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Abstract Foreknowledge about sugarcane crop size can help
industry members make more informed decisions. There ex-
ists many different combinations of climate variables, season-
al climate prediction indices, and crop model outputs that
could prove useful in explaining sugarcane crop size. A data
miningmethod like random forests can cope with generating a
prediction model when the search space of predictor variables
is large. Research that has investigated the accuracy of random
forests to explain annual variation in sugarcane productivity
and the suitability of predictor variables generated from crop
models coupled with observed climate and seasonal climate
prediction indices is limited. Simulated biomass from the
APSIM (Agricultural Production Systems sIMulator) sugar-
cane crop model, seasonal climate prediction indices and ob-
served rainfall, maximum and minimum temperature, and ra-
diation were supplied as inputs to a random forest classifier
and a random forest regression model to explain annual vari-
ation in regional sugarcane yields at Tully, in northeastern
Australia. Prediction models were generated on 1 September
in the year before harvest, and then on 1 January and 1 March
in the year of harvest, which typically runs from June to
November. Our results indicated that in 86.36 % of years, it
was possible to determine as early as September in the year

before harvest if production would be above the median. This
accuracy improved to 95.45 % by January in the year of har-
vest. The R-squared of the random forest regression model
gradually improved from 66.76 to 79.21 % from September
in the year before harvest through toMarch in the same year of
harvest. All three sets of variables—(i) simulated biomass
indices, (ii) observed climate, and (iii) seasonal climate pre-
diction indices—were typically featured in the models at var-
ious stages. Better crop predictions allows farmers to improve
their nitrogen management to meet the demands of the new
crop, mill managers could better plan the mill’s labor require-
ments and maintenance scheduling activities, and marketers
can more confidently manage the forward sale and storage of
the crop. Hence, accurate yield forecasts can improve industry
sustainability by delivering better environmental and econom-
ic outcomes.
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1 Introduction

The Green Revolution saw agricultural industries worldwide
increase productivity through advancements in research, de-
velopment, and technology transfer during the first half of the
twentieth century. Unfortunately, around the 1980s, agricul-
tural yields of major crops grown all around the world reached
their ceiling and flat-lined. This plateau presents an enormous
challenge for society. In 2009, the Food and Agriculture
Organization of the United Nations (FAO) predicted that ag-
ricultural production would need to increase by 70 % to sus-
tain a population that is expected to exceed 9 billion by 2050
(FAO 2009). This challenge is made even more difficult by
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constraints imposed by climate change, climate extremes, and
new laws and regulations that govern industry practices.

While the Green Revolution ended several decades ago, the
Big Data Revolution has only just begun. Every day, the world
collects more than 2.5×1018 bytes or 2.5 exabytes of data.
That is equivalent to 1.7 trillion 3.5-in. floppy disks of data
per day or 100 million 25 GB smartphones. The term “Big
Data” refers to (i) the volume and variety of data collected; (ii)
the velocity these data can be captured; and (iii) our ability to
filter, analyze, and discover patterns in large data sets. Many
companies have exploited this explosion of Big Data to
dramatically increase profit margins. For example, Paul
(2012) describes how a data mining approach was used to
develop a Facebook campaign to promote a candy bar to 17-
year-old males. The Facebook campaign resulted in produc-
tion consumption growth of 24% over a 6-month period.Wal-
Mart has integrated smart technologies and a data mining
approach with mobile devices to develop and transmit a shop-
ping list to its in-store customers via an app (Cao and Manrai
2014). Users of the Wal-Mart app were found to spend 77 %
more than non-app users every month.

Governments have also turned to Big Data to make “Smart
Cities” (Caragliu et al. 2011; Perera et al. 2014). A Smart City
is a city that is made more efficient through effective integra-
tion of Big Data technologies in ways that benefit the city’s
inhabitants. In an overview of a special issue of the Journal of
Urban Technology on Smart Cities, Allwinkle and
Cruickshank (2011) identified cities such as San Diego,
Amsterdam, and Brisbane as forerunners of this revolution.
The world eagerly waits to learn if agricultural industries can
become “Smart” agricultural enterprises. The “Green Data
Revolution” is a term born from the optimism that Big Data
can and will deliver benefits to agricultural industries and
global society, in a similar way the Green Revolution sparked
an increase in agricultural productivity.

