where R is the 

adequately large positive real number which satisfies the 
upper characteristics.

Definition 2  [5] The operational laws of linguistic variables 
lp, lq ∈ L are defined as:

(1)	 𝜗 ⊗ lp = l𝜗⋅p
(2)	 lp ⊕ lq = lp+q
(3)	 lp∕lq = lp∕q
(4)	 (lp)

q = lpq

Definition 3  [35] A PyFS Ĕŭ on the universe of discourse 
ℝ ≠ � is defined as:

A PyFS in a set ℝ is indicated by Pěŭ
(r) ∶ ℝ → [0, 1] and 

Iěŭ (r) ∶ ℝ → [0, 1] which are the positive and negative mem-
bership degrees of Ĕŭ in ℝ , respectively. Furthermore Pěŭ

(r) 
and Iěŭ (r) satisfy 0 ≤ P2

ěŭ
(r) + I2

ěŭ
(r) ≤ 1 for all r ∈ ℝ.

Definition 4  [10] A PFS Ĕŭ on the universe of discourse 
ℝ ≠ � is defined as:

A PFS in a set ℝ is indicated by Pěŭ
(r) ∶ ℝ → [0, 1] , 

Iěŭ (r) ∶ ℝ → [0, 1] and Něŭ
(r) ∶ ℝ → [0, 1] which are the 

positive, neutral and negative membership degrees of Ĕŭ in 
ℝ , respectively. Furthermore Pěŭ

(r) , Iěŭ (r) and Něŭ
(r) satisfy 

0 ≤ Pěŭ
(r) + Iěŭ (r) + Něŭ

(r) ≤ 1 for all r ∈ ℝ.

Definition 5  [27] A PLFS Ĕŭ on the universe of discourse 
ℝ ≠ � is defined as:

(2.1)Ĕŭ =
{⟨

Pěŭ
(r), Iěŭ (r)| r ∈ ℝ

⟩}
.

(2.2)Ĕŭ =
{⟨

Pěŭ
(r), Iěŭ (r),Něŭ

(r)| r ∈ ℝ
⟩}

.

(2.3)Ĕŭ =
{⟨

𝜁ěŭ (r),Pěŭ
(r), Iěŭ (r),Něŭ

(r)| r ∈ ℝ
⟩}

.

A PLFS in a set ℝ is indicated by 𝜁ěŭ (r) ∈ L, 
Pěŭ

(r) ∶ ℝ → [0, 1]   ,  Iěŭ (r) ∶ ℝ → [0, 1]  a n d 
Něŭ

(r) ∶ ℝ → [0, 1] which are the linguistic term, the posi-
tive, neutral and negative membership degrees of Ĕŭ in ℝ , 
respectively. Furthermore Pěŭ

(r) , Iěŭ (r) and Něŭ
(r) satisfy 

0 ≤ Pěŭ
(r) + Iěŭ (r) + Něŭ

(r) ≤ 1 for all r ∈ ℝ.

Fuzzy measure and Choquet integral

Definition 6  [7] Let the universe of discourse 
ℝ = {r1, r2,… , rn} and p(ℝ) represent the power set of ℝ . A 
fuzzy measure Pěŭ

 on ℝ is a set function Pěŭ
∶ p(ℝ) → [0, 1] , 

which satisfy the following conditions:

(1)	 Pěŭ
(𝜙) = 0 , Pěŭ

(ℝ) = 1.
(2)	 I f  Ĕŭ1

, Ĕŭ2
∈ p(ℝ)  a n d  Ĕŭ1

⊆ Ĕŭ2
,  t h e n 

Pěŭ
(Ĕŭ1

) ≤ Pěŭ
(Ĕŭ2

).

Still, it is needed to sum the axiom of continuity; when ℝ 
is infinite, it is sufficient to assume a finite universal set in 
definite practice. Pěŭ

({r1, r2,… , rn}) is the class of subjec-
tive importance of decision attribute set {r1, r2,… , rn} . 
Thus, with the separate weights of attributes, weights of 
any combination of attributes can also be defined. Naturally, 
we could say the following about any pair of criteria sets 
Ĕŭ1

, Ĕŭ2
∈ p(ℝ) , Ĕŭ1

∩ Ĕŭ2
= 𝜙 ; Ĕŭ1

 and Ĕŭ2
 are considered to 

be without communication (or to be independent) if

which is called an additive measure. Ĕŭ1
and Ĕŭ2

 model a 
positive synergetic interaction between them (or are com-
plementary) if

which is called a super-additive measure. Ĕŭ1
and Ĕŭ2

 exhib-
its a negative synergetic interaction between them (or are 
redundant or substitutive) if

which is said to be a sub-additive measure. After all it is 
difficult to find the fuzzy measure according to Definition 6 
and thus to confirm a fuzzy measure in MAGDM problems; 
Sugeno [30] admits the following � -fuzzy measure:

� ∈ [−1,∞), Ĕŭ1
∩ Ĕŭ2

= 𝜙 . The parameter � determines 
interaction between the attributes. In Eq. (2.7), if � = 0 , � 
-fuzzy measure becomes simply an additive measure. And 

(2.4)Pěŭ
(Ĕŭ1

∪ Ĕŭ2
) = Pěŭ

(Ĕŭ1
) + Pěŭ

(Ĕŭ2
)

(2.5)Pěŭ
(Ĕŭ1

∪ Ĕŭ2
) > Pěŭ

(Ĕŭ1
) + Pěŭ

(Ĕŭ2
)

(2.6)Pěŭ
(Ĕŭ1

∪ Ĕŭ2
) < Pěŭ

(Ĕŭ1
) + Pěŭ

(Ĕŭ2
)

(2.7)
Pěŭ

(Ĕŭ1
∪ Ĕŭ2

) = Pěŭ
(Ĕŭ1

) + Pěŭ
(Ĕŭ2

) + 𝜆Pěŭ
(Ĕŭ1

)Pěŭ
(Ĕŭ2

)
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for negative and positive � , the �−fuzzy measure become 
to sub-additive and super-additive measures, respectively. 
Meantime, if all the elements in ℝ are independent, and we 
have

If ℝ is a finite set, then ∪n
p=1

rp = ℝ . The �-fuzzy measure Pěŭ
 

satisfies Eq. (2.9)

where rp ∩ rď = 𝜙 for all p, ď = 1, 2,… , n and p ≠ ď . It can 
be noted that Pěŭ

(rp) for a subset with a single element rp is 
said to be a fuzzy density and can be represented as 
Pěŭp

= Pěŭ
(rp) . Specially for every subset Ĕŭ1

∈ p(ℝ) , we 

have

Based on Eq. (2.5), the value of � can be uniquely found 
from Pěŭ

(ℝ) = 1 , which is equivalent to solving

It also noticed that � can be uniquely determined by 
Pěŭ

(ℝ) = 1.

