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Abstract Alzheimer’s disease (AD) has a complex and pro-
gressive neurodegenerative phenotype, with hypometabolism
and impaired mitochondrial bioenergetics among the earliest
pathogenic events. Bioenergetic deficits are well documented
in preclinical models of mammalian aging and AD, emerge
early in the prodromal phase of AD, and in those at risk for
AD. This review discusses the importance of early therapeutic
intervention during the prodromal stage that precedes irrevers-
ible degeneration in AD. Mechanisms of action for current
mitochondrial and bioenergetic therapeutics for AD broadly
fall into the following categories: 1) glucose metabolism and
substrate supply; 2) mitochondrial enhancers to potentiate
energy production; 3) antioxidants to scavenge reactive oxy-
gen species and reduce oxidative damage; 4) candidates that
target apoptotic and mitophagy pathways to either remove
damaged mitochondria or prevent neuronal death. Thus far,
mitochondrial therapeutic strategies have shown promise at
the preclinical stage but have had little-to-no success in clin-
ical trials. Lessons learned from preclinical and clinical ther-
apeutic studies are discussed. Understanding the bioenergetic
adaptations that occur during aging and AD led us to focus on
a systems biology approach that targets the bioenergetic sys-
tem rather than a single component of this system.

Bioenergetic system-level therapeutics personalized to bioen-
ergetic phenotype would target bioenergetic deficits across the
prodromal and clinical stages to prevent and delay progression
of AD.
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Introduction

Alzheimer’s disease (AD) remains without an effective strat-
egy to prevent, delay, or treat the disease. In 2010, the World
Health Organization estimated the number of persons with
AD-related dementia at 35.6 million, which is expected to
triple by 2050 to over 115 million [1]. The projected number
of persons with AD in the USA by 2050 is 13.5 million, and
the medical costs will exceed $20 trillion over the next
40 years [2, 3]. The measurable socioeconomic annual costs
of the disease on a global scale were estimated to exceed $600
billion in 2010 [1, 4]. Socioeconomic data predict that signif-
icant decreases in medical costs are possible if therapeutic
development shifts to identification and prevention of AD
rather than attempts to reverse AD pathology [5].

Since 1998, there have been 101 failed Alzheimer’s trials
[6]. Currently available drugs offer moderate symptom alle-
viation [6]. No therapeutic strategies have demonstrated clin-
ically significant disease-modifying benefits to halt or reverse
cognitive decline. Most of the therapeutic candidates have
focused on reduction or reversal of AD pathology based on
the β-amyloid (Aβ) plaque hypothesis. Several antiamyloid
drug candidates have failed in late-stage clinical trials [4, 7].
Despite preclinical success in cell lines and animal models,
most therapeutic candidates for AD failed to show any signif-
icant effect on cognitive function at clinical stages [6]. These
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failures can be attributed to multiple factors that arise during
drug development in both preclinical and clinical settings.

As multifactorial diseases present differently, responses to
therapies also differ. For example, unhealthy diet and exercise
may have different impacts on individuals and require differ-
ent treatment strategies than those individuals predisposed to
genetically inherited familial diseases [8]. Sex, genetic risks,
and age are important variables that should be considered
during the development stage for AD therapeutics [9, 10].
The dosing regimen, formulation, and the route of adminis-
tration all have significant effects on clinical success [10]. Past
approaches targeting moderate and severe AD pathology have
had minimal success, in part because of the single target
strategy for a multifactorial pathology. In contrast, targeting
the affected biological systems at specific stages of disease
progression may have greater likelihood of success in nonfa-
milial AD.

The presymptomatic and prodromal stages of AD are win-
dows of opportunity likely to have the greatest impact on
reducing the risk and incidence of AD (Fig. 1). Dysfunctions
in glucose metabolism, bioenergetics, andmitochondrial func-
tion are consistent antecedents leading to AD pathology, in-
cluding Aβ plaque and neurofibrillary tangles [11]. Dysfunc-
tional mitochondria produce high levels of reactive oxygen
species (ROS); these ROS can negatively affect specific mi-
tochondrial components, including mitochondrial DNA
(mtDNA), membrane lipids, and oxidative phosphorylation
proteins [18, 19]. For example dysregulation of complex I has
been correlated with tau toxicity, and dysregulation of com-
plex IV has been associated with increased Aβ load [20–22].
Additionally, specific proteins are affected by mitochondrial

dysfunction in AD, including amyloid precursor protein,
presenilin 1 and presenilin 2, which reside along the
mitochondria-associated endoplasmic reticulum membranes
[23]. Decline in glucose metabolism and mitochondrial func-
tion are detected decades prior to clinical features of the
disease making them potential biomarkers and therapeutic
targets for prevention [12, 13, 24]. In vitro and in vivo pre-
clinical AD models indicate that deficits in mitochondrial
function, metabolic enzyme expression and activity, cerebral
glucose metabolism, and free radical scavenging are coupled
with mitochondrial Aβ load and Aβ-binding alcohol dehy-
drogenase (ABAD) expression [12, 13, 24, 25]. Importantly,
clinical studies indicate that mitochondrial deficits observed in
preclinical models are evident in human-derived platelets [14,
15, 26–29]. The antecedent decline in mitochondrial function
and brain metabolism indicates an early and potentially causal
role in AD pathogenesis. Thus, targeting mitochondria and
brain bioenergetics could be a disease-modifying strategy to
prevent and/or delay the progression of AD. Targeting brain
metabolism and mitochondrial function are relevant to the
hypometabolism and impaired mitochondrial bioenergetics
that are among the earliest pathogenic events.