Recognizing the potential of Big Data to revolutionize the
Australian sugar industry, the major sugarcane funding body
in Australia (Sugar Research Australia) has invested in this
research area. Key priorities like precision agriculture, plant
breeding, and spatial data hubs for research and extension
incorporate Big Data technologies. Yield prediction is
another area that relies on modern data mining methods.
Forecasting the size of the crop can improve industry
sustainability. For example, farmers could target their
applied nitrogen rates to the size of the forthcoming crop,
marketers could decide how much crop to sell on the futures
market, and millers could ensure mill maintenance schedules
are completed in time for the start of the sugarcane crushing
season.

Everingham et al. (2015b) reported the benefits that a mod-
ern data mining method offers over contemporary, time-
honored methods like stepwise linear regression modelling.
These authors used a random forest modelling technique

(Breiman 2001) to investigate how climate attributes relate
to sugarcane productivity in the Victoria, Bundaberg, and
Condong sugar mill regions in Australia. The key advantage
of the random forest technique is it can investigate nonlinear
and hierarchical relationships between the predictors and the
response using an ensemble learning approach. Ensemble
methods involve making multiple attempts from different data
or models to predict a response variable like sugarcane yields.
Using multiple efforts to predict a response can increase the
robustness and accuracy of predictions compared to using any
single data set or model (Breiman 2001; Everingham et al.
2009). We stress that random forest models should not be
confused with the single decision tree approach like that
adopted in classification and regression trees (De’ath and
Fabricius 2000). Although there exist situations when random
forests have been outperformed by traditional linear ap-
proaches (García-Gutiérrez et al. 2015), there are many cases
where random forests have outperformed traditional linear
regression (Craig and Huettmann 2009; Guo et al. 2015) and
linear discriminant analysis approaches (Everingham et al.
2007b; Gromski et al. 2014). Consequently, random forests
have been applied in a number of agricultural related
applications.

Random forests have been used to predict yields directly
for mangoes (Fukuda et al. 2013) and have been incorporated
into a complex seasonal yield forecasting model for crops in
Canada (Newlands et al. 2014). Tulbure et al. (2012) used
random forest regression to identify important variables for
switchgrass yields across the USA. They identified nitrogen
fertilizer, cultivar, rainfall, stand age, and soil silt levels as the
most influential of 22 predictor variables. The variables iden-
tified by random forests were then used to build better models
of switchgrass yield.

Random forest analysis of Big Data sets has also been used
to investigate other important issues in agriculture such as
nitrous oxide (N2O) emissions (Philibert et al. 2013), leaf
nitrogen levels (Abdel-Rahman et al. 2013), and drought fore-
casting (Chen et al. 2012). Abdel-Rahman et al. (2013) used
random forest regression to build predictive models of sugar-
cane leaf nitrogen levels from hyperspectral satellite images,
while Philibert et al. (2013) were able to identify nitrogen
fertilization, crop type, and experiment duration as the most
important predictor variables of N2O emissions. Saussure
et al. (2015) incorporated random forests as part of a data
processing framework to develop preventive solutions for
the sustainable control of wireworms and Everingham et al.
(2007b) successfully used random forests to classify sugar-
cane variety and the number of times the sugarcane has been
harvested and allowed to regrow.

Uniquely situated between world heritage rainforest areas
and the Great Barrier Reef, the Tully sugarcane-growing re-
gion in Australia (Fig. 1) is under increasing pressure to inte-
grate new knowledge and technologies that promote
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sustainable agricultural practices. The Tully sugarcane-
growing region averages 4000 mm rain each year, making
the town of Tully the wettest in Australia and few places
around the world can compete with its natural swings in
year-to-year climate variability (Nicholls et al. 1997). Owing
to the high rainfall, this sugarcane-growing region tends to
produce the highest yields following an El Niño event which
favors below average rainfall during the major growing pe-
riods of austral spring and summer (Everingham et al. 2003;
Skocaj et al. 2013). If industry practices can be shaped to suit
the size of the forthcoming crop, a number of benefits to both
industry and the environment can be realized. Given the ad-
vantages offered from early and accurate predictions of sug-
arcane yields and the ability of data mining techniques to
extract patterns in large and complex data sets, the objective
of this paper is to determine how accurately the random forest
data mining method can estimate sugarcane productivity in
the Tully sugarcane-growing region in the pursuit of advanc-
ing industry sustainability.

