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Identification of clinical trait–related lncRNA and mRNA biomarkers
with weighted gene co-expression network analysis as useful tool
for personalized medicine in ovarian cancer
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Abstract
Relevance The pathogenesis and biomarkers of ovarian cancer (OC) remain not well-known in diagnosis, effective therapy, and
prognostic assessment in OC personalized medicine. The novel identified lncRNA and mRNA biomarkers from gene co-
expression modules associated with clinical traits provide new insight for effective treatment of ovarian cancer.
Purpose Long non-coding RNAs (lncRNAs) are relevant to tumorigenesis via multiple mechanisms. This study aimed to
investigate cancer-specific lncRNAs and mRNAs, and their related networks in OCs.
Methods This study comprehensively analyzed lncRNAs and mRNAs with associated competing endogenous RNA (ceRNA)
network and lncRNA–RNA binding protein–mRNA network in the OC tissues in the Cancer Genome Atlas, including 2562
cancer-specific lncRNAs (n = 352 OC tissues) and 5000 mRNAs (n = 359 OC tissues). The weighted gene co-expression
network analysis (WGCNA) was used to construct the co-expression gene modules and their relationship with clinical traits.
The statistically significant difference of identified lncRNAs and mRNAs was confirmed with qRT-PCR in OC cells.
Results An lncRNA-based co-expression module was significantly correlated with patient age at initial pathologic diagnosis,
lymphatic invasion, tissues source site, and vascular invasion, and identified 16 lncRNAs (ACTA2-AS1, CARD8-AS1, HCP5,
HHIP-AS1, HOTAIRM1, ITGB2-AS1, LINC00324, LINC00605, LINC01503, LINC01547, MIR31HG, MIR155HG,
OTUD6B-AS1, PSMG3-AS1, SH3PXD2A-AS1, and ZBED5-AS1) that were significantly related to overall survival in OC
patients. An mRNA-based co-expression module was significantly correlated with patient age at initial pathologic diagnosis,
lymphatic invasion, tumor residual disease, and vascular invasion; and identified 21 hub-mRNA molecules and 11 mRNAs
(FBN3, TCF7L1, SBK1, TRO, TUBB2B, PLCG1, KIAA1549, PHC1, DNMT3A, LAMA1, and C10orf82) that were closely
linked with OC patients’ overall survival. Moreover, the prognostic model of five-gene signature (OTUD6B-AS1, PSMG3-AS1,
ZBED5-AS1, SBK1, and PLCG1) was constructed to predict risk score in OC patients. Furthermore, starBase bioinformatics
constructed the lncRNA–miRNA–mRNA and lncRNA–RNA binding protein-mRNA networks in OCs.
Conclusion These new findings showed that lncRNA-related networks in OCs are a useful resource for identification of bio-
markers in OCs.
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Introduction

Ovarian cancer (OC) is a highly malignant tumor with poor
prognosis, which is the most deadly cancer in gynecology [1].
Most OC patients are often detected in late clinical stages
because the OC pathogenesis is concealed without effective
characteristics. In less than 30% of patients, OCs were found
to be located in the ovary but most of which spread to pelvic
and abdominal organs. Most of the patients have no obvious
symptoms in the early stage, and the common symptoms of
the patients in the late stage include emaciation, bellyache,
abdominal distension, pelvic lumps, and ascites [2]. Despite
the continuous improvement made in the diagnosis and treat-
ment of OC, OC is still a serious threat to women’s lives [3].
Currently, the commonOC biomarkers included carbohydrate
antigen 125 (CA125), human epididymis protein 4 (HE4),
breast cancer 1 (BRCA1), and human chorionic gonadotropin
(HCG). The diagnosis of OCs based on those common bio-
markers is still unsatisfactory. For example, CA125was not an
ideal biomarker due to low sensitivity and high specificity [4].
Even for two-biomarker (CA125 and HE4) joint detection, the
sensitivity is only about 71% [5]. Other novel OC biomarkers
such as osteopontin (OPN), mesothelin (SMRP), and vascular
endothelial growth factor A121 (VEGFA) are still studied in
clinical trials [6]. It is an urgent need to explore novel effective
tumor molecular biomarkers for early diagnosis, prognosis
monitoring, and therapy improvement [7].

OC is a chronic and complex disease that is involved in a
series of molecular alterations in genome, transcriptome,
proteome, metabolome, and radiome [8–12]. Multiomics
has driven the development of predictive, preventive, and
personalized medicine (PPPM) in OCs [13, 14], and PPPM
is the effective and affordable strategy for OC care [15]. Of
them, transcriptome and proteome are the functional per-
formers of genes [16]. Transcriptome includes non-coding
RNAs (lncRNAs and microRNAs) and coding RNAs
(mRNAs). The mRNAs are the bridge to link the genome
with proteome, and lncRNAs regulate transcription and
translation of genes associated with various diseases includ-
ing cancer. Transcriptome-based pattern biomarkers play im-
portant roles in management of OC care [11]. It emphasized
important scientific value of transcriptomics for PPPM in
OCs.

The length of long non-coding RNAs (lncRNAs) is more
than 200 nucleotides without significant protein-coding ca-
pacity [17]. lncRNAs showed diverse biological characteris-
tics, which were detected as different expressions in different
tissues and different expressions in the same tissues at differ-
ent growth stages [18]. More and more studies found that the

relationship between lncRNAs and cancer is complicated
[19]. lncRNAs regulate multiple biological functions associ-
ated with tumorigenesis and progression in cancer cells, such
as angiogenesis, proliferation, immunity adjustment, epige-
netic regulation, invasion, and metastasis of tumor [20]. In
addition, lncRNAs are involved in the tumorigenesis through
multiple mechanisms, including chromatin modification and
structure construction, transcriptional regulation, genome-
imprinting regulation, protein post-translational regulation or
localization, microRNA regulation, ribonucleoprotein com-
plex formation, and endogenous siRNA production [21].
Moreover, a competing endogenous RNA (ceRNA) hypothe-
sis proposed in 2011 described an intricate post-transcriptional
regulatory network, which mainly includes lncRNAs,
microRNAs, mRNAs, circRNAs, and other types of RNAs
[22]. lncRNAs as ceRNAs might be involved in relevant reg-
ulatory mechanisms in OCs. Construction of lncRNA–
miRNA–mRNA and lncRNA–RNA binding protein-mRNA
networks might provide more clues to OC molecular
mechanisms.

