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Abstract
In sensitive communications, the cryptographic hash function plays a crucial role, including in the military, healthcare, and
banking, ensuring secure transmission by verifying data integrity and carrying out other vital tasks. Compared to other
cryptographic hash algorithms, such as SHA-1 and SHA-2, the Keccak hash function (SHA-3) boasts superior hardware
performance and is more resilient to modern cryptanalysis techniques. Nonetheless, hardware performance enhancements,
such as boosting speed or reducing area usage, are constantly required. This research focuses on increasing the Keccak hash
algorithm’s throughput rate by introducing a novel architecture that reduces the total number of clock cycles required to
obtain the result of a hash function. Additionally, the new simplified structure of the round constant (RC) generator design
assures a reasonably low area and achieves the highest throughput and efficiency. Thus, when implemented, it achieved the
highest throughput of 19.515 Gbps, 24.428 Gbps, 33.393 Gbps, and 36.358 Gbps on FPGA devices with the Virtex-5, Artix-7,
Virtex-6, and Virtex-7, respectively. Finally, our approach is compared to recently published designs.

Keywords Hardware acceleration · Hardware evaluation · Secured hash algorithm-3 (SHA-3) · Cryptography · Field-
programmable gate array (FPGA) · Round constant (RC) generator

1 Introduction

In the digital era, a cryptographic protocol is a collection of
rules and processes for securing communication between two
or more parties. It is necessary to guarantee that data trans-
ported across a network or saved in a database is secured
against unauthorized access, alteration, or theft. Without
secure communication, sensitive information may be com-
promised, resulting in monetary loss or reputational harm.
Encryption, digital signatures, and cryptographic hash func-
tions are among the technologies that assure communication
security [1, 2].
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In the domain of cryptography, a hash function is a math-
ematical procedure that accepts input data and produces an
output of a fixed size (mentioned as a hash). The hash func-
tion is constructed, so it is almost impossible to identify
authentic information from the hash result. This characteris-
tic is helpful for data integrity verification, authentication, the
calculation of digital signatures, and password storage. The
capacity tomaintain data integrity is one of the primary bene-
fits of cryptographic hash algorithms. A hash value is unique
to a single input; any change to the information will result in
a new hash value. By comparing the hash values of the orig-
inal and updated data, it is feasible to discover any illegal
changes. This characteristic makes hash functions suitable
for assuring data integrity in electronic transactions, such as
online banking, e-commerce, and government activities [3,
4].

Keccak [5] architecture of the Secure Hash Algorithm-
3 (SHA-3) has become popular among hash techniques and
has replaced the previously used SHA-1 [6] and SHA-2 [7–9]
techniques. SHA-3 has better benefits than its predecessors,
such as diversity and reusability;methods have been explored
since its introduction in 2012 to improve its parameters for
specific applications and hardware devices. The hardware
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performance of SHA-3 is preferred over software due to
its superior power, speed, and throughput implementation.
Field-programmable gate array (FPGA) is preferred over
application-specific integrated circuits (ASIC) as a hardware
performance platformdue to its lower price and shorter devel-
opment time [10–14].

The advantage of SHA-3 in FPGA is speed over previ-
ous SHA algorithms in hardware implementations, and it
is designed to perform well on various hardware platforms.
Implementing SHA-3 in an FPGA allows for algorithm cus-
tomization and reconfigurability flexibility. Since FPGAs
can be designed to consume less power [15, 16] than tradi-
tional processors, which makes them ideal for implementing
cryptographic functions like SHA-3. Finally, FPGAs can
significantly increase the throughput of SHA-3 calcula-
tions [17]. As a consequence of this, several strategies have
been suggested in order to implement the Keccak algorithm
effectively. These approaches either concentrate on reduc-
ing the energy consumed, maximizing the area consumed, or
enhancing the processing speed.

