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Abstract
This research study focused on the dynamic response and mechanical performance of fiber-reinforced concrete columns 
using hybrid numerical algorithms. Whereas test data has non-linearity, an artificial intelligence (AI) algorithm has been 
incorporated with different metaheuristic algorithms. About 317 datasets have been applied from the real test results to detect 
the promising factor of strength subjected to the seismic loads. Adaptive neuro-fuzzy inference system (ANFIS) was carried 
out as an AI beside the combination of particle swarm optimization (PSO) and genetic algorithm (GA). Extreme Machine 
Learning (ELM) was also performed in order to approve the obtained results. According to the findings, it is demonstrated 
that ANFIS–PSO predicts the lateral load with promising evaluation indexes [R2 (test) = 0.86, R2 (train) = 0.90]. Mechani-
cal performance prediction was also carried out in this study, and the results showed that ELM predicts the compressive 
strength with promising evaluation indexes [R2 (test) = 0.66, R2 (train) = 0.86]. Finally, both ANFIS–GA and ANFIS–PSO 
techniques illustrated a reliable performance for prediction, which encourage scholars to replace costly and time-consuming 
experimental tests with predicting utilities.

Keywords  Artificial intelligence technique · Fibre-reinforced concrete · Seismic load · Mechanical performance · Dynamic 
response

Abbreviations
ABC	� Artificial bee colony
AI	� Artificial intelligence
ANFIS	� Adaptive neuro-fuzzy inference system
ANN	� Artificial neural networks
BP	� Back propagation
CFRP	� Carbon fiber reinforced polymer
EA	� Evolutionary algorithms
ELM	� Extreme learning machine

FIS	� Fuzzy inference system
FRC	� Fiber-reinforced concrete
GA	� Genetic algorithm
ICA	� Imperialist competitive algorithm
ML	� Machine learning
MF	� Membership function
MT	� Metaheuristic
MVO	� Multi-verse optimizer
PE	� Polyethylene
PP	� Polypropylene
PSO	� Particle swarm optimization
RC	� Reinforced concrete
RMSE	� Root mean squared error
SCA	� Sine cosine
ST	� Steel
TSK	� Takagi, Sugeno and Kang

1  Introduction

Concrete is often considered as the most widely used con-
struction material in the world (Rasekh et al. 2020; Jahandari 
et al. 2019, 2020; Saberian et al. 2017; Mohammadi et al. 
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2019a, b). Fibres application in concrete can decline the 
requirement of transverse reinforcement in fiber-reinforced 
concrete (FRC) members, particularly in their seismic 
design (Khorami et al. 2017; Bossio et al. 2017; Park et al. 
2016; Ghassemieh and Bahadori 2015; Shahi et al. 2013; 
Jalali et al. 2012; McMullin et al. 1993; Bahrololoumi and 
Dargazany 2019; Mohammadi et al. 2019a, b). Fibers play 
an important role in some critical members which require 
many reinforcements such as beam to column joints (Kazemi 
et al. 2020a, b; Afshar et al. 2020; Sadeghian et al. 2020). 
Although the mathematical modelling for the ultimate 
strength prediction of FRC rectangular columns subjected 
to simulated seismic loading is suggested in few studies 
(Aghakhani et al. 2015; Thai et al. 2012; McCulloch and 
Pitts 1943; Bahrololoumi and Dargazany 2019), the major 
objective of this research is to avoid the high nonlinearity of 
mathematical methods by applying soft computing methods.