Weighted gene co-expression network analysis
(WGCNA) was widely applied to identify the relationship
between gene-based connections and the disease phenotypes
based on microarray data or RNA sequencing in different
samples [23]. WGCNA was a comprehensive approach to
find modules of strong associated genes, to summarize the
identified modules with the eigengene network that was one
of a set of right singular vectors of a genes × samples matrix
that tabulates (e.g., the mRNA or lncRNA expression of the
genes across the samples) or a series of intramodular hub
genes, to compute the correlation between modules, to cal-
culate the correlation between gene modules and external
sample clinical traits with eigengene network methodology,
and to plot the scatterplot of gene significance (GS) vs. mod-
ule membership (MM) [24]. WGCNA identified gene mod-
ules with unsupervised hierarchical clustering method that
transforms gene expression matrix into different clusters
and provides more credible gene functions [25].
Correlation networks, module–trait relationship, and the
scatterplot of GS vs. MM that facilitate to further study the
identified key modules and genes are successfully applied to
explore various disease biological processes to identify po-
tential biomarkers and therapeutic targets [26]. However,
WGCNA is rarely used to study OCs for identification of
prognostic biomarkers.

The present study collected the RNA sequencing data of
OC tissues in The Cancer Genome Atlas (TCGA) database,
and investigated OC-specific lncRNA and mRNA modules
associated with OC patients’ clinical characteristics. The
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WGCNA method was modified with the clinical view so that
it could be reasonably utilized for meaningful biological inter-
pretation. The hub genes were extracted from the identified
clinical-related co-expression modules, and those hub genes
included lncRNAs and mRNAs. Analysis of lncRNA–
miRNA–mRNA and lncRNA–RNA binding protein-mRNA
networks offered new insights into OC molecular mecha-
nisms. These findings provide the scientific evidence and re-
source for better understanding of the molecular mechanisms
of OCs, and for effective diagnosis, prognostic assessment,
and treatment in the OC PPPM context.

Materials and methods

TCGA data of OC patients

TCGA database (http://cancergenome.nih.gov/) is created by
US National Cancer Institute, which includes 20,000 primary
cancer and involves genomic, transcriptomic, proteomic, and
methylation data. The TCGA platform is publicly available
and is free access for anyone to search, download original
data, and for integrated analysis, and TCGA is free of
copyright for reuse [27]. Level 3 RNA-seq V2 and clinical
data were obtained from 419 OC patients in the TCGA data-
base. If one gene generated multiple missing expression
values (expression = 0, and more than 20%), it would be
removed. Thus, a total of 352 OC patients met the criteria
for lncRNA analysis, and 359 OC patients met the criteria
for mRNA analysis. Overall survival analysis of identified
genes in OC patients was performed with Kaplan–Meier plot-
ter (http://kmplot.com/private/index.php.p= home). Nine OC
prognostic factors of OC data were extracted, including age at
initial pathologic diagnosis (patients were aged 26 to 89);
Karnofsky performance score (KPS) which represents the ac-
tivities of daily life (independent, semi-independent, or
dependent) after the patients received treatment with a ranking
range from KPS 100 (perfect) to 0 (death); lymphatic invasion
(yes/no); histologic grade (grade 1, grade2, grade 3, and grade
X); cancer status (with tumor/tumor-free); clinical stage (stage
I–IV); tissue source site (specimen from different sites of the
same patient); tumor residual disease (including no macro-
scopic disease, 1–10 mm, 11–20 mm, and > 20 mm); and
vascular invasion (yes/no; an aggressive tumor had struck a
major blood vessel).

Weighted correlation network analysis of lncRNAs
and mRNAs

WGCNAwas able to distinguish genes into multiple clusters,
and further investigate the relationship between co-expression
modules and clinical phenotypes. In this study, weighted gene
co-expression modules and module–trait relationship were

established with lncRNA and mRNATCGA expression data
and corresponding clinical data through the WGCNA plat-
form of R software (http://www.r-project.org/). This analysis
process included (i) downloading of raw data from TCGA, (ii)
construction of a gene co-expression network by calculating
the connection strength between genes, (iii) identification of
modules with hierarchical clustering and dynamic tree cut, (iv)
construction of module relationships with eigengene net-
works, and (v) finding the key drivers in interesting modules
by intramodular connectivity and causality testing. In this pro-
cess, the scale-free topology fit index (SFTFI) (scale-free R2)
ranging from 0 to 1 was used to determine a scale-free topol-
ogy model. The higher SFTFI value (scale-free R2) means a
better fitting degree. In this study, β value was soft-threshold
(power). When β value (range 1 to 20) was at least 3 for
lncRNAs and at least 4 for mRNAs, the corresponding
scale-free R2 value was 0.88 for lncRNAs and 0.91 for
mRNAs to obtain a good scale-free topology model. In the
cluster dendrogram, genes with highly absolute correlations
were clustered into the same co-expressionmodule to generate
a cluster dendrogramwith FlashClust analysis. Then, the clus-
ter dendrogram was transformed into a topology matrix to
form the network heatmap plot. Within each module with
the number of genes being more than 30, the adjacency matrix
algorithm was used to generate the topological overlap matrix
(TOM). Heatmap plot was constructed with Heatmap tool to
analyze network-interaction strength. The relationships be-
tween modules and nine OC prognostic factors (age at initial
pathologic diagnosis, Karnofsky performance score, lymphat-
ic invasion, histologic grade, cancer status, clinical stage, tis-
sue source site, tumor residual disease, and vascular invasion)
were analyzed with Pearson correlation coefficient (r) and
visualized by heat map with p value < 0.05. Moreover, GS
was the mediated p value of each gene (GS = lgP) in the linear
regression between gene expressions and clinical traits. KEEG
pathway (https://david.ncifcrf.gov/home.jsp) and Gene
Ontology (GO) (http://www.cytoscape.org/) enrichment
analyses within mRNA modules were performed to identify
OC-related module with p value < 0.05. The maximum
intramodular connectivity of mRNAs was referred as
intramodular hub genes. Furthermore, the OC survival–
related lncRNAs in OC-related module (yellow) were plotted
expression correlation network with hub genes in OC-related
module with RStudio. For mRNA–mRNA, mRNA–lncRNA,
or lncRNA–lncRNA pairs, their r values were calculated to
determine the significant correlation pairs.

Identification of hub molecules with molecular
complex detection

The mRNA–mRNA interactions were analyzed with
Cytoscape software (version 3.2.1; National Resource for
Network Biology) to obtain the network. The criteria of hub-
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molecule searching were set as the molecular complex detec-
tion (MCODE) score > 6 and statistical significance of
p < 0.05.