Overall, the contributions presented in this manuscript are
summarised as follows:

• We present a novel architectural design optimisation
strategy based on unrolling the SHA-3 algorithm. Our
approach enhances and maximises the throughput and
efficiency performance metrics of FPGA devices, mak-
ing it an ideal solution for many applications.

• We propose a new simplified structure of the RC
generator to achieve improved performance (through-
put/efficiency) while effectively reducing hardware
resources in the area. The new simplified structure RC
generator only consists of 7 bits instead of 64, thus reduc-
ing the computation in the Iota (ι) step where the number
of required XORs reduces to 7.

The remains of the paper are organised as follows: In
Sect. 2,we furnish the relevant studies similar to our research.
In Sect. 3,we define the overall SHA-3 architecture. Section4
describes our new proposed hardware implementation of the
SHA-3 algorithm on FPGA boards. In Sect. 5, we present the
experimental outcomes of our study. In Sect. 6, we discuss
the results of our method and the comparisons with other
relevant research. Finally, Sect. 7 summarises our research’s
findings and future work.

2 Related work

The cryptographic community has conducted significant
research on optimising models, architectures, and strategies
for SHA-3 in FPGA devices [18–20]. All these architectures
aim to increase the throughput, efficiency, and frequency

while attempting to decrease the area and power consump-
tion in the FPGA [21–27]. Nevertheless, there is a pressing
need to increase throughput and efficiency with area reduc-
tion performancemetrics. In this section, we present research
endeavours similar to ours.

In [28], presented a method for Keccak architectures for
output sizes of 256 and 512. The RC is stored in a distributed
ROM of 24×64 bits. The Virtex-5 architecture for output
size 256 needs 1217 slices and a 277MHz clock and achieves
12.56Gbps throughput, and theVirtex-7 needs 998 slices and
a 300 MHz clock and reaches 13.60 Gbps throughput. The
Virtex-5 architecture for output size 512 needs 1200 slices
and a 270 MHz clock and achieves 6.48 Gbps throughput,
and the Virtex-7 needs 983 slices, a 298.68 MHz clock and
reaches 7.17 Gbps throughput. However, this architecture
produced poor frequency and throughput.

Paul and Shukla [29] presented two Keccak architectures
for output size 256 and an RC method with a count gener-
ator to fetch the RC with 64 bits from onboard read-only
memory (ROM). The first architecture needs 4188 slices, a
390.53 MHz clock, and achieves 16.492 Gbps throughput.
The second architecture needs 7139 slices, a 234.97 MHz
clock, and reaches 19.99 Gbps throughput. However, these
architectures produced poor frequency and increased area.

Wong et al. [30] presented a method to decrease the area
required for ROMby reducing the bit length from 64 to 8 and
showing five different Keccak architectures for output size
512. The first architecture needs 871 slices and a 153 MHz
clock, achieving3.68Gbps throughput and4.22Mbps/Slices.
The second architecture needs 1393 slices and a 335 MHz
clock, reaching 8.04 Gbps throughput and 5.77Mbps/Slices.
The third architecture needs 2145 slices and a 45MHz clock,
earning 2.16 Gbps throughput and 1.00 Mbps/Slices. The
fourth architecture needs 1416 slices and an 85 MHz clock
and attains 4.08 Gbps throughput and 2.88 Mbps/Slices. The
fifth architecture needs 1406 slices and a 344 MHz clock,
gaining 16.51Gbps throughput and 11.47Mbps/Slices. Even
if the total area occupied was not very large, more than the
highest frequency attained was needed to be satisfactory.

The unrolling approach, which reduces the total number
of clock cycles with an additional round operation, is imple-
mented in Virtex-5 in [31] for output size 256 and reaches
5.38 Gbps throughput. In [32] also decreased the number
of clock cycles for all output sizes by using the unrolling
approach with Virtex-5 and Virtex-6. Despite this, the fre-
quency and throughput delivered by this design could have
been better.