Definition 7  [30] Let f and Pěŭ
 be a positive real-valued 

function and fuzzy measure on ℝ , respectively. With respect 
to Pěŭ

, the discrete Choquet integral of f is defined as

where �(p) represents a permutation on ℝ , where 
f�(1) ≥ f�(2) ≥ ⋯ ≥ f�(n) , A�(n) = {1, 2,… , p} , A�(0) = �.

(2.8)Pěŭ
(Ĕŭ) =

n∑
p=1

Pěŭ
({rp})

(2.9)

Pěŭ
(ℝ) = Pěŭ

�
∪n
p=1

ri

�
=

⎧
⎪⎪⎨⎪⎪⎩

1

𝜆

�
n∏

p=1

�
1 + 𝜆Pěŭ

�
rp
��

− 1

�
if 𝜆 ≠ 0

n∑
p=1

Pěŭ

�
rp
�

if 𝜆 = 0

(2.10)Pěŭ

�
Ĕŭ1

�
=

⎧
⎪⎪⎨⎪⎪⎩

1

𝜆

�
n∏

p=1

�
1 + 𝜆Pěŭ

�
rp
��

− 1

�
if 𝜆 ≠ 0

n∑
p=1

Pěŭ

�
rp
�

if 𝜆 = 0

(2.11)𝜆 + 1 =

n∏
p=1

[
1 + 𝜆Pěŭp

]

(2.12)C𝜇(f ) =

n∑
p=1

f𝜌(p)
[
Pěŭ

(A𝜌(p)) − Pěŭ
(A𝜌(p−1))

]

Spherical linguistic fuzzy set and its 
operations

In this section, the concept of SFS, SLFS and their opera-
tional laws are developed.

Definition 8  A SFS Ĕŭ on the universe of discourse ℝ ≠ � 
is defined as:

A PFS in a set ℝ is indicated by Pěŭ
(r) ∶ ℝ → [0, 1] , 

Iěŭ (r) ∶ ℝ → [0, 1] and Něŭ
(r) ∶ ℝ → [0, 1] which are the 

positive, neutral and negative membership degrees of Ĕŭ in 
ℝ , respectively. Furthermore Pěŭ

(r) , Iěŭ (r) and Něŭ
(r) satisfy 

0 ≤ P2
ěŭ
(r) + I2

ěŭ
(r) + N2

ěŭ
(r) ≤ 1 for all r ∈ ℝ.

𝜒Ĕŭ
(r) =

√
1 −

(
P2
ěŭ
(r) + I2

ěŭ
(r) + N2

ěŭ
(r)

)
 is said to be 

r e f u s a l  d e g r e e  o f  r  i n  ℝ  ,  f o r  S F S {⟨
Pěŭ

(r), Iěŭ (r),Něŭ
(r)| r ∈ ℝ

⟩}
 , whose triple components ⟨

Pěŭ
, Iěŭ ,Něŭ

⟩
 are said to SFN and each SFN can be denoted 

by E = ⟨Pe, Ie,Ne⟩ , where Pe, Ie and Ne ∈ [0, 1] , with condi-
tion that 0 ≤ P2

e
+ I2

e
+ N2

e
≤ 1.

Spherical fuzzy sets have its own importance in a cir-
cumstance where opinion is not only constrained to yes or 
no, but there is some sort of abstinence or refusal. A good 
example of spherical fuzzy set could be decision making 
such as when four decision makers have four different cat-
egories of opinion about a candidate. Another example could 
be of voting where there are four types of voters who vote in 
favour or vote against or refuse to vote or abstain. Spherical 
fuzzy set is a direct generalization of fuzzy set, intuitionistic 
fuzzy set and picture fuzzy set.

A question arises that why we need spherical fuzzy set or 
what are the boundaries of PFSs that lead us to spherical 
fuzzy sets? The main downside of PFSs is the restriction on 
it, i.e., 0 ≤ Pěŭ

(r) + Iěŭ (r) + Něŭ
(r) ≤ 1 as this condition does 

not allow the decision makers to assign membership values 
of their own consent. The decision makers are somehow 
limitations in a specific domain. We consider an example 
Pěŭ

= 0.8, Iěŭ = 0.5 and Něŭ
= 0.3 which interrupts the condi-

tion that 0 ≤ Pěŭ
+ Iěŭ + Něŭ

≤ 1, but if we take the square of 
these values such as P2

ěŭ
= 0.64, I2

ěŭ
= 0.25 and N2

ěŭ
= 0.09 

where the condition 0 ≤ P2
ěŭ
+ I2

ěŭ
+ N2

ěŭ
≤ 1 is satisfied.

Note that if we put Iěŭ = 0 in SPSs. Then, SPSs reduced 
to pythagorean fuzzy sets. Hence, spherical fuzzy sets are 
direct extension of pythagorean fuzzy set and also the exten-
sion of picture fuzzy sets, and also we seen the hierarchy 
structure (below) of the spherical fuzzy sets (Fig. 1).

(3.1)Ĕŭ =
{⟨

Pěŭ
(r), Iěŭ (r),Něŭ

(r)| r ∈ ℝ
⟩}

.
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Definition 9  A SLFS Ĕŭ on the universe of discourse ℝ ≠ � 
is defined as:

A SLFS in a set ℝ is indicated by 𝜁ěŭ (r) ∈ L, 
Pěŭ

(r) ∶ ℝ → [0, 1]  ,  Iěŭ (r) ∶ ℝ → [0, 1]  a n d 
Něŭ

(r) ∶ ℝ → [0, 1] which are the linguistic term, the posi-
tive, neutral and negative membership degrees of each 
r ∈ ℝ , respectively. Furthermore, Pěŭ

(r) , Iěŭ (r) and Něŭ
(r) 

satisfy 0 ≤ P2
ěŭ
(r) + I2

ěŭ
(r) + N2

ěŭ
(r) ≤ 1 for all  r ∈ ℝ. 