Soft computing methods do not require the knowledge 
of internal system while providing a compact solution for 
multi-variable problems. Artificial intelligence (AI) tech-
niques have recently played a significant role in the progres-
sion of engineering goals (Armaghani et al. 2019; Shari-
ati et al. 2019a). Different prediction techniques have been 
introduced for estimation and optimization applications. 
Prediction quality depends on a variety of variables such as 
error, soft computing approach, estimation problems in front 
of the prediction process, etc. (Xu et al. 2019; Shariati et al. 
2019b, 2020; Taheri et al. 2019, 2020; Toghroli et al. 2020; 
Taheri et al. 2019, 2020). AI techniques are proposed to alle-
viate many estimation problems. By interlacing with clas-
sical optimization algorithms, AI techniques have become 
among the most important prediction methods (Ghassemieh 
and Bahadori 2015). Machine Learning (ML) is another type 
of artificial technique which has been employed and devel-
oped during the estimation applications. Prediction of differ-
ent objectives or characteristics are now achieved by using 
two main algorithms, called metaheuristic MT and heuris-
tic algorithms. Since MT algorithms require no problem 
definition for operators, they have become among the most 
popular approaches for prediction. Generally, continuing the 
improvement of MT algorithms could be a reliable approach 
to enhance AI techniques and prediction applications.

Employing these techniques for prediction, describing 
runoff volume, debris volume, and sediment texture as 
input for algorithms could give the sediment load in place 
of output (Shahi et al. 2013; Jalali et al. 2012; McMullin 
et al. 1993). Back propagation (BP) approaches, which are 
placed among classic techniques, have been generally pro-
posed to train artificial neural networks (ANN) (McCull-
och and Pitts 1943). Being stuck in local extremums and 
troubles in solving plateaus of the error function landscape 
are the malfunctions of the classic algorithms (Ghassem-
ieh and Bahadori 2015; Bahrololoumi et al. 2020). In order 

to address classic algorithm deficiencies, MT approaches 
such as GA (Aghakhani et al. 2015), PSO (Shariati et al. 
2019a, b), and imperialist competitive algorithm (ICA) 
(Sadeghian et al. 2020) have been proposed and utilized in 
different prediction cases. Chen et al. (2018) conducted the 
ANN-PSO algorithm to predict the shear strength of rein-
forced concrete (RC) walls. ANN-PSO model has indicated 
some majorities against other MT predictive models. Chen 
et al. (2019) also evaluated ANN-GA and ANN-ICA hybrid 
models in a fascinating study to enhance and secure retain-
ing walls during seismic events. In this case, the ANN-ICA 
model could reach better performance indices. ANN-PSO, 
ANN-GA, ANN-ICA, and ANN-ABC have been evaluated 
in comparison to each other (Toghroli et al. 2020). Results 
of this investigation showed the superior capability of the 
ANN-PSO model over the other studied models. ANN-PSO 
model has also been performed to estimate flyrock distance 
incomplete with ANN-GA, and ANN-ICA. This investiga-
tion also demonstrated the better performance of ANN-PSO 
in the prediction of targets (Al-Qaness et al. 2020a). By and 
large, PSO and GA algorithm has been proved as a reliable 
technique to combine with MT algorithms. Intelligent algo-
rithms have been employed in medical applications as well. 
In a new study, marine predator algorithm has been success-
fully carried out on Covid-19 confirmed cases to predict the 
number of infected patients (Al-Qaness et al. 2020a). An 
enhanced ANFIS algorithm has been developed for forecast-
ing the number of confirmed flu cases, where two separate 
MT algorithms, called sine cosine (SCA) and flower polli-
nation algorithms were integrated with ANFIS (Al-Qaness 
et al. 2020b). ANFIS algorithm has been combined with 
two optimization techniques, called salp swarm and flower 
pollination algorithms, in order to cover the shortcomings 
of ANFIS. A new hybrid ANFIS algorithm was employed 
to predict the number of infected people by Covid-19 in 
China (Al-Qaness et al. 2020c). Combination of ANFIS with 
separate optimization technique has already been carried out 
in different studies. In a study, ANFIS was combined with 
multi-verse optimizer (MVO) technique, and the new hybrid 
algorithm was employed in favor of data estimation. MVO-
ANFIS has been used to calculate the oil consumption and 
to forecast it from a data set of two countries (Al-Qaness 
et al. 2019). ANFIS-SCA algorithm has also been success-
fully employed to forecast oil consumption from records of 
petroleum products datasets (Al-Qaness et al. 2018). Bengar 
et al. (2016) estimated the ductility of reinforced concrete 
(RC) beams, concluding that ANN could be taken in the pre-
dictions with less scatter than the statistical methods. Fedu-
tenko et al. (2019) and Amirian et al. (2018a, b) studied the 
application of ANN in the modelling of compaction-dilation 
data and evaluated the performance of unconventional oil 
reservoirs while focusing on ANNs in the performance eval-
uation of oil reservoirs. AI can be well suited to optimize, 
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estimate and predict the structural characteristics of fibrous 
concrete. The current study, as hybrid MT methods based on 
fuzzy-inference techniques, has performed ANFIS–PSO and 
ANFIS–GA algorithms to predict both lateral the seismic 
load as dynamic response and compressive strength of FRC. 
In this regard, a verified experimental database was adopted 
from Cai and Degée (2017) which investigates the seismic 
response of FRC rectangular columns. The variable selection 
procedure was considered to select the most predominant 
parameters affecting the ultimate strengths of FRC rectan-
gular columns subjected to simulated seismic loading. ELM 
algorithm was also employed, as a generally proved AI, to 
evaluate the presented results which have been ultimately 
discussed and compared.

