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Abstract The proper evaluation of evapotranspiration is

essential in food security investigation, farm management,

pollution detection, irrigation scheduling, nutrient flows,

carbon balance as well as hydrologic modeling, especially in

arid environments. To achieve sustainable development and

to ensure water supply, especially in arid environments,

irrigation experts need tools to estimate reference evapo-

transpiration on a large scale. In this study, the monthly

reference evapotranspiration was estimated by three differ-

ent regression models including the multivariate fractional

polynomial (MFP), robust regression, and Bayesian regres-

sion in Ardestan, Esfahan, and Kashan. The results were

compared with Food and Agriculture Organization (FAO)-

Penman–Monteith (FAO-PM) to select the best model. The

results show that at a monthly scale, all models provided a

closer agreement with the calculated values for FAO-PM

(R2[ 0.95 and RMSE\12.07 mm month-1). However,

the MFP model gives better estimates than the other two

models for estimating reference evapotranspiration at all

stations.

Keywords Evapotranspiration � Iran � Multivariate

fractional polynomial � Bayesian regression � Robust
regression

Introduction

Evapotranspiration (ET) is one of the major elements of the

hydrologic cycle, and its accurate predictions is of para-

mount importance for many investigations such as irriga-

tion system design and management, hydrologic water

balance, crop yield simulation, irrigation scheduling, drai-

nage studies, agricultural and forest meteorology, and water

resources planning and management (Banihabib et al. 2012;

Kumar et al. 2002; Valipour 2014c, d, e, f, g, h).

The most important parameters that affect on variations

of evapotranspiration are air temperature, humidity, wind

speed, and sun radiation (Pejic et al. 2015; Valipour 2014a,

i, j, k; Wrachien and Mambretti 2015; Yannopoulos et al.

2015). At first, there is a distinction between reference and

actual evapotranspiration. Reference evapotranspiration

corresponds to the amount of water that would return to the

atmosphere in case of moisture redundancy, for a reference

crop [e.g., alfalfa (ETr) or grass (ET0)], from a standard

surface and to then apply an appropriate empirical crop

coefficient, which accounts for the difference between the

standard surface and crop ET (Tzimopoulos et al. 2007;

Valipour 2015a, b, c; Valipour et al. 2012).

ET0 refers to the water emitted from a unit ground area

covered with a reference plant, unstressed and healthy as

well as with ample water supply (Walter et al. 2002). The

ET0 is used to quantify evapotranspirative demand within a

zone and to forecast crop evapotranspiration when the ET0

is multiplied by a crop coefficient (Kc) to determine for

differences between the grass and plant evapotranspiration

(Allen et al. 1998; Schuch and Burger 1997).

Measurements of pan evaporation are spatiotemporally

limited, especially in developing countries. In locations

where pan evaporation measurements are sparse, theoreti-

cal forecasts can be used to estimate it from other existing
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data, which depend strongly on the local conditions.

Evapotranspiration is a function of wind speed, tempera-

ture, and humidity. Solar radiation is also a significant

parameter for evapotranspiration. All of these factors do

not act independently. Wind varies the humidity, and if the

humidity is low, the evapotranspiration rate is higher. At

the same time, air temperature affects surface temperature

and humidity. These parameters all contribute to evapora-

tion with temperature likely being the dominant factor

influencing evapotranspiration (Rahimikhoob 2009).

Where pan evaporation data are not available, evapo-

transpiration can be characterized by evapotranspiration

models using weather variables. Among them, the Penman

model is most frequently used for evapotranspiration pre-

diction. The Penman model requires five climatic param-

eters: temperature, relative humidity, wind, saturation

vapor pressure, and net radiation. It also uses complicated

unit conversions and lengthy computations (Wu 1997).

Many researchers have evaluated the reliability of the

Penman–Monteith (PM) model for predicting ET0

(McNaughton and Jarvis 1984; Allen 1986; Allen et al.

1989; De Souza and Yoder 1994; Chiew et al. 1995).

Jensen et al. (1990) analyzed the performance of 20 dif-

ferent models against lysimeter measured ET for 11 sta-

tions located in various climatic regions around the world.

The PM model ranked as the best method for all climatic

situations. However, the ranking of other models varied,

depending on their local calibration and conditions.

