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Abstract Many real-life problems using mathematical modeling can be reduced to scalar and system of
nonlinear equations. In this paper, we develop a family of three-step sixth-order method for solving nonlinear
equations by employing weight functions in the second and third step of the scheme. Furthermore, we extend
this family to the multidimensional case preserving the same order of convergence. Moreover, we have made
numerical comparisons with the efficient methods of this domain to verify the suitability of our method.

Mathematics Subject Classification Primary 65H10 · 47H17; Secondary 65G99 · 49M15

1 Introduction

It is well-known fact that a wide class of problemswhich arises in various branches of pure and applied sciences
can be viewed in the general framework of the nonlinear equations and systems of nonlinear equations. Due
to their importance, several iterative methods have been suggested and analyzed under certain conditions.
Therefore, solving nonlinear equations and nonlinear systems efficiently and reliably has gained paramount
importance in physics, engineering, operational research, and many other disciplines. This importance led to
the development of many numerical techniques. However, most of them are iterative in nature, because analytic
methods for such problems are almost unavailable. We can see several examples that show the applicability of
these to real world problems; see [5,9]. Narang et al. (2016) in [10] proposed fourth- and sixth-order methods
for the nonlinear systems which were the extensions of earlier univariate schemes. Recently, researchers have
proposed sixth-order iterativemethods usingweight functions and parameters (for example, see [1–3,6–8,13]).
By getting motivation from the recent activities in this direction, we aim to propose a sixth-order family of
Jarratt-type methods for solving scalar equations. Along with the perseverance of order of convergence, we
then extend this family for the multidimensional case. The outline of the paper is as follows. In Sect. 2, a
sixth-order scheme is presented along with their convergence analysis and numerical examples. In Sect. 3, we
present extension of sixth-order scheme and their numerical examples. Section4 and Section5 are devoted to
the efficiency of methods and concluding remarks.
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2 Development of a sixth-order scheme for nonlinear scalar equation

We introduce a new sixth-order method for solving nonlinear equations.

2.1 Derivation of the scheme

For the development of our scheme, we use weight function approach. Our method is defined by the following
three steps:

yn = xn − 2

3

f (xn)

f ′(xn)
,

zn = xn − P(un)
f (xn)

f ′(yn)
,

xn+1 = zn − Q(vn)
f (zn)

f ′(xn)
, (1)

where P : C → C and Q : C → C are weight functions that are analytic in the neighborhood of 1 and
un = f ′(xn)

f ′(yn) , vn = f ′(yn)
f ′(xn) . Theorem 2.1 demonstrates that the order of convergence reaches at six using

particular conditions on these weight functions.

Theorem 2.1 Suppose f : D ⊂ C → C be a sufficiently differentiable function in D containing a simple
root γ of the equation f (x) = 0.Moreover, we suppose that an initial guess x0 is sufficiently close to γ . Then,
the family of iterative methods (1) attains order of convergence six using the following conditions on weight
functions:

P(1) = 1, P ′(1) = −1

4
, P ′′(1) = 5

4
, | P ′′′ | (1) < ∞,

Q(1) = 1, Q′(1) = −3

2
, | Q′′ | (1) < ∞.

The error equation is given as

en+1 = 1

729
(−54c22 + 9c3 + 8Q′′(1)c22)(32P ′′′(1)c32 + 3c32 + 81c2c3 − 9c4)e

6
n

+O(e7n).

Proof Let us consider that en = xn −γ be the error in the nth iteration. The Taylor’s series expansion of
the function f (xn) and its first-order derivative f ′(xn) about x = γ with the assumption f ′(γ ) �= 0 lead us to

f (xn) = f ′(γ )(en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + O(e7n)), (2)

where

ci = f i (γ )

i ! f ′(γ )
,

for i = 2, 3, ... and

f ′(xn) = f ′(γ )(1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n + 6c6e

5
n + O(e6n)). (3)

Now

yn = xn − 2

3

f (xn)

f ′(xn)
, (4)

Using (2) and (3) in (4), we get

yn = γ + 1

3
en + 2

3
c2e

2
n + (

4

3
c3 − 4

3
c22)e

3
n + (2c4 − 14

3
c2c3 + 8

3
c32)e

4
n
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+(
8

3
c5 − 20

3
c2c4 − 4c23 + 40

3
c3c

2
2 − 16

3
c42)e

5
n

+(−34

3
c3c4 + 22c2c

2
3 − 104

3
c3c

3
2 + 56

3
c4c

2
2 − 26

3
c2c5 + 10

3
c6 + 32

3
c52)e

6
n + O(e7n).

In view of the fact that f ′(yn) = f ′(xn) |en−→yn−γ , we obtain

f ′(yn) = f ′(γ )(1 + 2

3
c2en + 1

3
(4c22 + c3)e

2
n + (

8

3
c2c3 − 8

3
c32 + 4

27
c4)e

3
n +

5∑

i=3

ai e
i
n + O(e6n)), (5)

where
ai = ai (c2, c3, ...c6), 4 � i � 5.