𝜒Ĕŭ
(r) =

√
1 −

(
P2
ěŭ
(r) + I2

ěŭ
(r) + N2

ěŭ
(r)

)
 is said to be 

r e f u s a l  d e g r e e  o f  r  i n  ℝ  ,  f o r  S F S {⟨
Pěŭ

(r), Iěŭ (r),Něŭ
(r)| r ∈ ℝ

⟩}
 , whose triple components ⟨

Pěŭ
, Iěŭ ,Něŭ

⟩
 are said to SFN and each SFN can be denoted 

by E = ⟨Pe, Ie,Ne⟩ , where Pe, Ie and Ne ∈ [0, 1] , with condi-
tion that 0 ≤ P2

e
+ I2

e
+ N2

e
≤ 1 (Fig. 2).

Definition 10   Let  Ĕŭ1
=
⟨
𝜁ěŭ1

,Pěŭ1
, Iěŭ1

,Něŭ1

⟩
 and 

Ĕŭ2
=
⟨
𝜁ěŭ2

,Pěŭ2
, Iěŭ2

,Něŭ2

⟩
 be two SLFNs defined on the 

universe of discourse ℝ ≠ � , and some operations on SLFNs 
are defined as follows with � ≥ 0.

Ĕŭ =
{⟨

𝜁ěŭ (r),Pěŭ
(r), Iěŭ (r),Něŭ

(r)| r ∈ ℝ
⟩}

.

(1)	 Ĕ
ŭ
1

⊕ Ĕ
ŭ
2

=

{
𝜁
ě
ŭ
1

+ě
ŭ
2

,

√
P
2

ě
ŭ
1

+ P
2

ě
ŭ
2

− P
2

ě
ŭ
1

⋅ P
2

ě
ŭ
2

,

I
ě
ŭ
1

⋅ I
ě
ŭ
2

, N
ě
ŭ
1

⋅ N
ě
ŭ
2

}
.

(2)	 𝜏 ⋅ Ĕŭ =

{
𝜁𝜏⋅ěŭ ,

√
1 −

(
1 − P2

ěŭ1

)𝜏

, (Iěŭ )
𝜏 , (Něŭ

)𝜏

}
.

Comparison rules for SLFNs

Definition 11  Let Ĕŭ =
⟨
𝜁ěŭ ,Pěŭ

, Iěŭ ,Něŭ

⟩
 be any SLFNs. 

Then,

(1)	 sco(Ĕŭ) =
𝜁ěŭ

×
(
Pěŭ

−Iěŭ
−Něŭ

)

3
 which denoted as score func-

tion.
(2)	 acu(Ĕŭ) =

𝜁ěŭ

2

(
Pěŭ

+ Něŭ

)
 which is the accuracy func-

tion.
(3)	 cr(Ĕŭ) =

𝜁ěŭ

2
(Pěŭ

) which is the certainty function.

Idea taken from Definition 11  is the technique used for 
equating the SLFNs and can be described as

Definition 12   Let  Ĕŭ1
=
⟨
𝜁ěŭ1

,Pěŭ1
, Iěŭ1

,Něŭ1

⟩
 and 

Ĕŭ2
=
⟨
𝜁ěŭ2

,Pěŭ2
, Iěŭ2

,Něŭ2

⟩
 are two SLFNs defined on the 

universe of discourse ℝ ≠ � . Then, by using Definition 11, 
equating technique can be described as,

(1)	 If sco(Ĕŭ1
) ≻ sco(Ĕŭ2

), then Ĕŭ1
≻ Ĕŭ2

.

Fig. 1   Hierarchy structure of spherical fuzzt set Fig. 2   Hierarchy structure of spherical linguistic fuzzt set
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(2)	 If sco(Ĕŭ1
) ≈ sco(Ĕŭ2

) , and acu(Ĕŭ1
) ≻ acu(Ĕŭ2

) , then 
Ĕŭ1

≻ Ĕŭ2
.

(3)	 I f  sco(Ĕŭ1
) ≈ sco(Ĕŭ2

), acu(Ĕŭ1
) ≈ acu(Ĕŭ2

)  and 
cr(Ĕŭ1

) ≻ cr(Ĕŭ2
), then Ĕŭ1

≻ Ĕŭ2
.

(4)	 I f  sco(Ĕŭ1
) ≈ sco(Ĕŭ2

), acu(Ĕŭ1
) ≈ acu(Ĕŭ2

)  and 
cr(Ĕŭ1

) ≈ cr(Ĕŭ2
), then Ĕŭ1

≈ Ĕŭ2
.

Definition 13  Let any collections 
Ĕŭp

=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, p ∈ N be the SLFNs and 

SLFWA: SLFNn
→ SLFN, then SLFWA is described as,

in which � =
{
�1, �2,… , �n

}
 is the weighting vector of 

Ĕŭp
=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, p ∈ N  ,  with �p ≥ 0 and 

∑n

p=1
�p = 1.

Theorem 1  Let any collections Ĕŭp
=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, 

p ∈ N be the SLFNs. Then, by utilizing Definition 13 and 
operational properties of SLFNs, we can obtain the follow-
ing outcome.

(3.2)SLFWA
(
Ĕŭ1

, Ĕŭ2
,… , Ĕŭn

)
=

n∑
p=1

𝜏pĔŭp
,

(3.3)

SLFWA
�
Ĕŭ1

, Ĕŭ2
,… , Ĕŭn

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜁 n∑
p=1

𝜏p⋅ěŭp

,

�
1 − Πn

p=1

�
1 − P2

ěŭp

�𝜏p

,

Πn
p=1

�
Iěŭp

�𝜏p
,

Πn
p=1

�
Něŭp

�𝜏p

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

Definition 14  Let any collections 
Ĕŭp

=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, p ∈ N be the SLFNs and 

SLFOWA: SLFNn
→ SLFN, then SLFOWA is described 

as,

in which � =
{
�1, �2,… , �n

}
 is the weighting vector of 

Ĕŭp
=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, p ∈ N ,  �p ≥ 0 and 

∑n

p=1
�p = 1, 

and �(p) indicates a permutation on ℝ.

Theorem 2  Let any collections Ĕŭp
=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, 

p ∈ N be the SLFNs. Then by using Definition 14 and opera-
tional properties of SLFNs, we can obtain the following 
outcome.