Abtew and Obeysekera (1995) and Abtew (1996) found

that the Penman–Monteith model was well suited to predict

evapotranspiration from cattails (Typha domingensis),

mixed marsh vegetation, and an open water/algae system;

however, that calibrated simpler radiation-based methods

also provided reasonable forecasts.

Potential evapotranspiration (PET), rather than actual

evapotranspiration (AET), is a common input for empirical

methods because it offers an upper limit to evapotranspi-

rative water losses. PET is a function of vapor pressure

gradient, available energy, and vegetation type (Douglas

et al. 2009). In predicting PET, a clear definition of the

‘‘best’’ method for calculation is not evident and the model

choice is often subjective. Verstraeten et al. (2008) pre-

sented a comprehensive review of the scientific articles on

models for evaluating PET and mentioned that the selec-

tion of one model from the many is primarily dependent on

the goals of the investigation and the type of available data.

For example, Weib and Menzel (2008) compared the Pri-

estley–Taylor (PT) method, two methods based on the

Penman–Monteith (PM) equation and the Hargreaves

method, a temperature-based method for predicting PET in

a global-scale hydrologic method.

However, more study is needed on irrigation manage-

ment to establish the appropriate model to be applied for

evaluating crop evapotranspiration (ET), to avoid the

excess or deficit water application, waterlogging, and soil

salinity (Eslamian et al. 2009). Operational software tools

in the domains specified above require the evaluation of

ET0 and the procedures to do that have been repeatedly

implemented in software applications. This is one of the

reasons that why there is an increasing demand for modular

methods in model development (Jones et al. 2001). Ref-

erence evapotranspiration can be measured by lysimeters;

however, this approach is very expensive and not easy to

use (Valipour 2014l, m, 2015e). Many authors have

attempted to estimate the evaporation through the indirect

models using the weather parameters; however, some of

these methods require the data, which cannot easily be

measured (Rosenberry et al. 2007).

Today, applications of modeling and regression methods

have been widely spread in different fields of the science.

These methods were applied for increasing the quality of

forecasts using the sample data sets from experiments and

different investigations. Appropriate use of these methods

is very useful for resolve of uncertainties and results of

predictions, when obtain of information is difficult and

sometimes impossible.

The most frequently used statistical methods are known

as frequentist (or classical) methods. These methods assume

that unknown parameters are the fixed constants, and they

define probability using limiting relative frequencies.

Bayesian methods offer an alternative approach; they treat

the parameters as random variables and define probability

as ‘‘degrees of belief’’ (i.e., the probability of an event is the

degree to believe the event is true). The term ‘‘Bayesian’’

comes from the prevalent usage of Bayes’ theorem, which

was named after the Reverend Thomas Bayes, an eigh-

teenth-century Presbyterian minister (Rathnayake 2010).

Bayesian analysis is a mode of inductive reasoning that

has been applied in a lot of scientific disciplines. A dis-

tinctive feature of the Bayesian approach is that it permits

the researcher to use sample (data) and prior (expert

judgment) information in a logically consistent manner in

making inferences. This is done by using Bayes’ theorem

to produce a ‘‘post-data’’ or posterior distribution for the

model variables. Using Bayes’ theorem, prior (or initial)

values are transformed to post-data views. This transfor-

mation can be viewed as a learning process. The posterior

distribution is calculated by the variances of the prior and

sample information. If the variance of the prior information

is smaller than the variance of the sampling information,

then a higher weight is assigned to the prior information.

On the other hand, if the variance of the sample informa-

tion is smaller than the variance of the prior information,

then a higher weight is assigned to the sample information

causing the posterior forecast to be closer to the sample

information (Chulani et al. 1998; Singh 2014).
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Since their introduction by Royston and Altman (1994),

the regression methods based on fractional polynomial (FP)

transformation of continuous predictor(s) have found

gradual acceptance as a useful technique of analysis which

retains such predictors as continuous in the model. The

robust regression using functions related to the least

squares has been the subject of intense research (Royston

and Sauerbrei 2007). Demoster et al. (1980) discussed

statistical properties of the predictions under the assump-

tion that the observation errors are independent normal.