With the help of (3) and (5), we obtain un = f ′(xn)
f ′(yn) as

un = f ′(γ )(1 + 2c2en + 3c3e2n + 4c4e3n + 5c5e4n + 6c6e5n + O(e6n))

f ′(γ )(1 + 2
3c2en + 1

3 (4c
2
2 + c3)e2n + ( 83c2c3 − 8

3c
3
2 + 4

27c4)e
3
n + ∑5

i=3 ai e
i
n + O(e6n))

(6)

= 1 + 4

3
c2en + (

8

3
c3 − 20

9
c22)e

2
n + (

104

27
c4 − 56

9
c2c3 + 64

27
c32)e

3
n +

5∑

i=4

bi e
i
n + O(e6n),

where
bi = bi (c2, c3, ...c6), 4 � i � 5.

Next, we use Taylor’s series expansion of P(un) about un = 1 up to fifth-order terms, as follows:

P(un) = P(1) + P ′(1)(un − 1) + P ′′(1)(un − 1)2 + P ′′′(1)(un − 1)3 + Piv(1)(un − 1)4 +
Pv(1)(un − 1)5 + O(e6n).

Therefore, we have

P(un) = P(1) + 4

3
P ′(1)c2en + (

8

3
P ′(1)c3 − 20

9
P ′(1)c22 + 8

9
P ′′(1)c22)e2n +

5∑

i=3

di e
i
n + O(e6n),

where

di = di (c2, c3, ...c6, P(1), P ′(1), P ′′(1), P ′′′(1), Piv(1)), 3 � i � 5.

Moreover

f (xn)

f ′(yn)
= f ′(γ )(en + c2e2n + c3e3n + c4e4n + c5e5n + c6e6n + O(e7n))

f ′(γ )(1 + 2
3c2en + 1

3 (4c
2
2 + c3)e2n + ( 83c2c3 − 8

3c
3
2 + 4

27c4)e
3
n + ∑5

i=3 ai e
i
n + O(e6n))

= en + 1

3
c2e

2
n + (

2

3
c3 − 14

9
c22)e

3
n +

5∑

i=3

ti e
i
n + O(e6n),

where
ti = ti (c2, c3, ...c6), 3 � i � 5.

Consequently, the second substep becomes

zn = xn − P(un).
f (xn)

f ′(yn)
= γ + (1 − P(1))en − 1

3
c2(P(1) + 4P ′(1))e2n +

6∑

i=3

gi e
i
n + O(e7n), (7)
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such that
gi = gi (c2, c3, ...c6, P(1), P ′(1), P ′′(1), P ′′′(1), Piv(1)), 3 � i � 6.

Using the conditions on P and its derivatives as

P(1) = 1, P ′(1) = −1

4
, P ′′(1) = 5

4
, | P ′′′(1) | < ∞,

(7) becomes

zn = (−c2c3 + 1

9
c4 − 1

27
c32 − 32

81
P ′′′(1)c32)e4n +

6∑

i=5

hi e
i
n + O(e7n)),

where
hi = hi (c2, c3, ...c6, P

′′′(1), Piv(1), Pv(1)), 5 � i � 6.

As f (zn) = f (xn) |en−→zn−γ , we obtain

f (zn) = f ′(γ )((−c2c3 + 1

9
c4 − 1

27
c32 − 32

81
P ′′′(1)c32)e4n +

6∑

i=5

ji e
i
n + O(e7n)),

where
ji = ji (c2, c3, ...c6, P

′′′(1), Piv(1), Pv(1)), 5 � i � 6.

With the help of (3) and (5), vn = f ′(yn)
f ′(xn) is given by

vn = f ′(γ )(1 + 2
3c2en + 1

3 (4c
2
2 + c3)e2n + ( 83c2c3 − 8

3c
3
2 + 4

27c4)e
3
n + ∑5

i=3 ai e
i
n + O(e6n))

f ′(γ )(1 + 2c2en + 3c3e2n + 4c4e3n + 5c5e4n + 6c6e5n + O(e6n))

= 1 − 4

3
c2en + (−8

3
c3 + 4c22)e

2
n + (−104

27
c4 + 40

3
c2c3 − 32

3
c32)e

3
n +

5∑

i=4

ki e
i
n + O(e6n),

where
ki = ki (c2, c3, ...c6), 4 � i � 5.

Let us consider Taylor’s expansion for the weight function Q about vn = 1 up to fifth-order terms as

Q(vn) = Q(1) + Q′(1)(vn − 1) + Q′′(1)(vn − 1)2 + Q′′′(1)(vn − 1)3 + Qiv(1)(vn − 1)4 +
Qv(1)(vn − 1)5 + O(e6n).