2 Materials and methods

2.1 Research approach

Classification and regression random forest models (Breiman
2001) were built using climate and productivity data from
1992 to 2013. The response variable for classification models
was above or below the observed median yield (t ha−1) for the

Tully, Australia, sugarcane-growing region (Fig. 1). The re-
sponse variable for regression models was regional yield in
the same region. Yield estimates were produced on the 1
September of the year prior to harvest and on the 1 January
and the 1 March of the year of harvest.

Daily climate indices, seasonal climate forecasting indices,
yields of previous years, and APSIM (Agricultural Production
Systems sIMulator) (Keating et al. 1999) simulated biomass
indices were used as predictor variables in the classification
and regression models. Daily climate, seasonal climate, and
the APSIM biomass predictor variables were calculated until
the end of each month. Only variables computed before the
yield estimation dates were supplied to the random forest
modelling techniques. For example, if the random forest clas-
sification model attempted to explain yields on the 1 January
in the year of harvest, predictor variables computed no later
than the 31 December in the year before harvest could form
part of the model’s inputs.

2.2 Productivity data

Regional yields from 1992 to 2013were obtained for the Tully
sugarcane-growing region in Australia (Fig. 1). The start date
of 1992was chosen because it followed the rapid expansion of
sugarcane into the nearby Murray Valley. The finish date of
2013 was selected because this represents a time that data
were available when the research commenced. Trends in
yields for this period were tested using a t-procedure for the
slope of a straight line equation fitted by the method of least
squares (Zar 1999). Yields for this period contained no signif-
icant trends over time (p=0.078). As requested by industry,
classification models were used to forecast the direction of the
crop as either above or below the observed median of
86.65 t ha−1 while regression models were used to forecast
cane yields (t ha−1).

2.3 Model predictor variables

A range of predictor variables that could be related to crop size
was entered in the random forest classification and regression
models (Table 1). These included variables based on indices for
simulated biomass; previous yields; local climate data
consisting of rainfall, radiation, and maximum and minimum
temperature. Long-range climate indices that included the
Southern Oscillation Index which is derived from sea level air
pressures between Tahiti and Darwin and Niño 3.4 region SST
anomalies which are derived from sea surface temperatures in
the central equatorial Pacific Ocean were also independent var-
iables. All local climate data were obtained from the SILO
patched point data repository for the Bureau of Meteorology
weather station located at the Tully Sugar Mill station number
32042. These climate data are available from the Long Paddock

Fig. 1 Sugarcane grown along the eastern coast of Australia. Black areas
indicate regions where sugarcane is grown. The location of the Tully
sugarcane mill is noted as the focus area of this study. Inset image of a
sugarcane field in the Tully sugar mill area
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website at https://www.longpaddock.qld.gov.au/silo/. Details
about the calculation of these indices can be found in Table 1.

Predictor variables used in the models were calculated on a
monthly basis. Predictor variables were calculated to cover
each month from February, the year before harvest, to
December, the year of harvest, to capture data within the
growing season as well as possible effects of climatic indices
before planting (Fig. 2).

Variable names followed the convention of being named
for the last month of observed data which were used in its
calculation. For example, the AI_Aug used observed data up
to and including 30th August in the year before harvest.
Variable names ending in “2” represented observed data in
the harvest year. For example, AI_Jan2 used observed data
up to and including the 31 January of the harvest year (Fig. 2).

2.4 Random forests

Random forests (Breiman 2001) are an ensemble learning
algorithm that can be used for classification, that is predicting

a categorical response variable and they can also be used for
regression which involves predicting a continuous response
variable. Random forest regression and classification models
fit an ensemble of decision tree models to a set of data. For
each tree, the data are recursively split into more homogenous
units, which are commonly referred to as nodes, in order to
improve the predictability of the response variable. Split
points are based on values of predictor variables. Thus, vari-
ables used to split the data are considered important explana-
tory variables. Random forests fit separate decision trees to a
predefined number of bootstrapped data sets. The predicted
value of a categorical response is the mode of the classes from
all the individual fitted decision trees, and the predicted value
of a continuous response is the mean fitted response from all
the individual trees that resulted from each bootstrapped
sample.