Coleman et al. (1980) developed a high-quality set of

routines to calculate robust predictions for eight weight

functions.

The superiority of regression models to artificial intel-

ligence techniques such as ANFIS, ANN, and SVM is that

regression models have the less complexity. In addition,

these models give us the formula or relationship and have

an acceptable accuracy. Although application of nonlinear

regression and Bayesian approach has been surveyed in the

various fields of hydrology and water management such as

irrigation canal demands (Ticlavilca et al. 2013), low flow

indices (Joshi et al. 2013), land surface temperature (Ghosh

and Joshi 2014), catchment modeling (Marshall et al.

2007), nutrient loading (Vigiak and Bende-Mich 2013;

Wellen et al. 2012), heat flux (Ershadi et al. 2013; Yao

et al. 2014), solar radiation (Iizumi et al. 2012), and

streamflow modeling (Block and Rajagopalan 2009; Liang

et al. 2013), there are few studies about application of them

in estimation of ET (Bachour et al. 2014; Izadifar and

Elshorbagy 2010; Tabari et al. 2012; Zhu et al. 2013).

However, these studies focus on some limited methods

and/or use low recorded data. Furthermore, comparison of

the nonlinear regression methods and Bayesian approach

has not been investigated in arid regions (Valipour 2013a,

b). In the present paper, the attempts are made to apply

MFP, Bayesian regression, and robust regression models to

estimate reference evapotranspiration values, in three arid

regions of Iran in which water crises are considerable

(Mahdizadeh Khasraghi et al. 2015; Valipour et al. 2015),

using temperature data.

Materials and methods

Fractional polynomials

Simple power transformations of a covariate have long

been used informally in data analysis in cases when non-

linearity was suspected. General power models were pro-

posed by Box and Tidwell (1962). Royston and Altman

(1994) formalized the simple power models and called

them fractional polynomials of degree 1 (FP1), and

extended them to FPs of higher degree. Ignoring the

intercept term (b0), a polynomial of degree m in a single

covariate X may be written:

b1X
1 þ b2X

2 þ � � � þ bmX
m ð1Þ

In the generalization to an FP function of degree m,

written FP m(X), the indices 1,…, m are replaced with the

powers p1, …, pm, giving:

FPm Xð Þ ¼ b1X
P1 þ b2X

P2 þ � � � þ bmX
Pm ð2Þ

As proposed by Royston and Altman (1994), the powers

p1, …, pm are chosen from a restricted set, S = {-2, -1,

-0.5, 0, 0.5, 1, 2, 3}, where X0 denotes logX. No

subsequent changes to S have been adopted. The set

includes no transformation (p = 1) and the reciprocal,

logarithmic, square root, and square transformations. FP2

functions take the form:

FP2 ¼ b1X
P1 þ b2X

P2 ð3Þ

Or

FP2 ¼ b1X
P1 þ b2X

P1 logX ð4Þ

The latter being the so-called repeated-powers function

obtained in the mathematical limit p2 ? p1 (Royston and

Sauerbrei 2005).

Consider a linear regression model:

Y ¼ Xb2 þ e ð5Þ

where Y is an n-vector of observed responses, X is an n 9 k

matrix representing k covariates, b is a k-vector of

parameters and e is an n-vector of residuals with

E(e) = 0, var(e) = r2I. The ordinary least squares (OLS)

estimator of b is b̂ ¼ ðX0XÞ�1
X0Y , and the vector of fitted

values is Ŷ ¼ Xb̂ ¼ HY . The matrix H ¼ XðX0XÞ�1
X0 is

usually called the ‘‘hat’’ matrix. Its diagonal elements hi ¼
HijxiðX0XÞ�1

x0i are termed leverages. In the special case of a

single covariate, x, the leverages are as follows given

(Belsley et al. 1980; Royston and Sauerbrei 2007):

hi ¼
1

n
þ ðxi � �xÞ2
Pn

j¼1 ðxj � �xÞ2
ð6Þ

The leverage is then a linear function of the squared

distance of xi from the covariate mean, �x.