Thus

Q(vn) = Q(1) − 4

3
Q′(1)c2en + (−8

3
Q′(1)c3 + 4Q′(1)c22 + 8

9
Q′′(1)c22)e2n +

5∑

i=3

li e
i
n + O(e6n),

where
li = li (c2, c3, ...c6, Q(1), Q′(1), Q′′(1), Q′′′(1), Qiv(1)), 3 � i � 5.

Therefore, the final step takes the form

xn+1 = (−c2c3 + 1

9
c4 − 1

27
c32 − 32

81
P ′′′(1)c32 + Q(1)c2c3 − 1

9
Q(1)c4

+ 1

27
c32Q(1) + 32

81
c32P

′′′(1)Q(1))e4n +
6∑

i=5

mie
i
n + O(e7n), (8)

where
mi = mi (c2, c3, ...c6, P

′′′(1), Piv(1), Pv(1), Q(1), Q′(1)), 5 � i � 6.
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From (8), it is clear that for the following conditions on Q and on its derivatives:

Q(1) = 1, Q′(1) = −3

2
, | Q′′(1) | < ∞, (9)

our proposed scheme has the following error equation:

en+1 = 1

729
(−54c22 + 9c3 + 8Q′′(1)c22)(32P ′′′(1)c32 + 3c32 + 81c2c3 − 9c4)e

6
n

+O(e7n). (10)

The error equation shows that the proposed scheme (1) approaches the sixth-order of convergence. ��

2.2 Particular cases of weight functions

Here are some particular cases of weight functions written as Case 1, Case 2, and Case 3.

Case 2.2 If we take the weight functions P (u) and Q (v) of the following form:

P (u) = a0
1 + a1u + a2u2

,

and
Q (v) = b0 + b1v + b2v

2,

with

a0 = 16

3
, a1 = 22

3
, a2 = −3,

b0 = 5

2
+ b2, b1 = −3

2
− 2b2, b2 = b2.

For b2 = 4

b0 = 13

2
, b1 = −19

2
.

Then, for un = f ′(xn)
f ′(yn) and vn= f ′(yn)

f ′(xn) , we get a new sixth-order scheme, called as FS1

yn = xn − 2

3

f (xn)

f ′(xn)
,

zn = xn −
(

16

3 + 22un − 9u2n

)
f (xn)

f ′(yn)
,

xn+1 = zn −
(
13

2
− 19

2
vn + 4v2n

)
f (zn)

f ′(xn)
. (11)

Case 2.3 When the weight functions P (u) and Q (v) are the rational function of the following form:

P(u) = a0
1 + a1u + a2u2

,

Q (v) = b0
1 + b1v + b2v2

,

with

a0 = 16

3
, a1 = 22

3
, a2 = −3,

b0 = −2 + 2b2, b1 = −3 + b2, b2 = b2.

For b2 = 2
b0 = 2, b1 = −1.
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Then, a new sixth-order scheme is given namely as FS2

yn = xn − 2

3

f (xn)

f ′(xn)
,

zn = xn −
(

16

3 + 22un − 9u2n

)
f (xn)

f ′(yn)
,

xn+1 = zn −
(

2

1 − vn + 2v2n

)
f (zn)

f ′(xn)
. (12)

Case 2.4 Next, we consider weight functions P (u) and Q (v) of the following form:

P (u) = a0 + a1
u

+ a2u,

and

Q (v) = b0 + b1
v

+ b2v,

with

a0 = 0, a1 = 5

8
, a2 = 3

8
,

b0 = −1

2
− 2b2, b1 = 3

2
+ b2, b2 = b2.

For b2 = 3

b0 = −13

2
, b1 = 9

2
.

Then, another sixth-order new scheme, namely FS3, is obtained as

yn = xn − 2

3

f (xn)

f ′(xn)
,

zn = xn −
(

5

8un
+ 3

8
un

)
f (xn)

f ′(yn)
,

xn+1 = zn − (−13

2
+ 9

2vn
+ 3vn)

f (zn)

f ′(xn)
. (13)

2.3 Numerical results

Now, we want to verify the numerical results of our new schemes that are presented in the previous section.
To demonstrate the suitability of our suggested schemes, we have considered some examples and compared
the results of our schemes, namely, FS1, FS2, and FS3, with respect to the number of iterations n, absolute
residual error of the corresponding function | f (xn) |, error in two consecutive iterations |xn − xn−1|, and
computational order of convergence COC = log[ f (xn+1)/ f (xn)]

log[ f (xn)/ f (xn−1)] . The previous methods for comparisons are

considered as the sixth-order methods given by Behl et al. (2019) in [1] and Lee and Kim (2020) in [8] denoted
by BS and LK . The numerical results are given in Tables 1 and 2.

Example 2.5 We choose a function from [4], which is

f1 (x) = (x − 1)6 − 1.