2 � Methodology

In the presence of reinforcing fibres inside the concrete 
matrix, fibrous concrete becomes a composite material with 
tremendously increased tensile and compressive strengths. 
Fibrous concrete, with functional integrity and consistency, 
can raise the use of concrete to produce high-strength mate-
rials. Fibrous concrete is also known as a highly energy-
absorbing material that can not be easily defeated under the 
impact loadings. Moreover, it has some other functional 
properties such as high strength, excellent ductility, high 
energy absorption rate, and high cracking resistance with 
many applications. The mechanical and physical properties 
of polymeric fibres and their approximate costs are shown 
in Table 1.

Employing different fibres in concrete has been investi-
gated by many researchers. This paper presents some theo-
retical and experimental background of the study from which 
the database is derived.

2.1 � Flexural strength models

According to the American Concrete Institute provisions for 
RC columns, by employing 0.85fc as the mean compressive 
strength and 0.003 as the ultimate compressive strength, the-
oretical flexural strength of RC column could be achieved. 
Based on the moment equilibrium in the cross-section of 

the columns, the flexural capacity of RC column could be 
obtained through the use of Eq. (1). Other required variables 
has been provided in Eqs. (2) and (3).

where; Z = the inner lever arm, X = concrete compressive 
zone, f1c=real compressive strength, fy1=reinforcement yield 
stress, Asl=area of longitudinal steel, mm, �1 =mechanical 
reinforcement ratio, kc=affecting factor for maximum stress 
of block.

Following the Fig. 1, the flexural capacity zone of RC 
column has included three main parts such as: (1) concrete 
contribution ( Vc ), (2) truss-mechanism component ( Vs ), and 
(3) the contribution from axial load ( Vp).

At the same time, the lateral component force, attained 
from the non-directive tensile actions of fibre at main diago-
nal cracked section, could maintain the fourth shear contri-
bution to the total shear resisting of FRC columns, has been 
provided by fibre Vf  (Fig. 1b). Subsequently, to represent the 

(1)Mu = Aslfylz = Aslfyl
(
1 − 0.5�∕d�

)
d�

(2)� =
�1

kc
d =

�1fyl∕f1c(
1 − f1c∕250

)d�

(3)f1c = 0.95f
�

c

Table 1   Typical features of polymeric fibres

Fibre type Specific 
gravity (kg/
m3)

Modulus of 
elasticity 
(Gpa)

Tensile 
strength 
(MPa)

Elongation 
at break (%)