Multivariable fractional polynomial modeling

The central problem of modeling is the joint effect of

several covariates, at least two of which are continuous and

some may be categorical or binary. At the same time, the

model must be simplified, both/either dropping nonsignif-

icant variables and/or by reducing the complexity of FP

functions fitted to continuous covariates. A solution to

finding a model in this situation was proposed by Royston
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and Altman (1994) and further refined by Sauerbrei and

Royston (1999). In essence, it is impractical to try all

combinations of powers for finding the best-fitting set of FP

functions for all of the candidate continuous variables, and

an iterative algorithm is needed. This was termed the MFP

procedure by Sauerbrei and Royston (1999). It combines

backward elimination of variables with a search for the best

FP functions of continuous covariates. First, a significance

level such as 0.05 is chosen. Next, the fitting order is

determined by fitting a model linear in all variables and

eliminating each variable singly, which is the first step of a

conventional backward elimination procedure. The p val-

ues from the tests are used to order the variables, from the

most to the least significant. Having imposed an order, each

X is considered in turn. If an X is categorical or binary, a

standard likelihood ratio test is performed to determine

whether it should be dropped or not. If an X is continuous,

the FP model selection procedure is applied to determine

the best FP (or to eliminate X). The procedure cycles

through the variables in the same order until the selected

variables and FP functions do not change. Typically, two or

three cycles are required for convergence (Royston and

Sauerbrei 2005).

Robust regression

The models described in linear regression models are based

on certain assumptions, such as a normal distribution of

errors in the observed responses. If the distribution of

errors is asymmetric or prone to outliers, model assump-

tions are invalidated, and parameter estimates, confidence

intervals, and other computed statistics become unreliable.

The Statistics Toolbox function robust fit is useful in these

cases. The function implements a robust fitting method that

is less sensitive than OLS to large changes in small parts of

the data (Matlab Statistics Toolbox 2010).

Robust regression works by assigning a weight to each

data point. Weighting is done automatically and iteratively

using a process called iteratively reweighted least squares.

In the first iteration, each point is assigned equal weight

and model coefficients are estimated using ordinary least

squares. At subsequent iterations, the weights are recom-

puted so that the points farther from model predictions in

the previous iteration are given a lower weight. The model

coefficients are then recomputed using weighted least

squares (WLS). The process continues until the values of

the coefficient estimates converge within a specified tol-

erance (Matlab Statistics Toolbox 2010).

Robust demo demonstrates the difference between

ordinary (least squares) regression and robust regression. It

displays a scatter plot of X and Y values, where Y is roughly

a linear unction of X, but one point is an outlier (it falls far

from the line). The bottom of the figure shows the fitted

equations using least squares and robust fitting, plus an

estimate of the root mean squared error from both. Lev-

erage is a measure of how much influence that point has on

the least squares fit. Weight is the weight that point was

given in the robust fit. Robust demo (X, Y) uses X and Y

data that supply, in place of the sample data supplied with

the function (Matlab Statistics Toolbox 2010).

Bayesian regression

Bayesian regression, the theory specialized adaptation is

including the development of multivariate regression

models, which clearly consider two sources of previous and

experimental information.

Bayesian regression analysis is including development

of model or prediction of the relations among variables.

For example, a prediction equation can be the following

linear form (Eq. 7).

y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bpxp ð7Þ

where Y is the dependent variable, independent variables

are predicted by Xi, and the aim is numerical determine of

bj coefficients.

The Bayesian model makes possible the decision in

short time with development of data and judgments and

continue of modeling.

Suppose that we are interested in estimating h from data

y = {y1, …, yn} using a statistical model described by a

density p(y|h). Bayesian philosophy states that h cannot be

determined exactly, and uncertainty about the parameter is

expressed through probability statements and distributions.

Also, we can say that h follows a normal distribution with

mean 0 and variance 1, if it is believed that this distribution

best describes the uncertainty associated with the parame-

ter. The following steps describe the essential elements of

Bayesian inference:

1. A probability distribution for h is formulated as p(h),
which is known as the prior distribution, or just the

prior. The prior distribution expresses beliefs (e.g., on

the mean, the spread, and the skewness) about the

parameter before examining the data.

2. Given the observed data y, choose a statistical model

p(y|h) to describe the distribution of y given h.
3. Update of beliefs about h by combining information

from the prior distribution and the data through the

calculation of the posterior distribution, p(y|h).