Random forest classification and regression models were
built using the “randomForest” package (Liaw and Wiener
2002) in the R free statistical software (R Core Team 2014).
Random forest regression models were built using 500 trees

Table 1 Predictor variables supplied to the random forest classification and regression analysis

Name Units Details

AI g m−2 The Agricultural Production Systems Simulator (Keating et al. 1999) was used to simulate sugarcane accumulated
biomass throughout the growing season. The APSIM biomass index (AI) was generated using an ensemble
modelling approach (Everingham et al. 2015a; Everingham et al. 2009). The Ensemble approach considered a range
of APSIM parameterizations represented in the Tully region. The AI was generated for the end of each month of the
growing season from June, the year before harvest (AI_Jun), to October, the year of harvest (AI_Oct2)

Yield_1SA t ha−1 The regional cane yield as tonnes of cane per hectare for the previous season. This was collected from the Tully mill

Yield_2SA t ha−1 The regional cane yield as tonnes of cane per hectare from two seasons ago. This was collected from the Tully mill

rain mm The cumulative rainfall from the planting date (15 May). Index values were calculated at the end of each month
from May, the year before harvest (rain_May), to December, the year of harvest (rain_Dec2)

rain_lag mm The cumulative rainfall from 1 February, the year before harvest. This was used to capture possible climate effects
before planting. Index values were calculated at the end of each month from February, the year before harvest
(rain_lag_Feb), to December, the year of harvest (rain_lag_Dec2)

radn MJ m−2 The cumulative radiation from the plant date (15 May). Index values were calculated at the end of each month from
May, the year before harvest (radn_May), to December, the year of harvest (radn_Dec2)

radn_lag MJ m−2 The cumulative radiation from 1 February, the year before harvest. This was used to capture possible climate effects
before planting. Index values were calculated at the end of each month from February, the year before harvest
(radn_lag_Feb), to December, the year of harvest (radn_lag_Dec2)

trange °C An index based on daily temperature range (tmin to tmax) calculated from the planting date (15 May). Index values were
calculated at the end of each month from May, the year before harvest (trange_May), to December, the year of harvest
(trange_Dec2)

trange_lag °C An index based on daily temperature range (tmin to tmax) from 1 February, the year before harvest. This was used to
capture possible climate effects before planting. Index values were calculated at the end of each month from February,
the year before harvest (trange_lag_Feb), to December, the year of harvest (trange_lag_Dec2)

SOI - Troups’ monthly Southern Oscillation Index. Troups’ SOI is derived from normalized Tahiti minus Darwin mean sea
level pressure anomalies using the base period 1887–1989. SOI were obtained for each month from February, the year
before harvest (SOI_Feb), to December, the year of harvest (SOI_Dec2). Data were obtained from the Long Paddock
website (https://www.longpaddock.qld.gov.au/seasonalclimateoutlook/southernoscillationindex/soidatafiles/Monthly
SOIPhase1887-1989Base.txt)

Nino °C The 3-month running average sea surface temperature anomalies in the Niño 3.4 region available from the NOAA
website (http://www.cpc.ncep.noaa.gov/data/indices/3mth.nino34.81-10.ascii.txt). Data were available for February,
the year before harvest (NINO_DJF), to December, the year of harvest (NINO_OND2)
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derived from 500 bootstrapped data sets. Split points were
chosen from a random subset of all available predictor vari-
ables (Breiman 2001). By default, the random subset size of
the randomForest package is the square root of the number of
predictors for classification models and one third of all avail-
able predictor variables for regression models (Liaw and
Wiener 2002). Also by default, each node is restricted to a
minimum size of one for classification or five for regression.
Larger node sizes result in smaller trees to be grown reducing
computational time (Liaw andWiener 2002). In this study, the
algorithm default values were used as preliminary testing
showed little to no improvement if default values were mod-
ified. This had the added advantage of keeping inputs constant
for all three forecast dates.