Current Strategies Targeting Mitochondria
and Bioenergetics in AD

The integrity and viability of the bioenergetic system is a
fundamental determinant of synaptic and brain function [9,
30–32]. Although the human brain accounts for 2 % of the
body’s mass, it consumes 20 % of the body’s fuel supply for

Fig. 1 The five stages of
Alzheimer’s disease (AD)
pathology and 3 therapeutic
treatment windows. The
prodromal stage encompasses the
presymptomatic and mild
cognitive impairment stages of
AD. White line = progression
of cognitive decline through the
5 stages of AD [11–17]. FDG-
PET = fluoro-2-deoxyglucose
positron emission tomography;
MRI, magnetic resonance
imaging
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adenosine triphosphate (ATP) production [9]. The bioenerget-
ic system consists of obligatory processes that are tightly
coupled, including substrate supply, transporters, and the cat-
alytic machineries required for oxidative phosphorylation and
ATP generation (Fig. 2). Compromised brain metabolism is an
early indicator of AD in both preclinical and clinical investi-
gations [31]. Previous studies have suggested that a decrease
in brain bioenergetics may be a useful biomarker to predict
disease decades before symptoms [33–36]. Decreases in mi-
tochondrial bioenergetics, metabolic enzyme expression and
activity, cerebral glucose metabolism, along with increased
oxidative stress, Aβ deposits within mitochondria, and ex-
pression of ABAD are associated with the prodromal state of
AD [34, 37–42].

Glucose Uptake and Substrate Supply as Therapeutic Targets

Decreased glucose metabolism is an early hallmark of the
prodromal AD stage [43]. Brain hypometabolism and deficits
in mitochondrial bioenergetics have long been documented in

both preclinical and clinical AD research. Decrements ob-
served in cerebral glucose metabolism using fluoro-2-
deoxyglucose positron emission tomography (FDG-PET)
and brain volume using magnetic resonance imaging are early
signs of bioenergetic decline in the prodromal state of AD
(Fig. 1) [16]. Observations from a clinical trial of the Domi-
nantly Inherited Alzheimer’s Network suggested several sur-
rogate disease markers, including compromised FDG-PET
signal in specific brain regions (posterior cingulate cortex
and prefrontal cortex) vulnerable to development of AD pa-
thology, that arise in patients with AD decades before cogni-
tive symptoms [11–15, 17, 24, 44].

At the substrate level, glucose transport across the blood–
brain barrier (BBB) into neurons and glial cells require glu-
cose transporters glial GLUT1 (55 kD and 45 kD), neuronal
GLUT3, and insulin-dependent GLUT4 [31]. Glycolysis, the
citric acid cycle, and mitochondrial oxidative phosphorylation
are then coordinated to generate ATP [31, 32]. Compromised
glucose uptake and metabolism provide a therapeutic target
for AD prevention and intervention. Therapeutic candidates
that target glucose metabolism could address the
hypometabolic phenotype. If glucose hypometabolism in
brain is a causative factor in development of AD, then detec-
tion, prevention, and reversal of bioenergetic decline represent
a therapeutic target window for AD [45]. Insulin is a thera-
peutic candidate to promote glucose metabolism in the brain
(Table 1) [46, 47]. Insulin plays an essential role in energy
metabolism in the brain, with receptors densely populating the
medial temporal regions of the brain required for memory
formation [46]. Additionally, insulin-sensitive glucose trans-
porters (GLUT4) are expressed in regions supporting memory
and cognitive function [46]. Insulin resistance, which is the
reduced sensitivity of insulin in targeted tissues important for
cognitive function, increases the risk of dementia [47]. Im-
paired insulin responsiveness and dysfunctional glucose utili-
zation have been documented in postmortem AD brains [48,
49]. Intranasal insulin was tested in a randomized, double-
blind, placebo controlled clinical study of 64 participants with
mild cognitive impairment (MCI) and 40 participants with
mild-to-moderate AD. Insulin-induced modest recovery of
memory function and preservation of glucose uptake [50,
51]. A larger-scale Phase II/III trial is currently underway to
examine the effects of intranasally administered insulin on
cognition, entorhinal cortex and hippocampal atrophy, and
cerebrospinal fluid biomarkers in amnestic MCI or mild AD
(ClinicalTrials.gov identifier: NCT01767909).

In addition to glucose, an alternative fuel source, ketone
bodies, is used for cellular processes when glucose and car-
bohydrate supply is low (Table 1; Fig. 2) [33, 62]. Ketone
bodies are formed in the liver from fatty acid oxidation and are
transported to the brain [31, 62, 63]. Ketone bodies,
transported into the cell via monocarboxylate transporters,
bypassing glycolysis, are subsequently utilized by a series of

Fig. 2 Dysfunction of the brain energy production system precedes
Alzheimer’s disease (AD) pathology and neuronal death. Strategies to
prevent mitochondrial dysfunction include multiple points of therapeutic
intervention: 1) glucose or alternative fuel for substrate supply; 2)
glycolysis; 3) the citric acid cycle (TCA) cycle and electron transport
chain (ETC); 4) oxidative stress; 5) mitophagy and apoptosis.
Mitochondrial impairments produce free radicals causing oxidative
damage; reactive oxygen species and caspase proteases can block the
neuroprotective mitophagy pathway. Mitochondrial dysfunction and
endoplasmic reticulum (ER) stress activate apoptotic pathways that lead
to neuronal loss and continuation of the AD pathology spectrum. GLUT
= glucose transporter; MCT = monocarboxylate transporter; PDH =
pyruvate dehydrogenase; SCOT = succinyl-coenzyme A:3-ketoacid
CoA transferase
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ketolytic enzymes such as succinyl–coenzyme A (CoA):3-
ketoacid CoA transferase instead of pyruvate dehydrogenase
(PDH) to produce acetyl-CoA, which condenses with oxalo-
acetate and enters the citric acid cycle for energy production
[31, 62]. Several therapeutic strategies aim to enhance brain
bioenergetics through supplementation of ketone bodies, in-
cluding acetoacetate and β-hydroxybutyrate [64, 65], or die-
tary induction of ketogenesis [56]. However, patient compli-
ance on ketogenic diets is challenging owing to its high fat and
low carbohydrate content. In addition, there are studies indi-
cating that ketone bodies have little effect on AD pathology,
despite benefits on motor performance [57, 66]. Two early
proof-of-concept clinical studies, investigating ketone bodies
for mild-to-moderate AD, reported significant improvements
on multiple measures of cognition [58, 59]. Further research is
required to verify whether supplementation of ketone bodies
is an effective therapeutic approach for AD. Future research
could develop forms of ketogenic supplementation for alter-
native energy.