The third step is carried out using Bayes’ theorem,

which enables to combine the prior distribution and the

model in the following way:

pðy hÞj ¼ pðh:yÞ
pðyÞ ¼ pðy hÞpðhÞj

pðyÞ ¼ pðy hÞpðhÞj
R
pðy hÞpðhÞj dh

ð8Þ
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The quantity

pðyÞ ¼
Z

pðy hÞpðhÞj dh ð9Þ

is the normalizing constant of the posterior distribution.

This quantity p(y) is also the marginal distribution of y, and

it is sometimes called the marginal distribution of the data.

The likelihood function of h is any function proportional to

p(y|h); that is L(h) � p(y|h).
In this study, daily grass reference ET (ET0) is deter-

mined using the FAO Penman–Monteith (FAO-PM)

approach (Allen et al. 1998). There are many studies that

applied FAO-PM model as a base model for calculation of

reference ET in different regions of Iran (Rahimi et al.

2014; Valipour 2012c, d, e, f, 2015d; Valipour and Esla-

mian 2014). The FAO-PM equation for a grass reference

crop is defined as:

ET0 ¼
0:408DðRn � GÞ þ cð900=ðT þ 273ÞÞu2ðes � eaÞ

Dþ cð1þ 0:34u2Þ
ð10Þ

where ET0 is the evapotranspiration (mm day-1), Rn is the

net radiation (MJ m2 day-1), G is the soil heat flux

(MJ m2 day-1), T is the mean daily air temperature (�C),
u2 is the mean daily wind speed at 2 m height (m s-1),

es - ea is the saturation vapor pressure deficit (kPa �C-1),

and c is the psychometric constant (kPa �C-1).

In this study, three models were performed including

MFP, Bayesian regression, and robust regression models.

All of the models were designed with three parameters as

input data, including solar radiation (Ra), mean tempera-

ture (Tmean), and Tmax - Tmin.

Study area

In this study, three synoptic stations have been used that

have at least 14-year data to avoid the errors due to the

problem of short record length. These stations are located on

central part of Iran with an arid environment. Figure 1 and

Table 1 show the position and geographic characteristics of

Esfahan, Kashan, and Ardestan stations, respectively. All of

the information is in monthly scale and has been collected

from Islamic Republic of Iran Meteorological Organization

(IRIMO) at this link: http://irimo.ir/eng/index.php.

To evaluate the performance of these models in monthly

ET0 estimates, between the calculated and predicted ET,

the root mean square error (RMSE) is applied as given:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

ð Yobs � Ycalc

Yobs

� �2

v
u
u
t ð11Þ

where Ycalc is the calculated value and Yest is estimation of

the models.

Results and discussions

Multivariable fractional polynomial modeling

The results of statistical parameters of MFP model are

given in Table 2. In addition, Figs. 2, 3 and 4 show the

predicted values of ET versus the calculated values of

ET.

To evaluate the MFP model, the amount of ET estimated

by this model was plotted versus the calculated values.

These results are shown for Esfahan, Kashan, and Ardestan

stations in Figs. 2, 3 and 4, respectively. The best perfor-

mance of the MFP model was obtained for Kashan than

Esfahan and Ardestan stations.

Considering the obtained results, in this study, it could

be stated that use of MFP model can predict (R2[ 0.95)

the amount of ET in different stations, and this appli-

cation can be added to the other applications of MFP

model.

The formula obtained from MFP model for Esfahan,

Kashan, and Ardestan stations are shown in Eqs. 12, 13,

and 14, respectively.

ET ¼ �323:91þ 54:6
Ra

1000

� ��1

þ293:42
Ra

1000

� �0:5

þ 23:71
Tmean þ 3:4

10

� �

þ 11:74
Tmax � Tmin

10

� �3

� 16:62
Tmax � Tmin

10

� �3

Ln
Tmax � Tmin

10

� �

ð12Þ

ET ¼ �13:304þ 63:466
Ra

1000

� �2

þ4:172
Tmean

10

� �2

þ 14:324
Tmax � Tmin

10

� �

ð13Þ

ET ¼ �39:147þ 62:267
Ra

1000

� �2

þ9:524
Tmean

10

� �2

þ 56:422
Tmax � Tmin

10

� �

ð14Þ

Robust regression

The results of statistical parameters of robust regression

model are given in Table 3. In addition, Figs. 5, 6 and 7

show the predicted values of ET versus the calculated

values of ET.