The ceRNA network and identification of an
integrated lncRNA–RNA binding protein-mRNA
signature

LncRNA–miRNA–mRNA interaction networks and
lncRNA–RNA binding protein-mRNA interaction networks
were generated from the large-scale CLIP-Seq data by
starBase v 2.0 (http://starbase.sysu.edu.cn/mirCircRNA.
php). Cytoscape 3.4.0 (http://www.cytoscape.org/) was used
to visualize the network.

Cell lines and cell culture

OC cells TOV-21G, A2780, and SKOV3, and normal cells
IOSE80 were purchased from Keibai Academy of Science
(Nanjing, China). RPMI-1640 medium was used to culture
TOV-21G cells with 5% CO2 atmosphere at 37 °C. DMEM
medium (Corning, NY, USA) plus 10% fetal bovine serum
(FBS, Gibco) was used to culture SKOV3, A2780, and
IOSE80 cells with 5% CO2 atmosphere at 37 °C. TOV-21G,
A2780, and SKOV3 cells belong to human epithelial ovarian
cancer cell line, and IOSE80 cells as normal control were also
from ovarian surface epithelium. Most of TCGA ovarian can-
cer patients were serous cystadenocarcinoma. Among the se-
lected ovarian cancer cell lines, SKOV3 cells were derived
from the ascitic fluid from a 64-year-old Caucasian female
with ovarian cancer, and were moderately well-differentiated
adenocarcinoma, which was consistent with ovarian primary
cells (serous cystadenocarcinoma). In addition, TOV-21G
(clear-cell carcinoma) and A2780 (secretion of mucin-like
substances into a culture medium) were also used to verify
WGCNA results in different types of cell lines. TOV-21G,
A2780, SKOV3, and IOSE80 were all derived from ovary
epithelial tissue. It is reasonable to use those cell lines for
validation of WGCNA results.

RNA extraction and qRT-PCR

The ovarian cells (4 × 106) were used to extract total RNA
through the following steps: (i) the ovarian cells were washed
with PBS (3×); (ii) a volume (1 ml) of TRizol Reagent
(Invitrogen) was used to lyse cells (10 min, ice); (iii) 200 μl
chloroformwas added to each tubewith sufficient mixing; (iv)
after resting for 5 min on ice, they were centrifuged (12,000 r/
min, 15 min); (v) the same volume of isopropanol was added
to supernatant with sufficient mixing; (vi) after resting for
15 min on ice, they were centrifuged (12,000 r/min,
15 min); (vii) a volume (1 ml) of ethanol (v/v = 75%) was
added to precipitate, and then centrifuged (12,000 r/min,

5 min); and (viii) after removing ethanol, 20 μl RNA
enzyme-free water was added to dissolve RNA precipitate.
Each total RNA was reversely transcribed into cDNA for
quantitative real-time PCR (qRT-PCR) analysis with SYBR
Premix ExTaq kit (TaKaRa). For the reverse transcription re-
action system: (i) add 2 μl 5× gDNA Eraser buffer, 1 μl 5×
gDNA Eraser buffer, 500 ng total RNAs, and RNase-free
water up to 10 μl at 42 °C for 2 min. (ii) Add 1 μl
PrimeScript RT Enzyme Mix I, 1 μl RT Primer Mix, 2 μl 5×
PrimeScript buffer, 4 μl RNase-free water to reaction solution
from the first step at 37 °C for 15 min, 85 °C for 5 s, and save
at 4 °C. qRT-PCR reaction system contained 5 μl SYBR buff-
er, 4 μM primers (forward and reverse primers), 2 μl RNase-
free water, and 1 μl cDNA. Beta-actin was set as an internal
control for gene quantification. The numbers of technical and
biological replicates were at least three times for each gene
with qRT-PCR analysis. Table 1 contained those RNA mole-
cules that were assessed on the cell lines and their correspond-
ing primers.

Statistical analysis

All original data were downloaded from TCGA dataset and
analyzed by R software 3.4.1 with WGCNA package (https://
www.r-project.org/). For the pair of module–trait relationship
and gene significance (GS) for module membership (MM)
based on WGCNA analysis, Pearson correlation coefficient
(r) was calculated. Benjamini-Hochberg for multiple testing
and false discovery rate (FDR) were used to correct the p
value. p value for GO enrichment analysis of mRNAs in
mRNA-based yellow co-expression module was obtained by
two-sided hypergeometric test and corrected by Benjamini-
Hochberg. The Kaplan–Meier survival curves of hub mole-
cules in brown and yellow co-expression modules were tested
by log rank (Mantel–Cox). Correlation analyses for hub mol-
ecules in brown and yellow co-expression modules were an-
alyzed by Pearson correlation coefficient, respectively. The
identified 21 hub-mRNAs and 16 survival-associated
lncRNAs were input to multivariate regression module in
SPSS 20 software (p < 0.05). Each experiment for qRT-PCR
was repeated in totality three times, and the means and stan-
dard deviations (mean ± SD) were calculated. The differences
between groups for in vitro studies were analyzed by t test in
SPSS 13.0 (SPSS Inc., Chicago, USA), with statistical signif-
icance (p < 0.05).

Results

Construction of co-expression modules of OC

After removing the missing value of gene expression from
raw data, quantile normalization, and WGCNA package
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filtration, the datasets with 2562 lncRNAs and the top 5000
mRNAs were selected for WGCNA analysis. The expression

values of 2562 lncRNAs in 352 OC samples (Supplementary
Table 1) and 5000 mRNAs in 359 OC samples

Table 1 The list of RNA molecules that were assessed on the cell lines

RNA type Primer name Primer sequence (from 5′ to 3′)