The use of exogenous insulin and ketone bodies is mech-
anistically sound. However, supply of substrate or activation
of a single target within the system, such as insulin receptors
presumes that the entire bioenergetics system is fully func-
tional, which is unlikely but not impossible. Supplementation
with insulin or ketone bodies could promote substrate supply,
(glucose or ketone bodies, respectively); however, substrate
alone is unlikely to result in full recovery of the bioenergetics
system or restore mitochondrial function.

Mitochondrial Bioenergetics as a Therapeutic Target

Multiple experimental paradigms, ranging from in vitro cell
model systems and genomic analyses in animal models to
postmortem autopsy of human brain and human brain imaging
indicate deficits in mitochondrial function are consistent an-
tecedents to AD development [11–13, 24]. A decline in mito-
chondrial function can occur decades prior to clinical diagno-
sis of AD and thus may serve as a biomarker of AD risk, as
well as a therapeutic target [12, 24, 32, 67]. Preclinical in vitro
and in vivo AD models have demonstrated a decline in mito-
chondrial function, including reduced mitochondrial respira-
tion, decreased metabolic enzyme expression and activity,
increased oxidative stress, and increased mitochondrial Aβ

load and ABAD expression, prior to AD pathology [12, 13,
15, 24, 34, 38]. A series of mitochondrial enhancer candidates
have been proposed and investigated in preclinical and clinical
studies for AD prevention and treatment (Table 2).

Multiple candidate molecules target the electron transport
chain (ETC). Coenzyme Q (CoQ) and its synthetic water-
soluble analogue, idebenone, have been proposed for AD
treatment [32, 68, 83]. CoQ is imbedded in the mitochondrial
inner membrane and transports electrons from complex I/II to
complex III in the ETC. In addition, CoQ can function as a
ROS scavenger [68]. While CoQ supplementation has benefit
in persons with CoQ synthesis disorders and in preclinical
mouse models of AD, it is ineffective as a therapeutic in
persons with AD [32, 65, 83]. In a randomized, double-blind,
multicenter study with 450 participants with mild-to-moderate
AD, Idebenone showed minimal cognitive benefit [69–71],
but was not approved for treatment of AD based on results not
reaching statistical significance in larger trials [70–72]. Meth-
ylene blue can enhance cytochrome c oxidase activity through
direct electron donation [80, 81]. In a preclinical AD mouse
model, methylene blue treatment reduced Tau-neurofibrillary
tangle burden [82]. Clinical investigations of methylene blue
as a treatment for AD have not been conducted. Menadione
and ascorbate together can act as complex IV substrates and
sustain mitochondrial ETC respiration when complex III is
compromised [79]. Other compounds that enhance mitochon-
drial ETC and oxidative phosphorylation include nicotin-
amide, a precursor to the complex I substrate, nicotinamide
adenine dinucleotide, and riboflavin, a precursor to the com-
plex II substrate, flavin adenine dinucleotdie [84]. While
outcomes of research on these molecules have shown prom-
ising potential in preclinical studies, their efficacy clinically is
unlikely to be substantial as they target specific components of
the bioenergetic system instead of the entire system. A case in
point is creatine, which is proposed to increase energy storage
capacity and could be used to generate ATP under high-energy
demands. However, creatine failed in clinical trials and in
some cases even caused negative effects [86, 87].

Activation of the peroxisome proliferator-activated
receptor-γ and the peroxisome proliferator-activated receptor
gamma coactivator 1-α (PGC1α) pathway promote mito-
chondrial biogenesis [73, 74, 83]. Therapeutic candidates in
this class include peroxisome proliferator-activated receptor-γ

Table 1 Substrate supply

Substrate
supply

Mechanism/target Preclinical experimentation Clinical experimentation for AD Reference

Insulin Combat insulin-resistance,
increase brain metabolism

Beneficial in mouse models for AD Phase II/III trials underway [46–55]

Ketone
bodies

Alternative fuel for brain
metabolism

Beneficial for motor function in animal
models and had cognition sparing properties

Limited clinical data showed
improvements in cognitive testing

[9, 31, 39, 56–61]

AD = Alzheimer’s disease
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agonist thiazolidinediones, pioglitazone and rosiglitazone, as
well as the PGC1α activator Bezafibrate. Activation of
PGC1α by Bezafibrate was reported to improve cell bioener-
getics and decrease mitochondrial dysfunction in cell culture
and animal models [73, 74].