Theorem 3  Assume that Ĕŭp
=
⟨
𝜁ěŭp

,Pěŭp
, Iěŭp

,Něŭp

⟩
, p ∈ N 

are the collections of SLFNs and � is a fuzzy measure on ℝ. 
Based on fuzzy measure, a spherical linguistic fuzzy Choquet 
integral weighted averaging (SLFCIWA ) operator of dimen-
sion n is a mapping SLFCIWA ∶ SLFNn

→ SLFN such that

(3.4)SLFOWA
(
Ĕŭ1

, Ĕŭ2
,… , Ĕŭn

)
=

n∑
p=1

𝜏pĔŭ𝜌(p)
,

(3.5)

SLFOWA

�
Ĕ
ŭ
1

, Ĕ
ŭ
2

,… , Ĕ
ŭn

�
=

⎧
⎪⎪⎨⎪⎪⎩

𝜁 n∑
p=1

𝜏p⋅ěŭ𝜌(p)

,

�
1 − Πn

p=1
(1 − P

2

ěŭ𝜌(p)

)𝜏p ,

Πn

p=1

�
I
ěŭ𝜌(p)

�𝜏p
,

Πn

p=1

�
N
ěŭ𝜌(p)

�𝜏p

⎫⎪⎪⎬⎪⎪⎭

.

(3.6)SLFCIWA
�
Ĕ
ŭ
1

, Ĕ
ŭ
2

,… , Ĕ
ŭ
n

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜁 n∑
p=1

𝜆(A𝜌(p))−𝜆(A𝜌(p−1))⋅ěŭ𝜌(p)
,

�
1 − Πn

p=1
(1 − P

2

ě
ŭ𝜌(p)

)𝜆(A𝜌(p))−𝜆(A𝜌(p−1))
,

Πn

p=1

�
I
ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))
,

Πn

p=1

�
N
ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))

⎫
⎪⎪⎪⎬⎪⎪⎪⎭
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where  �(p) indicates a permutation on  ℝ and 
A�(n) = {1, 2,… , p} , A�(0) = �.

Definition 15  Let ℝ ≠ � be the universe of discourse and 
any two spherical linguistic fuzzy sets Ĕŭj

, Ĕŭl
 . Then, normal-

ized Hamming distance dNHD(Ĕŭj
, Ĕŭl

) is given as for all 

r ∈ ℝ,

Definition 16  Let ℝ ≠ � be the universe of discourse and 
any two spherical fuzzy sets Ĕŭj

, Ĕŭl
 . Then, normalized 

Euclidean distance dNED(Ĕŭj
, Ĕŭl

) is given as for all r ∈ ℝ,

GRA method with incomplete weight 
information for spherical linguistic fuzzy 
setting

Suppose that A = {a1, a2,… , an}are the set of alter-
natives and C = {c1, c2,… , cm},are the criteria,   and 
� = (�1, �2,… , �m) are the criteria of wėight,  where �k ≥ 0 

(k = 1, 2,… ,m), Σn
k=1

�k = 1. Suppose that DM deliver infor-
mation about weights of criteria may be denoted in the fol-
lowing form [20], for j ≠ k,

(1)	 if 
{
�j ≥ �k

}
, then ranking is weak.

(2)	 if 
{
𝜗j − 𝜗k ≥ 𝜆j(> 0)

}
, then ranking is strict.

(3)	 if 
{
�j ≥ �j�k

}
, 0 ≤ �j ≤ 1,then ranking is multiple rank-

ing.
(4)	 if 

{
�j ≤ �j ≤ �j + �j

}
, 0 ≤ �j ≤ �j + �j ≤ 1,then ranking 

is an interval ranking.

Let Rk =
[
Ĕ
(k)

ŭq

]
m×n

 be the spherical linguistic fuzzy decision 

matrix, arranged by decision maker dk(k = 1, 2,… , l) , in the 
following form:

(3.7)

dNHD(Ĕŭj
, Ĕŭl

) =
1

2(l − 1)

n∑
p=1

||||||||

(
P

ěŭj

(rp) − Iěŭj
(rp) − Něŭj

(rp)

)
𝜁ěŭj

−
(
Pěŭl

(rp) − Iěŭl
(rp) − Něŭl

(rp)
)
𝜁ěŭl

||||||||
.

(3.8)

dNED(Ĕŭj
, Ĕŭl

) =

�����������
1

n

n�
p=1

⎛⎜⎜⎜⎜⎜⎝

𝜁
2⋅
�
ěŭj

−ěŭl

�,
�
P

ěŭj

(rp) − Pěŭl
(rp)

�2

+

�
Iěŭj

(rp) − Iěŭl
(rp)

�2

+�
Něŭj

(rp) − Něŭl
(rp)

�2

⎞⎟⎟⎟⎟⎟⎠

.

where Ĕ(k)

ŭq
=

(
𝜁
(k)

ěŭq
,P(k)

ŭq

, I(k)
ŭq

,N(k)

ŭq

)
 is an SLFN defining the 

performance rating of the alternative ap ∈ A, with respect to 
the criteria cp ∈ C given by the decision makers dk . To 
develop GRA method in the group decision-making process, 
we first need to combine all individual decision matrices into 
a collective matrix by using SLFCIWA operator. 

Step 1	� Suppose that for every A = {a1, a2,… , am}, m 
alternative, each expert dk ( k = 1, 2,… , r ) is 
called to consider individual evaluation or prefer-
e n c e  a c c o r d i n g  t o  e a ch  a t t r i b u t e s 
Cq(q = 1, 2,… , n) by an spherical linguistic fuzzy 

n u m b e r s  Ĕ
(k)

ŭq
=

(
𝜁
(k)

ěŭq
,P(k)

ŭq

, I(k)
ŭq

,N(k)

ŭq

)

(p = 1, 2,… ,m;q = 1, 2,… , n, k = 1, 2,… , r) 
expressed by the experts dk . In this step, we con-
struct the spherical linguistic fuzzy decision-mak-
ing matrices, Ds =

[
E
(s)

ip

]
m×n

(s = 1, 2,… , k) for 

decision. If we have two types of criteria, such as 
benefit and cost criteria, in this case spherical lin-
guistic fuzzy decision matrices Ds =

[
Es
ip

]
m×n

 are 

converted into the normalized spherical linguistic 
fuzzy decision matrices, Rk =

[
Ĕ
(k)

ŭq

]
m×n

 , where 

Ĕ
(k)

ŭq
=

⎧⎪⎨⎪⎩

Ĕ
(k)

ŭq
, for benefit criteria Ap

Ĕ
(k)

ŭq
, for cost criteria Ap,

j = 1, 2,… , n, 

and Ĕ(k)

ŭq
 is the complement of Ĕ(k)

ŭq
. The use of nor-

malization occur in those cases, the criteria have 
the alternative type; otherwise, the normalization 
is not required, and we can write the decision-
making matrix as follows: 

Rk = Ĕ
(k)
ŭq m×n

=

c1 c2 · · · cn

a1 Ĕ
(k)
ŭ11

Ĕ
(k)
ŭ12

· · · Ĕ
(k)
ŭ1n

a2 Ĕ
(k)
ŭ21

Ĕ
(k)
ŭ22

· · · Ĕ
(k)
ŭ2n

· · · · ·
· · · · ·
· · · · ·

am Ĕ
(k)
ŭm1

Ĕ
(k)
ŭm2

· · · Ĕ
(k)
ŭmn
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Step 2	� Confirm the fuzzy density Pěŭp
= Pěŭ

(ap) of each 

professional. According to Eq. (2.11), parameter 
�1 of professional can be calculated.