Reference gene β-actin-F AGGGGCCGGACTCGTCATACT

β-actin-R GGCGGCACCACCATGTACCCT

lncRNA ITGB2-AS1-F AAGGCAGGTGAGTGTAGGAAGGAG

ITGB2-AS1-R ACCACGCAGAGGAAGGCAGAG

OTUD6B-AS1-F GGCAGAGATCTGAATCGTGAGGAG

OTUD6B-AS1-R GTAGCATGGAGGTGGCACATAGC

PSMG3-AS1-F TGGAACGGTGAAGGAATCTGAAGC

PSMG3-AS1-R GTGGCTGTGAGGTGTGGATGTG

LINC00324-F CTGCAACGAAGAGCTAGGTCCAAG

LINC00324-R GGTTACCGACTTGGTGCCATTCC

LINC01503-F TTCGAACGCCTCTGACAAGTGTG

LINC01503-R GTCCACTCCAGATGGTCCTCAGG

HOTAIRM1-F TGGAGTGCTGGAGCGAAGAAGAG

HOTAIRM1-R TCCTGGATGCGATTCGTCCTCTC

LINC01547-F AGGCCAAGAGACAACAGCGATTAC

LINC01547-R GCCAAGTGTGGACTCAGAGCTTC

SH3PXD2A-AS1-F CTGAAGCAGCACTGTGGAGATCC

SH3PXD2A-AS1-R GCTCATCTCGCTGGCAGACTG

HCP5-F GGTTGGTGCAGATGGTGATAGGAC

HCP5-R CACAGGCTTGGCACTGCTCTC

MIR31HG-F AGCAGGTCTCCAGGTGTTCCAG

MIR31HG-R GGAAGTCAGCCAGTTGCAGAAGG

MIR155HG-F ACCTTACCTGTCACCTTGGCTCTC

MIR155HG-R CAGCAAGCCTTCAGCACTCAGAG

ZBED5-AS1-F ACTCCGCCTCTCGAAGTGATGG

ZBED5-AS1-R TGACTCGCACAGATGGTGTTCATG

mRNA LAMA1-F GGCACACGGTCAAGACAGACTATG

LAMA1-R CACATCCAGCATGGTTCCATCTCC

KIAA1549-F CTTCACTCTCGAAGCAACAGTC

KIAA1549-R ACAGTTGTGATCAGATAGGCAT

TCF7L1-F ATCTCCAGCACACTTGTCTAAT

TCF7L1-R TTCCTGTCTTTGGATCGATCTC

DNMT3A-F GAATGTGCCAAAACTGCAAGAA

DNMT3A-R GTTCCAGGGGTCTTCCTTAATG

EFS-F CTCTGAGAGCACAGGTCAG

EFS-R TAGTGAGCAGGGTAGTGAATTG

SBK1-F TCACCAACAGCCTCTCCTCCAG

SBK1-R GCGCTTCACCGTGTCCTCAG

PLCG1-F ACCGTCATGACTTTGTTCTACT

PLCG1-R AATTTCACGAATGTCAATGGCC

C10orf82-F TGCCGAGAGCCAAGGTCACTG

C10orf82-R CCTCTCCGTGATCTCCAGGAAGTC

TUBB2B-F TGAAGGAGGTGGACGAGCAGATG

TUBB2B-R CCGTGCTGTTGCCGATGAAGG

F forward, R reverse
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(Supplementary Table 2) were utilized to establish co-
expression modules with WGCNA package. The clinical
characteristics of these 370 (combined those 352 and 359
OC samples with removal of the replicates) eligible patients
were summarized (Supplementary Table 3). The samples
were clustered by the FlashClust tool with average linkage
method and Pearson’s correlation method. Sample clustering
identified outliers based on lncRNA and mRNA data, re-
spectively. The red line was the cutoff value to filter data
(Fig. 1A). All the samples were in the clusters after removing
outliers in the samples based on lncRNA data and mRNA
data (Fig. 1B). Sample dendrogram and trait heatmap were
plotted based on lncRNA (or mRNA) expression data and
mRNA clinical data (Fig. 1B). The approach of algorithm

made every sample in different clusters, and showed
clinical-data distribution. The power value was the most crit-
ical parameter to mainly influence the average connectivity
degree and the independence of each co-expression module.
Firstly, the power β was selected in lncRNA and mRNA
groups, respectively. When β = 3, the scale R2 was 0.88 to
obtain a higher average connectivity degree in the lncRNA
group. When β = 4, the scale R2 was 0.91 to obtain a higher
average connectivity degree in the mRNA group (Fig. 2A
and B). Thereby, the β determined distinct gene co-
expression modules in OCs. The cluster dendrogram of all
selected genes was clustered with the adjacency matrix.
These co-expression modules were shown (Fig. 2C). These
co-expression modules were distributed within a range from

Fig. 1 Sample cluster analysis based on lncRNA data (left column) and
mRNA data (right column). A Sample clustering to detect outliers based
on lncRNA data and mRNA data. The red line represents the cutoff of
data filtering in the step of data preprocessing.B Sample dendrogram and
trait heatmap based on lncRNA and mRNA expression data and clinical

data: a, age at initial pathologic diagnosis; b, Karnofsky performance
score; c, lymphatic invasion; d, histologic grade; e, cancer status; f,
clinical stage; g, tissue source site; h, tumor residual disease; i, vascular
invasion
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small to large due to the number of included genes. Their
interactions were analyzed between co-expression modules.

Heatmap was plotted to reflect topological overlap. Each
column and row represented a gene. Low topological overlap
was shown in light color, and higher topological overlap was
shown in progressively darker red. Eachmodule was shown in
darker squares. The network heatmap plot of all genes and
module assignment were shown (Fig. 2D). Hierarchical clus-
tering revealed module eigengenes to summarize the modules.
Dendrogram branches were grouped together with positively
correlated eigengenes. One color module eigengene was
shown in each column and row of heatmap: low adjacency
was negative correlation in blue, and high adjacency was pos-
itive correlation in red. The red squares along the diagonal
were defined as meta-modules (Fig. 2E).

Gene co-expression modules corresponding to clinical
traits

The association analysis was performed between common
expression eigengene pattern in co-expression module and
the particular clinical trait dataset from the TCGA database,
including age at initial pathologic diagnosis, Karnofsky per-
formance score, lymphatic invasion, histologic grade, cancer
status, clinical stage, tissue source site, tumor residual disease,
and vascular invasion (Fig. 3A). Heatmap was constructed for
the correlation between clinical traits and module eigengenes
in ovarian cancer, with r and p values. Based on heatmap of
module-trait relationship for lncRNA, gene co-expression
module and clinical traits demonstrated that the green module
in Fig. 3A was significantly associated with OC Karnofsky
performance score, which indicated the close relation of
lncRNAs in this co-expression module to the activities of
daily life (independent, semi-independent, or dependent) after
the patients received treatment. The blue and turquoise