The function has two real and four complex roots. We take the real root γ = 2 and an initial guess x0 = 2.5.

Example 2.6 Consider the function
f2(x) = x3 − cos(x) + 2,

from [11]. The desired root for the function is γ = 2.759 + 6.585i . We take an initial guess x0 = 3 + 7.4i .
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Table 1 Comparison of sixth-order methods for univariate function f1 (x)

Cases n xn |xn − xn−1| | f (xn)| COC

FS1 1 2.042 4.578e(−1) 2.811e(−1)
2 2.000 4.215e(−2) 4.671e(−8) 4.324
3 1.999 7.785e(−9) 3.242e(−47) 5.776

FS2 1 2.047 4.528e(−1) 3.183e(−1)
2 2.000 4.714e(−2) 2.846e(−6) 3.335
3 2.000 4.744e(−7) 3.277e(−36) 5.930

FS3 1 2.053 4.466e(−1) 3.6605e(−1)
2 1.999 5.336e(−2) 7.233e(−6) 3.237
3 1.999 1.205e(−6) 4.233e(−33) 5.789

LK 1 2.107 3.926e(−1) 8.436e(−1)
2 2.000 1.067e(−1) 3.714e(−3) 2.160
3 2.000 6.180e(−4) 7.918e(−16) 5.377

BS 1 2.078 4.219e(−1) 5.697e(−1)
2 2.000 7.800e(−2) 2.753e(−4) 2.629
3 2.000 4.589e(−5) 2.778e(−23) 5.729

Table 2 Comparison of sixth-order methods for univariate function f2 (x)

Cases n xn |xn − xn−1| | f (xn)| COC

FS1 1 2.764 + 6.590i 8.428e(−1) 1.792
2 2.759 + 6.585i 7.801e(−3) 3.108e(−12) 5.113
3 2.759 + 6.585i 1.359e(−14) 9.452e(−83) 5.995

FS2 1 2.765 + 6.593i 8.401e(−1) 2.426
2 2.759 + 6.585i 1.054e(−2) 4.154e(−11) 4.965
3 2.759 + 6.585i 1.817e(−13) 1.103e(−75) 5.997

FS3 1 2.767 + 6.592i 8.405e(−1) 2.525
2 2.759 + 6.585i 1.097e(−2) 1.870e(−10) 4.709
3 2.759 + 6.585i 8.180e(−13) 3.421e(−71) 5.995

LK 1 2.791 + 6.626i 8.007e(−1) 12.480
2 2.759 + 6.585i 5.276e(−2) 1.937e(−5) 3.986
3 2.759 + 6.585i 8.474e(−8) 4.351e(−40) 5.964

BS 1 2.777 + 6.606i 8.240e(−1) 6.579
2 2.759 + 6.585i 2.827e(−2) 1.170e(−7) 4.466
3 2.759 + 6.585i 5.122e(−10) 4.556e(−54) 5.988

3 Extension of sixth-order method to the system of nonlinear equations

Now, we give an extension of our method to the system of nonlinear equations by preserving the order of
convergence as in the case of scalar equations.

3.1 Derivation of the scheme

We use the weight function approach in the development of our scheme. Our method consists of three steps,
which are given below. For the multidimensional case, the scheme (1) named as FS can be rewritten as

Y (n) = X (n) − 2

3

(
F

′ (
X (n)

))−1
F

(
X (n)

)
,

Z (n) = X (n) − P
(
U (n)

) (
F

′ (
Y (n)

))−1
F

(
X (n)

)
,

X (n+1) = Z (n) − Q
(
V (n)

) (
F

′ (
X (n)

))−1
F

(
Z (n)

)
. (14)

for the multivariate vector-valued function F : D ⊆ C
n → C

n with n ∈ N

U (n) = (F
′ (
Y (n)

)
)−1F ′(X (n)),
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and
V (n) = (F ′ (X (n)

)
)−1F ′ (Y (n)

)
.

Theorem 3.1 Let us suppose that F : D ⊆ C
n → C

n with n ∈ N be a sufficiently Frechet differentiable
function in D containing simple root ϒ. In addition, that convergence is guaranteed if we consider that initial
guess X (0) is close to the rootϒ. Then, the numerical scheme (14) has sixth-order convergence for the following
conditions on weight functions:

P(I ) = I, P ′(I ) = −1

4
I, P ′′(I ) = 5

4
I, | P ′′′(I ) | < ∞,

Q(I ) = I, Q′(I ) = −3

2
I, | Q′′(I ) | < ∞,

where P, Q : Cn×n → C
n×n are matrix functions, sufficiently Frechet differentiable in a neighborhood of I

(I is n × n identity matrix).