In [33], a basic architecture of Keccak was suggested for
Virtex-7 FPGA with an output size of 512 bits. A distributed
ROM with a dimension of 24×64 bits was used to store the
round constants (RC). The architecture operated 1454 slices
and utilized a clock frequency of 374.035 MHz. This design
earned a throughput of 7.979 Gbps and an efficiency rate of
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5.49 Mbps/Slices. However, the area and throughput were
both affected negatively by this implementation.

Assad et al. [34] suggested three Keccak implementations
in Virtex-5 and Virtex-6 FPGA. The focus was on all out-
put sizes. It is worth noting that the RC required for the
Keccak implementation were stored in a ROM of 24×64
bits. The basic implementation using Virtex-5 for output size
512 required 935 slices and operated at a clock frequency
of 338.409 MHz. This design achieved a throughput of 8.12
Gbps and a rate of 8.68 Mbps/Slices. The basic implementa-
tion using Virtex-6 for output size 512 required 1019 slices
and operated at a clock frequency of 376.081MHz. This con-
figuration achieved a higher throughput of 9.02 Gbps, with
a rate of 8.85 Mbps/Slices. Nevertheless, the area and effi-
ciency were affected negatively by this design.

In [35], a basic implementation of Keccak was proposed
for Virtex-5 FPGAwith an output size of 512 bits. The round
constants (RC) were stored in a distributed ROM of 24×64
bits. The implementation employed 1680 slices in the Virtex-
5 FPGA and operated at a clock frequency of 387MHz. This
design achieved a throughput of 8.06 Gbps and an efficiency
rate of 4.91Mbps/Slices. Despite this, the area and efficiency
delivered by this architecture could have been better.

Comprehensive examination and analysis of the above
methodologies and their effects on the performance of the
Keccak architecture indicated a demand for an improved
architecture that yields high throughput combined with the
low area. Hence, effectively handling RC is essential to
attaining high throughput. Therefore, we propose a new
RC value generation technique with a minimised structural
design where the number of required XORs is reduced to
7 instead of 64. This approach has resulted in a substan-
tial reduction in the area while simultaneously increasing a
sizeable throughput. The presented Keccak architecture was
tested and verified using the existing test vectors.

3 The SHA-3 architecture

In 2012, the National Institute of Standards and Technology
(N I ST ) maintained a competition to establish a new stan-
dard hash function that would complement existing SHA-1
and SHA-2 standards. The objective was to choose a func-
tion that would be secure, efficient, and resistant to attacks
such as collision and preimage attacks [36]. The winner of
the competition was the Keccak hash function. Unlike the
previous SHA standards, SHA-3 is founded on the sponge
functions (absorb/squeeze) as presented in Fig. 1.

The sponge function is based on a statematrix of “b = r+
c” bits, where “b” denotes the block size, “r” indicates the bit
rate of the sponge function, and “c” defines the capacity. So,
this state matrix starts with zero values once it is initialized
for the first time. The Keccak hash algorithm ensures the

Fig. 1 The (absorb/squeeze) sponge structure of the SHA-3 hash
function

Fig. 2 The block diagram of the SHA-3 hash function

state C as a three-dimensional matrix with the dimensions
5 × 5 × (word − si ze).

An input message is padded, adding bits to the message
so that its total size becomes a multiple of a fixed number
of bits, denoted as “r”. Once the message has been padded,
it is separated into blocks of equal length, denoted as “Pi”.
In the absorbing step, “r” bits XOR with each block and
permutation function “ f ”. The “ f ” function is the central
part of the processing of 24 rounds and consists of distinct
steps, including i ) “Theta (θ )”, ii) “Rho (ρ)”, iii ) “Pi (π)”, iv )
“Chi (χ )” and v) “Iota (ι)”, each of which performs a specific
operation on a 1600-bit state matrix denoted as A [37]. The
block chart of the SHA-3 is illustrated in Fig. 2.

