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AbstractCalifornia bearing ratio (CBR) test is one of the comprehensive tests used for the last few decades to design the pavement
thickness of roadways, railways and airport runways. Laboratory-performedCBR test is considerably rigorous and time-taking.
In a quest for an alternative solution, this study utilizes novel computational approaches, including the kernel ridges regression,
K-nearest neighbor and Gaussian process regression (GPR), to predict the soaked CBR value of soils. A vast quantity of 1011
in situ soil samples were collected from an ongoing highway project work site. Two data divisional approaches, i.e., K-Fold
and fuzzy c-means (FCM) clustering, were used to separate the dataset into training and testing subsets. Apart from the
numerous statistical performance measurement indices, ranking and overfitting analysis were used to identify the best-fitted
CBR prediction model. Additionally, the literature models were also tried to validate through present study datasets. From
the results of Pearson’s correlation analysis, Sand, Fine Content, Plastic Limit, Plasticity Index, Maximum Dry Density and
OptimumMoisture Content were found to be most influencing input parameters in developing the soaked CBR of fine-grained
plastic soils. Experimental results also establish the proficiency of the GPR model developed through FCM and K-Fold data
division approaches. The K-Fold data division approach was found to be helpful in removing the overfitting of the models.
Furthermore, the predictive ability of any model is considerably influenced by the geological location of the soils/materials
used for the model development.

Keywords Kernel ridge regression · K-nearest neighbor · Gaussian process regression · Soaked CBR · Fine-grained soil ·
K-fold cross-validation · Fuzzy c-means clustering
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Abbreviations

AI Artificial intelligence
ANN Artificial neural network
ANSI Adaptive neuro swarm intelligence
AUC Area under curve
BIS Bureau of Indian Standards
CBR California bearing ratio
ELM Extreme learning machine
FC Fine content
FCM Fuzzy c-means
GEP Gene expression programming
GMDH Group method of data handling
GP Genetic programming
GPR Gaussian process regression
GPRF GPR model at FCM data division approach
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GPRK GPR model at K-Fold data division approach
IOA Index of agreement
IOS Index of scatter
IP Performance index
KRR Kernel ridge regression
KRRF KRR model at FCM data division approach
KRRK KRR model at K-Fold data division approach
K-NN K-nearest neighbor
K-NNF K-NN model at FCM data division approach
K-NNK K-NN model at K-Fold data division approach
LL Liquid limit
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression splines
MDD Maximum dry density
ML Machine learning
MLR Multi-linear regression
OMC Optimum moisture content
OR Overfitting ratio
PI Plasticity index
PL Plastic limit
PSO Particle swarm optimization
R2 Coefficient of determination
Adj. R2 Adjusted coefficient of determination
R Correlation coefficient
RA Ranking analysis
REC Regression error characteristics curve
RMSE Root-mean-square error
SLR Simple linear regression
SP Performance strength
SVM Support vector machine
TR Training dataset
TS Testing dataset
USCS Unified Soil Classification System
VAF Variance account for

1 Introduction

Road transportation network facilitates transferring goods
from one place to another and door-to-door services for pas-
sengers throughout the world. As of this, the road transport
infrastructuresmajorly govern the economyof the country. In
this aspect, many new expressways and green highways are
being constructed in India by theMinistry of Road Transport
and Highways (MoRTH) department through various infras-
tructure development plans. The pavement thickness design
construction of these roads is based on the strength of the
material used in the subgrade and subbase layer. Therefore,
highway engineers always desire that the material used in
the subgrade layer should fulfill some of the engineering and

technical properties such as swell criteria, plasticity proper-
ties, soil settlement conditions, subgrade reaction, bearing
capacity etc. A method for recognizing the strength of such
layers is of utmost requisite in highway engineering.

In general, the California bearing ratio (CBR) test is
espoused to measure the stiffness modulus and the shear
strength of subgrade material [1, 2] which may be performed
on either re-compacted samples in the laboratory or undis-
turbed samples cut from thefield or in situ surface of subgrade
formation [3]. The test is an indirect measure that compares
the strength of subgradematerial (at knowndensity andmois-
ture content) to standard crushed rock material [4, 5]. Both
laboratory and in situ tests are based on the principle of pen-
etrating a standard dimension plunger into a soil specimen at
a deformation rate of 1.25 mm/min. The laboratory and field
engineers always encounter several difficulties in obtaining
the CBR value in the laboratory. Laboratory-soaked CBR
test requires a large amount of materials (almost 6 kg), more
effort to prepare the test specimen, and lastly, 96 h of the soak-
ing period to simulate the field conditions. Consequently, all
those activities make the CBR test more tedious, laborious,
and time-consuming. Additionally, if the properties of soil
change for each small stretch of highway, then preserving
such a huge quantity of soil and conducting the CBR test in
the laboratory is laborious and time-consuming. Laborato-
ries are also often packed due to the long queue of materials
testing, which causes a delay in testing as well as the test-
ing reports, ultimately the design of construction projects.
Furthermore, the test method includes the material trans-
portation cost (from construction site to testing laboratory),
testing charge, and finally, the dumping of tested materials,
which became more exhausted and increased the final cost
of the projects.

Owing to the aforementioned problems, many researchers
considered that CBR needs to be replaced either partially
or entirely. Although not a fundamental material property,
it has a long history in pavement design, and it is reason-
ably correlated with the index and engineering properties
of soil by several investigators in the past. To the author’s
knowledge, the first fame in predicting the CBR value was
earned by Kleyn [6]. Earlier, he attempted to address the
discrepancy in the CBR test and later prepared a chart
based on a nest of straight lines that relate CBR to PI and
grading module for over 1000 soaked CBR tests obtained
from road and airport work throughout central and south-
ern Africa. Black [7] suggested that the relationship between
CBR and ultimate bearing capacity depends on the type of
soil and compaction method, i.e., static or dynamic. Agarwal
and Ghanekar [8] tried to generate the correlation equa-
tion through statistical analysis between CBR and Atterberg
limits for 48 soil samples collected from different parts of
India. However, they could not find any significant corre-
lation between these parameters. But when LL and OMC
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Table 1 Brief overview of the literature study attempted to predict the CBR value of various soil types

Literature study Type of soil Number of datasets Computational approach R2/R

National Cooperative Highway Research
Program [9]