Proof Let us consider that En = X (n) − ϒ be the error in the nth iteration. The Taylor’s series expansion
of the function F(X (n)) and F ′(X (n)) with the assumption | F ′(ϒ) | �= 0 leads us to

F(X (n)) = F ′(ϒ)(En + C2E
2
n + C3E

3
n + C4E

4
n + C5E

5
n + C6E

6
n + O(E7

n)), (15)

where

Ci = 1

i !
[
F ′(ϒ)

]−1
Fi (ϒ),

for i = 2, 3, ... and

F ′(X (n)) = F ′(ϒ)(I + 2C2En + 3C3E
2
n + 4C4E

3
n + 5C5E

4
n + 6C6E

5
n + O(E6

n)). (16)

Now, for the first substep

Y (n) = X (n) − 2

3
(F ′(X (n)))−1F

(
X (n)

)
. (17)

Applying Taylor’s series to (17), we get

Y (n) = ϒ + 1

3
En + 2

3
C2E

2
n + (

4

3
C3 − 4

3
C2
2 )E

3
n + (2C4 − 14

3
C2C3 + 8

3
C3
2)E

4
n +

6∑

i=5

Ai E
i
n + O(E7

n),

where
Ai = Ai (C2,C3, ...C6), 5 � i � 6.

Also, F ′(Y (n)) is given by

F ′(Y (n)) = F ′(ϒ)(I + 2

3
C2En + 1

3
(4C2

2 + C3)E
2
n + (

8

3
C2C3 − 8

3
C3
2 + 4

27
C4)E

3
n +

5∑

i=4

Bi E
i
n + O(E6

n)),

(18)

where
Bi = Bi (C2,C3, ...C6), 4 � i � 5.

Next, for the Taylor’s series expansion of the function U (n) = (F ′(Y (n)))−1F ′(X (n))

U (n) = I + 4

3
C2En + (

8

3
C3 − 20

9
C2
2 )E

2
n +

5∑

i=3

Di E
i
n + O(E6

n),

where
Di = Di (C2,C3, ...C6), 3 � i � 5.
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Moreover, P(U (n)) is given by

P(U (n)) = P(I ) + 4

3
P ′(I )C2En + (

8

3
P ′(I )C3 − 20

9
P ′(I )C2

2 + 8

9
P ′′(I )C2

2 )E
2
n +

5∑

i=3

Gie
i
n + O(e6n),

where
Gi = Gi (C2,C3, ...C6, P(I ), P ′(I ), P ′′(1), P ′′′(1), Piv(I )), 3 � i � 5.

Let us now consider the second substep

Z (n) = X (n) − P(U (n))F ′(Y (n))−1F(X (n)), (19)

as

Z (n) = ϒ + (I − P(I ))En − 1

3
C2(P(I ) + 4P ′(I ))E2

n +
6∑

i=3

Gi E
i
n + O(E7

n), (20)

where
Gi = Gi (C2,C3, ...C6, P(I ), P ′(I ), P ′′(I ), P ′′′(I ), Piv(I )), 3 � i � 6.

Taking the conditions

P(I ) = I, P ′(I ) = −1

4
I, P ′′(I ) = 5

4
I, | P ′′′(1) | < ∞,

(19) becomes

Z (n) = (−C2C3 + 1

9
C4 − 1

27
C3
2 − 32

81
P ′′′(I )C3

2)E
4
n +

6∑

i=5

Hie
i
n + O(e7n)),

where
Hi = Hi (C2,C3, ...C6, P

′′′(I ), Piv(I ), Pv(I )), 5 � i � 6.

Similarly, F(Z (n)) is given as

F(Z (n)) = F ′(ϒ)((−C2C3 + 1

9
C4 − 1

27
C3
2 − 32

81
P ′′′(I )C3

2)E
4
n +

6∑

i=5

Ji E
i
n + O(E7

n)),

where
Ji = Ji (C2,C3, ...C6, P

′′′(I ), Piv(I ), Pv(I )), 5 � i � 6.

Also, applying Taylor’s series to V (n) = (F ′(X (n)))−1F ′(Y (n)), we get

V (n) = I − 4

3
C2En + (−8

3
C3 + 4C2

2 )E
2
n +

5∑

i=3

Ki E
i
n + O(E6

n),

where
Ki = Ki (C2,C3, ...C6), 3 � i � 5.

Similarly, Q(V (n)) is given as

Q(V (n)) = Q(I ) − 4

3
Q′(I )C2En + (−8

3
Q′(I )C3 + 4Q′(I )C2

2 + 8

9
Q′′(I )C2

2 )E
2
n +

5∑

i=3

Li E
i
n + O(E6

n),

where
Li = Li (C2,C3, ...C6, Q(I ), Q′(I ), Q′′(I ), Q′′′(I ), Qiv(I )), 3 � i � 5.