Step 3	� By Definition  7, Ĕ(k)

ŭq
 is reordered such that 

Ĕ
(k)

ŭq
≥ Ĕ

(k−1)

ŭq
. Utilize the spherical linguistic fuzzy 

Choquet integral average operator; 

Rk = Ĕ
(k)
ŭq m×n

=

c1 c2 · · · cn

a1 Ĕ
(k)
ŭ11

Ĕ
(k)
ŭ12

· · · Ĕ
(k)
ŭ1n

a2 Ĕ
(k)
ŭ21

Ĕ
(k)
ŭ22

· · · Ĕ
(k)
ŭ2n

· · · · ·
· · · · ·
· · · · ·

am Ĕ
(k)
ŭm1

Ĕ
(k)
ŭm2

· · · Ĕ
(k)
ŭmn

(4.1)

SLFCIWA
�
Ĕ
(1)

ŭ
q

, Ĕ
(2)

ŭ q

,… , Ĕ
(r)

ŭ
q

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝜁 r∑
p=1

𝜆(A𝜌(p))−𝜆(A𝜌(p−1))⋅ěŭ𝜌(p)
,

�
1 − Πr

p=1
(1 − P

2
ě
ŭ𝜌(p)

)𝜆(A𝜌(p))−𝜆(A𝜌(p−1)),

Πr

p=1

�
I
ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))
,

Πr

p=1

�
N
ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Step 5	� According to spherical linguistic fuzzy distance 
operator, find the distance between the alternative 
ap and the P+ and P− , respectively; 

 The name of this distance is normalized Hamming distance 
[13] d(Ĕŭj

, Ĕŭl
),and then construct D+ (spherical linguistic 

fuzzy positive-ideal separation matrix) and D− (spherical 
fuzzy negative-ideal separation matrix); 

(4.4)

d(Ĕŭj
, Ĕŭl

) =
1

2(l − 1)

n∑
p=1

|||||

(
P

ěŭj

(rp) − Iěŭj
(rp) − Něŭj

(rp)

)
𝜁ěŭj

−
(
Pěŭl

(rp) − Iěŭl
(rp) − Něŭl

(rp)
)
𝜁ěŭl

||||.

 and 

Step 6	� Grey coefficient is calculated for each alterna-
tive from PIS and NIS by utilizing the following 
equation. The grey coefficient for each alternative 
calculated from PIS is provided as 

(4.5)

D+ = (D+
q
)m×n =

⎡⎢⎢⎢⎢⎢⎢⎣

d
�
Ĕŭ11

,P+
1

�
d
�
Ĕŭ12

,P+
2

�
… d

�
Ĕŭ1n

,P+
n

�
d
�
Ĕŭ21

,P+
1

�
d
�
Ĕŭ22

,P+
2

�
… d

�
Ĕŭ1n

,P+
n

�
.

.

.

.

.

.

…

.

.

.

d
�
Ĕŭm1

,P+
1

�
d
�
Ĕŭm2

,P+
2

�
… d

�
Ĕŭmn

,P+
n

�

⎤⎥⎥⎥⎥⎥⎥⎦

(4.6)

D− = (D−
q
)m×n =

⎡
⎢⎢⎢⎢⎢⎢⎣

d
�
Ĕŭ11

,P−
1

�
d
�
Ĕŭ12

,P−
2

�
… d

�
Ĕŭ1n

,P−
n

�
d
�
Ĕŭ21

,P−
1

�
d
�
Ĕŭ22

,P−
2

�
… d

�
Ĕŭ1n

,P−
n

�
.

.

.

.

.

.

…

.

.

.

d
�
Ĕŭm1

,P−
1

�
d
�
Ĕŭm2

,P−
2

�
… d

�
Ĕŭmn

,P−
n

�

⎤⎥⎥⎥⎥⎥⎥⎦

 to aggregate all the spherical linguistic fuzzy decision 
matrices Rk =

[
Ĕ
(k)

ŭq

]
m×n

 (k = 1, 2,… , r) into a collective 

spherical linguistic fuzzy decision matrix R =
[
Ĕ
(k)

ŭq

]
m×n

 

where Ĕ(k)

ŭq
=

(
𝜁
(k)

ěŭq
,P(k)

ŭq

, I(k)
ŭq

,N(k)

ŭq

)
 (p = 1, 2,… ,m;q = 1, 2,

… , n, k = 1, 2,… , r), where �(p) indicates a permutation on 
ℝ and A�(n) = {1, 2,… , p} , A�(0) = � and Pěŭ

(ap) can be 
determined by Eq. (2.12).
Step 4	� The spherical linguistic fuzzy positive-ideal 

so lu t i on  P+ =
{
P+
1
,P+

2
,… ,P+

m

}
 and  t he 

spherical linguistic fuzzy negative-ideal solu-
tion P− =

{
P−
1
,P−

2
,… ,P−

m

}
 are defined as 

 and 

 w h e r e  P+ =
(
𝜁+
ŭp

,P+

ŭp

, I+
ŭp

,N+

ŭp

)
 a n d 

P− =
(
𝜁−
ŭp

,P−

ŭp

, I−
ŭp

,N−

ŭp

)
p = 1, 2, ..,m.

(4.2)P+
p
= max

q
scq

(4.3)P−
p
= min

q
scq,
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 where p = 1, 2, 3,… ,m and q = 1, 2, 3,… , n . Similarly, the 
grey coefficient for each alternative from NIS is provided as 

 where p = 1, 2, 3,… ,m and q = 1, 2, 3,… , n and the iden-
tification coefficient � = 0.5.
Step 7	� Use Eq.  (2.7), to find the grey coefficient 

degree for each alternative from PIS and NIS, 
respectively, 

 The grey method has the following basic principle that 
the selected alternative should have the “biggest degree of 
grey relation” from the PIS and the “smallest degree of grey 
relation” from the NIS. Clearly, the weights are known, the 
smaller �−

p
 and the bigger �+

p
 , the finest alternative ap is. But 

information about weights of alternatives is unknown. So, 
in this circumstances the �−

p
 and �+

p
are information about 

weight calculated initially. So, we provide the following 

(4.7)𝜂+
q
=

min1≤p≤m min1≤q≤n d
(
Ĕŭq

,P+
p

)
+ 𝜌max1≤p≤m max1≤q≤n d

(
Ĕŭq

,P+
p

)

d
(
Ĕŭq

,P+
p

)
+ 𝜌max1≤p≤m max1≤q≤n d

(
Ĕŭq

,P+
p

) .