Non-Plastic Coarse-grained soils 7 SLR 0.84

Plastic Fine-grained soils 11 0.67

Kin [10] Fine-grained soil 57 MLR NA

Taskiran [11] Fine-grained soil 151 ANN 0.91

GEP 0.92

Yildirim and Gunaydin [12] Granular soil 124 SLR 0.86

MLR 0.88

ANN 0.93

Alawi and Rajab [25] Granular soil 19 MLR 0.95

Varghese, Babu [26] Fine-grained soil 112 MLR 0.83

ANN 0.85

Erzin and Turkoz [13] Sandy soil 61 MLR 0.81

ANN 0.98

Tenpe and Patel [16] Mixed soil samples 389 GEP 0.82

ANN 0.89

Katte, Mfoyet [27] Subgrade soil 33 MLR 0.84

Kurnaz and Kaya [22] Mixed soil samples 158 GMDH 0.97

Taha, Gabr [15] Granular soil 218 ANN 0.97

Alam, Mondal [28] Fine-grained soil 20 GEP 0.94

ANN 0.96

Tenpe and Patel [17] Mixed soil samples 389 GEP 0.78

SVM 0.80

Bardhan, Gokceoglu [19] Mixed soil samples 312 MARS 0.90

GP 0.88

Bardhan, Samui [18] Mixed soil samples 312 ELM-MPSO 0.91

ELM-TPSO 0.90

SVM 0.87

were added, they observed an improved correlation with
adequate accuracy for the preliminary identification of mate-
rials. National Cooperative Highway Research Program [9]
attempted to develop the correlation equation for CBR from
the index properties for clean and coarse-grained soil. Kin
[10] tried to develop the correlation equation for the CBR
value of fine-grained and coarse-grained soil through gra-
dational properties. Taskiran [11] attempted to establish the
correlation for 151 CBR test data of fine-grained soils, taken
from 354 test samples, by ANN and gene expression pro-
gramming (GEP) methods. Both techniques were found to
exhibit promising results. Using 124 datasets, Yildirim and
Gunaydin [12] studied the estimation of CBR by regression
and ANN approach. They observed that the ANN technique
is better than the regression analysis. Erzin and Turkoz [13]
tried to predict the CBR value of Aegean sand from the
results of mineralogical properties through ANN and regres-
sion approach. They also found that ANN is superior to the

regression technique. Farias, Araujo [14] used the local poly-
nomial regression (LPR) and radial basis network (RBN)
techniques for developing the predictive equations for the
CBR of soil samples. Using 207 CBR test results of granular
soil, Taha, Gabr [15] observed that the correlation obtained
through ANN is of excellent accuracy and lower bias than
the regression analysis. A comparative study conducted by
Tenpe and Patel [16] for 389 datasets collected from City
and Industrial Development Corporation, Maharashtra state
in India, reveals that ANN and GEP are efficient in pre-
dicting the CBR value. Later, in another study, Tenpe and
Patel [17] found that SVM can better predict the CBR value
than GEP. Recently, Bardhan, Samui [18] attempted to pre-
dict the soaked CBR value of 312 soil datasets through a
particle swarm optimization (PSO) algorithm with adaptive
and time-varying acceleration coefficients. The compara-
tive analysis of various extreme learning machine (ELM)
based adaptive neuro swarm intelligence (ANSI) such as
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ELM coupled-modified PSO (ELM-MPSO), ELM coupled-
time-varying acceleration coefficients PSO (ELM-TPSO)
and ELM coupled-improved PSO (ELM-IPSO) reveals that
the modified and improved version of PSO has high accuracy
at early iterations than the standard PSO. In another investi-
gation, Bardhan, Gokceoglu [19] observed that multivariate
adaptive regression splines with piecewise linear (MARS-L)
demonstrate a higher accuracy in predicting the soaked CBR
as compared to MARS with piecewise-cubic (MARS-C),
Gaussian process regression and genetic programming. Has-
san, Alshameri [20] attempted to predict the CBR value of
plastic fine-grained soil from their index properties and com-
paction parameters through multi-linear regression analysis
(MLR). The study was conducted for the standard proctor
compaction energy level, whereas the engineers always pre-
fer the modified proctor compactive energy level to construct
the highways and expressways. It is observed from the above
literature investigations (also shortened in Table 1) that sev-
eral artificial intelligence (AI)-based models were used to
predict the soaked CBR value which demonstrates the preci-
sion from 80 to 100% (R2 values 0.8 to 1.0). However, there
are still some advanced computation approaches which have
proven their competency in solving many problems of civil
engineering. The literature studies also omitted the investi-
gation of statistical analysis over the obtained results of the
model. The deep insight view of literature studies reveals that
the range of geotechnical parameters and quantity of dataset
are limited. Using a large amount of dataset is always con-
sidered to be much worthwhile from generalization point of
view [18, 19, 21–24].

1.1 Research Significance and Contributions

The main contribution of this study is to develop an effi-
cient model for predicting one of the challenging real-world
problems of highway engineers, i.e., estimation of soil Cal-
ifornia bearing ratio value. For this purpose, Kernel Ridge
Regression (KRR), K-Nearest Neighbor (K-NN) and Gaus-
sian Process Regression (GPR) algorithms were adopted.
This study utilizes 1011 in situ samples of fine-grained plastic
soils with an extensive range of index and engineering prop-
erties. Numerous geotechnical parameters were extracted
from the laboratory experiments conducted through Bureau
of Indian Standards (BIS) specifications. Two data divi-
sional approaches, viz. K-fold and FCM, were adopted to
investigate the influence of the training data features on the
predictive ability of the developed model. Furthermore, the
influence of employed machine learning algorithms as well
as the data division approaches was investigated on the pre-
dictive ability of themodel. Lastly, the literaturemodels were
attempted to validate through the present study datasets.

2 Machine Learning Algorithms
and Statistical Assessment Indices

The term “Machine Learning (ML)” is a subfield/type of
Artificial Intelligence (AI) and is referred to as predictive
analytics or predictive modeling. ML is the development of
computer systems that can learn and adapt without following
explicit instructions by using algorithms and statistical mod-
els to analyze anddraw inferences frompatterns in data. In the
recent past, numerous ML algorithms have been adopted by
several researchers for solving many significant engineering
problems [29–49]. This section briefly introduces the most
prominent ML algorithms used to develop the model for pre-
dicting the soaked CBR value of fine-grained plastic soils
and several indices to measure their performances.

2.1 AppliedML Algorithms

2.1.1 Kernel Ridge Regression (KRR)

KRR is the nonlinear regression approach that is based on the
“kernel trick” in which datasets are nonlinearly transformed
into some high-dimensional (or even infinite-dimensional)
feature space determined by the kernel functions satisfying
Mercer’s theorem [50–52]. Consider a TR set of (x1, y1),
(x2, y2), . . . . . . , (xN , yN ), where N represents the number
of TR samples. X is a features matrix, [x1, x2, . . . . . . , xN ],
of size N × d and Y is a N × 1 vector, [1, 2, . . . . . . , m],
class labels.

KRR algorithm is generally based on the ridge regression
and Ordinary Least Squares (OLS), a type of Linear Least
Square (LLS), method [51, 53, 54]. The OLS minimizes the
squared loss function:

min
β

‖Y − Xβ‖2 (1)

where ‖.‖ indicates the L2 norm. In order to control the trade-
off between bias and variance of the estimate, a shrinkage or
ridge parameter λ is added to the above expression which is
represented below:

min
β

‖Y − Xβ‖2 + λ‖β‖2 (2)

Using the “kernel trick,” the KRR extends the linear
regression into nonlinear and high-dimensional space. The
data xi in X is replaced with the feature vectors: xi → F� F
(xi )induced by the kernel where Ki j � k

(
xi , x j

) � F (xi) F(
x j

)
. Therefore, the predicted class label of a new example

x is now represented as:

Y T (K + λI )−1k (3)
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where k � (k1, k2, . . . . . . , kN )T , kN � xN .x and n � 1, 2,
. . . . . . , N .