Preclinically, pioglitazone restored cerebrovascular func-
tion, reduced oxidative stress, and increased mitochondrial
respiration [75–77]. Pioglitazone was initially tested in the
human neuron-like NT2 cell line, where it induced mitochon-
drial biogenesis, increased mtDNA content and subunit pro-
teins, and reduced mitochondrial oxidative damage [78].
Rosiglitazone stimulated neuronal mitochondrial biogenesis
and reduced memory deficits in mouse models of AD
[75–77]. A small clinical trial of 32 patients with mild AD
showed significant improvements with pioglitazone treatment
on both the AD Assessment Scale-Cognitive subscale scores
and Wechsler Memory Scale-Revised Logical Memory Per-
formance tests [92, 93]. The patients also had improved cere-
bral blood flow in parietal lobes [93]. A Phase III clinical trial
of pioglitazone for MCI due to AD is currently underway
(ClinicalTrials.gov identifier: NCT01931566). Rosiglitazone
tested in MCI and early AD showed improved delayed recall
[94], but failed to show significant cognitive benefits in a
subsequent larger trial with over 1400 patients with mild-to-
moderate AD (ClinicalTrials.gov identifier: NCT00490568)
[95]. One major challenge for these candidates is they have

poor BBB penetration [78]. However, if co-transported
through the BBB, rosiglitazone and other thiazolidinediones
could be therapeutically beneficial in preventing AD.

Another potential target of the mitochondrial biogenesis
pathway is the mitochondrial transcription factor A (TFAM),
which is involved in mitochondrial biogenesis, mtDNA repli-
cation, transcription, and removal of homoplasmic mtDNA
mutations [96]. In vitro administration of TFAM reportedly
increased mitochondrial respiration rates, biogenesis, and
mtDNA levels [89–91]. The potential of TFAM as a thera-
peutic is unlikely owing to its large size and difficulty in BBB
penetration [97]. However, targeting expression of TFAM
could be a therapeutic strategy to enhance mitochondrial
bioenergetics.

Mitochondrial enhancers have been demonstrated to be
effective in preclinical models of AD (Table 2), whereas
clinical trials testing this strategy directly remain to be con-
ducted. Targeting mitochondria directly assumes that the bio-
energetic system of substrate transporters and metabolism are
fully functional. This is unlikely to be the case in the prodro-
mal and later stages of the disease based on clinical FDG-PET
data indicating impaired glucose metabolism decades prior to
AD diagnosis.Mitochondrial function is inextricably linked to
upstream substrate supply and metabolism. Thus, increasing
mitochondrial function in the presence of dysfunctional sub-
strate transport and metabolism could exacerbate

Table 2 Mitochondrial enhancers

Mitochondrial enhancers Mechanism/target Preclinical experimentation Clinical experimentation for AD Reference(s)

Coenzyme Q and
idebenone

Accepts electron from complex I/II
delivering them to complex III,
scavenges ROS

Slowed cognitive decline in
transgenic mouse models of AD

Failed in clinical trials insignificant
effects on cognition

[68–72]

Rosiglitazone
(thiazolidinedione)

Activates PGC1α Stimulate neuronal mitochondrial
biogenesis

No significance in clinical trial,
poor penetration of BBB

[73–77]

Pioglitazone
(thiazolidinedione)

Activates PGC1α Reduced memory loss in mouse
models of AD

Small benefit in human select
groups; larger trials underway

[73–78]

Bezafibrate Activates PGC1α Improves bioenergetics in
cell/animal models with
mitochondrial dysfunction

No clinical data [73–77]

Menadione and ascorbate Allow ETC flux to replace
defective complex III enzymes

Increased bioenergetics in animal
models

No significant effects in clinical
trials

[79]

Methylene blue Tau inhibitor enhances COX
activity/anti-NRTs agent

Improved bioenergetics in cell
culture and animal models

No clinical data [80–82]

Riboflavin and
nicotinamide

Precursors to FADH2 and NADH Increased mitochondrial respiration No clinical data [83–85]

Creatine Cells to store creatine phosphate as
alternative energy source

Increase in cell bioenergetics Benefits for muscle strength,
negative effects on cognition
in clinical trials

[79, 86–88]

Exogenous TFAM Important for mtDNA
replication/transcription,
administered with a
mitochondrial leader sequence
and protein transduction domain

Increased respiration and
mitochondrial biogenesis in cell
culture and mouse tissues

No clinical data [89–91]

AD = Alzheimer’s disease; ROS = reactive oxygen species; PGC1 α = peroxisome proliferator-activated receptor gamma coactivator 1-alpha; BBB =
blood–brain barrier; ETC = electron transport chain; COX = cyclooxygenase; NFT = neurofibrillary tangle; FADH2 = flavin adenine dinucleotide;
NADH = nicotinamide adenine dinucleotide; TFAM = mitochondrial transcription factor A; mtDNA = mitochondrial DNA
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degeneration. However, therapeutic strategies that promote
each functional domain of the bioenergetic system, including
mitochondrial function, could have benefit.

Oxidative Damage as a Therapeutic Target

A well-documented indicator of compromised mitochondrial
function is oxidative stress [83, 85, 98–100]. Oxidative stress
is primarily caused by excessive ROS produced by impaired
electron transport, endoplasmic reticulum stress, and peroxi-
somes (Fig. 2) [24, 83, 98, 101, 102]. Decreases in enzymatic
antioxidant defense capacity, including multiple superoxide
dismutases (SOD), peroxiredoxins, and glutathione [103,
104], further exacerbates oxidative damage [83, 85, 98,
100]. Oxidative damage of multiple cellular components has
been documented in both preclinical models of AD and in
persons with the disease [102, 105]. Key enzymes involved in
mitochondrial function, such as PDH and α-ketoglutarate
dehydrogenase, are often targeted by ROS, leading to de-
ceased enzyme activity and decreased efficiency of mitochon-
drial electron transport (Fig. 2) [106]. In AD, elevated oxida-
tive stress is detectable in the form of lipid peroxides, 8-
oxoguanine, and other oxidized proteins [107–110]. In paral-
lel, oxidative stress has been demonstrated to increase Aβ
production in vitro and in vivo [102, 109].