The random forest algorithm can rank the relative impor-
tance of each predictor variable. Variable importance is based
on the regression prediction error of the out-of-bag, also called
the OOB, portion of the data (Breiman 2001; Liaw and
Wiener 2002). Approximately 30 % of data is OOB and is
not used in building the tree (Abdel-Rahman et al. 2013). For
classification models, the prediction error is calculated as the
classification error rate, while for regression, the mean
squared error is calculated. In the randomForest package,
predictor variable importance is reported as mean percent
decrease in classification rate for the classification model or
mean increase in mean square error for the regression model if
that variable was removed from the analysis.

2.5 Modelling process

For each forecast date, the randomForest algorithm was used
to identify variable importance for all available predictor var-
iables. Variable importance based on the OOB prediction error
(Breiman 2001; Liaw and Wiener 2002) has been used in
numerous studies such as Abdel-Rahman et al. (2013) and
Everingham et al. (2015b). Although other measures of vari-
able importance exist, and are becoming popular, like the con-
ditional variable importance of Strobl et al. (2008), we opted
to use the traditional and widely applied approach of Breiman

(2001) and Liaw andWiener (2002). Following previous stud-
ies such as Abdel-Rahman et al. (2013), a forward selection
process was used to optimize the random forest models. That
is, the models were rebuilt starting with the single most im-
portant predictor variable and additional variables were se-
quentially added that optimized the OOB classification error
rate for classification models and the OOB R-squared
for regression models. This offers the model the opportunity
to improve performance while keeping the number of predic-
tor variables low to minimize the risk of overfitting. The se-
lected predictor variables used in the final models were
recorded.

The OOB percentage of correctly classified years was used
as an indicator to assess how well the random forest model
could determine if yields were more likely to be above the
median or below the median at the end of harvest. The correct
classification rate can range from 0 % for the situation when
every year is misclassified to 100%when every year correctly
classified. A higher value is preferred. The square root of the
OOB mean square error (RMSE) and R-squared were deter-
mined to assess the performance of the random forest regres-
sion method. The RMSE gives a measure of the average error
between model outputs and observations in appropriate units.
A lower RMSE is preferred. The R-squared explains how
much variation in the response is explained by the model.
The R-squared value can range from 0, if no variation in the
response is explained by the model, to 1, if 100 % of the
variation in the response is explained by the model. A value
closer to 1 is preferred. Correct classification rates, RMSE,
and R-squared values for the optimized final model and the
model using all available predictor variables were recorded.

3 Results and discussion

3.1 Classification random forest

Random forest models were quite successful at determining if
the crop was likely to be above or below the median with an

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan2 Feb2Mar2 Apr2 May2 Jun2 Jul2 Aug2 Sep2 Oct2 Nov2 Dec2

Fertilizer 
application

Mill  
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Marketing  
Decisions

Planting 

Harvesting 
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Year Before 
Harvest 

Harvest  
Year

Fig. 2 Gantt chart of key phases
of the sugarcane season in Tully.
Columns represent months from
March, the year before harvest, to
December, the year of harvest.
Months in the year of harvest are
denoted with 2. Key decision-
making windows for fertilizer
application, mill scheduling, and
marketing are shown in relation to
planting and harvesting windows,
the growing season, harvest year,
and year before harvest
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OOB correct classification rate of at least 86.36 % (Table 2).
Classification models did not include any APSIM biomass
indices. While temperature in June was the most important
predictor variable for the 1 September classification model,
the 1 March model relied more heavily on spring and summer
rainfall variables. The shift towards spring rainfall variables at
later forecast dates aligns with previous research that uncov-
ered the links between high austral spring rainfall and small
yields in Tully the following year (Skocaj and Everingham
2014).

Nineteen out of the 22 years were correctly classified as
above or below the median at the 1 September and 21 years
out of 22 could be correctly classified by the 1 January. For the
1 September forecast, 1998, 2006, and 2013 were incorrectly
classified. The 1998 harvest was only slightly above the me-
dian suggesting that source of error is most likely due to

random chance. The random forest model predicted the
2006 crop to be above median, but a severe tropical cyclone
adversely impacted the crop that year. In 2013, the model
predicted a below median crop when in fact the crop was
above the median. One reason for this misclassification could
be due to industry harvesting a slightly larger percentage of
younger and higher yielding sugarcane across the region.