In KRR, the kernel function is used to increase the compu-
tational power by mapping the data into a high-dimensional
feature spacewhichmakes the data linear separable, and con-
sequently, increases the stability, accuracy and generalization
for both regression and classification problems. In general,
the kernel functions are categorized into local and global
functions. The local function influences the kernel function
values within the vicinity like the Gaussian kernel function,
whereas the global function allows the data points which are
far from each other like the polynomial kernel function. The
other kernel functions can also be employed, such as RBF,
sigmoid and Laplacian.

2.1.2 K-Nearest Neighbor (K-NN)

K-NN is a nonparametric supervised ML algorithm that uses
the k-number of most similar outputs from the TR dataset
[55–58]. The K-NN algorithm is also known as a lazy learner
algorithm, because, instead of immediate prediction, it stores
the dataset and categorizes it based on its similarities and then
approaches an action on the dataset. K-NN predicts the new
records/data for the regression and classification-type prob-
lems based on their Euclidean distances, estimated mean,
median or model output variable [59–62].

A classic K-NN algorithm for a regression problem can
follow the below-given steps [63]:

Step 1: Consider a vector X withm independent variables,
in this study X � {S, FC , PL , P I , MDDandOMC}, as
predictors and Y dependent variable, i.e., Y � {CBR}.

Step 2: Consider a TR set consisting of a dataset
with t vectors of Xn � {S1n , FC1n , PL1n , P I1n ,
MDD1nandOMC1n} and a dependent variable of Yn �
{CBR1n} associated with each vector in Xn .

Step 3: The distance of the predictor vector with each of
the n training vectors is calculated. The Euclidean distance
(Ed) is most commonly used to estimate (see Eq. 4) which
of the k output in the TR dataset is similar to the new input.
However, other distances such as the Manhattan distance,
which computes the distance between real vectors using the
sum of absolute distance, Hamming distance, estimating the
distance between binary vectors, and Minkowski distance,
a generalization of the Euclidean and Manhattan distances
[58, 64] could also be adopted according to the availability
of the datasets.

Ed (x , y) �
√
(X1 − X1n)2 + (X2 − X2n)2 + . . . . · · · + (Xm − Xmn)2

(4)

Step 4: Select the k training vector with the least distance
to the predictor vector.

Step 5: Calculate the kernel function (using an equation)
for each of the k-selected training vectors

fk(�k) �
1

�k∑K
k�1

1
�k

(5)

Step 6: The predicted dependent variable is calculated as

Y �
K∑

k�1

fk(�k) × Ynk (6)

where Ynk is the dependent variable of each selected neigh-
bor.

2.1.3 Gaussian Process Regression (GPR)

GPR is a probabilistic, nonparametric Bayesian approach for
generalizing the nonlinear and complex problems related
to regression and classification-type data sets [65, 66].
Many supervised ML algorithms learn exact values from
the dataset, whereas GPR infers a probability distribution
of all admissible functions that could reasonably fit the data
space regarding the problems [67]. GPR is very efficient to
handle nonlinear data due to the use of kernel functions.
A GPR model can make predictions by incorporating the
prior knowledge through covariance (kernel) functions and
provide uncertainty measures over predictions [66, 68–70].
The algorithm has recently received huge attention from
researchers as of having ability to solve many complex engi-
neering problems related to various disciplines [66, 67, 69,
71–74].

For a given TR data set of S �
{((xi , yi )|i � 1, 2, . . . . . . . . . , n)}, the input data X ∈ RS×n

is called the designed matrix and Y ∈ Rn is the vector of
the desired output. The main assumption of GPR is that the
output can be estimated as follows:

y � f (x) + ε (7)

where ε signifies the noise term. GPR assumes that ε follows
the Gaussian distribution with a mean of 0 and the variance
of σ 2

n :

ε ∼ N (0, σ 2
n ) (8)

In GPR methodology, the n observations in the data set of
interest y � {y1, y2, . . . . . . . . . , yn} are considered as a sin-
gle point sampled from a multivariate Gaussian distribution.
Moreover, it can be assumed that this Gaussian distribution
has a mean of zeros. The covariance function K (x , x ′) dic-
tates the relation of one observation to another observation.
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For a given TR data set, the ultimate goal of the learning
process is to predict the output value y* of a newqueried input
pattern. To achieve such a goal, it is necessary to establish
three covariance matrices as follows:

K �

⎡

⎢
⎢⎢⎢⎢
⎣

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . . . . . . . .

. . . . . . . . . . . .

k(xn , x1) k(xn , x2) . . . k(xn , xn)

⎤

⎥
⎥⎥⎥⎥
⎦

(9)

K∗ � [ K (x∗, x1) K (x∗, x2) . . . K (x∗, xn) ] (10)

K∗∗ � [K (x∗, x∗)] (11)

Due to the assumption that the data is sampled from
multivariate Gaussian distribution, we have the following
expression:

[
y
y∗

]

∼ N

(

0,

[
K KT∗
K∗ K∗∗

])

(12)

Since, (y∗|y) is proved to be generated from multivariate
Gaussian distribution the mean and the variance of the esti-
mated mean and variance of the predicted output are given
as:

μ∗ � K∗K−1y (13)

σ 2∗ � K∗∗ − K∗K−1KT∗ (14)

2.1.4 Hyperparameters Tuning Using a Grid Search

Several ML algorithms contain a set of parameters that con-
trol many aspects of the algorithm. These parameters are
termed as hyperparameters that are fixed before the learning
process of the algorithm. These hyperparameters are adjusted
to enhance the quality of the model as well as the ability to
correctly predict the unseen dataset. In this study, hyperpa-
rameters of the above-used algorithms are optimized through
a cross-validation (CV)-based grid searchmethod. In the grid
search method, the dataset is divided into training sets and
test sets using K-Fold cross-validation (CV) [75]. For CV
calculation, the grid points are assigned. Out of a total five
number of folds, onefold is served as an independent testing
set and the remaining k-1 (four) folds are designated as train-
ing sets. The grid search method is significantly superior to
the random search method where only a few combinations
are searched. Themost significant advantage of this approach
is that it provides better generalization performance for the
respective model.