Finally, Taylor’s expansion of the last step gives

X (n+1) = (−C2C3 + 1

9
C4 − 1

27
C3
2 − 32

81
P ′′′(I )C3

2 + Q(I )C2C3 − 1

9
Q(I )C4 + 1

27
C3
2Q(I )
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+32

81
C3
2 P

′′′(I )Q(I ))E4
n +

6∑

i=5

Mi E
i
n + O(E7

n),

where
Mi = Mi (C2,C3, ...C6, P

′′′(I ), Piv(I ), Pv(I ), Q(I ), Q′(I )), 5 � i � 6.

It is apparent that taking the following conditions on the weight function Q:

Q(I ) = I, Q′(I ) = −3

2
, | Q′′(I ) | < ∞, (21)

we obtain the following error equation from (21):

En+1 = 1

729
(−54C2

2 + 9C3 + 8Q′′(I )C2
2 )(81C2C3 + 3C3

2 + 32P ′′′(I )C3
2 − 9C4)E

6
n + O(E7

n).

This asymptotic error constant reveals that the proposed scheme (14) reaches at sixth-order convergence. It
completes the proof. ��

Next, we take some special cases of our proposed scheme (14), which are as follows:

Case 1 When the weight functions P(U ) and Q(V ) are polynomial functions of the following form:

P(U ) = a0 I (I + a1U + a2U
2)−1,

Q(V ) = b0 I + b1V + b2V
2,

with

a0 = 16

3
, a1 = 22

3
, a2 = −3,

b0 = 5

2
+ b2, b1 = −3

2
− 2b2, b2 = b2.

for b2 = 4

b0 = 13

2
, b1 = −19

2
.

Then, we get a sixth-order scheme, named as FS4 which is given below

Y (n) = X (n) − 2

3
(F ′ (X (n)

)
)−1F

(
X (n)

)
,

Z (n) = X (n) − 16I (3I + 22U (n) − 9(U (n))2)−1(F ′ (Y (n)
)
)−1F

(
X (n)

)
,

X (n+1) = Z (n) − (
13

2
I − 19

2
V (n) + 4(V (n))2)(F ′ (X (n)

)
)−1F

(
Z (n)

)
. (22)

Case 2 If we take the weight functions P(U ) and Q(V ) of the following form:

P(U ) = a0 I (I + a1U + a2U
2)−1,

Q(V ) = b0 I (I + b1V + b2V
2)−1,

with

a0 = 16

3
, a1 = 22

3
, a2 = −3,

b0 = −2 + 2b2, b1 = −3 + b2, b2 = b2.

for b2 = 2
b0 = 2, b1 = −1.

Then, we obtain the following sixth-order scheme called as FS5:

Y (n) = X (n) − 2

3
(F ′ (X (n)

)
)−1F

(
X (n)

)
,
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Z (n) = X (n) − 16I (3I + 22U (n) − 9(U (n))2)−1(F ′ (Y (n)
)
)−1F

(
X (n)

)
,

X (n+1) = Z (n) − 2I (I − V (n) + 2(V (n))2)−1(F ′ (X (n)
)
)−1F

(
Z (n)

)
. (23)

Case 3 If we take weight functions P(U ) and Q(V ) of the following form:

P(U ) = a0 + a1U
−1 + a2U,

and

Q(V ) = b0 + b1V
−1 + b2V,

with

a0 = 0, a1 = 5

8
, a2 = 3

8
,

b0 = −1

2
− 2b2, b1 = 3

2
+ b2, b2 = b2.

for b2 = 3

b0 = −13

2
, b1 = 9

2
.

Then, we obtain the sixth-order scheme called as FS6

Y (n) = X (n) − 2

3
(F ′ (X (n)

)
)−1F

(
X (n)

)
,

Z (n) = X (n) − (
5

8
(U (n))−1 + 3

8
U (n))(F ′ (Y (n)

)
)−1F

(
X (n)

)
,

X (n+1) = Z (n) − (−13

2
I + 9

2
(V (n))−1 + 3V (n))(F ′ (X (n)

)
)−1F

(
Z (n)

)
. (24)

Table 3 Comparison of sixth-order methods for F1 (X)

Cases n X (n) ‖ X (n)−X (n−1)‖∞ ‖ F
(
X (n)

) ‖∞
FS4 1 5.184e(−1) 3.210e(−1) 4.815e(−1)

2 5.044e(−1) 5.102e(−4) 9.296e(−3)
3 5.044e(−1) 2.156e(−12) 3.467e(−11)

FS5 1 5.215e(−1) 3.211e(−1) 4.784e(−1)
2 5.044e(−1) 6.076e(−4) 1.229e(−2)
3 5.044e(−1) 1.729e(−11) 2.597e(−10)

FS6 1 5.205e(−1) 3.209e(−1) 4.794e(−1)
2 5.044e(−1) 4.922e(−4) 8.993e(−3)
3 5.044e(−1) 2.759e(−11) 4.217e(−10)