modules in Fig. 3A were significantly associated with OC
tissue source site, which indicated heterogeneity of gene ex-
pression; namely, gene expression was different in different
tissues, different even in the same organ tissue. Based on the
heatmap of module–trait relationship for mRNA, gene co-
expression module and clinical traits demonstrated that the
black module in Fig. 3A was significantly associated with
OC Karnofsky performance score, which indicated the close
relation of mRNAs in this co-expression module to the activ-
ities of daily life (independent, semi-independent, or
dependent) after the patients received treatment. The blue,
green, and purple modules in Fig. 3Awere significantly asso-
ciated with OC lymphatic invasion, histologic grade, and vas-
cular invasion, respectively, which indicated that mRNAs in
those co-expression modules were closely related to OC me-
tastasis. Various co-expression modules were related to the
clinical trait of tissue source site in module–trait relationship
for mRNA, including green, yellow, red, turquoise, purple,
and brown modules (Fig. 3A), which indicated that a large
heterogeneity exists from different origins of ovary cancer
sites. The brown module in the lncRNA group and the yellow
module in the mRNA group in Fig. 3A were chosen as key
modules for further study according to correlation coefficient
(r) and p values, and those two co-expression modules were
associated with multiple clinical traits. For lncRNAs, the cor-
relation analysis of gene co-expression module and clinical
traits demonstrated that the brown modules that contained
168 RNAs (Fig. 3A; Supplementary Table 4) were significant-
ly associated with OC clinical traits, including age at initial
pathologic diagnosis (r = − 0.17, p = 2.0E− 03), Karnofsky
performance score (r = − 0.18, p = 5E− 04), clinical stage
(r = 0.14, p = 8.0E− 08), tissue source site (r = 0.11, p = 4.0E
− 02), and vascular invasion (r = 0.25, p = 1.0E− 06). For
mRNAs, the correlation analysis between clinical traits and
gene co-expression modules demonstrated that the yellow
modules tha t con ta ined 318 mRNAs (F ig . 3A;
Supplementary Table 5) were significantly associated with
OC clinical traits, including age at initial pathologic diagnosis
(r = 0.17, p = 1.0E− 03), lymphatic invasion (r = −0.25, p =
2E− 06), tumor residual disease (r = − 0.14, p = 8.0E− 03),
and vascular invasion (r = − 0.25, p = 2E− 06). Furthermore,
the scatterplot was plotted between GS and MM in lncRNA-
based brown module and mRNA-based yellow module, re-
spectively. Scatterplot was constructed between MM in x-axis
and GS in y-axis for lncRNA-based brown module, and
mRNA-based yellow module. In the module–trait relation-
ships, the higher MM value means the higher GS, which sug-
gested hub genes in brown co-expression module or yellow
co-expression module were also highly associated with select-
ed clinical characteristics. The results revealed that MM in
lncRNA-based brown module was significantly correlated
with age at initial pathologic diagnosis (r = − 0.15, p = 3.5E
− 02), lymphatic invasion (r = 0.36, p = 1.9E− 07), tissue
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�Fig. 2 Construction of co-expression modules of ovarian cancers based
on lncRNA data (left column) and mRNA data (right column). A
Analysis of network topology for various soft-threshold powers, includ-
ing the scale-free fit index (y-axis) and the mean connectivity (degree, y-
axis). B Check scale-free topology, and here the adjacency matrix was
defined using soft-thresholds with beta = 3 for lncRNA data, and with
beta = 4 for mRNA data. C Clustering dendrograms of lncRNAs or
mRNAs, with dissimilarity based on topological overlap, together with
assigned module colors. As a result, six co-expression modules (co-ex-
pression green module, co-expression turquoise module, co-expression
yellow module, co-expression blue module, co-expression brown mod-
ule, co-expression gray module) were constructed from lnRNA data, and
14 co-expression modules from mRNA data (co-expression magenta
module, co-expression tan module, co-expression green module, co-
expression black module, co-expression yellow module, co-expression
green-yellowmodule, co-expression red module, co-expression turquoise
module, co-expression purple module, co-expression blue module, co-
expression pink module, co-expression brown module, co-expression
salmon module, co-expression gray module). D The heatmap depicts
the topological overlap matrix (TOM) among all lncRNAs or all
mRNAs. E Visualizing the gene network using a heatmap plot



Fig. 3 Analysis of module-trait
relationships of ovarian cancer
based on lncRNA data (left
column) and mRNA data (right
column). A Module-trait
associations. Each row
corresponds to a module
eigengene, and column to a trait.
a, age at initial pathologic
diagnosis; b, Karnofsky
performance score; c, lymphatic
invasion; d, histologic grade; e,
cancer status; f, clinical stage; g,
tissue source site; h, tumor resid-
ual disease; i, vascular invasion.B
The scatterplot of gene signifi-
cance (GS) vs. module member-
ship (MM) in the lncRNA-based
brown co-expression module, or
in the mRNA-based yellow co-
expression module
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source site (r = 0.38, p = 3.4E− 08), and vascular invasion (r =
0.28, p = 6.5E− 05) (Fig. 3B), and that MM in mRNA-based
yellow module was significantly correlated with age at initial
pathologic diagnosis (r = 0.24, p = 1.5E− 05), lymphatic inva-
sion (r = 0.29, p = 1.4E− 07), tumor residual disease (r = 0.17,
p = 2.4E− 03), and vascular invasion (r = 0.23, p = 3.5E− 05)
(Fig. 3B).

Functional enrichment analysis of mRNAs in an
mRNA-based co-expression module

KEGG pathway analysis revealed ten statistically significant
signaling pathways to involve mRNAs identified in mRNA-
based yellow co-expression module (Supplementary Table 6);
and interestingly, OC cells had the enhanced dependence on
multiple signaling pathways, including Hippo signaling path-
way, basal cell carcinoma, melanogenesis, Wnt signaling
pathway, pathways in cancer, proteoglycans in cancer, aldo-
sterone synthesis and secretion, gap junction, ovarian ste-
roidogenesis, and signaling pathways regulating pluripotency
of stem cells. For example, organ growth depends on a series
of cell biological processes, including cell proliferation, cell
division, and programmed cell death. Hippo signaling path-
way inhibits cell proliferation and induces apoptosis [28],
which is becoming increasingly important in the study of un-
controlled cell division in cancer. The notably enriched
mRNAs in Hippo signaling pathway included WNT5A,
DLG4, LEF1, TEAD2, PARD6G, FZD2, BMP7, WNT6,
TCF7L1, FZD7, and BMP6. The Wnt signaling pathway
plays important roles in many diseases. CTNNB1 mRNA
profile alteration, which encodesβ-catenin protein, was found
in melanoma, breast colorectal, lung, prostate, and other can-
cers. One study found that Wnt ligand proteins (Wnt 1, Wnt2,
and Wnt7A) were significantly upregulated in esophageal
cancer, glioblastoma, and OC [29]. Other changed proteins
included SFRP4, ROR1, ROR2, WIF1 Wnt5A, and TCF/
LEF family. The notably enriched mRNAs in Wnt signaling
pathway included WNT5A, GPC4, PLCB4, LEF1, FZD2,
BAMBI, WNT6, TCF7L1, and FZD7. Hormone hypothesis
in OCs recognized that hormones were OC risk factors, in-
cluding androgens, gonadotropin, insulin-like growth factor I,
progesterone, estrogens, and insulin, and androgens were as-
sociated with increased risk of ovarian-origin cancers [30].
The notably enriched mRNAs in ovarian steroidogenesis
pathway included CYP17A1, CYP11A1, STAR, and BMP6.