To evaluate the robust regression model, the amount of

ET estimated by this model was plotted versus the calcu-

lated values. These results are shown for Esfahan, Kashan,

and Ardestan stations in Figs. 5, 6 and 7, respectively. The

maximum value of the correlation coefficient was obtained

for Ardestan; however, the minimum value of RMSE

belongs to Kashan.
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The formula obtained from robust regression model for

Esfahan, Kashan, and Ardestan stations are shown in

Eqs. 15, 16, and 17, respectively.

ET ¼ �19:6047þ 2:8297Tmean � 0:7866ðTmax � TminÞ
þ 0:0753Ra ð15Þ

ET ¼ �51:9819þ 2:022Tmean � 0:0465ðTmax � TminÞ
þ 0:1061Ra ð16Þ

ET ¼ �87:4207þ 3:9657Tmean þ 2:381ðTmax � TminÞ
þ 0:1195Ra ð17Þ

Fig. 1 Position of Esfahan, Kashan, and Ardestan in Iran

Table 1 Geographic characteristics of the stations

Station Latitude Longitude Elevation m.a.s.l Record duration Annual precipitation (mm) Climate (de Martonne)

Esfahan 32�370N 51�400E 1550.4 1961–2005 122.8 Arid

Kashan 33�590N 51� 270E 982.3 1966–2005 138.4 Arid

Ardestan 33�230N 52� 230E 1252.4 1992–2005 115.8 Arid

1916 Appl Water Sci (2017) 7:1911–1922
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Bayesian regression

The results of statistical parameters of Bayesian regression

model are given in Table 4. In addition, Figs. 8, 9, and 10

show the predicted values of ET versus the calculated

values of ET.

To evaluate the Bayesian regression model, the amount

of ET estimated by this model was plotted versus the cal-

culated values. These results are shown for Esfahan,

Kashan, and Ardestan stations in Figs. 8, 9, and 10,

respectively. Similar to the robust regression analysis, the

maximum value of the correlation coefficient was obtained

for Ardestan; however, the minimum value of RMSE

belongs to Kashan. It should be noted that performance of

the Bayesian model for Kashan (Fig. 9) is the only over-

estimating observed in all models among all stations.

The formula obtained from Bayesian regression model

for Esfahan, Kashan, and Ardestan stations are shown in

Eqs. 18, 19, and 20, respectively.

ET ¼ �20:2773þ 0:0769Ra� 0:7886ðTmax � TminÞ
þ 2:7749Tmean ð18Þ

ET ¼ �61:0469þ 0:0961Raþ 0:9314ðTmax � TminÞ
þ 2:2568Tmean ð19Þ

Table 2 Statistical parameters of the MFP model for ET prediction

Stations R2 RMSE

Esfahan 0.96 9.48

Kashan 0.98 7.58

Ardestan 0.98 8.74

Fig. 2 Comparison of the ET predicted with MFP model versus the

calculated values by FAO-PM for Esfahan station

Fig. 3 Comparison of the ET predicted with MFP model versus the

calculated values by FAO-PM for Kashan station

Fig. 4 Comparison of the ET predicted with MFP model versus the

calculated values by FAO-PM for Ardestan station

Table 3 Statistical parameters of the robust regression model for ET

prediction

Stations R2 RMSE

Esfahan 0.95 10.59

Kashan 0.96 8.24

Ardestan 0.97 12.07

Fig. 5 Comparison of the ET predicted with robust regression model

versus the calculated values by FAO-PM for Esfahan station
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ET ¼ �87:9839þ 0:1166Raþ 2:4713ðTmax � TminÞ
þ 4:0873Tmean ð20Þ

According to Tables 2, 3, and 4, the best results

obtained from the MFP model with the highest regression

coefficient and the lowest RMSE. The MFP model is more

flexible than the ordinary polynomial methods and more

resistant than nonparametric regression methods.

Figures 11 and 12 are plotted to better comparison of the

performance of the models used with respect to the average

values of the evaluation indices.