The steps “Theta (θ)”, “Rho (ρ)”, “Pi (π )”, “Chi (χ )” and
“Iota (ι)” are shown in Eqs. (1)–(5). In particular, Eq. (1)
refers to the computations performed in the “Theta (θ)” step.
This step involves manipulating a two-dimensional array of
size (5×5), whereC[i] and D[i] are one-dimensional arrays
representing the lanes, and A[i, j] denotes the slices. The
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Table 1 The standard round
constants RCi generator in Iota
(ι) step of the SHA-3 algorithm

RC0 0x0000000000000001 RC12 0x000000008000808B

RC1 0x0000000000008082 RC13 0x800000000000008B

RC2 0x800000000000808A RC14 0x8000000000008089

RC3 0x8000000080008000 RC15 0x8000000000008003

RC4 0x000000000000808B RC16 0x8000000000008002

RC5 0x0000000080000001 RC17 0x8000000000000080

RC6 0x8000000080008081 RC18 0x000000000000800A

RC7 0x8000000000008009 RC19 0x800000008000000A

RC8 0x000000000000008A RC20 0x8000000080008081

RC9 0x0000000000000088 RC21 0x8000000000008080

RC10 0x0000000080008009 RC22 0x0000000080000001

RC11 0x000000008000000A RC23 0x8000000080008008

“Rho (ρ)” and “Chi (χ)” steps compute the B[i, j] array
from the state matrix A[i, j]. During the “Chi (χ)” step,
the value of A[i, j] is recalculated in accordance with the
Equation that is shown in (3). Finally, the “Iota (ι)” step
involves adding a constant value, denoted as RC(i), to the
first element of the A[0, 0] array.

The “Theta (θ )” step is the first step of the Keccak-f per-
mutation. It involves i) a parity computation, ii) a rotation
of one place, and iii) a bitwise XOR operation. The parity
computation takes the XOR of every 5-bits in a 25-bit row,
resulting in a 5-bit output. The rotation involves shifting the
bits of each row by a fixed amount, which varies for each
row. The bitwise XOR operation combines the output of the
parity computation with the rotated row to produce a new
row.

Step Theta (θ ):

C[i] = A[i, 0]XORA[i, 1]XORA[i, 2]
XORA[i, 3]XORA[i, 4],
i ≤ 4

D[i] = C[i − 1]XORROTATE(C[i + 1], 1),
i ≤ 4

A′[i, j] = A[i, j]XORD[i],
i ≤ 4 (1)

The “Rho (ρ)” step is a rotation step that involves rotating
each bit of the state by an offset that hinges on the word
assignment. The “Pi (π )” step is a permutation step that
involves rearranging the words of the state. So, the state array
A is also used to calculate a serviceable 5× 5 array B in the
following two steps. Interestingly, a bit stream consisting of
w bits is referred to by the array B[i, j].

Step Rho (ρ):

A[i, j] = ROTATE
(
A′[i, j], r [i, j]) , [i, j] ≤ 4 (2)

Step Pi (π ):

B[j, 2i + 3j] = A[i, j], [i, j] ≤ 4 (3)

The “Chi (χ)” step is a bitwise logic operation that
involves performing a bitwise XOR, NOT, and AND opera-
tion on the bits of the state.

Step Chi (χ ):

A[i, j] = B[i, j]XOR((−B[i + 1, j])ANDB[i + 2, j]),
[i, j] ≤ 4 (4)

The final step, “Iota (ι)”, involves adding a round con-
stantly to a single bit of the state. The round constants are
produced by the RC generator that is used in the “Iota (ι)”
step. The RCi function is present in Table 1 and comprises
24 unique permutation values that allocate 64-bit data to the
SHA-3 operation [36].

Step lota (ι):

A[0, 0] = A[0, 0]XOR RC[i] (5)

The NIST has determined four forms of the SHA-3 for
generating hash values from a message M of any length and
an output length size d, as presented in Table 2.