BA 1 5.279e(−1) 3.212e(−1) 4.720(−1)
2 5.044e(−1) 7.311e(−4) 1.602e(−2)
3 5.044e(−1) 2.553e(−10) 3.886e(−9)

KC 1 4.804e(−1) 3.192e(−1) 5.195e(−1)
2 5.044e(−1) 1.258e(−3) 2.148e(−2)
3 5.044e(−1) 1.063e(−9) 1.658e(−8)

LK 1 5.332e(−1) 3.216e(−1) 4.667e(−1)
2 5.044e(−1) 1.103e(−3) 2.773e(−2)
3 5.044e(−1) 1.777e(−9) 2.731e(−8)

BS 1 5.332e(−1) 3.216e(−1) 4.667e(−1)
2 5.044e(−1) 1.103e(−3) 2.773e(−2)
3 5.044e(−1) 1.777e(−9) 2.731e(−8)
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Table 4 Comparison of sixth-order methods for F2 (X)

Cases n X (n) ‖ X (n)−X (n−1)‖∞ ‖ F
(
X (n)

) ‖∞
FS4 1 8.956e(−1) 9.767e(−2) 1.029e(−1)

2 8.956e(−1) 2.008e(−13) 3.886e(−13)
3 8.956e(−1) 3.991e(−83) 8.918e(−83)

FS5 1 8.956e(−1) 9.767e(−2) 2.293e(−1)
2 8.956e(−1) 7.087e(−13) 1.443e(−12)
3 8.956e(−1) 1.090e(−78) 1.870e(−78)

FS6 1 8.956e(−1) 9.767e(−2) 1.029e(−1)
2 8.956e(−1) 7.942e(−13) 1.870e(−12)
3 8.956e(−1) 1.047e(−78) 2.077e(−78)

BA 1 8.956e(−1) 9.767e(−2) 2.851(−1)
2 8.956e(−1) 1.257e(−12) 2.481e(−12)
3 8.956e(−1) 7.393e(−77) 1.242e(−76)

KC 1 8.956(−1) 9.767(−2) 2.293(−1)
2 8.956e(−1) 1.343e(−12) 2.851e(−12)
3 8.956e(−1) 8.087e(−77) 1.430e(−76)

LK 1 8.956e(−1) 9.767e(−2) 2.293e(−1)
2 8.956e(−1) 2.378e(−12) 4.983e(−12)
3 8.956(−1) 4.585(−75) 8.028(−75)

BS 1 8.956e(−1) 9.767e(−2) 2.293e(−1)
2 8.956e(−1) 2.378e(−12) 4.983e(−12)
3 8.956e(−1) 4.585e(−75) 8.028e(−75)

Table 5 Comparison of sixth-order methods for F3 (X)

Cases n X (n) ‖X (n)−X (n−1)‖∞ ‖F (
X (n)

) ‖∞
FS4 1 −5.569e(−1) 4.430e(−1) 3.630e(−1)

2 −4.795e(−1) 6.084e(−3) 8.498e(−2)
3 −4.795e(−1) 1.592e(−9) 1.337e(−9)

FS5 1 −5.644e(−1) 4.355e(−1) 3.555e(−1)
2 −4.795e(−1) 1.738e(−3) 2.394e(−3)
3 −4.795e(−1) 2.177e(−10) 5.727e(−10)

FS6 1 −5.660e(−1) 4.339e(−1) 3.539e(−1)
2 −4.795e(−1) 3.854e(−3) 1.336e(−2)
3 −4.795e(−1) 4.747e(−8) 7.227e(−8)

BA 1 −5.809e(−1) 4.190e(−1) 3.390(−1)
2 −4.795e(−1) 3.877e(−2) 5.088e(−2)
3 −4.795e(−1) 3.341e(−8) 3.256e(−7)

KC 1 −4.342e(−1) 5.657e(−1) 4.857e(−1)
2 −4.795e(−1) 4.532e(−2) 4.1470e(−2)
3 −4.795e(−1) 8.592e(−8) 3.952e(−7)

LK 1 −5.920e(−1) 4.079e(−1) 3.279e(−1)
2 −4.795e(−1) 2.562e(−2) 1.055e(−1)
3 −4.795e(−1) 5.123e(−8) 2.492e(−7)

BS 1 −5.920e(−1) 4.079e(−1) 3.279e(−1)
2 −4.795e(−1) 2.562e(−2) 1.055e(−1)
3 −4.795e(−1) 5.123e(−8) 2.492e(−7)

3.2 Numerical results

Now, we want to verify the numerical results of our iterative method. For this purpose, we consider some
examples and compare the results of our scheme, namely, FS4, FS5, and FS6, with respect to number of
iterations n, absolute residual error of the corresponding function in

∥∥F
(
X (n)