Acid/alkali resistance

Polypropylene (PP) (Behfarnia and Behravan 2014; Deng 
and Li 2006; Snoeck and De Belie 2015)

910 1.5–12 240–900 15–80 High

Polyethylene (PE) (Bentur and Mindess 2006; Zollo 1997) 920–960 5–100 80–600 4–100 High
Steel (ST) for comparison (Xu and Chung 2000) 7840 200 500–2000 0.5–3.5 Low to high

Fig. 1   The shear transfer mechanisms consideration in RC/FRC col-
umns (Cai and Degée 2017)



10108	 P. Mehrabi et al.

1 3

positive impacts of fibre, the compressive depth CR of FRC 
column under seismic action could be regarded as 50% of 
the overall column depth. Thus, the original Priestley et al. 
(1994) model was initially modified as VPriestley . The relation-
ship between the volume fraction of fibre and the relative 
nominalized difference ratios are presented in Fig. 2.

2.2 � Ultimate flexure capacity

Modifying the moment calculation of FRC column is calcu-
lated using Eqs. (4) and (5):

where; MFRC=fiber reinforced concrete moment, Ksp=a/d 
affecting factor to moment, Kn=axial load affecting factor 
to moment, Xf=depth of compression zone of columns, mm, 
d′ =effective depth of column, mm.

Therefore, based on the current database, ksp was consid-
ered to be 0.95. The proposed moment model is capable to 
evaluate the experimental outcomes with a better agreement 
compared to the existing models.

3 � Analytical assessment

There are many available techniques for data predictions 
and validations such as employing ANNs. In this case, per-
forming the artificial intelligence algorithms is a potential 
method to avoid non-linearity and sophisticated analysis of 
the nanoscale problems. Even novel MT artificial techniques 
could be employed to predict the most influential parameters 
on the performance of the CFRPs (Shariati et al. 2019a, b).

(4)MFRC = knkspAslfyl
(
1 − 0.5�f∕d

�
)
d�

(5)ksp = 1.3 − 0.05(a∕d) ≥ 0.95

3.1 � Performed analytical techniques

The employed analytical techniques in this study have been 
discussed in the following, and their architecture has also 
been demonstrated for better understanding.

3.1.1 � ANFIS algorithm and architecture

ANFIS is a direct-feed algorithm which includes number of 
nodes connected by directed links. Nodes play an especial 
role in producing an output through input signals. Figure 3 
indicates the ANFIS architecture consisting of five layers 
such as product layer, de-fuzzy layer, fuzzy layer, normalized 
layer and total output layer. The major purpose of ANFIS is 
to delineate the optimal variables of equivalent fuzzy infer-
ence system (FIS) parameters by using a learning algorithm. 
The optimization process would took a place along the train-
ing phase in which the minimized error achived.

In order to enhance the error, different optimization tech-
niques could be employed following the MFs. The parameter 
set of an adaptive network allows fuzzy systems to learn 
from the modelled data. It is assumed that the adaptive sys-
tem under consideration has two inputs A1 and A2 and one 
output f. A first-order Takagi, Sugeno and Kang (TSK) FIS 
containing two rules is evaluated as follows:

(1): If (v is A1) and (l is L1) then f1 = m1v + z1l + o1.
(2): If (v is A2) and (l is L2) then f2 = m2v + z2l + o2.
m1, m2, z1, z2, o1, o2 = direct parameters.
A1, A2, L1, L2 = undirect parameters.
A1, L1 = the MFs of ANFIS.
m1, z1, o1 = the following parameters.
Circle and square are used to reflect the adaptive capa-

bilities, while a circle represents a fixed node and square 
shows an adaptive node. These parameters could be altered 
during adapting or training. Neural network (NN) has 
many inputs and multiple outputs, however, the fuzzy logic 
has many inputs and one single output, thus the combina-
tion of these two is called ANFIS (Walia et al. 2015). The 
central core of the ANFIS network is a FIS. The first layer 

Fig. 2   Ratio of fiber volume with respect to ratio of relative differ-
ence (Cai and Degée 2017)

Fig. 3   The basic architecture of ANFIS
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receives inputs and converts them to fuzzy values by the 
MFs (Sedghi et al. 2018; Hamdia et al. 2015; Toghroli 
et al. 2014; Toghroli 2015; Sari et al. 2020). Every node 
in the first layer is selected as an adaptive node with a 
node function:

Ai = a linguistic label, O1
i
 = the membership function of Ai.