(4.8)𝜂−
q
=

min1≤p≤m min1≤q≤n d
(
Ĕŭq

,P−
k

)
+ 𝜌max1≤p≤m max1≤q≤n d

(
Ĕŭq

,P−
k

)

d
(
Ĕŭq

,P−
k

)
+ 𝜌max1≤p≤m max1≤q≤n d

(
Ĕŭq

,P−
k

) .

(4.9)

�+
p
=

n∑
q=1

�q�
+
q

�−
p
=

n∑
q=1

�q�
−
q

optimization models for multiple objective to calculate the 
information about weight, 

Table 1   Spherical linguistic fuzzy information D1

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
5

, 0.3, 0.8, 0.5⟩⟨�
4

, 0.8, 0.4, 0.3⟩⟨�
2

, 0.4, 0.5, 0.7⟩ ⟨�
3

, 0.3, 0.3, 0.4⟩
Ž
2

⟨�
2

, 0.2, 0.6, 0.7⟩⟨�
3

, 0.3, 0.9, 0.1⟩⟨�
1

, 0.5, 0.3, 0.7⟩ ⟨�
5

, 0.5, 0.4, 0.2⟩
Ž
3

⟨�
4

, 0.4, 0.8, 0.4⟩⟨�
2

, 0.5, 0.8, 0.2⟩⟨�
5

, 0.2, 0.3, 0.7⟩ ⟨�
1

, 0.6, 0.6, 0.1⟩
Ž
4

⟨�
1

, 0.5, 0.3, 0.8⟩⟨�
5

, 0.6, 0.6, 0.3⟩⟨�
3

, 0.3, 0.6, 0.5⟩ ⟨�
2

, 0.4, 0.2, 0.3⟩

Table 2   Spherical linguistic fuzzy information D2

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
2

, 0.1, 0.5, 0.7⟩ ⟨�
5

, 0.6, 0.3, 0.4⟩ ⟨�
3

, 0.3, 0.8, 0.6⟩⟨�
4

, 0.6, 0.3, 0.2⟩
Ž
2

⟨�
5

, 0.4, 0.4, 0.8⟩ ⟨�
3

, 0.5, 0.7, 0.1⟩ ⟨�
4

, 0.4, 0.2, 0.7⟩⟨�
2

, 0.6, 0.1, 0.6⟩
Ž
3

⟨�
3

, 0.2, 0.9, 0.3⟩ ⟨�
4

, 0.7, 0.1, 0.4⟩ ⟨�
2

, 0.3, 0.6, 0.4⟩⟨�
5

, 0.6, 0.2, 0.4⟩
Ž
4

⟨�
1

, 0.3, 0.4, 0.8⟩ ⟨�
2

, 0.4, 0.6, 0.5⟩ ⟨�
5

, 0.4, 0.1, 0.8⟩⟨�
3

, 0.6, 0.3, 0.3⟩

Table 3   Spherical linguistic fuzzy information D3

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
1

, 0.4, 0.2, 0.8⟩ ⟨�
3

, 0.4, 0.4, 0.3⟩ ⟨�
5

, 0.5, 0.4, 0.6⟩ ⟨�
4

, 0.5, 0.1, 0.4⟩
Ž
2

⟨�
4

, 0.2, 0.5, 0.7⟩ ⟨�
5

, 0.6, 0.5, 0.4⟩ ⟨�
1

, 0.2, 0.5, 0.8⟩ ⟨�
3

, 0.7, 0.2, 0.4⟩
Ž
3

⟨�
5

, 0.6, 0.4, 0.5⟩ ⟨�
2

, 0.9, 0.3, 0.1⟩ ⟨�
4

, 0.3, 0.1, 0.9⟩ ⟨�
1

, 0.6, 0.2, 0.6⟩
Ž
4

⟨�
3

, 0.5, 0.3, 0.7⟩ ⟨�
4

, 0.8, 0.5, 0.2⟩ ⟨�
2

, 0.3, 0.8, 0.4⟩ ⟨�
2

, 0.5, 0.3, 0.5⟩

Table 4   Normalized spherical linguistic fuzzy information R1

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
5

, 0.5, 0.8, 0.3⟩⟨�
4

, 0.8, 0.4, 0.3⟩⟨�
2

, 0.7, 0.5, 0.4⟩ ⟨�
3

, 0.3, 0.3, 0.4⟩
Ž
2

⟨�
2

, 0.7, 0.6, 0.2⟩⟨�
3

, 0.3, 0.9, 0.1⟩⟨�
1

, 0.7, 0.3, 0.5⟩ ⟨�
5

, 0.5, 0.4, 0.2⟩
Ž
3

⟨�
4

, 0.4, 0.8, 0.4⟩⟨�
2

, 0.5, 0.8, 0.2⟩⟨�
5

, 0.7, 0.3, 0.2⟩ ⟨�
1

, 0.6, 0.6, 0.1⟩
Ž
4

⟨�
1

, 0.8, 0.3, 0.5⟩⟨�
5

, 0.6, 0.6, 0.3⟩⟨�
3

, 0.5, 0.6, 0.3⟩ ⟨�
2

, 0.4, 0.2, 0.3⟩

Table 5   Normalized spherical linguistic fuzzy information R2

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
2

, 0.7, 0.5, 0.1⟩ ⟨�
5

, 0.6, 0.3, 0.4⟩⟨�
3

, 0.6, 0.8, 0.3⟩ ⟨�
4

, 0.6, 0.3, 0.2⟩
Ž
2

⟨�
5

, 0.8, 0.4, 0.4⟩ ⟨�
3

, 0.5, 0.7, 0.1⟩⟨�
4

, 0.7, 0.2, 0.4⟩ ⟨�
2

, 0.6, 0.1, 0.6⟩
Ž
3

⟨�
3

, 0.3, 0.9, 0.2⟩ ⟨�
4

, 0.7, 0.1, 0.4⟩⟨�
2

, 0.4, 0.6, 0.3⟩ ⟨�
5

, 0.6, 0.2, 0.4⟩
Ž
4

⟨�
1

, 0.8, 0.4, 0.3⟩ ⟨�
2

, 0.4, 0.6, 0.5⟩⟨�
5

, 0.8, 0.1, 0.4⟩ ⟨�
3

, 0.6, 0.3, 0.3⟩

Table 6   Normalized spherical linguistic fuzzy information R3

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
1

, 0.8, 0.2, 0.4⟩⟨�
3

, 0.4, 0.4, 0.3⟩⟨�
5

, 0.6, 0.4, 0.5⟩⟨�
4

, 0.5, 0.1, 0.4⟩
Ž
2

⟨�
4

, 0.7, 0.5, 0.2⟩⟨�
5

, 0.6, 0.5, 0.4⟩⟨�
1

, 0.8, 0.5, 0.2⟩⟨�
3

, 0.7, 0.2, 0.4⟩
Ž
3

⟨�
5

, 0.5, 0.4, 0.6⟩⟨�
2

, 0.9, 0.3, 0.1⟩⟨�
4

, 0.9, 0.1, 0.3⟩⟨�
1

, 0.6, 0.2, 0.6⟩
Ž
4

⟨�
3

, 0.7, 0.3, 0.5⟩⟨�
4

, 0.8, 0.5, 0.2⟩⟨�
2

, 0.4, 0.8, 0.2⟩⟨�
2

, 0.5, 0.3, 0.5⟩
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 Since it is given that each alternative is non-inferior, 
therefore all the alternatives have no preference relation. 
The above optimization models are aggregated with equal 
weights, into single-objective optimization model, 

 To find solution of OM2, we obtain optimal solution 