Table 2 Combination of KRR algorithm hyperparameters

Hyperparameters Selected values

Alpha 3

Kernel type Polynomial

Coefficient of kernel 0.2

Kernel degree 3

Table 3 Combination of K-NN algorithm hyperparameters

Hyperparameters Selected values

n_neighbours 5

Weights Uniform

Algorithm Auto

Leaf size 30

P 2

Metric Manhattan

Table 4 Combination of GPR algorithm hyperparameters

Hyperparameters Selected values

Kernel Rational quadratic () * Dot Product () +
White Kernel ()

Alpha 1e−10

Optimizer Broyden–Fletcher–Goldfarb–Shanno

Initially, some manifestly unreasonable values of the
hyperparameterswere bypassed. After several trial-and-error
approaches, the expected values for each of the hyperparam-
eters were passed through the grid search method. Based on
the results of best fit, the values obtained for the selected
hyperparameters of KRR, K-NN and GPR algorithms are
given in Tables 2, 3 and 4.

2.2 Statistical PerformanceMeasurement Indices

The precision of all the models was assessed through sev-
eral statistical performance indicators. The widely used
performancemeasurement indicators are coefficient of deter-
mination (R2), adjustedR2 (adj.R2), coefficient of correlation
(R), mean absolute error (MAE), mean absolute percentage
error (MAPE), root-mean-square error (RMSE), variance
accounted for (VAF), performance index (IP), Willmott’s
index of agreement (IOA), index of scattering (IOS), a20-
index and performance strength (SP) [17, 76–81]. The
mathematical expression for these indicators is given in
Eqs. (15) to (26) along with their ranges. In order to select an
efficient prediction model espousing many more statistical
indicators might be useful for assessing the performance of
predictive models in terms of error and trend point of view
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[19].Using the least amount of parametersmight be challeng-
ing, especially when comparing the performance of two or
more models in an instant. Often, the models show not much
difference in their statistical indices value. In that particu-
lar situation considering many more statistical performance
indices might be helpful in selecting the best-fitted model.

Parameters Ideal
value

R2 � 1 −
∑N

i�1 (yi (a)−yi (p))2
∑N

i�1
(
yi (a)−yi (a)

)2
1 (15)

Ad j .R2 �
[
1 − N−1

N−P−1

(
1 − R2

)] 1 (16)

R �
∑N

i�1
((
yi (a)−yi (a)

)(
yi (p)−yi (p)

))
√(

yi (a)−yi (a)
)2(

yi (p)−yi (p)
)2

1 (17)

MAE �
[
1
N

∑N
i�1|yi (a) − yi (p)|

]
0 (18)

MAPE(%) �
[
1
N

∑N
i�1

∣
∣∣ yi (p)−yi (a)

yi (a)

∣
∣∣
]

× 100 0 (19)

RMSE �
√

1
N

∑N
i�1 (yi (a) − yi (p))2

0 (20)

V AF(%) �
[
1 − Var (yi (a)−yi (p))

Var (yi (a))

]
× 100 100 (21)

IP � Ad j .R2 + 0.01V AF − RMSE 2 (22)

I O A � 1 −
∑N

i�1 (yi (a)−yi (p))2
∑N

i�1
(∣∣yi (p)−yi (a)

∣∣+
∣∣yi (a)−yi (a)

∣∣)2
1 (23)

I OS �
√

1
N

∑N
i�1 (yi (a)−yi (p))2

yi (p)

0 (24)

a20 − ndex � n20
N × 100 1 (25)

SP �
(
Ad j .R2)

total+(0.01V AF)total−(RMSE)total(
Ad j .R2

R2

)

training
+
(

Ad j .R2

R2

)

testing

1 (26)

where yi (a) � actual value (laboratory-obtained value);
yi (p) � predicted value (value obtained through the devel-
oped model); yi (a)� mean of actual value; yi (p)� mean of
predicted value; N� number of observations; P � number
of input parameters used to develop the model; n20� num-
ber of observations lies within error range of ± 20%; a20�
percentage of observations having error ≤ 20% (Fig. 1).

2.2.1 Data Preparation and Analysis

2.3 Data Collection and Geographical Location

The Ministry of Road Transport and Highways (MoRTH)
has decided to implement the Engineering Procurement
and Construction (EPC) mode for constructing the National
Highways (NH) in India. The Twelfth 5-Year Plan envisions
the construction of 20,000 km of 4-lane National Highways
projects through EPC mode in the various state of India. In
this study, the Varanasi Gorakhpur section of NH-29 belongs

to the state of Uttar Pradesh (UP), India, was selected as the
study area [42]. The geographical location of the study area
is shown in Fig. 2.

2.4 Laboratory Experiments
From the aforementioned project worksite, a total of 1011
soil samples were collected and brought to the laboratory for
experimental investigations. The laboratory tests were con-
ducted as per BIS specifications. The test method includes
IS 2720 (Part 4) [82], IS 2720 (Part 5) [83], IS 2720 (Part 8)
[84] and IS 2720 (Part 16) [85] for the grain size distribution,
Atterberg limits, modified Proctor compaction parameters
and soaked CBR of fine-grained soil, respectively. Through
these laboratory tests, numerous geotechnical parameters
were collected such as gravel content (G), sand content (S),

Fig. 1 Flowchart for predicting the soaked CBR of fine-grained plastic
soils
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Fig. 2 Geographical location of the study area
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Fig. 3 Histogram plot for the different soil groups of fine-grained soil

silt and clay content termed as fine content (FC), liquid limit
(LL), plastic limit (PL), plasticity index (PI), maximum dry
density (MDD), optimummoisture content (OMC) and CBR
value of fine-grained soil. The laboratory-obtained database
of fine-grained soil was further classified into various soil
groups using the USCS soil classification system. Figure 3
presents the histogram plot for different soil groups of fine-
grained soil. The vertical column represents the amount
of particular soil groups present in the fine-grained soil
database.

2.5 Statistical Visualization and Correlation Analysis

Table 5 presents the descriptive statistic values for all the fine-
grained soil parameters. As seen from Table 5, the obtained
database covers an extensive range of CBRvalues from1.0 to
13.20. The gravel content varies from 0 to 28%, sand ranges
between 2 and 49%, and fine content exists in the range of 50
to 96%. Similarly, from a plasticity point of view, the selected
database shows the liquid limit from 24 to 85%, plastic limit
from11 to 50%and plasticity index from1 to 39%.MDDand
OMCof fine-grained soil range from 1.455 g/cc to 1.959 g/cc
and 9% to 30%, respectively.

Pearson’s correlation (R) is one of the commonly used
measures of association between the parameters. The range
of R varies from − 1 to 1, where ± 1 indicates the strong
association between the parameters, and a value of 0 (zero)
illustrates no relationship between the parameters. The pos-
itive or negative sign specifies the respective increase or
decrease in the associated parameters simultaneously. The
correlation matrix obtained for all the geotechnical parame-
ters is presented in Fig. 4. As observed from Fig. 4, CBR
is positively correlated with S and MDD, whereas nega-
tively with FC, LL, PL, PI and OMC. The final selected input
parameters for developing the CBR prediction model are S,
FC, PL, PI, MDD and OMC.