Several hash function applications prefer smaller output
sizes, specifically, those not using them for security [38]. The
larger the output length size, the stronger higher the security
against assaults of the hash function. Nevertheless, the larger
output length size also means a slower hash function oper-
ation, as more processing power is required to produce the
hash value. Thus, this work presented a structure that permits
generating all four probable output lengths.
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Table 2 The SHA-3 algorithm
in its four different forms

Keccak Block size (b) Rate (r) Capacity (c) Output size (d) Level security

224(M) 1600 1152 448 224 112

256(M) 1600 1088 512 256 128

384(M) 1600 832 768 384 192

512(M) 1600 576 1024 512 256

Fig. 3 Proposed optimization architectural system of the SHA-3

4 Proposed optimization architectural
system

This section analyses the design components we imple-
mented for all output lengths (576, 832, 1088, 1152) of
the SHA-3 algorithm. The primary target of our work is to
achieve higher throughput (Gbps) by reducing the area in
our system. This target is achieved with the new simplified
structure of the proposed RC generator, which eliminates the
need for further hardware resources in the area and provides
higher performance.

4.1 The architectural design of the SHA-3 (Keccak)

Our system architecture is presented in Fig. 3. The architec-
ture comprises (i) padding, (ii) mapping, (iii) the Keccak
round, (iv) truncate, (iv) control and (v) counter. The Keccak
round is at the core of the architectural design. The respon-
sibility for controlling, synchronizing, and communicating
the flow of data inside our system lies with the control unit.
The input message data is 64-bits. The values for the select
output length are shown in Table 3.

4.2 Padding, mapping and truncating unit

The padding scheme of the SHA-3 (Keccak) for the input
message is shown in Fig. 4. Initially, the input message of

Table 3 The four different values for the select output length of the
SHA-3 algorithm

Value 00 01 10 11

Hash output 224 256 384 512

Fig. 4 The SHA-3 hashing algorithm’s padding scheme

Fig. 5 Padding block diagram of the SHA-3

64-bits is appended with “1”, then followed by bits of “0”,
then appended with “1” so that the total message size is a
multiple of “r” bits (576, 832, 1088, 1152) [39].

The basic padding block diagram of the SHA-3 is illus-
trated in Fig. 5 and consists ofmultiplexers 2 to 1 for a 64-bits
input message. The padding unit is shown in Fig. 6. The
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Fig. 6 Padding Unit of the SHA-3

padding unit consists of one multiplexer, 4 to 1. If 224-bits
are selected as the output length, then the padding scheme
for r = 1152 will be executed. The Padded input message
(Pad) “r” bits are entered in the mapping unit and XOR with
the initially of the “r” bits. After, appended the result with
the initially of the “c” bits [36].

Data transformation is required, as shown in Eq. (6). The
truncating unit, according to Eq. (6), cuts the digits of state
depending on the output length selected (576, 832, 1088,
1152) and consists of one multiplexer 4 to 1.

State[x, y, z] = ((PadrXORr)||c)
× [64 × (5y + x) + z] (6)

4.3 The Keccak round architecture

In this study, one of our primary goals has been to reduce
the total number of clock cycles using an unrolling strategy,
ensuring a reasonably low area. The base architecture of the
permutation rounds block is seen in Fig. 7, with the counter
ranging from 0 to 23, indicating no attempt to minimize the
total number of clock cycles. As a result, as illustrated in
Fig. 7, divide the total number of the counter by half to reduce
the total number of clock cycles. This part of our methodol-
ogy is shown in Fig. 8, using a total of just 12 clock cycles.

The unrolling strategy refers to a technique used to opti-
mize the implementation of an algorithm by reducing loop
overhead. In the base implementation of SHA-3, as shown
in Fig. 7, the computation involves a single block of trans-
formations (θ → ρ → π → χ → ι). However, the unrolling
strategy aims to further enhance the algorithm’s performance
by executing multiple transformation blocks.