� = (�1, �2,… , �m) , which is utilized as weight information 
of provided alternatives. Then, we obtain �+

p
 and �−

p
 (where 

p = 1, 2,… ,m) utilizing the above formula, respectively.
Step 8	� Relative degree is calculated for each alternative 

utilizing the following equation from PIS and NIS, 

Step 9	� Rank the alternatives ap and choose finest ones, in 
according with the �p , and the highest �p alterna-
tive is considered as the finest alternative accord-
ing to the criteria.

Step 10	� End.

Descriptive example

Example 1  Suppose that there are a four possible developed 
technology business Ži ( i = 1, 2, 3, 4 ) forum. The number of 
experts is three, and the number attributes is four, to calcu-
late the four desirable emerging technology business:

(1)	 Ă1 is the industrial growth;
(2)	 Ă2 is the possible market risk;
(3)	 Ă3 is the industrialization infrastructure, human 

resources and financial situation;
(4)	 Ă4 is the job production and the improvement of science 

and technology.

(4.10)(OM1)

�
min �−

p
=
∑n

q=1
�q�

−
q
p = 1, 2,… ,m

max �+
p
=
∑n

q=1
�q�

+
q
p = 1, 2,… ,m

(4.11)(OM2)

{
min �p =

m∑
p=1

n∑
q=1

(
�−
q
− �+

q

)
�q

(4.12)�p =
�+
p

�−
p
+ �+

p

Step 1 The three experts offering their own opinions with 
respect to the results gained with each emerging technol-
ogy enterprise are given in Tables 1, 2 and 3.
 C1 , C3 are cost-type criteria and C2 , C4 are benefit-type 
criteria. So, we have need to normalized the spherical 
linguistic fuzzy information. So normalized spherical 
linguistic fuzzy information is given in Tables 4, 5 and 6.
Let us assume that the information of the attrib-
ute weights is given by experts and is partly known; 
Δ = {0.2 ≤ w

1

≤ 0.25, 0.15 ≤ w
2

≤ 0.2, 0.28 ≤ w
3

≤ 0.32,

0.35 ≤ w
4

≤ 0.4}, wp ≥ 0 , p = 1, 2, 3, 4 , 
∑4

p=1
wp = 1 

Then, we utilize the developed approach to draw the most 
beautiful alternative(s).
Step 2 Find for each decision maker their fuzzy density, 
where � is its parameter. Assume that Pěŭ

(A1) = 0.30 , 
Pěŭ

(A2) = 0.40 , Pěŭ
(A3) = 0.50 . Then, � of expert can be 

determined, which is � = −0.45 . By Eq. (2.9), we have 
Pěŭ

(A1,A2) = 0.65 , Pěŭ
(A1,A3) = 0.73 , Pěŭ

(A2,A3) = 0.81 , 
Pěŭ

(A1,A2,A3) = 1.
Step 3 According to Definition 12, Ĕ(k)

ŭq
 is reordered such 

that Ĕ(k)

ŭq
≥ Ĕ

(k−1)

ŭq
 . Then, utilize the spherical fuzzy lin-

guistic Choquet integral weighted averaging operator 

Table 7   Collective spherical linguistic fuzzy information

Ă
1

Ă
2

Ă
3

Ă
4

Ž
1

⟨�
2.55

, 0.702, 0.417, 0.225⟩ ⟨�
4.00

, 0.638, 0.361, 0.331⟩ ⟨�
3.40

, 0.634, 0.545, 0.391⟩ ⟨�
3.75

, 0.498, 0.204, 0.313⟩
Ž
2

⟨�
3.75

, 0.740, 0.488, 0.254⟩ ⟨�
3.70

, 0.498, 0.670, 0.162⟩ ⟨�
2.05

, 0.740, 0.311, 0.335⟩ ⟨�
3.25

, 0.616, 0.193, 0.374⟩
Ž
3

⟨�
4.00

, 0.411, 0.654, 0.361⟩ ⟨�
2.70

, 0.748, 0.274, 0.200⟩ ⟨�
3.60

, 0.755, 0.260, 0.265⟩ ⟨�
2.40

, 0.600, 0.278, 0.304⟩
Ž
4

⟨�
1.70

, 0.770, 0.331, 0.418⟩ ⟨�
3.60

, 0.651, 0.562, 0.311⟩ ⟨�
3.35

, 0.629, 0.354, 0.311⟩ ⟨�
2.35

, 0.515, 0.265, 0.358⟩

Table 8   Positive-ideal separation matrix

Ă
1

Ă
2

Ă
3

Ă
4

D
+ = Ž

1

0.0000 0.0799 0.1543 0.0193

Ž
2

0.0133 0.1650 0.0527 0.0000

Ž
3

0.2137 0.0000 0.0000 0.0096

Ž
4

0.0095 0.1284 0.0788 0.0345

Table 9   Negative-ideal separation matrix

Ă
1

Ă
2

Ă
3

Ă
4

D
− = Ž

1

0.2137 0.0850 0.0000 0.0151

Ž
2

0.2004 0.0000 0.1016 0.0345

Ž
3

0.0000 0.1650 0.1543 0.0248

Ž
4

0.2041 0.0365 0.0755 0.0000
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 to aggregate all the spherical linguistic fuzzy decision 
matrices Rk =