2.6 Data Divisional Approaches

Data division is the process of separating the complete dataset
into the TR and TS subsets. In this study, about 80% of
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Table 5 Descriptive statistic details for all fine-grained soil parameters

G (%) S (%) FC (%) LL (%) PL (%) PI (%) MDD (g/cc) OMC (%) CBR (%)

Min 0.00 2.25 50.65 24.40 11.81 1.93 1.455 9.50 1.00

Max 27.42 48.85 96.28 85.00 50.00 39.00 1.959 29.50 13.20

Mean 2.83 13.99 83.18 29.85 21.60 8.25 1.866 11.96 9.02

Median 1.23 12.62 85.46 28.70 21.10 7.65 1.885 11.45 9.10

Mode 0.00 12.79 87.00 29.00 21.30 7.75 1.900 10.70 10.00

S. D 4.64 6.64 7.68 6.21 2.89 3.72 0.073 2.52 1.16

Variance 21.54 44.05 59.00 38.59 8.34 13.83 0.005 6.36 1.35

Fig. 4 Correlation matrix for all
the geotechnical parameters

the entire dataset was considered to train the model and
the remaining 20% was kept for testing the model. The
basic problem with machine learning modeling is that we
are unknown to the fact that how well a model performs or
will perform until it is tested on the unseen dataset. One can
build a perfect model on the TR data with 100% accuracy or
0 error, but it may fail to generalize for unseen data. It is not
a good model as it over-fits the TR data. Machine learning
is all about generalization, meaning that the model’s perfor-
mance can only be measured with data points that have never
been used during the training process. To overcome this prob-
lem, two data divisional approaches were adopted, discussed
below:

2.6.1 K-Fold Division Approach

Initially, shuffle the dataset randomly and split it into K-
number of folds (as seen in Fig. 5). Once the dataset is
separated, the first fold is used as the TS dataset and the
remaining k-1 folds are used for training purposes. Themodel
with specific hyperparameters is trained with TR data (K-1
folds) and TS data as one fold. The performance of themodel
is recorded. The above steps are repeated until each k-fold
got used for testing purposes.

Usingfivefold, the complete datasetswere divided intoTR
and TS sets. The descriptive statistics value obtained for the
TR and TS datasets is shown in Tables 6 and 7, respectively.
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Fig. 5 Data splitting process in
K-fold cross-validation approach

Table 6 Descriptive statistics
value for the selected input and
output parameters of the TR
dataset obtained through the
K-fold approach

Min. Max. Range Average Median Mode S.D. Variance

Sand (%) 2.25 48.85 46.60 14.11 12.72 12.79 6.62 43.80

FC (%) 50.65 96.28 45.63 83.06 85.44 77.00 7.71 59.39

PL (%) 11.81 44.00 32.20 21.60 21.10 21.30 2.75 7.58

PI (%) 1.93 39.00 37.07 8.28 7.66 7.85 3.80 14.46

MDD (g/cc) 1.480 1.959 0.479 1.867 1.885 1.900 0.073 0.005

OMC (%) 9.50 29.50 20.00 11.98 11.45 10.70 2.53 6.38

CBR (%) 3.00 13.00 10.00 9.03 9.19 10.00 1.13 1.28

Table 7 Descriptive statistics
value for the selected input and
output parameters of TS dataset
obtained through the K-fold
approach

Min. Max. Range Average Median Mode S.D. Variance

Sand (%) 4.08 48.40 44.33 13.53 12.19 10.32 6.71 44.98

FC (%) 51.60 95.61 44.01 83.66 85.54 89.57 7.58 57.41

PL (%) 12.72 50.00 37.29 21.62 21.09 21.45 3.38 11.45

PI (%) 5.25 35.00 29.75 8.11 7.58 8.35 3.37 11.33

MDD (g/cc) 1.455 1.950 0.495 1.863 1.882 1.900 0.073 0.005

OMC (%) 9.50 29.30 19.80 11.91 11.43 11.70 2.52 6.33

CBR (%) 1.00 13.20 12.20 8.98 9.05 8.40 1.28 1.65

2.6.2 Fuzzy C-Means (FCM) Division Approach

Clustering is the process of separating the dataset into a num-
ber of groups. Each group represents the observations that
are homogeneous to each other and the objects that are dis-
similar to each other are clustered into different groups. In
fuzzy clustering, each observation can belong to more than
one cluster based on its membership value. The total mem-
bership value for any observation distributed over the entire

cluster is 1.0. Brief information about this approach is given
in Shi [86], Shahin, Maier [87] and Das [88].

Initially, two clusters were taken and the silhouette value
was estimated. The number of a cluster was increased grad-
ually and silhouette values for each of the corresponding
clusters were calculated. The silhouette score obtained cor-
responding to the number of clusters is depicted in Fig. 6.
It can be clearly observed from Fig. 6 that the maximum
silhouette score was obtained when two clusters were used
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Fig. 6 Silhouette value obtained
for each of the clusters

Table 8 Descriptive statistics
value for the selected input and
output parameters of the TR
dataset obtained through the
FCM approach

Min. Max. Range Average Median Mode S.D. Variance

Sand (%) 4.01 48.85 44.85 13.96 12.46 11.00 6.76 45.67

FC (%) 50.65 95.61 44.96 83.16 85.45 87.00 7.77 60.38

PL (%) 11.81 50.00 38.20 21.59 21.10 21.30 2.87 8.26

PI (%) 1.93 39.00 37.07 8.29 7.65 7.90 3.86 14.90

MDD (g/cc) 1.455 1.959 0.504 1.867 1.885 1.900 0.073 0.005

OMC (%) 9.50 29.50 20.00 11.98 11.46 11.70 2.58 6.66

CBR (%) 1.00 13.20 12.20 9.01 9.10 10.00 1.18 1.40

Table 9 Descriptive statistics
value for the selected input and
output parameters of TS dataset
obtained through the FCM
approach

Min. Max. Range Average Median Mode S.D. Variance

Sand (%) 2.25 44.76 42.51 14.14 12.96 12.96 6.14 37.67

FC (%) 51.70 96.28 44.58 83.27 85.49 89.57 7.33 53.68

PL (%) 18.79 42.00 23.21 21.66 21.06 20.95 2.95 8.70

PI (%) 5.20 29.00 23.80 8.08 7.57 6.50 3.08 9.50

MDD (g/cc) 1.490 1.943 0.453 1.863 1.883 1.900 0.075 0.006

OMC (%) 9.80 29.30 19.50 11.91 11.38 11.05 2.28 5.21

CBR (%) 3.00 10.90 7.90 9.05 9.20 9.60 1.09 1.18

for the analysis. The dataset obtained in the first and sec-
ond clusters is represented as C1 and C2, respectively. The
C1 dataset was separated into TR and TS sets through the K-
fold approach (discussed in Sect. 3.4.1) and labeled as Train1
and Test1, respectively. Similarly, C2 TR and TS dataset was
designated as Train2 and Test2, respectively. The final TR
dataset was obtained by concatenating the Train1 and Train2
datasets. Similarly, the TS dataset was achieved by concate-
nating the Test1 and Test2 datasets. The descriptive statistics
value of the final TR and TS dataset is given in Tables 8 and
9.