)∥∥, and absolute error in two
consecutive iterations

∥∥X (n)−X (n−1)
∥∥ that are given in Tables 3, 4, 5. For the sake of comparison, we consider

the sixth-order methods given by Behl and Argyros (2020) [2], Kansal et al. (2021) [6], Lee and Kim (2020)
[8], and Behl et al. (2019) [1], namely, BA, KC , LK , and BS, respectively.
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Table 6 Comparisons of EI and CE

Method EI CE

KC 6
1

2n2+2n 6
1

2
3 n

3+6n2+ 4
3 n

BA 6
1

2n2+2n 6
1

2
3 n

3+5n2+ 4
3 n

FS 6
1

2n2+2n 6
1

2
3 n

3+7n2+ 4
3 n

LK 6
1

2n2+2n 6
1

1
3 n

3+5n2+ 5
3 n

BS 6
1

2n2+2n 6
1

n3+6n2+n

Example 3.2 We take a 3 × 3 system F1 (X) of nonlinear equations from [6], such that

F1 (X) =
⎡

⎣
f1 (x)
f2 (x)
f3 (x)

⎤

⎦ ,

where

f1 (x) = x21 + x22 + x23 − 1 = 0,

f2 (x) = 2x21 − x22 − 4x3 = 0,

f3 (x) = 3x21 − 4x22 + x23 = 0. (25)

The exact solution for the system is ϒ = (0.6982886, 0.6285243, 0.3425642). We choose an initial guess as
X (0) = (1, 1, 1)

Example 3.3 Let us take a substance that is under observation in a bounded domain � ∈ R
2 with continuous

boundary ∂�. The two-dimensional nonlinear diffusion–reaction equation for the concentrationw (x, t) of the
substance in a bounded domain is represented by an initial-boundary value problem [8]

wt − d�w = w (a − w) in � × (0,∞) , (26)

where w = g on the boundary.
Here, � is Laplacian operator, a is positive constant, and d > 0 is diffusion coefficient. Let us observe the

concentration of substance in a unit square region, such that � = [0, 1]× [0, 1] and let we take d = 1, a = 1.
To get the steady state solution, Eq. (26) is converted in the following form:

wxx + wyy = w (w − 1) in � (27)

with Dirichlet boundary conditions

w (x, 0) = w (x, 1) = x (x − 1)

2
+ 1, w (0, y) = w (1, y) = y (y − 1)

2
+ 1.

We use central-divided difference formula by taking step-length h = 1/4 between the space components
of the unit square region, and then, we discretize Eq. (27) into a system of nonlinear equations. This system
consists of 25 nodes. Among these 25 nodes, 16 are boundary nodes and 9 nodes represent the interior nodal
variables. We solve the system for the interior nodal variables say x1, x2, ...x9. The desired solution to the
problem is

ϒ = (0.90232..., 0.89564..., 0.90232..., 0.89564..., 0.89708...,

0.89564..., 0.90232..., 0.89564..., 0.90232...).

We take X (0) = (1, 1, 1, 1, 1, 1, 1, 1, 1)T as an initial guess (Table 6).
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Fig. 1 Comparison of CE

Example 3.4 Consider the Van der Waals equation of state from [3]

s′′ − β
(
s2 − 1

)
s′ + s = 0, (28)

in an interval [0, 2]. Let the boundary conditions are
s (0) = 0 and s (2) = 1.

We consider the following partition for the interval [0, 2]:
w0 = 0 < w1 < w2 < ... < wn here w j = w0 + jh , h = 2

m
,

and assume that
s j = s

(
w j

)
, j = 0, 1, 2, ...,m.

The central finite-difference formula for the first and second-order derivative is given as

s′
k = sk+1 − sk−1

2h
, s′′

k = sk+1 − 2sk + sk−1

h2
, k = 1, 2, ...,m − 1.

By substituting central-difference formula in Eq. (28), we obtain (m − 1) × (m − 1) system of nonlinear
equations of the following form:

2 (sk+1 − 2sk + sk−1) − βh
(
s2k − 1

)
(sk+1 − sk−1) + h2sk = 0.

We take β = 1
2 and X (0) = (−1,−2,−3,−4, −5,−6,−7,−8, −9)T , k = 1, 2, ...,m − 1. We consider

m = 10 and solve the system of nine nonlinear equations.
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4 Efficiency of the methods

Consider the efficiency index [12] (EI), E I = p
1
d , where p represents the order and d represents the total

number of functional evaluations. Moreover, the computational efficiency index (CE) [4] is characterized as

CE = p
1

(d+op) where op is the operations cost per cycle. We have made comparisons of our scheme FS for E I
and CE with the sixth-order methods given in Sect. 3, namely, BA, KC , LK , and BS.

5 Conclusion

We developed a new sixth-order scheme for the univariate as well as for the multidimensional case. The
numerical results of our scheme compared with those of existing families of Jarratt-type methods show that
our scheme performs better than the existing ones.
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