Several candidates have been proposed to prevent or re-
duce oxidative damage, and have been investigated as treat-
ments for AD (Table 3). Deficits in plasma levels of antioxi-
dants are well documented in patients with AD [111, 112,
140]. Early research administering antioxidants for AD treat-
ment focused on vitamins C and E. Both these vitamins are
significantly reduced in the plasma of patients with AD [111].
Multiple preclinical studies on vitamin C and vitamin E using
transgenic AD mouse models indicated decreased lipid per-
oxidation, memory deficits, and Aβ plaque burden [114–116].
However, clinically, vitamins C and E showed limited benefits
on cognitive function or delay of AD progression [117–119,
141]. Some studies indicated negative effects of high-dose
vitamin E on cognitive function and increased risk for mor-
tality [142]. A more recent randomized trial of vitamin E in
veterans showed a 19 % delay in clinical progression per year
[120]. In addition to vitamins C and E, several other antiox-
idant vitamins, including vitamins A, B12, and D, have been
investigated owing to their deficient levels in patients with AD
[111, 113]. These vitamins failed to show significant efficacy
when used in clinical settings (ClinicalTrials.gov identifier:
NCT00235716), despite positive outcomes in preclinical
models. Currently, these vitamins are often used in combina-
tion with other therapeutics based on their general health
benefits.

Micronutrients and minerals have been investigated as
potential therapeutics for AD. These include, but are not
limited to, flavonoids (e.g., quercetin, morin, or baicalein),

β-carotene, curcumin, zinc, folic acid, and selenium. Most of
these showed little promise as an AD therapeutic on their own,
but when combined together in formulations they improved
cognitive function in transgenic AD mice and reduced oxida-
tive stress [129, 130].

Curcumin is an antioxidant that has been demonstrated to
induce multiple benefits in AD mouse models. In addition to
its strong antioxidant ability, it has anti-inflammatory activity,
reduces amyloid plaque burden, and partially restored
distorted neuritis [125–128]. A current Phase II clinical trial
that combines curcumin and yoga therapy aims to treat MCI
(ClinicalTrials.gov identifier: NCT01811381). Resveratrol
found in red grape skin is a potent antioxidant that has been
shown to reduce amyloid plaque burden and improve memory
deficits in transgenic AD mouse models [132, 133]. Resvera-
trol activates the 5’adenosine monophosphate-activated pro-
tein kinase pathway, and stimulates activity of nicotinamide
adenine dinucleotide-dependent deacetylase sirtuin-1 [134,
135], which subsequently activates the PGC1α metabolic
regulatory pathway and promotes mitochondrial biogenesis
[136–139]. Several clinical trials are currently underway to
investigate the efficacy of resveratrol, including a Phase II trial
on mild-to-moderate AD (ClinicalTrials.gov identifier:
NCT01504854), a Phase III on mild-to-moderate AD
(ClinicalTrials.gov identifier: NCT00743743), and a Phase
IV on MCI, which combines resveratrol with omega-3
(ClinicalTrials.gov identifier: NCT01219244).

There is also a set of compounds, including melatonin, that
promote expression of mitochondrial antioxidant enzymes
such as SOD or glutathione [121–124]. Mitoquinone mesylate
(MitoQ) has been proposed for treatment of AD and other
neurodegenerative diseases because its antioxidant activity
localizes to the mitochondrial inner membrane to pre-
vent oxidative damage [131]. MitoQ has shown bioen-
ergetic benefits in AD mouse models, but the clinical
benefit of MitoQ for patients with AD is yet to be
determined [131].

Overal l , s t rategies based on antioxidants and
micronutrients have shown promise in transgenic ADmodels,
but their clinical therapeutic efficacy has not been established
under disease conditions. Further, their therapeutic potential in
combination with factors that target the entire bioenergetic
system in the at-risk and prodromal stages of the disease has
yet to be investigated (Fig. 1). Therapeutics that selectively
target the oxidative damage and act as free radical scavengers
may offer moderate symptom alleviation if administered early
in disease progress, but will not address the pathogenic cas-
cade and therefore are unlikely to modify disease progression.
Further, oxidative stress is unlikely to be causative for AD, but
rather an outcome of mitochondrial dysfunction. Thus,
free radical scavengers should be considered as a critical
but not sufficient component of a formulation that tar-
gets the bioenergetics system.
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Apoptosis and Mitophagy as Therapeutic Targets

Prolonged deficits in bioenergetics together with elevated
oxidative stress lead to activation of apoptotic pathways,
impaired mitophagy, and, ultimately, neuronal death [143].
Mitochondrial autophagy, often referred to as mitophagy, is
a highly dynamic process for disposal and recycling of un-
healthy mitochondria [143]. A balance between mitophagy
and mitochondrial biogenesis provides an efficient energy
transducing system required for neuronal survival [144],
whereas mitochondrial dysfunction contributes to neuronal
death and AD pathology (Fig. 2) [98, 123, 145]. Elevated
oxidative stress and induction of apoptotic proteases can in-
activate mitophagy and impair pathways required for clear-
ance of aberrant mitochondria [83, 85, 101, 146, 147].