GO enrichment analysis of mRNAs in mRNA-based yel-
low co-expression module revealed cellular component (CC)
(Fig. 4A; Supplementary Table 7), molecular function (MF)
(Fig. 4B; Supplementary Table 8), and biological process (BP)
(Fig. 4C; Supplementary Table 9). For CC enrichment, the
mRNAs in mRNA-based yellow co-expression module were
mainly distributed in postsynapse, neuron projection,
somatodendritic compartment, axon part, Golgi lumen,

endocytic vesicle membrane, dendritic shaft, plasma mem-
brane protein complex, membrane microdomain, perinuclear
region of cytoplasm, sarcoplasmic reticulum, and proteina-
ceous extracellular matrix. For MF enrichment, the mRNAs
in mRNA-based yellow co-expression module were mainly
distributed in Wnt-protein binding, adrenergic receptor bind-
ing, frizzled binding, transforming growth factor beta receptor
binding, fibroblast growth factor binding, potassium channel
activity, calcium-ion binding, PDZ-domain binding, copper-
ion binding, S100 protein binding, protein serine/threonine
kinase inhibitor activity, scaffold protein binding,
chemoattractant activity, heparan sulfate proteoglycan bind-
ing, and cysteine-type endopeptidase regulator activity in-
volved in apoptotic process. For BP enrichment, the mRNAs
in mRNA-based yellow co-expression module were classified
into ten groups to involve major BPs, including urogenital
system development, mesoderm formation, mesenchyme de-
velopment, cardiac muscle tissue development, endocrine sys-
tem development, kidney morphogenesis, embryonic organ
development, epithelial tube morphogenesis, morphogenesis
of a branching epithelium, gland morphogenesis, and
neuroepithelial cell differentiation.

Hub genes and survival-associated genes

The intramodular connectivity was to sum connection strengths
with other module genes, and was divided by the maximum
intramodular connectivity. High intramodular connectivity was
defined as MCODE score > 6 and p < 0.05, whose genes were
looked as intramodular hub genes. A total of 21 hub-mRNAs
were identified from 318 mRNAs in mRNA-based yellow co-
expression module, including FBN3, EFS, MSI1, TCF7L1,
FXYD6, ZNF423, SULT1C4, SBK1, TRO, SMO, SALL2,
TUBB2B, PLCG1, LRP4, KIAA1549, PHC1, RHOBTB1,
DNMT3A, TMEFF1, LAMA1, and C10orf82.

The K-M plot analysis revealed that 11 out of 21 hub-
mRNAs in the mRNA-based yellow co-expression module
were significantly related to OC overall survival (p < 0.05),
including FBN3 (HR = 1.48, p = 4.9E− 04), EFS (HR = 1.27,
p = 3.1E− 04), TCF7L1 (HR = 1.18, p = 3.3E− 02), SBK1
(HR = 1.26, p = 3.5E− 02), TRO (HR = 1.19, p = 1.5E− 02),
TUBB2B (HR = 1.26, p = 6.2E− 04), PLCG1 (HR = 1.15,
p = 3.4E− 02), KIAA1549 (HR = 1.22, p = 2.9E− 03),
DNMT3A (HR = 1.33, p = 7.0E− 03), LAMA1 (HR = 1.48,
p = 1.6E− 04), and C10orf82 (HR = 1.36, p = 3.4E− 03)
(Fig. 5). The K-M plot analysis revealed that 16 out of 168
lncRNAs in lncRNA-based brown co-expression module
were significantly related to OC overall survival (p < 0.05),
including ACTA2-AS1 (HR = 1.38, p = 2.1E− 03), CARD8-
AS1 (HR = 1.31, p = 9.3E− 03), HCP5 (HR = 0.81, p = 4.0E−
03), HHIP-AS1 (HR = 1.39, p = 1.4E− 03), HOTAIRM1
(HR = 1.33, p = 7.0E− 03), ITGB2-AS1 (HR = 0.64, p = 9.0E
− 05), LINC00324 (HR = 0.75, p = 2.2E− 02), LINC00605
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Fig. 4 GO analysis involved in
mRNAs in mRNA-based yellow
co-expression module. A Cellular
component derived from mRNAs
in the mRNAyellow co-
expression module. B Molecular
function derived from mRNAs in
the mRNAyellow co-expression
module. C Biological process de-
rived from mRNAs in the mRNA
yellow co-expression module
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(HR = 1.32, p = 8.3E− 03), LINC01503 (HR = 1.36, p = 5.8E
− 03), LINC01547 (HR = 1.28, p = 1.9E− 03), MIR31HG
(HR = 1.39, p = 2.5E− 03), MIR155HG (HR = 0.78, p = 1.5E
− 02), OTUD6B-AS1 (HR = 1.3, p = 1.1E− 02), PSMG3-AS1
(HR = 0.78, p = 2.1E− 02), SH3PXD2A-AS1 (HR = 0.78, p =
2.4E− 02), and ZBED5-AS1 (HR = 0.79, p = 2.3E− 02)
(Fig. 5).

Moreover, RStudio software was used to determine co-
expressions of lncRNAs and mRNAs (Fig. 6A), and obtain
their correlation coefficients (Supplementary Table 10) and
p values (Supplementary Table 11). Some highly correlated
(|correlation coefficient| ≥ 0.4, p < 0.05) mRNA–lncRNA,
mRNA–mRNA, or lncRNA–lncRNA pairs were identified,
including EFS and HHIP-AS1, HHIP-AS1 and TCF7L1,
RHOBTB1 and HHIP-AS1, ACTA2-AS1 and HHIP-AS1,
CARD8-AS1 and HCP5, LINC00324 and CARD8-AS1,
ITGB2-AS1 and LINC01547, LRP4 and TCF7L1, SALL2
and TRO, DNMT3A and PLCG1, and SMO and
KIAA1549. Those high-correlation hub-mRNAs and hub-
lncRNAs are worthy for further studying to demonstrate their
encoded spatiotemporal dynamics.

In addition, survival risk score systemwas constructed with
21 identified hub-mRNAs and 16 survival-associated
lncRNAs using the multivariate regression module in SPSS
20 software. A statistically significant regression equation
(Fig. 6B; p < 0.05) was generated to calculate the survival risk
score: survival risk score = (− 0.115 × expression level of
OTUD6B-AS1) + (− 0.129 × expression level of PSMG3-
AS1) + (0.18 × expression level of ZBED5-AS1) + (0.223 ×
expression level of SBK1) + (− 0.219 × expression level of
PLCG1). For this survival risk score system, a higher score
indicated a longer survival time or a lower mortality risk for
OC patients.