3 Results

3.1 Statistical Performance of DevelopedModels

Table 10 illustrates the performance of the trained KRR,
K-NN and GPR models in terms of several performance
measurement indices. In Table 10, KRRK and KRRF indi-
cate the KRR model developed through K-fold and FCM
approaches, respectively. Similarly, models developed for K-
NN and GPR algorithms are represented as K-NNK, K-NNF

and GPRK, GPRF, respectively. It is observed from Table
10 that the R2 values obtained for the KRR algorithm in
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Table 10 Statistical performance
of KRR, K-NN and GPR model
for TR dataset in K-Fold and
FCM division approach

KRRK KRRF K-NNK K-NNF GPRK GPRF

R2 0.647 0.681 0.715 0.727 0.746 0.887

Adj. R2 0.644 0.679 0.713 0.725 0.744 0.886

R 0.804 0.825 0.847 0.854 0.866 0.943

MAE 0.515 0.512 0.432 0.437 0.438 0.308

MAPE 5.913 5.915 5.181 5.594 5.045 3.478

RMSE 0.672 0.666 0.604 0.617 0.570 0.397

VAF 64.705 68.131 71.530 72.743 74.551 88.690

IP 0.620 0.694 0.824 0.835 0.919 1.376

IOA 0.882 0.897 0.906 0.911 0.917 0.968

IOS 0.074 0.074 0.067 0.068 0.063 0.044

a20-index 0.979 0.978 0.977 0.975 0.985 1.000

K-Fold and FCM approaches are 0.647 and 0.681, respec-
tively. This means that KRRK and KRRF models can explain
64.7%, and 68.1% variability in the soaked CBR value of
fine-grained plastic soils. Similarly, the variability explained
byK-NNK andK-NNF models are 71.5% and 72.7%, respec-
tively, and byGPRK andGPRF models are 74.6% and 88.7%,
respectively. TheMAEvalues obtained for KRRK andKRRF

models are 0.515 and 0.512, for K-NNK and K-NNF mod-
els are 0.432 and 0.437, and for GPRK and GPRF models
are 0.438 and 0.308, respectively. Results of the a20-index
demonstrate that all the models can predict almost 98% of
observations within ± 20% variations.

The performance of developed models on the TS dataset
is presented in Table 11. The R2 value obtained in the TS
dataset of the K-Fold approach is 0.680, 0.706 and 0.758
for KRR, K-NN and GPR models, respectively, whereas for
KRRF,K-NNF andGPRF models are 0.407, 0.645 and 0.700,
respectively. It is clearly observed from the deep closest view
of all the statistical parameters in training (refer to Table 10)
and testing (refer to Table 11) dataset that the GPR algorithm
achieved the highest prediction in both K-Fold and FCM
approacheswhich is followed byK-NNandKRRalgorithms.

3.2 Visual Interpretation of DevelopedModels

Visual interpretation facilitates the viewer to find the insight
features from the model which is represented in a graphical
form such as a scatter plot, error plot and regression error
characteristics curve, etc.

3.2.1 Trend and Error Plot for the Developed Models

Figures 7 and 8 present the actual versus predictedCBRvalue
of the TR and TS datasets, respectively, for the KRR, K-
NN and GPR models at K-Fold and FCM approaches. It
is observed from the scatter plot results that the maximum

number of observations follows a specific trend along with
the line of equality. However, the closeness of data points
toward the line of equality in the TR dataset (see Fig. 7) is
maximum for GPR models, and an acceptable inclination is
obtained for KRR and K-NN models. Moreover, the utmost
precision in the GPR model is obtained when the dataset is
trained through the FCM data division approach followed by
the K-Fold approach. Similarly, the results obtained for the
TS dataset (see Fig. 8) also reveal that GPR models are more
efficient in predicting the unseen dataset, followed by K-NN
and KRR algorithms.

The error distribution and bar plots for the TR and TS
dataset of KRR, K-NN and GPRmodels at K-Fold and FCM
data division approaches are shown in Figs. 9 and 11, respec-
tively. The center horizontal line in the error distribution plot
represents the zero error line, the datasets existing on that line
have zero error, i.e., the difference in the actual and predicted
CBR value is zero. At the same time, the upper and lower line
specifies the + 20% and -20%, respectively, error or variation
band. It is observed fromFigs. 9 and 11 that some datasets are
below the zero error line (displays negative error) and some
are above the zero error line (shows positive error). This ran-
dompattern of error indicates that the developedmodels have
a decent fit for the dataset. Furthermore, the existence of a
dataset within± 20% variation seems to be themaximum for
theGPRF model (refer to Fig. 11). This can also be confirmed
from the comparative analysis of Figs. 10 and 12, showing
the error frequency plot for the TR and TS datasets of KRR,
K-NN and GPR models at K-Fold and FCM approaches,
respectively. As seen from Fig. 12, the GPRF model can pre-
dict almost 96% and 90% observations of the TR and TS
dataset, respectively, within± 10%, whereas 100% and 99%
within ± 20% variations which are substantially higher than
other models (Figs. 11, 12).
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Table 11 Statistical performance
of KRR, K-NN and GPR model
for TS dataset in K-Fold and
FCM division approach

KRRK KRRF K-NNK K-NNF GPRK GPRF

R2 0.680 0.407 0.706 0.645 0.758 0.700

Adj. R2 0.670 0.389 0.697 0.634 0.750 0.690

R 0.840 0.739 0.847 0.804 0.880 0.837

MAE 0.542 0.549 0.501 0.491 0.476 0.457

MAPE 7.642 6.964 7.612 5.750 6.605 5.310

RMSE 0.724 0.836 0.694 0.647 0.630 0.595

VAF 68.036 40.758 70.749 64.584 75.822 69.956

IP 0.626 − 0.040 0.710 0.634 0.879 0.795

IOA 0.915 0.851 0.899 0.883 0.918 0.904

IOS 0.081 0.093 0.077 0.071 0.070 0.066

a20-index 0.970 0.950 0.955 0.965 0.985 0.985

Fig. 7 Scatter plot for the TR dataset of KRR, K-NN and GPR models at K-Fold and FCM approaches
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Fig. 8 Scatter plot for the TS dataset of KRR, K-NN and GPR models at K-Fold and FCM approaches

3.2.2 Regression Error Characteristics (REC) curve

In regression problems, REC curves are equivalents to the
receiver operating characteristics (ROC) curves in clas-
sification problems. The X-axis of the REC curve plot
demonstrates the error tolerance, whereas the Y-axis rep-
resents the accuracy in terms of the percentage of points
predicted within the tolerance [79, 80, 89]. An ideal model’s
curve should pass through the upper left corner and therefore
should have an area under the curve (AUC) value is 1. This
means that the model can perfectly discriminate between all
the positive and the negative class points. In general, an AUC
of 0.5 suggests no discrimination, 0.7 to 0.8 is considered
acceptable, 0.8 to 0.9 is deemed to be excellent, and more
than 0.9 is considered outstanding.