The bell-shaped membership function is usually 
selected due to its high capacity for the regression of non-
linear data (Sedghi et al. 2018). Also, it functions with the 
maximum value of 1 and the minimum value of 0:

{
ai, bi, ci, di

}
 = parameters set, x = the input.

The parameters of the first layer are known as premise 
parameters. The second layer multiplies the incoming sig-
nals and sends their product to the next layer:

Each output of the nodes shows the firing strength of 
a rule.

In the rule layer (the third one), the ratio of ith node fir-
ing strength of rule to other nodes is calculated:

The outcomes w∗
i
 are known as normalised firing 

strength.
In the defuzzification layer (fourth layer), each node has 

a node function as below:

where w∗
i
 = the output of the third layer, 

{
pi, qi, ri

}
 = the 

parameters of forth layer known as following parameters.
Fifth layer includes the last layer (ouput) in which the 

overall output is calculated by summing all the incoming 
signals:

A target value has already been set between the train 
and test values. By continuing, the following parameters 
would be obtained by the least-squares model. In case 
this value is greater than the considered target, the prem-
ise parameters are updated with respect to the gradient 
descent method. The process should be followed until the 
error becomes less than the target.

(6)O1
i
= �Ai(x)

(7)
�(x) = bell

(
x;ai, bi, ci

)
=

1

1 +

[(
x−ci

ai

)2
]bi

(8)wi = �Ai(x) × �Bi(y), i = 1, 2.

(9)w∗
i
=

wi

w1 + w2

i = 1, 2.

(10)O4
i
= w∗

i
fi = w∗

i

(
pix + qiy + ri

)

(11)O5
1
= f =

∑
i

w∗
i
fi

3.1.2 � Particle swarm optimization

PSO is an intelligence evolutionary approach which mimics 
the social behavior of bird flocking. Kennedy and Eberhart 
(1997) proposed the PSO algorithm. The PSO application 
could be used in the problem solving of multi-objective 
integer programming, optimization, clustering, classifica-
tion, combinatorial optimization, and min–max drawbacks, 
or many other engineering applications. PSO algorithm has 
a very fast convergence rate in comparison to the other evo-
lutionary algorithms (EA) (Khan and Ahai 2012). Hence, it 
has been successfully employed to solve different engineer-
ing problems (Bao et al. 2013; Hasanipanah et al. 2016; 
Mohamad et al. 2018; Mohandes 2012). In PSO algorithm, 
a cost function that should be maximized or minimized is 
initially well-defined. After that, a swarm of particles is 
produced and distributed in the dimensional space of the 
problem.. Figure 4 shows the sequential steps of the PSO 
algorithm.

3.1.3 � Genetic algorithm

GA as is a MT algorithm, belonging to the larger class of 
EA (Xu et al. 2019; Shariati et al. 2019b; Beyene et al. 
2006; Whitley 1994), is an algorithm that benefits from the 

Fig. 4   The flowchart of sequential steps of PSO algorithm



10110	 P. Mehrabi et al.

1 3

natural biological evolution roles. Generally, GA has been 
conducted to obtain reliable estimations to the search of 
shortcomings and optimization by relying on bio-inspired 
operators such as mutation, crossover and selection followed 
by Holland (1960) to introduce GA and Goldberg (1989) 
(Sadeghian et al. 2020). In GA, the variables of a problem 
are encoded as chromosomes initially selected, and then are 
overlapped and mutated in an evolutionary procedure. After 
many evolution times, the best individual is gained. Regard-
ing the convergence and robustness of GA, it takes much less 
time with a more accuracy in finding an optimal solution 
(Jalali et al. 2012).