Network analysis and RT-qPCR confirmed
the identified molecules

lncRNA–RNA binding protein-mRNA network analyses
were used to determine whether lncRNAs regulate hub-
mRNAs through RNA-binding proteins. This type of network
analysis found that 8 lncRNAs (ACTA2-AS1, HCP5,
HOTAIRM1, ITGB2-AS1, LINC00324, MIR155HG,
MIR31HG, and PSMG3-AS1), 17 RNA-binding proteins
(HuR, eIF4AIII, FUS, U2AF65, PTB, FMRP, LIN28A,
UPF1, IGF2BP1, DGCR8, CAPRIN1, SFRS1, TIAL1,
hnRNPC, LIN28B, LIN28, and TDP43), and 20 hub-
mRNAs (MSI1, PLCG1, SALL2, TUBB2B, DNMT3A,
FBN3, KIAA1549, LAMA1, LRP4, SBK1, SMO,
SULT1C4, TMEFF1, PHC1, RHOBTB1, TCF7L1, TRO,
ZNF423, EFS, and FXYD6) were involved in the network
(Fig. 7A). A ceRNA network analysis was used to determine
whether lncRNAs regulate hub-mRNAs through miRNAs.
Moreover, the ceRNA network analysis found that 4

lncRNAs (HOTAIRM1, HCP5, PSMG3-AS1, and
MIR155HG), 35 miRNAs (miR-106a-5p, miR-106b-5p,
miR-128-3p, miR-139-5p, miR-140-5p, miR-144-3p, miR-
17-5p, miR-186-5p, miR-203a, miR-20a-5p, miR-20b-5p,
miR-214-3p, miR-216a-5p, miR-27a-3p, miR-27b-3p, miR-
299-3p, miR-29a-3p, miR-29b-3p miR-29c-3p, miR-328-3p,
miR-519d-3p, miR-93-5p, miR-103a-3p, miR-107, miR-129-
5p, miR-137, miR-148a-3p, miR-148b-3p, miR-152-3p, miR-
155-5p, miR-194-5p, miR-490-3p, miR-495-3p, miR-143-3p,
miR-210-3p), and 15 hub-mRNAs (KIAA1549, TCF7L1,
TUBB2B, LAMA1, RHOBTB1, TMEFF1, PHC1, PLCG1,
SBK1, LRP4, MSI1, DNMT3A, SALL2, SMO, and
ZNF423) were involved in a ceRNA network (Fig. 7B).

Furthermore, qRT-PCR was used to validate the expres-
sions of OC survival-associated lncRNAs and hub-mRNAs
that are from WGCNA analysis, including 16 lncRNAs
(ITGB2-AS1, OTUD6B-AS1, PSMG3-AS1, LINC00324,
LINC01503, HOTAIRM1, LINC01547, SH3PXD2A-AS1,
HCP5, MIR31HG, MIR155HG, ZBED5-AS1, LINC00605,
ACT2-AS, CARD8-AS1, and HHIP-AS1) and 11 hub-
mRNAs (LAMA1, KIAA1549, TCF7L1, DNMT3A, EFS,
SBK1, PLCG1, C10orf82, TUBB2B, TRO, and FBN3) in 3
cultured OC cells and 1 control cell (Fig. 8). Among them, the
too low expressions of four lncRNAs (LINC00605, ACT2-
AS, CARD8-AS1, and HHIP-AS1) cause their difficulty to be
quantified with qRT-PCR. The results showed that no signif-
icant difference was found for three lncRNAs (PSMG3-AS1,
LINC01547, and ZBED5-AS1) between OC cells (SK-OV3,
TOV-21G, and A2780) and control cell IOSE80 (p > 0.05),
whereas significant difference was found for nine survival-
associated lncRNAs (ITGB2-AS1, OTUD6B-AS1,
LINC00324, LINC01503, HOTAIRM1, SH3PXD2A-AS1,
HCP5, MIR31HG, and MIR155HG) (Fig. 8A), and nine
survival-associated hub-mRNAs (LAMA1, KIAA1549,
TCF7L1, DNMT3A, EFS, SBK1, PLCG1, C10orf82, and
TUBB2B) (Fig. 8B) between OC cells and control cells.

Discussion

OC is a high-mortality gynecologic malignant tumor [31].
Although significant progress has beenmade in OC diagnosis,
the 5-year overall survival rate for OC patients is still very
poor due to recurrence and metastasis [32]. Its effective
early-stage diagnosis biomarkers and therapeutic targets re-
main poor. It is necessary to identify novel diagnostic markers
or therapeutic targets for understating the complex molecular
mechanisms and effective management of OCs. Molecular
pattern recognition is an effective strategy for unpaired diag-
nosis and treatment of OCs [33], which promoted the shift of
traditional medical concept from a single-parameter model to
a multi-parameter systematical model [11]. Compared to high-
degree complex and dynamic proteoforms in a proteome [34],
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Fig. 5 Analysis of overall
survival–related lncRNAs (a) and
mRNAs (b) in ovarian cancers

EPMA Journal (2019) 10:273–290 285



RNAs in a transcriptome are much simpler and relatively sta-
ble, and also RNAs include mRNAs, lncRNAs, and miRNAs.
Therefore, investigation of RNA biomarkers has important
scientific merits for effective OC management. This study
for the first time identified malignant clinical phenotype (clin-
ical traits)-associated lncRNAs and mRNAs using lncRNA
and mRNA data from the TCGA database on OCs. These
findings provide novel insights into lncRNA-related networks
in OCs and useful resource for identification of biomarkers in
OCs.