According to Fig. 11, once again the MFP model is

introduced as the best model for estimation of reference ET

in the study areas due to the highest correlation coefficient

and the lowest RMSE and slope error. It should be noted

that the slope error was obtained based on the coefficient of

the suggested equations in Figs. 2, 3, 4, 5, 6, 7, 8, 9, and 10.

According to Fig. 12, the models used estimate refer-

ence ET in Kashan better than Esfahan and Ardestan.

Fig. 6 Comparison of the ET predicted with robust regression model

versus the calculated values by FAO-PM for Kashan station

Fig. 7 Comparison of the ET predicted with robust regression model

versus the calculated values by FAO-PM for Ardestan station

Table 4 Statistical parameters of the Bayesian regression model for

ET prediction

Station R2 RMSE

Esfahan 0.95 10.59

Kashan 0.96 8.84

Ardestan 0.97 12.05

Fig. 8 Comparison of the ET predicted with Bayesian regression

model versus the calculated values by FAO-PM for Esfahan station

Fig. 9 Comparison of the ET predicted with Bayesian regression

model versus the calculated values by FAO-PM for Kashan station

Fig. 10 Comparison of the ET predicted with Bayesian regression

model versus the calculated values by FAO-PM for Ardestan station
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Table 1 confirms this result because the annual precipita-

tion of Kashan (138.4 mm) is more than both Esfahan

(122.8 mm) and Ardestan (115.8 mm). In addition, com-

pared with Esfahan (1550.4 masl) and Ardestan

(1252.4 masl), the lowest elevation belongs to Kashan

(982.3 masl). Therefore, application of the models is pro-

posed for all regions in the world with weather conditions

close to Kashan, and this leads to the best performance as

well as reduction of uncertainty for estimation of reference

ET.

Compared with the previous works (in these three

regions), the obtained results underline better performance

of MFP, robust regression, and Bayesian regression in

Esfahan, Kashan, and Ardestan. Azizi et al. (2010) applied

multivariations regression model for estimating reference

ET in Esfahan province. The authors used four weather

parameters (temperature, air vapor pressure, relative

humidity, and wind speed) to estimate reference ET and

claimed that use of this approach led to correlation coef-

ficients equal to 0.998 and 0.992, in Esfahan and Kashan,

respectively. In the other study, Heydari et al. (2013)

evaluated different methods include Penman FAO, Bla-

ney–Criddle, Linacre, Thorenthwaite, Hargreaves–Samani,

Irmak, Turc, and Jensen–Haise in Ardestan, and then their

results were compared with FAO-PM method. The results

indicated that the Blaney–Criddle model is the most

appropriate for this particular study area, with an average

RMSE of 1.34 mm day-1 and MAE of 1.00 mm day-1

and a correlation coefficient of 0.952. The obtained results

can be expanded for other arid regions with similar

wheatear conditions.

Summary and conclusions

In this research, the capacity of different models for

evapotranspiration prediction was investigated. Evapo-

transpiration is a complex and nonlinear phenomenon

because it depends on several interacting climatological

factors, such as temperature, humidity, wind speed,

Fig. 11 Comparison of the

models used according to the

average of the evaluation

indices

Fig. 12 Comparison of the

average of evaluation indices

for area studies
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radiation, type, and growth stage of the crop (Jain et al.

2008; Ojha and Bhakar 2012; Valipour 2012a, b, 2013c, d,

e, f, g, h, Valipour 2014b). The MFP model is an effective

tool to model nonlinear systems. The obtained results of

predictions are in good agreement with the calculated ET at

all stations. The results showed that the accuracy of MFP

model was greater than the other two models in estimation

of the amount of ET. Namely, the MFP model has more

regression coefficient values and the less prediction errors

than the other two models. Therefore, the suggestion is that

these models, especially the MFP, could apply for other

climatic and hydrologic modeling.

One of the most important results of the current inves-

tigation is estimation of reference ET by using only two

weather variables including temperature and radiation, with

an acceptable accuracy. Therefore, the formulae obtained

are preferred to (1) other models in which reference ET

was estimated using only these to variables with a future

error as well as (2) other models in which reference ET was

estimated using more weather variables such as relative

humidity, wind speed, elevation, and precipitation.
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