GA has three operators (1) selection, (2) crossover, and 
(3) mutation which are applied to the population of all pos-
sible resolutions for developing their fitness function in each 
iteration or generation (McMullin et al. 1993) (Fig. 5). Align 
with the purpose of this study, the GA code was rewrit-
ten in MATLAB (version 2019). Thus, a uniform crossover 
was applied while genes were randomly selected by one of 
Roulette wheel selection, Tournament selection and Random 
selection methods. GA implementation included 5 primary 
steps 1) Setting the structure of gene (2) deciding the evalu-
ation criteria of gene (objective function) (3) generating an 
initial population of genes, (4) selecting an offspring genera-
tion mechanism, and (5) coding the procedure in a computer 
program (Bahrololoumi and Dargazany 2019).

3.1.4 � Extreme machine learning

ELM as a version of machine learning system benefits 
from a single layer or multiple layers, which avoids time-
consuming iterative training process and enhances the 
generalization performance. As an authenticate algorithm, 
ELM is a direct-feed algorithm for the sparse approxima-
tion, clustering, regression, classification, compression 
and feature learning in which the parameters of hidden 
nodes are not tuned and used to interpret the other results. 
Moreover, each layer contains a number of hidden neu-
rons where the input weights are assigned randomly. ELMs 
use the concept of random projection and early perceptron 
models to perform specific kinds of problem-solving meth-
ods. Huang et al. (2006) provided the extreme Machine 
Learning as an AI tool for unique-layer direct-feed NN 
architecture. These hidden nodes could be randomly 
assigned and never updated, or can be inherited from their 
ancestors without alteration. In most cases, the output 
weights of hidden nodes are generally learned in a single 
step, which are significant amounts to learn a linear model. 
Figure 6 shows the sequential steps of the ELM algorithm.

Fig. 5   The flowchart of sequential steps of the GA algorithm Fig. 6   The flowchart of sequential steps of the ELM algorithm
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3.2 � Hybrid ANFIS–PSO/GA architecture

Following the previous descriptions of ANFIS and optimi-
zation approaches about the fascinating points for predic-
tion cases, hybrid algorithms were designed and written. 
The flowchart of circuit ANFIS and PSO/GA integration is 
shown in Fig. 7 (Zollo 1997). In PSO, swarm begins with 
a group of random solutions named a particle while si⇀ 
shows the particle’s position. Likewise, a particle swarm 
moves in the problem space in which vi⇀ shows the parti-
cle’s velocity. Function f is verified at each time slap by the 
input si⇀. Each particle records its best position associated 
to the best fitness obtained to this point in pi⇀ vector. pig⇀ 
tracks the most appropriate position defined by any neigh-
borhood member. In a standard PSO, pig⇀ shows the most 
proper point within the whole population. A new velocity is 
gained for any particle i in each iteration based on the best 
individual positions, pi(t)⇀, and p⇀ig(t) neighborhood, 
thus the new velocity could be represented by:

w = inertia weight.
The positive acceleration coefficients are depicted by c1 

and c2. ∅1⇀, while ∅2⇀ shows the uniformly-distributed 
random vectors as (0,1) in which a random value is tried 
for every dimension. vi⇀limited in the [-vmax⇀, vmax⇀] 
series rely on the problem provided that the velocity has 

vi ⇀ (t + 1) = wvi ⇀ (t) + c1�1 ⇀ .
(
pi ⇀ (t) − xi ⇀ (t)

)
+ c2�2 ⇀ .