Several therapeutic strategies target the autophagy and
mitophagy pathways (Table 4). Based on its potential to

induce autophagy in several neurodegenerative disease
models, Rapamycin, also known as sirolimus, is being inves-
tigated for AD [148–150]. Mechanisms of rapamycin action
include removal of damaged mitochondria and cells with
dysfunctional mitochondria via mammalian target of
rapamycin-dependent activation of autophagy [149, 150].
Rapamycin extends lifespan in aged mice [148]. In transgenic
AD mouse models, rapamycin reduced Aβ plaques and
prevented cognitive decline [148, 149, 151]. However,
the therapeutic development of rapamycin for treatment
of neurodegenerative diseases was largely hampered by
severe side effects, including lung toxicity, diabetes, and
cancer [151].

Latrepirdine, also known as Dimebon, is an antihistamine
that, in cell culture, reduced swelling of mitochondria under
Aβ stress and stabilized mitochondrial membrane potentials
[145, 152]. Latrepirdine is proposed to interact with glutamate

Table 3 Antioxidants and micronutrients

Antioxidants and
micronutrients

Mechanism/target Preclinical experimentation Clinical experimentation for AD Reference(s)

Vitamin A Oxidative stress, ROS scavenger In vitro and mouse models of AD
confirm mechanism

No significant effects in clinical trials [111–113]

Vitamin B12 Oxidative stress, ROS scavenger In vitro and mouse models of AD
confirm mechanism

No significant effects in clinical trials [111–113]

Vitamin C Oxidative stress, ROS scavenger Reduced memory deficits in mouse
models of AD

No significant effects in clinical trials [114–118]

Vitamin D Oxidative stress, ROS scavenger Minimal effects in mouse models of AD No significant effects in clinical trials [111–113]

Vitamin E
(α-Tocopherol)

Oxidative stress, ROS scavenger Reduce ROS, lipid peroxidation and
amyloid plaque in transgenic
mouse models of AD

Multiple trials with no effect, recent
clinical trial indicating delay in
clinical progression, but high dose
increased risk of mortality

[114–120]

Melatonin Potent antioxidant, elevates
levels of SOD and glutathione

Reduced oxidative stress increased
learning ability in mouse models
of AD

No clinical data [121–124]

Curcumin Antioxidant and
anti-inflammatory activity

In vitro and mouse models of AD
confirm mechanism

No significant effects in clinical trials [125–128]

Folic acid Oxidative stress, ROS scavenger In vitro and mouse models of AD
confirm mechanism

No significant effects in clinical trials [129, 130]

β-Carotene Oxidative stress, ROS scavenger In vitro and mouse models of AD
confirm mechanism

No significant effects in clinical trials [129, 130]

Flavonoids Oxidative stress, ROS scavenger In vitro and mouse models of AD
confirm mechanism

No significant effects in clinical trials [129, 130]

Zinc Reduce oxidative stress Combined with micronutrients
decreased oxidative damage/
increased bioenergetics

No significant effects in clinical trials [129, 130]

Selenium Oxidative stress, ROS scavenger Mixed results when used alone, but
effective in animal models in
combinations

No significant effects in clinical trials [129, 130]

MitoQ Oxidative stress, ROS scavenger Extended lifespan in mouse models
of AD

No clinical data for AD [131]

Resveratrol Activation of AMPK subsequent
induction of NAD+ levels
stimulate activity of SIRT1

Reduces oxidative stress, reduces
amyloid plaques, improves
memory deficits in transgenic
mouse models of AD

No major effect on cognitive function [132–139]

AD = Alzheimer’s disease; ROS = reactive oxygen species; SOD = superoxide dismutase; MitoQ = mitoquinone mesylate; AMPK = adenosine
monophosphate-activated protein kinase; NAD = nicotinamide adenine dinucleotide; SIRT1 = sirtuin 1
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receptors, block voltage-dependent calcium channels, and
inhibit mitochondrial permeability, thereby suppressing un-
necessary mitophagy or apoptosis [153, 154]. In a Phase II
clinical trial in patients with moderate AD, it significantly
improved cognitive function over placebo [155]. However,
these results were not confirmed as Latrepirdine/Dimebon
later failed in a larger Phase III trial of patients with
moderate-to-severe AD (ClinicalTrials.gov identifier:
NCT00912288) [156, 157].

Nuclear response factor 2 (Nrf2) and Nrf2/antioxidant re-
sponse element have been proposed as a therapeutic target for
autophagy and mitophagy. In transgenic AD mouse models
intrahippocampal injections of the lentiviral vector expressing
Nrf2 decreased Aβ plaque, reduced learning deficits, and
protected against Aβ-induced cell death [158, 159]. Synthetic
triterpenoids have been demonstrated to induce expression of
Nrf2 and to protect against cell death in both in vitro
and in vivo experiments [160, 161]. Development of
strategies that target this Nrf2/antioxidant response ele-
ment pathway are at an early stage and require substan-
tial translational research.

Preclinical strategies targeting autophagy and mitophagy
pathways in AD models have shown cognitive benefits (Ta-
ble 4). However, substantial preclinical discovery and trans-
lational research remain to be conducted to advance this
therapeutic target. Targeting the apoptotic and mitophagy
pathways alone as a therapeutic strategy does not address
the causative mechanisms leading to disrupted
mitophagy and elevated apoptosis. Though the research
in this area of AD therapeutics awaits translational
validation, apoptotic regulation and removal of dysfunc-
tional mitochondria is critical to restoration of bioener-
getic capacity in brain.

Systems Approaches for AD Prevention and Treatment

Alzheimer’s is a neurodegenerative disease with a complex
and progressive pathological phenotype characterized by an-
tecedent hypometabolism, impaired mitochondrial bioener-
getics, and oxidative damage followed by apoptotic and path-
ological burden. The progressive and multifaceted degenera-
tive phenotype of AD suggests that successful treatment strat-
egies would be equally multifaceted with a systems biological
approach. Several systems biology approaches for AD pre-
vention and treatment are in development (Table 5).