Figures 13, 14, 15 and 16 depict the REC curve obtained
corresponding to the TR and TS dataset of KRR, K-NN and
GPR models at K-Fold and FCM data division approaches.
As seen from these figures, the AUC value obtained for all
the models in TR and TS datasets is higher than 0.9, which

means the developed models outperform very well and are
stated to be reliable in predicting the soaked CBR value of
fine-grained plastic soils. Furthermore, it is observed from
the comparative analysis of both models in the training and
testing set that the REC curve for the GPRF model exists
more closely to the upper left corner compared to the other
models as well as the AUC value achieved for the GPRF

model is also higher than those models.

3.2.3 Accuracy Analysis

The accuracy analysis is a novel assessment used to evalu-
ate the efficiency of the models. The analysis demonstrates
the accuracy (%) of a model, which is obtained through the
comparative analysis of the values obtained for different per-
formance measurement parameters to their ideal values (as
shown in Sect. 2.2) using Eqs. (27) and (28).

Ae � |(1 − |me|)| × 100 (27)
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Fig. 9 Error distribution plot for
the TR and TS dataset of KRR,
K-NN and GPR models at
K-Fold approach

At � |mt |
it

× 100 (28)

where Ae and At denote the error and trend-measuring per-
formance parameters. me and mt indicates the measured
values of the error and trend-measuring performance param-
eters. The performance measurement parameters MAE,
MAPE, RMSE and IOS belong to the class of error, whereas
R2, Adj. R2, R, VAF, IP, IOA and a20-index belong to the

trend. it represents the ideal value of the respective trend
parameters.

Tables 12 and 13 present the accuracy of all the developed
models in the TR and TS dataset, respectively. As seen from
Tables 12 and 13, the accuracy of the GPRF model through-
out numerous statistical performance measurement indices
is significantly higher than other models.
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Fig. 10 Error frequency plot for
the TR and TS dataset of KRR,
K-NN and GPR models at
K-Fold approach

3.3 Selection of Best-Fitted CBR Prediction Model

Numerous statistical performance indices were adopted to
evaluate the model performances and the conclusions can
easily be drawn by comparing their values. However, the
situation becomesmore complicatedwhen themodel demon-
strates adequate accuracy in theTRdataset and failed to reach

a good amount of accuracy in the TS dataset as well. More-
over, it also becomes complicated when the value of different
statistical performance indices describes their own best mod-
els. In that particular situation, the overfitting analysis and
ranking analysis might be useful for identifying the best-
fitted model as they envisage the overall analysis of all the
parameters of a particular model.
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Fig. 11 Error distribution plot for
the TR and TS dataset of KRR,
K-NN and GPR models at FCM
approach

3.3.1 Ranking Analysis (RA)

According to RA, used by many researchers in the past [79,
80, 89, 90], a maximum score of s (equal to the total number
of correspondingmodels) is assigned to themodel having the
highest value in particular performance indices, minimum to
the model with the lowest value and the score to the other
intermediate models are assigned either in the ascending or
descending order. Table 14 presents the RA results obtained

for the KRR, K-NN and GPR models at K-Fold and FCM
approaches.

3.3.2 Overfitting Ratio (OR)

OR is the ratio of the RMSE of the TS dataset to the TR
dataset as shown in Eq. (29). According to this formula, a
model with a lesser OR value or close to one is considered
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Fig. 12 Error frequency plot for
the TR and TS dataset of KRR,
K-NN and GPR models at FCM
approach

less prone to overfitting, which implicitly enhances the gen-
eralization capacity of themodels and provides themaximum
realistic approach for the real-world applications [16]. The
obtainedORvalue for all developedmodels is shown inTable
14.

OR � RMSEofTSdataset

RMSEofTRdataset
(29)

Initially, a score was assigned to each developed model
corresponding to their statistical performance measurement
parameters, as shown in Table 14. The total score for a partic-
ular model was achieved by combining the score obtained in
its TR and TS dataset. The overall accuracy of the developed
models was determined through the performance strength
parameters (using Eq. (26)). Based on the SP value obtained
for each model, a score was assigned to them as per the
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Fig. 13 REC curve for the TR dataset of KRR, K-NN and GPR models
at K-Fold approach

Fig. 14 REC curve for the TS dataset of KRR, K-NN and GPR models
at K-Fold approach
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Fig. 15 REC curve for the TR dataset of KRR, K-NN and GPR models
at FCM approach Fig. 16 REC curve for the TS dataset of KRR, K-NN and GPR models

at FCM approach
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ranking analysis method. The final score of the model was
accomplished by concatenating its total score value and the
score obtained for the SP value. Accordingly, the rank was
assigned to the models with respect to their final scoring
value. As seen from Table 14, the maximum score was
achieved by the GPRF model, therefore, designated as the
first rank, followed by GPRK, K-NNK, K-NNF, KRRK, and
KRRF models. The rankedmodelswere passed through over-
fitting analysis. It is clearly observed from the results of the
overfitting analysis, shown in Table 14, that the GPRF model
exhibits a little amount of overfitting as the OR value is con-
siderably higher than 1. Again, the analysis was performed
on a second-ranked model, i.e., the GPRK model. The OR
value obtained for the GPRK model is almost close to one,
whichmeans that themodel ismore generalized to the unseen
dataset. However, the GPRF model could also be used as a
predictive model as the R-value obtained in the TS dataset
is 0.83. According to Smith [91], Taskiran [11], Yildirim
and Gunaydin [12], Verma [92] and Tenpe and Patel [17], if
the R-value of a model is ≥ 0.8, then it is established that
the predicted and actual values are good in agreement and
strongly correlated. Conclusively, GPRF and GPRK models
were finally selected as the best-fitted model for predicting
the soaked CBR value of fine-grained plastic soils.

3.4 Influence of ML Algorithms and Data Division
Approaches on theModel Performance

The overall influence of adopted ML algorithms and data
divisional approaches were identified using the final score
value (refer to Table 14) obtained for each model. Figures 17
and 18 present the overall influence of ML algorithms and
data division approaches, respectively, on the predictive abil-
ity of the developed models. It is perceived from Fig. 17
that the GPR algorithm proves its proficiency more than K-
NN and KRR algorithms as the combined final score value
is significantly higher than those. The combined final score
value obtained for the K-Fold approach is slightly more than
the FCM approach. However, the K-Fold approach has been
found substantially useful in removing the overfitting of the
models.

3.5 Validation of Literature StudyModels

For this purpose, only those models were selected which
were having input parameters similar to the present study’s
geotechnical parameters. Kin [10], Taskiran [11], Yildirim
and Gunaydin [12] and Bardhan, Gokceoglu [19] models,
belonging to various countries (as shown in Table 15), were

attempted to validate through the present study datasets.
Datasets from the present study were selected as per their
minimum and maximum input and output parameter values.