[
Ĕ
(k)

ŭq

]
m×n

 into a cumulative spherical lin-

guistic fuzzy decision matrix as follows (Table 7):

Step 4 Utilizing Eqs. (4.2) and (4.3), we get the positive-
ideal and negative-ideal solutions, respectively, 

Step 5 Utilize Eqs. (4.5) and (4.6) to get the positive-
ideal separation matrix ( D+ ) and negative-ideal separa-
tion matrix ( D− ), respectively (Tables 8, 9);

Step 6 Utilize Eqs. (4.7) and (4.8) to get the grey rela-
tional coefficient matrices in which each alternative is 
calculated from PIS and NIS as follows: 

Step 7 Use the model (M2) to form the single-objective 
programming model, which is: 

 After the solution of the model, the weighting vector of 
attributes is: 

 Then, for each alternative, we obtain the degree of grey 
relational coefficient from PIS and NIS: 

SLFCIWA

�
Ĕ
ŭ
1

, Ĕ
ŭ
2

,… , Ĕ
ŭ
n

�
=

⎧
⎪⎪⎨⎪⎪⎩

𝜁 r∑
p=1

𝜆(A𝜌(p))−𝜆(A𝜌(p−1))⋅ěŭ𝜌(p)
,

�
1 − Πn

p=1

�
1 − P

2

ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))
,

Πn

p=1

�
I
ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))
,Πn

p=1

�
N
ě
ŭ𝜌(p)

�𝜆(A𝜌(p))−𝜆(A𝜌(p−1))

⎫
⎪⎪⎬⎪⎪⎭

P+ =

� ⟨�2.55, 0.702, 0.417, 0.225⟩, ⟨�2.70, 0.748, 0.274, 0.200⟩,
⟨�3.60, 0.755, 0.260, 0.265⟩, ⟨�3.25, 0.616, 0.193, 0.374⟩

�

P− =

� ⟨�4.00, 0.411, 0.654, 0.361⟩, ⟨�3.70, 0.498, 0.670, 0.162⟩,
⟨�3.40, 0.634, 0.545, 0.391⟩, ⟨�2.35, 0.515, 0.265, 0.358⟩

�

�
�+
ij

�
=

⎡⎢⎢⎢⎣

1.0000 0.5721 0.4091 0.8470

0.8893 0.3930 0.6696 1.0000

0.3333 1.0000 1.0000 0.9175

0.9183 0.4541 0.5755 0.7559

⎤⎥⎥⎥⎦

�
�−
ij

�
=

⎡⎢⎢⎢⎣

0.3333 0.5569 1.0000 0.8761

0.3477 1.0000 0.5125 0.7559

1.0000 0.3930 0.4091 0.8116

0.3436 0.7453 0.5859 1.0000

⎤⎥⎥⎥⎦

min �(w) = −0.0619w1 − 0.3358w2 − 0.6371w3 − 0.0290w4

w = (0.226, 0.416, 0.312, 0.043)

�+
1
= 0.6280, �+

2
= 0.6163, �+

3
= 0.8427, �+

4
= 0.6085,

�−
1
= 0.6566, �−

2
= 0.6869, �−

3
= 0.5520, �−

4
= 0.6134.

Step 8 Utilize Eq. 4.12, on the PIS and NIS, to obtain the 
relative relational degree of each alternative, which are 
the following: 

Step 9 Rank the alternatives, with the relative relational 
degree follows: 

 and so the most suitable alternative is Ž3.
Step 10 End.

Comparative analysis

To verify the effectively and efficiency of the suggested tech-
nique, we conducted a comparative study for comparison of 
our suggested technique with the Pythagorean fuzzy TOP-
SIS method [38].

A comparison analysis with the pythagorean fuzzy TOPSIS

These two techniques easily tackle the MAGDM problems, 
grey method (GRA) firstly introduced by Deng [14] to exe-
cute a multi-attribute performance scheme as a tool which 
is utilized to recognize solutions from a finite alternative 
set. TOPSIS, firstly defined by Hwang and Yoon [18], is the 
modest and suitable path to resolve the MAGDM problems 
with using crisp sets, purposes of which is that it elects that 
alternative which has the smallest distance and the utmost 
distance from the positive-ideal solution and negative-ideal 
solution, respectively.

To rank results the alternatives we used the Pythagorean 
fuzzy GRA method and the Pythagorean fuzzy TOPSIS 

�1 =
�+
1

�−
1
+ �+

1

=
0.6280

0.6566 + 0.6280
= 0.4888

�2 =
�+
2

�−
2
+ �+

2

=
0.6163

0.6869 + 0.6163
= 0.4729

�3 =
�+
3

�−
3
+ �+

3

=
0.8427

0.5520 + 0.8427
= 0.6042

�4 =
�+
4

�−
4
+ �+

4

=
0.6085

0.6134 + 0.6085
= 0.4979

Ž3 > Ž4 > Ž1 > Ž2,
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technique are clearly dissimilar. The Pythagorean fuzzy 
TOPSIS method can be used only in the circumstances 
where the DMs are completely analytical. After all, in prac-
tice, for the incomplete information or some other factors, 
the DMs cannot generally deliver the precise preferences. 
In other words, the DMs are not rational to some grade. The 
Pythagorean fuzzy GRA method can sensibly characterize 
the DMs’ performances under risk, and consequently it may 
tackle above subject excellently.

Conclusion

The classic grey relational analysis procedure is usually 
appropriate for tackling the MAGDM problems, where the 
data are in the form of numerical values. If MAGDM prob-
lems contain spherical linguistic fuzzy information, then 
classic grey relational analysis procedure is flopped to han-
dle such a situation. In this article, we launch the multiple 
objective optimization representations on the basis of ele-
mentary classical GRA method. In the proposed method, we 
use the spherical linguistic fuzzy Choquet integral weighted 
averaging (SLFCIWA) operator to merge all the separate 
matrices. Then, on the basis of the traditional GRA method, 
calculation steps for dealing with spherical linguistic fuzzy 
MAGDM problems with incomplete information are given. 
Finally, a decision problem has established which is based 
on these defined operators, to rank the dissimilar alternatives 
for spherical linguistic fuzzy setting. The implied approach 
has been exposed with a numerical example to observe its 
success along with reliableness. Thus, the proposed opera-
tions give a new easier track to grip the inexact data through-
out the decision problem procedure.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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