One of the widely accepted therapeutic strategies to prevent
AD is diet and exercise. The systems-wide neuroprotective
benefits of caloric restriction and exercise include activation
of adaptive cellular stress responses, enhancement of DNA
repair, promotion of mitochondrial biogenesis, and induction
of neurotropic factors [162]. Previous preclinical studies using
multiple forms of caloric restriction led to reduced abdominal
fat mass, decreased cellular oxidative damage and proinflam-
matory cytokines [163–165, 194], and improved learning and
memory function [60].

Exercise has also been investigated for its direct benefits
for patients with AD. Exercise activates a full systems effect,
including promotion of hippocampal neurogenesis, reduction
of brain inflammation, and increased PGC1α levels, mtDNA,
proteins in ETC, and neurotropic factors [167–172]. Interest-
ingly, a recent study demonstrated that the benefits of exercise
were associated with elevated lactate levels and could be
partially replicated by treatment with lactate [168].

Another lifestyle strategy for AD prevention is the Medi-
terranean diet (MeDi). MeDi, opposed to the Western diet, is
characterized by the abundant consumption of plant foods
such as vegetables, fruits, breads, potatoes, legumes, nuts,

Table 4 Antiapoptotic and mitophagy strategies

Antiapoptotic and
mitophagy strategies

Mechanism/target Preclinical
experimentation

Clinical experimentation for AD References

Rapamycin Targets and inhibits the mTOR
complex 1

Reduced and prevented cognitive
decline and Aβ levels in mouse
models of AD

No clinical trials available for
AD, side effects in other uses
include cancer, lung toxicity,
and diabetes

[148–151]

Latrepirdine (Dimebon) Antihistamine, some mitochondrial
stabilizing properties

Transgenic mouse models of AD Phase II success improved
function, but no effect in the
larger Phase III; some yet to
be reported

[152–157]

Lentiviral vector
expressing Nrf2

Intrahippocampal injection of lentiviral
vector expressing Nrf2, a master
regulator of the antioxidant pathway,
induces expression of antioxidant
enzymes

Hippocampal cells in vitro and
mouse models of AD

No clinical data [158, 159]

Synthetic triterpenoids Suppress inflammatory stress and
oxidative damage by activating
Nrf2 pathway

Memory retention in transgenic
mouse models of AD

No clinical data [160, 161]

AD = Alzheimer’s disease; mTOR = mammalian target of rapamycin; Aβ = β-amyloid; Nrf2 = nuclear response factor 2
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and seeds; olive oil as the source of fat; moderate amounts of
dairy, fish, poultry, and eggs; low intake of red meats; and
wine during normal meals [173, 174, 195]. The nutrients
within the MeDi influence biological mechanisms affecting
vascular, antioxidant, and inflammatory pathways [175, 176].
MeDi was demonstrated to reduce risk of heart disease, de-
crease markers of oxidative stress, and lower inflammatory
markers; hence, MeDi adherence might delay age-related
cognitive decline [177–180]. MeDi has shown a trend of
benefiting cognitive function when assessed in population
studies in 7 different countries [196]. Mechanistically, the
cognitive benefits of the MeDi have been attributed to the
synergistic interactions between antioxidants, B vitamins,
omega-3 fatty acids, and other compounds [181, 197]. Ques-
tions remain about whether the benefits of the MeDi could be
attributed to specific ingredients rather the complete diet
[196]. Investigations on the mechanisms ofMeDi action could
identify key active ingredients that can be further developed
into therapeutics for AD prevention and treatment.

Other than these lifestyle strategies there are also systems
approaches for improving bioenergetics and mitochondrial
function. One of the most investigated therapeutics in women
is estrogen-containing hormone therapy. 17-β-estradiol (E2)
activates multiple signaling pathways in the brain, including
mitogen-activated protein kinase, phosphatidylinositol-3-ki-
nase, G protein-regulated signaling, c-fos, protein kinase C,

and Ca2+ influx, which all are connected to neuronal function
and survival [9, 182]. The ovarian hormone loss inmenopause
has been linked with cognitive decline that increases the risk
for AD [9, 33, 110, 182–186]. E2 treatment induced a signif-
icant increase in expression of glucose transporters and pro-
motes aerobic glycolysis by increasing gylcolytic enzyme
activity of hexokinase, phosphofructokinase, and pyruvate
kinase [187, 188]. Further, E2 activates PDH, enhances activ-
ities of the ETC complexes, and promotes ATP generation.
The neurological benefits of E2 are further enhanced by sup-
pression of the oxidative stress via enhanced antioxidant ca-
pacity. E2 also reduces AD pathology by both decreasing the
production and increasing the clearance of Aβ species [182].
The systems biology of E2 action in the brain has led to the
design and development of brain-specific candidates of selec-
tive estrogen receptor modulators that activate the systems
level of estrogenic mechanisms in the brain without the pro-
liferative side effects in the periphery [110, 183, 185, 186].