This work applied an unrolling factor of 2, as depicted in
Fig. 8. Thismeans that an additional block of transformations
was included inside the Keccak Round module. With the
unrolling factor of 2, two rounds of transformations (θ → ρ

→ π → χ → ι → θ → ρ → π → χ → ι) are performed
within a single clock cycle. By incorporating this unrolling
strategy, the number of clock cycles required to complete
the entire SHA-3 algorithm is halved. The standard SHA-3
algorithm comprises 24 rounds, and with the unrolling factor

of 2, it will now take only 12 clock cycles to accomplish these
24 rounds.

This acceleration by unrolling strategy results in compu-
tations being completed in halved clock cycles, thus reducing
overall execution time and to improved performance for the
SHA-3 algorithm implementation, making it well-suited for
various FPGA devices.

4.4 New simplified structure of the RC generator

Our research proposes a new simplified structure for the RC
generator that significantly improves the algorithm’s perfor-
mancewhile reducing hardware resources. TheRC generator
is a crucial component of the SHA-3 algorithm. Its primary
function is to produce a sequence of pseudo-randombits used
to encrypt the input data. The existing RC generator consists
of 24 sets of 64-bits, which results in many computations in
the “Iota (ι)” step of the SHA-3 algorithm. This step needs
a large number of XOR operations to be executed, which
can decrease performance and efficiency, especially in FPGA
devices with limited resources.

To overcome this issue, we have designed a new simplified
structure for the RC generator that only consists of 7-bits [36,
40]. By reducing the number of bits in the generator, we
effectively reduce the computations required in the Iota step,
resulting in improved performance and efficiency. Reducing
the total number of bits also reduces the hardware resources
required for the RC generator, resulting in a more compact
design ideal for FPGA devices with limited resources.

The “Iota (ι)” step is to modify some of the bits of in state
array A, as shown in Eq. (7).

A′[x, y, z] = A[x, y, z]XOR RC [ir ] (7)

According to the specifications of SHA-3, the RC are
given by Eq. (8),

RC [ir] [0][0]
[
2 j − 1

]
= rc [ j + 7ir] , for all 0 ≤ j ≤ �

(8)

and all other values of RC[ir][x][y][z] are zero. FromEq. (8),
it follows that only 7 of the 64 bits can have the value 1.
Table 4 presents the specific positions for the 7 bits where �

= 6, by the specifications of the SHA-3.
So only those 7 of the 64-bits are fundamental round con-

stants and appear in specific places with non-zero bits while
the other positions are zero. The specific bit positions that
carry the value “1” are 0,1,3,7,15,31 and 63, with the rest
being “0”. An example of the simplified structure for RC[3]
of Table 5 is shown in Table 6. Thus, seven specific bits can
be set for the XOR gate in state array A.
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Fig. 7 Keccak round with 24 clock cycles with a new simplified structure of the RC generator

Fig. 8 Keccak round with 12 clock cycles with a new simplified structure of the RC generator

Table 4 Specific positions for
the 7 bits with value 1 j 0 1 2 3 4 5 6

[z] 0 1 3 7 15 31 63

5 Experimental results

In our experiments, we used the Virtex-5, Virtex-6, Virtex-7,
and Artix-7 FPGA boards in order to make a fair evalu-

ation between the proposed design and the other existing
works while providing a thorough, comprehensive compari-
son acrossmultiple FPGAplatforms for a broader assessment
of the design’s efficiency and throughput achievements.
Xilinx ISE was used to implement the design in the Virtex-
5/Virtex-6, and Virtex-7/Artix-7 was used to implement the
architecture in the Xilinx Vivado. The implementation has
been donewithVeryHighSpeed IntegratedCircuitHardware
Description Language (VHDL). The designs are simulated
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Table 5 The new simplified structure of the round constants RCi in the
Iota (ι) step of the SHA-3 algorithm