For the 1 January and 1 March forecasts, only 1 year was
misclassified—2007 was misclassified as above median.
Ordinarily, low levels of precipitation would favor a bigger
crop in Tully (Everingham et al. 2007b), but in November
2006, the crop was stressed by extremely low precipitation
levels. In this year, Tully experienced the driest November
and recorded only 5 mm compared to an average of
200 mm. This was followed by 1420 mm in February, almost
double the long-term average of 743 mm which created more

Table 2 The predictor variables
selected into each model listed in
order of importance and model
performance statistics of the
random forest method used for
classification and regression

Date Classification Regression

Correct classification
rate (%) [all variables]

Selected
predictor
variables

R-squared
[all variables]

RMSE (t ha−1)
[all variables]

Selected
predictor
variables.

1 September 86.36 [72.72] trange_Jun

Niño_MJJ

0.67 [0.41] 8.00 [10.66] AI_Jul

Niño_JJA

SOI_Aug

1 January 95.45 [72.72] SOI_Dec

rain_Nov

0.72 [0.62] 7.32 [8.65] SOI_Oct

AI_Dec

AI_Oct

AI_Sep

radn_lag_Dec

SOI_Nov

radn_Nov

AI_Jul

SOI_Dec

rain_Nov

trange_lag_Dec

radn_Dec

radn_lag_Nov

rain_Jul

AI_Nov

rain_Dec

rain_lag_Dec

1 March 95.45 [68.18] SOI_Dec

rain_Feb2

SOI_Oct

Niño_JAS

rain_Nov

0.79 [0.64] 6.33 [8.34] SOI_Oct

rain_Feb2

rain_lag_Feb2

AI_Jan2

AI_Sep

AI_Dec

trange_Jun

Date refers to the forecast date from 1 September, the year before harvest, to 1 March, the year of harvest. Values
in square brackets represent performance statistics for the model using all available predictor variables
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unfavorable growing conditions such as heavy cloud cover
and conditions conducive to prolific early flowering which
is difficult to represent in the APSIM crop model.

3.2 Regression random forest

The model produced on the 1 of September could explain
67 % of the total variability in yield responses. This increased
to 72 % by the 1 January and 79 % by the 1 March. The
forward selection process greatly reduced the number of pre-
dictor variables in each model and improved the forecast per-
formance of the random forest prediction models (Table 2).
The OOB RMSE reduced from 8.00 to 6.33 t ha−1 as the
forecast date became later in the season.

The 1 September regression model relied most heavily on
the APSIM biomass index in July and ENSO indices around
August in the year before harvest. The Southern Oscillation
Index (SOI) in October was important for the 1 January and 1
March forecasts. Other predictor variables that were selected
included cumulative radiation, rainfall, and temperature.
Everingham et al. (2007a) reported how positive SOI values
favored above average rainfall and below average cane yields
in the northern, wetter regions of Australia. The impact of
rainfall and radiation on yields has been investigated by
Muchow et al. (1997) who reported a general trend for an
asymptotic increase in sugarcane yield potential with non-
limiting water as the latitude declined from 30° S to 15° S,
on account of increasing radiation and temperatures, as one
approaches the equator. Yield potential in high rainfall regions
such as Tully at 19° S was equivalent to yields of regions in
the sub-tropics at approximately 25° S because of limited
radiation. Radiation and rainfall are negatively correlated with
course and would tend to be selected in the forecasting models
for the same reason. However, high rainfall would tend to
have additional negative effects associated with waterlogging,
disruption to the harvest schedule, and additional compaction
by harvesting machinery. Disruption of the planting and har-
vesting schedule can have long-term effects over several sea-
sons as growers attempt to return to schedules that have prov-
en successful in the past. Temperature range is also known to

be a good predictor of sucrose content (Kingston 2002) be-
cause low night temperatures discourage stalk (cane) and leaf
growth, in favor of sucrose accumulation (Inman-Bamber
et al. 2010). We chose sugarcane yield as the target for our
predictive model because of its importance in determining
nitrogen requirements for the crop. Low night temperatures
would affect cane yield adversely (Inman-Bamber et al. 2010).