Clioquinol is a therapeutic candidate for treatment of AD
with bioenergetic system benefits. Acting as a chelator for
copper and zinc ions, clioquinol had significant success in
preclinical studies with transgenic AD mouse models. Bind-
ing of metal ions is required for Aβ aggregation and Aβ-
induced free radical release in mitochondria [190]. A second-
generation clioquinol molecule, PBT2, is in Phase II clinical
trials (ClinicalTrials.gov identifier: NCT00471211). PBT2

Table 5 Systems strategies

Systems
strategies

Mechanism/target Preclinical experimentation Clinical experimentation for AD References

Restricted-calorie
diet

Decrease oxidative damage
and increase lactate levels

Controlled daily caloric restriction
reduced oxidative stress in vivo

Reduced oxidative damaged [60, 162–166]

Exercise Decrease oxidative stress,
increased mitochondrial
function

Decrease in oxidative damage and
amyloid plaque levels in vivo

Increased cognitive function,
weight, and general health

[135, 136, 162,
165, 167–172]

Mediterranean
diet

Plant foods, e.g., fruits,
vegetables, roots, and grains

NA Epidemiological studies in
several countries

[113, 173–181]

17-β-estradiol Decrease oxidative stress,
increase glycolytic
metabolism, increase
mitochondrial respiration

Decrease in oxidative damage and
amyloid plaque levels, increase in
mitochondria bioenergetics in vitro
and in vivo

Transdermal patch aims to
improve cognition, possible
adverse side effects

[9, 33, 110,
182–189]

Clioquinol and
PBT2

Multifaceted antifungal drug;
metal chelator of Zn and Cu
targeting Aβ plaque reactions

Reversal of cognitive deficits in AD
transgenic mice

Currently in clinical trials [85, 190–192]

Souvenaid EPA, 300 mg
DHA, 1200 mg
Phospholipids 106 mg
Choline, 400 mg
Uridine monophosphate, 625 mg
Vitamin E, 40 mg
Selenium, 60 μg
Vitamin B12, 3 μg
Vitamin B6, 1 mg
Folic acid, 400 μg

Protects in vivo system against Aβ
toxicity in rat Aβ infusion model
and transgenic mouse models of AD

Small-scale human trials;
improve cognitive function
and enhance synaptic activity
with EEG

[112, 113, 193]

AD = Alzheimer’s disease; NA, not available; Aβ = β-amyloid; EPA = eicospentaenoic acid; DHA = docosahexaenoic acid; EEG =
electroencephalography
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reportedly decreased Aβ levels and improved performance on
2 cognitive function tests [191, 192]. In addition to metal
chelation, PBT2 has a second mechanistic action to increase
Aβ clearance, increasing activity of matrix metalloproteases
including neprilysin, insulin degrading enzyme, and tissue
plasminogen activator [191, 192].

Souvenaid was originally developed to improve nutrient
deficiencies common in patients with AD and contains high
doses of the omega-3 fatty acids eicospentaenoic acid and
docosahexaenoic acid [112]. The formulation also acts as a
ketogenic dietary supplement with high fat content to provide
ketone bodies to the brain. The formulation also contains
antioxidants; vitamins A, C, E, riboflavin, and folic acid;
selenium; and ions required for membrane potential balancing
and mitochondrial function, including sodium, potassium,
chloride, calcium, and zinc [193]. In a 24-week double-blind
sex-balanced clinical trial with 259 patients aged 51–89 years
(mean 74 years) with mild AD, Souvenaid significantly im-
proved memory and synaptic connectivity measured by elec-
troencephalography [193]. However, in a clinical trial with
patients with moderate-to-severe AD, no significant improve-
ment was associated with Souvenaid treatment [112, 193],
suggesting that the intervention window is early in AD
progression.

System-wide approaches for therapeutic intervention have
greater potential for clinical success in chronic progressive
neurodegenerative diseases like AD. Systems biology thera-
peutic strategies address dysfunction of multiple components
of the bioenergetic system and thus have a higher probability
for efficacy. Future approaches will need to address early
antecedent deficits in substrate supply, mitochondrial func-
tion, and apoptotic pathways in the bioenergetic system to
avoid development of severe irreversible AD pathology.

Summary and Concluding Comments

The bioenergetic system is a complex network of pathways
responsible for energy production required for neurological
function and health. Current preventive strategies to target
brain mitochondria focus on antioxidants, antiapoptosis
agents, and bioenergetic enhancement. Several of these strat-
egies have shown efficacy in preclinical investigations; how-
ever, most interventions have not translated to success in
preventing, delaying, or reversing cognitive decline in clinical
investigations.

A large body of evidence indicates that targeting one
component of a neurobiological system does not create a
course of correction nor does it reverse a system failure. For
example, targeting oxidative stress does not alleviate the glu-
cose hypometabolism or mitochondrial dysfunction, which
are likely to be the primary failure points of the system from
which oxidative stress emerges. Attempts to target the

bioenergetic system in AD face the challenge of a dynamic
adapting system that requires biomarkers specific to the bio-
energetic state and precision therapeutics that target the bio-
energetic phenotype during the window of opportunity.

The prodromal/preclinical state is a critical window in
which to prevent progression to AD (Fig. 1). This window
of opportunity is likely to be addressed through a combination
of dietary supplements and nutraceuticals. Dietary supple-
ments are defined as products that intend to supplement diet
containing ≥1 of several dietary ingredients: vitamins, min-
erals, herbs, amino acids, concentrates, metabolites, or com-
binations of such [198]. Nutraceuticals, which may include 1
or many of the components in dietary supplements, intend to
aid in prevention or treatment of disease or disorder [198].
Nutraceuticals hold promise as effective modifiers of multi-
faceted cellular pathways that are defective in the prodromal
state of AD. Numerous vitamins and natural compounds elicit
effects on specific targets of the bioenergetic system in the
brain; some micronutrients may offset the deficiencies often
associated with early AD [111, 112]. Natural compounds
combined into a synergistic formulation could provide an
effective nutraceutical-based mode of prevention for AD and
other neurodegenerative disorders. Effective strategies that
target the prodromal AD window could combine the benefits
of bioenergetic system enhancers to promote glucose metab-
olism, reduce oxidative stress, and sustain normal mitophagy.
The systems biology-based therapeutic strategy to prevent
early bioenergetic deficits in the brain could have a major
impact on future incidence of AD.
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