RC0 1000000 RC12 1111110

RC1 0101100 RC13 1111001

RC2 0111101 RC14 1011101

RC3 0000111 RC15 1100101

RC4 1111100 RC16 0100101

RC5 1000010 RC17 0001001

RC6 1001111 RC18 0110100

RC7 1010101 RC19 0110011

RC8 0111000 RC20 1001111

RC9 0011000 RC21 0001101

RC10 1010110 RC22 1000010

RC11 0110010 RC23 0010101

Table 6 Example of the new simplified structure of the RC[3] in Iota
(ι) step

Hex Binary Places with value 1

8000 1000 0000 0000 0000 0th = 0

1st = 0

3rd = 0

7th = 0

15th = 1

8000 1000 0000 0000 0000 31st = 1

0000 0000 0000 0000 0000 –

8000 1000 1000 1000 1000 63rd = 1

and confirmed for the whole functionality with valid exam-
ples provided by the NIST [41].

5.1 Performancemetrics

In order to ensure a fair comparison between the proposed
design and other existing works, we used the established def-
initions of efficiency and throughput [18, 42–44] used in the
literature. Maintaining consistency in performance metrics
is essential for meaningful comparisons and benchmarking
between different designs. Additionally, using the estab-
lished definition of performance metrics as in other works
enables researchers to compare our results with the exist-
ing literature and understand the performance advancements
achieved by our proposed design.

Throughput symbolises the total number of bits processed
per period (time) unit and is defined in Gbps or Mbps. The
throughput is computed utilising Eq. (9).

Throughput = Bmb

Ccmb
× Max f (9)

In Eq. (9), Bmb (bits in a message block) are the bitrate
size “r” (576, 832, 1088, 1152),Max f is themaximum clock

periodicity frequency, and Ccmb (clock cycles per message
block) represent the number of resumption needed for the
five special operations: ( θ → ρ → π → χ → ι) to generate
the hash value. The efficiency is calculated by using Eq. (10).

Efficiency = Throughput

Area
(10)

5.2 Results

The presented architectural design attains high throughput
and assures reducing hardware resources in the area for var-
ious output lengths required to produce a hash value. The
results of the implementation of this architectural design
are summarized in Table 7, which shows the maximum fre-
quency and throughput of all output lengths.

As shown in Eq. (10), decreasing the total number of clock
cycles and reducing the area increases the throughput, which
was our primary objective. Thus, our strategy concentrated
on reducing the total number of iterations required to generate
a hash value. Additionally, with the new simplified structure,
the RC generator has several advantages, such as reduced
resource utilization required for a design, faster design time,
which reduces project complexity, and higher clock frequen-
cies, which lead to higher performance.

According to the results, the proposed architectural design
achieves a maximum throughput of 36.358 Gbps for 224
output length and 18.179 Gbps for 512 output length with
an area of 1375 slices. Moreover, Table 7 provides a fair
comparison of the achieved outcomes with the recent studies
published in the literature.

In addition to the results in Table 8, the efficiency of the
proposed design has been evaluated by taking the through-
put (in Mbps) and dividing it by the consumption per area
(total number of slices). The results of this evaluation are
summarized in Table 8 for all output lengths.

6 Result in discussion

Throughput and area are essential data processing metrics,
especially for information security. This measure represents
the algorithm’s efficiency and resistance to cryptanalysis
attacks that focus on hardware flaws.

On theVirtex-5boardwith 24 total clock cycles, design [35]
occupied the highest area of 1680 slices, whereas the pro-
posed design consumed the lowest area of around 868 slices.
On the Virtex-6 board, the design [32] occupied the high-
est area of 1432 slices, whereas the design [30] consumed
the lowest area of around 871 slices. Although [30] occu-
pied slightly less area than the proposed design, it resulted
in poor efficiency, frequency, and throughput, indicating that
the design’s area utilization is only one of the factors to be
considered in evaluating its performance.
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On the Virtex-7 board, the proposed design marginally
occupied the highest area of 1094 slices,while the design [28]
consumed the lowest area of around 998 slices. However, it
is observed that [28] produced low frequency, efficiency, and
throughput. Thus, it indicates that the proposed design may
have slightly higher area utilization but is still more efficient
in performance compared to the design [28].