Years that were poorly forecasted as of 1 March included
the lowest yielding years such as 2011 and the highest yield-
ing years such as 1993 and 1995 (Fig. 3). The 2011 growing
season which runs approximately from August 2010 to
December 2011 was greatly affected by a Tropical Cyclone
which made landfall on February 3, 2011 and passed over the
Tully region soon after. The high February rainfall as an im-
portant predictor variable (Table 2) would have further con-
tributed to a low forecast yield; however, the model was not
able to take account of the amount of damage to sugarcane due
to wet weather harvesting in the previous La Niña year of
2010. The 1993 and 1995 seasons were characterized by
low rainfall, and the simulated biomass indices were relatively
high. Despite this, the model was challenged to predict the
higher than normal yields observed. Clearly, more research
is required to better understand how extreme yield events oc-
cur and how they can be more accurately predicted.

The results from this study agree with previous studies that
show the random forest model can accurately estimate crop
yields (Fukuda et al. 2013; Everingham et al. 2015b). The
random forest models used in this study were able to identify
important variables such as ENSO indices which could be
explained from a biophysical perspective and agreed with ear-
lier studies in the region (Skocaj and Everingham 2014;
Everingham et al. 2015b). In this study, changes in variable
importance were identified between different forecast dates
while previous studies have shown that random forests can
identify differences in important variables between regions
(Everingham et al. 2015b). Future research should investigate
if random forests can be used to provide yield estimates at a
finer resolution rather than one estimate for the entire region
akin to what has been accomplished for wheat (Newlands
et al. 2014) and switchgrass (Tulbure et al. 2012). This would

Fig. 3 Comparison of observed
cane yields (black) and yields
forecasted using random forest
regression models. Gray bars
represent yields forecasted on 1
September while white bars
represent yields forecasted on 1
March. The later 1March forecast
yields were closer to observed
yields than the earlier 1
September forecast
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then provide different productivity zones which could have
management strategies to suit.

4 Conclusion

The purpose of this paper was to determine if a data mining
approach could offer new insights that can explain sugarcane
productivity in the Wet Tropics, Australia. Predicting the size
of the crop can influence on farm decisions such as howmuch
nitrogen fertilizer to apply and help millers carefully plan
maintenance and labor schedules to be ready for the start of
the milling season. Marketers can apply the same knowledge
to maximize industry profits through more effective and
targeted forward selling strategies and logistical planning.
Collectively, these improvements in economic and environ-
mental outcomes are important for delivering sustainable so-
lutions to industry.

The random forest models were quite successful at
predicting sugarcane yields very early in the season. In
September in the year before harvest, whenmany farmers plan
their nutrient management, the random forest classification
model could determine if the crop was likely to be above
86.7 t ha−1 or less than 86.7 t ha−1 with a reasonable level of
accuracy. Farmers expecting a smaller crop could consider
applying less nitrogen fertilizer than in years when the model
predicts a larger crop. This is because cane yields are lower in
years experiencing high rainfall during the austral spring and
summer. Reducing nitrogen fertilizer rates in these years will
improve nitrogen fertilizer use efficiency and deliver positive
economic and environmental outcomes. Using this strategy,
there would have been 1 year when a farmer would have
applied too much fertilizer and 2 years when the farmer ap-
plied not enough fertilizer. The regression and classification
cane yield estimates can be supplemented with other expert
industry knowledge to strengthen forward selling plans and
improve industry confidence in selling sugar on the futures
market. These estimates could also be used to better plan
harvesting and milling operations. When a large crop
is forecast, the local sugar industry could consider
starting harvesting and milling operations earlier than
normal to reduce the risk of cane being left unharvested
until the following year, whereas when a small crop is
forecast, it might be better to delay the start of the
crushing season to maximize sugar production and prof-
itability. Knowledge about crop size produced from the
random forest model predictions could also be useful in
managing mill maintenance operations to ensure the mill
will be ready for the crushing season.

It must be stressed that the data mining approach put forth
in this paper is not perfect, and the cost of an inaccurate esti-
mate must be compared to the benefits of an accurate forecast.
Other constraints also exist in that climate change does not

disrupt the model. Thus, this research should be regularly
reviewed to ensure that the approach is still relevant under a
changing climate. Notwithstanding these investigations, the
key findings of this paper support the use of data mining and
Big Data technologies to increase industry guidance on key
industry decisions that affect sustainable agricultural systems
and contribute a partial solution to food shortages. Most im-
portantly, the approach outlined in this paper can easily be
extended to other sugarcane-growing regions and agricultural
industries throughout the world to better inform agricultural
practices.
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