Table 16 depicts the comparative performance of litera-
ture studymodels on the present study datasets. It is observed
from Table 16 that the R2 value obtained for all the models is
negative, which means that the selected models don’t follow
the specific trend of the dataset, leading to a worse fit than
the horizontal line. The Bardhan, Gokceoglu [19] model can
predict more than 65% observations within ± 20% varia-
tions, which is relatively higher than Kin [10], Taskiran [11]
and Yildirim and Gunaydin [12] models. This is because the
datasets used for the model development and validation are
geological and almost nearby, i.e., India. Nagaraj and Suresh
[93] also state that soils are likely to be quite variable depend-
ing on their geological locations.

4 Discussion of Results

In the above subsections, the prediction of the soakedCBRof
fine-grained plastic soilswas assessed through somemachine
learning algorithms. The collected dataset is comprised of
various groups of soils such as ML, CL-ML, CL, MH and
CH. Pearson’s correlation analysis reveals that S, FC, PL,
PI, MDD and OMC were the substantial input parameters
in predicting the soaked CBR value of fine-grained plastic
soils. Using these input parameters, six models for GPR,
K-NN and KRR algorithms were developed through K-Fold
andFCMdata divisional approaches. The quantitative perfor-
mance of these models was identified using twelve statistical
measurement parameters. Based on the ranking analysis and
overfitting ratio, GPRK and GPRF models were considered
the best-fitted model, followed by K-NNK, K-NNF, KRRK,
and KRRF models. The OR value obtained for GPRK, K-
NNK and KRRK models was less than the OR value obtained
for GPRF, K-NNF and KRRF models (as shown in Table 14).
This means that the RMSE value in the TR and TS datasets
of GPRK, K-NNK and KRRK models are almost close to
each other. Therefore, the K-Fold approach was considered
to bemore significant in removing the overfitting of the mod-
els. Furthermore, the comparative results of ML algorithms
exhibit the maximum proficiency of the GPR algorithm, fol-
lowed by K-NN and KRR algorithms. The validation results
of the literature models on the present study dataset ascertain
that the prediction ability of anymodel in the field of geotech-
nical/highway engineering is significantly influenced by the
geological location of the dataset.
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Table 12 Accuracy of all the developed models for the TR dataset

Statistical performance measurement parameters Models accuracy (%)

KRRK K-NNK GPRK KRRF K-NNF GPRF

R2 64.7 71.5 74.6 68.1 72.7 88.7

Adj. R2 64.4 71.3 74.4 67.9 72.5 88.6

R 80.4 84.7 86.6 82.5 85.4 94.3

MAE 48.5 56.8 56.2 48.8 56.3 69.2

MAPE 94.1 94.8 95.0 94.1 94.4 96.5

RMSE 32.8 39.6 43.0 33.4 38.3 60.3

VAF 64.7 71.5 74.6 68.1 72.7 88.7

IP 31.0 41.2 46.0 34.7 41.8 68.8

IOA 88.2 90.6 91.7 89.7 91.1 96.8

IOS 92.6 93.3 93.7 92.6 93.2 95.6

a20-index 97.9 97.7 98.5 97.8 97.5 100.0

Table 13 Accuracy of all the developed models for the TS dataset

Statistical performance measurement parameters Models accuracy (%)

KRRK K-NNK GPRK KRRF K-NNF GPRF

R2 68.0 70.6 75.8 40.7 64.5 70.0

Adj. R2 67.0 69.7 75.0 38.9 63.4 69.0

R 84.0 84.7 88.0 73.9 80.4 83.7

MAE 45.8 49.9 52.4 45.1 50.9 54.3

MAPE 92.4 92.4 93.4 93.0 94.3 94.7

RMSE 27.6 30.6 37.0 16.4 35.3 40.5

VAF 68.0 70.8 75.8 40.8 64.6 70.0

IP 31.3 35.5 44.0 2.0 31.7 39.8

IOA 91.5 89.9 91.8 85.1 88.3 90.4

IOS 91.9 92.3 93.0 90.7 92.9 93.4

a20-index 97.0 95.5 98.5 95.0 96.5 98.5
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Fig. 17 Influence of ML algorithms on the model performance

Fig. 18 Influence of data division approaches on themodel performance

Table 15 Literature models validation on the present study dataset

S. No. Literature model Soil origin Dataset from the
present study

1 Kin [10] Malaysia 997

2 Taskiran [11] Turkey 1011

3 Yildirim and
Gunaydin [12]

Turkey 1011

4 Bardhan,
Gokceoglu [19]

Indian 610

5 Conclusions

The current study offers novel applications of KRR, K-NN
and GPR algorithms in predicting the soaked CBR value
of fine-grained plastic soils. The analysis was performed on
in situ soil samples collected from an ongoing NHAI project
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Table 16 Comparative
performance of literature models
on the present study datasets

Statistical
performance
indices

Literature models

Kin [10] Taskiran [11] Yildirim and
Gunaydin [12]

Bardhan,
Gokceoglu
[19]

Bardhan,
Gokceoglu
[19]

MARS-L GP

R2 − 14.58 − 99.38 − 5.41 − 5.09 − 4.79

Adj. R2 − 14.58 − 99.38 − 5.41 − 5.09 − 4.79

R 0.20 0.52 0.11 0.00 0.10

MAE 3.84 9.66 2.54 1.51 1.56

MAPE 42.42 106.08 31.83 15.91 16.40

RMSE 4.35 11.65 2.94 1.75 1.71

VAF − 284.14 − 3035.08 − 64.88 − 94.49 − 8.79

IP − 21.76 − 141.37 − 9.00 − 7.79 − 6.59

IOA 0.30 0.16 0.35 0.36 0.39

IOS 0.82 0.62 0.25 0.22 0.22

a20-index 0.16 0.01 0.35 0.65 0.67

work site. Large datasets of 1011 soil samples were collected
and laboratory tests were performed as per BIS specifica-
tions. The prepared datasetswere divided into TR andTS sets
using the K-Fold and FCM data divisional approaches. The
competency of models was compared through various sta-
tistical performance measurement indices, accuracy analysis
and REC curve analysis. Apart from them, the final selection
of the best-fitted model was accomplished through ranking
analysis and overfitting analysis. The obtained results of sta-
tistical performance indices reveal that the developedmodels
can explain a maximum variability of 88.7% and a minimum
of 64.7% in the CBR value of the TR dataset through S,
FC, PL, PI, MDD and OMC as input parameters. The per-
formance of models in the TS dataset was considerably less
than that obtained in the TR dataset. Based on the overall
analysis of the results, the final selected best-fitted models
for predicting the soaked CBR value of fine-grained plastic
soils were GPRF and GPRK models. The proposed GPRF

and GPRK models can predict 99% and 98% observations,
respectively,within± 20%variations.Additionally, the com-
parative analysis of the adopted algorithm demonstrates that
the GPR algorithm gives the highest proficiency compared
to the K-NN and KRR algorithms. Results also indicate that
K-Fold and FCM approaches are suitable methods for data
division. Eventually, the validation results establish that the
predictive ability of any model is substantially influenced by
the geological location of the soils/materials used for model
development.
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