On the Artix-7 board, the design [29] occupied a sig-
nificantly larger area, specifically 4188 slices, whereas the
proposed design consumed a much lower area of approxi-
mately 902 slices. Even though the design [29] achieved a
higher throughput for 512 output length performed poorly,
with an efficiency measure of 3.93 Mbps/slices. In contrast,
the proposed design exhibited a higher efficiency rate of
10.57 Mbps/slices. This indicates that the proposed design is
more effective at area and efficiencymetrics and ismore area-
efficient than [29]. The proposed designwith 24 clock cycles
delivers the highest throughputwhen implemented onVirtex-
5, Virtex-6, and Virtex-7 boards. In addition to its impressive
throughput achievements, the proposed design also excels
in low area utilization and efficiency when deployed on the
Artix-7 board.

On the Virtex-5 board with 12 total clock cycles, the
design mentioned in [32] occupied the highest area of 2144
slices, while the proposed design consumed the lowest area
of around 1112 slices. It indicates that the proposed design is
more area-efficient than the design mentioned in [32]. On
the Virtex-6 board with 12 total clock cycles, the design
mentioned in [32] occupied the highest area of 3557 slices,
whereas the proposed design consumed the lowest area of
around 1287 slices. In this case, the proposed design is also
more area-efficient than the design mentioned in [32]. On
the Artix-7 board, the design [29] occupied a much larger
area, 7139 slices, but the proposed design consumed a sub-
stantially lower area, about 1184 slices. The design [29]
performed poorly in terms of efficiency, with an efficiency
value of 2.80Mbps/slices,while the presented design demon-
strated a higher efficiency rate of 10.31 Mbps/slices. The
proposed design with 12 clock cycles achieves the highest
throughput when utilized on Virtex-5, Virtex-6, and Virtex-7
FPGAboards. Furthermore, it exhibits exceptional efficiency
and low area utilization when implemented on the Artix-7
board.

Consequently, the assessment of the presented archi-
tectural design concerning recent works in the literature
demonstrates that it surpasses them in terms of throughput
and area, making it an essential contribution to hash function
design. So, applications that need speedy and efficient hash
functions may benefit from this performance improvement.

7 Conclusions and future work

The importance of cryptography in ensuring the security
and confidentiality of digital media cannot be overstated in
today’s interconnected world. With the transmission of sen-
sitive information in various forms, including text, image,
video, and audio, it is crucial to have robust encryption algo-
rithms that offer high-level security and resistance to attacks.

The SHA-3 (Keccak) algorithm is one such algorithm that
has gained popularity due to its strong resistance to cryptanal-
ysis attacks and its good combination of speed, performance,
and security. Its adoption by NIST as a more secure replace-
ment for SHA-1 and SHA-2 highlights its significance in
ensuring the safety and integrity of digital data.

This study focuses on optimizing the performance of the
SHA-3 algorithm for all output lengths (224, 256, 384, and
512 bits) on the and Artix-7, Virtex-5, Virtex-6, and Virtex-7
FPGA boards. The research compares the proposed innova-
tive method to similar designs. It shows that the presented
architectural design has the highest performance in the stan-
dard evaluation criteria of area (slices), throughput (Gbps),
and efficiency (Mbps/slices).

The study achieved an area of 1375 slices, a throughput
of 36.358 Gbps, and an efficiency of 26.44 Mbps/slices with
the Virtex-7 FPGA board, demonstrating the efficacy of the
proposed architecture.However, future researchwill enhance
throughput and efficiency performancemetrics per round and
propose more practical experiments implementing FPGAs
and entire systems-on-chip.
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