Six co-expression modules were identified with 2562
lncRNAs (Supplementary Table 1), and 14 co-expression
modules were identified with 5000 mRNAs (Supplementary
Table 2), from 370 human OC samples with the WGCNA
method, and co-expression modules were applied to investi-
gate the associations between transcriptomes and clinical traits
in OCs. WGCNA showed various advantages compared with
other bioinformatics methods because it focused on correla-
tions between clinical traits and co-expression modules,

whose results had much higher biological significance and
reliability [35]. Genes that were clustered in the same module
were considered to be associated with each other in biological
function. Therefore, identification of biologically related mod-
ules and hub genes to serve as biomarkers for diagnosis or
treatment is very possible. Further analysis found that 168
lncRNAs in lncRNA-based brown co-expression module
(Supplementary Table 4) were significantly associated with
OC clinical traits, including age at initial pathologic diagnosis,
Karnofsky performance score, clinical stage, tissue source
site, and vascular invasion; and that 318 mRNAs in mRNA-
based yellow co-expression module (Supplementary Table 5)
were significantly associated with OC clinical traits, including
age at initial pathologic diagnosis, lymphatic invasion, tumor
residual disease, and vascular invasion. Moreover, lncRNA–
RNA binding protein-mRNA network and lncRNA–miRNA–
mRNA network were the interaction patterns, which provided
the molecular explanation of OC patients. Recently, the
sponge roles of lncRNAs and lncRNA–miRNA–mRNA

Fig. 6 Establishment of co-
expression models and survival-
related regression model based on
16 survival-related lncRNAs and
21 hub-mRNAs in ovarian can-
cers. A Co-expressions between
16 lncRNAs and 21 hub-mRNAs.
B Survival-related regression
model based on 16 lncRNAs and
21 mRNA hub molecules as in-
dependent variables and overall
survival (OS: days) as dependent
variable (ANOVA, df = 5, F =
5.936, p = 0.000)
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network have been widely accepted [36]. For instance,
lncRNA FOXD2-AS1 controlled the miR-485-5p/KLK7 axis
to enhance papillary thyroid cancer progression, which re-
vealed that FOXD2-AS1 acted as a ceRNA to increase the
expression of KLK7 through sponging miR-485-5p in papil-
lary thyroid cancer [37].

The CooLGeN database (http://ci.smu.edu.cn/CooLGeN/
Home.php) was analyzed with key word “cancer” to help
understand our findings in OCs compared with other
cancers. The results in OCs were consistent with other
cancer studies, and new findings were made; for example,
five lncRNAs (MIR31HG34, HOTAIRM1, MIR155HG,
ITGB2-AS1, HCP5, and SH3PXD2A-AS134) were reported
in other different cancers [38], which confirmed the reliability
of our newfound biomarkers. A more interesting thing was
that our found mRNA biomarkers for OC by the WGCNA
method, including DNMT3A, SMO, SALL2, TRO, FBN3,
MSI1, and SBK1, were also reported in other OC studies
[39]. It demonstrated that WGCNA was a reliable tool to
identify OC biomarkers. Moreover, some of our identified
lncRNAs and mRNAs, including ACTA2-AS1, CARD8-
AS1, HHIP-AS1, LINC00324, LINC00605, LINC01503,

LINC01547, OTUD6B-AS1, PSMG3-AS1, ZBED5-AS1,
EFS, TCF7L1, FXYD6, ZNF423, SULT1C4, TUBB2B,
PLCG1, LRP4, KIAA1549 PHC1, RHOBTB1, TMEFF1,
LAMA1, and C10orf82, have never been reported in
previous OC biomarker studies, which is worthy of further
investigation for discovery of novel biomarkers for OCs.
Most of the traditional studies only focused on single-one
factor or single-one gene in cancers. However, the reality is
that cancer is involved in multiple molecular events [8]. This
study avoided the single-one parameter model, and recog-
nized the multi-molecule pattern biomarker to improve the
specificity and accuracy in prediction, diagnosis, prognosis,
and therapy for OC patients.

Strengths and limitations

WGCNA is an effective approach to detect intrinsic links be-
tween prognostic factors and functional gene clusters. The
identified OC-specific lncRNAs and mRNAs were selected
to construct multi-molecule biomarkers in ovarian cancers.
However, one might also note that, first, there are partial ovar-
ian cancer patients with incomplete clinical information

Fig. 7 Constructions of lncRNA–RNA binding protein-mRNA network (A) and lncRNA–miRNA–mRNA network (B) based on 16 survival-related
lncRNAs and 21 hub-mRNAs
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(Supplemental Table 3), whichmight affect the clinical assess-
ment of the research result. Second, the identified lncRNAs
and mRNAs were confirmed in cell models; it might be also
necessary to be further validated in the large-scale clinical
samples for their real application in the ovarian cancers.

Conclusions and expert recommendations

WGCNA was an effective method to identify cancer-related
lncRNAs and mRNAs in the publicly free-access TCGA da-
tabase for predictive, preventive, and personalized medicine
(PPPM) in OCs. A set of lncRNAs and mRNAs were identi-
fied to associate with malignant phenotypes, and theoretically
induced OCmalignant phenotypes through regulating cancer-
related signal pathways. Further, lncRNA–miRNA–mRNA
networks and lncRNA–RNA binding protein-mRNA net-
works were identified based on those identified lncRNAs
and mRNAs in OCs to clarify the molecular mechanisms of
lncRNAs regulating mRNAs. It is the first comprehensive
study to investigate lncRNA–miRNA–mRNA networks and
lncRNA–RNA binding protein-mRNA networks in OCs
based on the TCGA database, and some important lncRNAs
and mRNAs were confirmed in OC cell models. These

findings are an important source to develop new biomarkers
and anti-cancer targets for early-stage diagnosis, effective
therapy, and prognostic assessment to achieve effective and
reliable personalized treatment of OC patients.

We recommend strengthening the understanding and appli-
cation of transcriptome (lnRNAs, miRNAs, and mRNAs) in
OC research and clinical practice for PPPM in future OC care.
Here, one must realize that PPPM is the future direction for
OC care [14, 15]. OC is a chronic and complex disease asso-
ciated with multiple causes, multiple processes, and multiple
consequences, which is involved in multiple levels of molec-
ular alterations in genome, transcriptome, proteome, metabo-
lome, and radiome [8, 9]. Multiomics has driven the rapid
development of PPPM in OCs. Multiomics-based pattern bio-
marker is the effective and affordable approach to reveal the
real molecular mechanism and discover therapeutic targets
and diagnostic and prognostic markers for effective treatment
of OCs [10, 11]. This study focused on the transcriptome-
based pattern biomarkers in OCs, which has opened the win-
dow to further insight into the molecular world changed in
OCs, important roles of non-coding RNAs including
lncRNAs that played a role in regulation of transcription and
translation of genes to affect alterations in proteome, metabo-
lome, and even other biological processes, and further

Fig. 8 qRT-PCR analysis of 16
survival-related lncRNAs (A) and
11 survival-related hub-mRNAs
(B) in OC cell models compared
with control cells. *p < 0.05;
**p < 0.01; ***p < 0.001. n = 3
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promotes one to study OCs in the comprehensive level of
multiomics in the future, especially integrative analysis of
transcriptomics with proteomics and metabolomics [16], for
improving services to OC patients in the PPPM context.
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