(
pi ⇀ (t) − xi ⇀ (t)

)

sometimes exceeded the mentioned limit and rearranged in 
its suitable curbs. Based on their velocities, every particle 
has changed its position as:

Regarding vi⇀ and si⇀, the particle population tends to 
cluster around the best.

3.3 � Performance evaluation

To assess the performance of the models, 70% of the data 
was randomly dedicated to the training phase, and the rest 
30% was devoted to the testing part. Afterwards, Pear-
son correlation coefficient (r), root mean squared error 
(RMSE), and determination coefficient (R2) were employed 
as performance indices of the models. Pearson’s correla-
tion coefficient is the test statistics that measures the sta-
tistical relationship, or association, between two continu-
ous variables. It is known as the best method of measuring 

the association between variables of interest because it is 
based on the method of covariance. RMSE is a frequently 
used measure of the differences between values (sample or 
population values) predicted by a model or an estimator and 
the values observed. R2 is a statistical measure that repre-
sents the proportion of the variance for a dependent variable 
that’s explained by an independent variable or variables in a 
regression model. These statistical indicators are described 
in the following:

(12)si ⇀ (t + 1) = si ⇀ (t) + vi ⇀ (t + 1)

(13)
RMSE =

������
S∑

k=1

(Pk − Tk)
2

S

(14)

r =

S

�
S∑

k=1

Tk × Pk

�
−

�
S∑

k=1

Tk

�
×

�
S∑

k=1

Pk

�

�����
⎛⎜⎜⎝
S

S∑
k=1

T2
k
−

�
S∑

k=1

Tk

�2⎞⎟⎟⎠
×

⎛⎜⎜⎝
S

S∑
k=1

P2
k
−

�
S∑

k=1

Pk

�2⎞⎟⎟⎠

(15)R2 =

�
S∑

k=1

�
Tk − Tk

�
⋅

�
Pk − Pk

��2

S∑
k=1

�
Tk − Tk

�
⋅

S∑
k=1

�
Pk − Pk

�

Fig. 7   The flowchart of circuit integration of ANFIS–PSO and 
ANFIS–GA algorithm
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Pi , Ti = the predicted and observed values, S = number of 
considered data, TkorPk  = mean predicted and observed 
values.

In other to compare the performance of ANFIS–PSO, 
ANFIS–GA and ELM were also performed using MAT-
LAB (version 2019). Moreover, all the codes were run in 
one computer system with no external compiler or toolbox.

3.4 � Statistical data

The selected attributes were gained based on the importance 
and quality of the experimental data in the next section. The 
collected database was composed of 317 datasets. Experi-
mental data of Width (mm), Height (mm), Fibre Fraction 
Ratio (%), Maximum Lateral Force (kN), Concrete Com-
pressive Strength (MPa), Fibre Yielding Strength (MPa), and 
Shear Span Ratio (a/d) were used as inputs in each model for 
prediction and optimization (Table 2).

4 � Models development

As previously mentioned, the purpose of this article was 
to find the most compelling optimizing algorithm and to 
predict the seismic response. Thus, the impact of a critical 

portion of fibre-reinforced concrete could be analysed. 
After that, by comparing the obtained results from their 
placement in AI models, the quality of their impact and 
determination were obtained (Table 3).

The temperature characteristics of fibre should be pre-
sented in all datasets due to its importance in FRC prop-
erties. Therefore, the database was set for the hardened 
concrete variables, and the lateral seismic load and com-
pressive strength were directly related to each other due 
to the experimental study. On the other hand, load and 
strength could be substituted as either input or output.

5 � Results

All the three employed algorithms in this study were sepa-
rately tuned. In order to optimize the coefficients of the 
parameters related to each algorithm, the other parameters 
were kept constant. By changing the coefficient, the best 
value was delineated, and then the process was contin-
ued to the other parameters. In this case, algorithms were 
repeatedly implemented and revised until being devel-
oped, and finally, the following results were obtained 
(Table 4).

Table 2   Details of the input 
variables

a Std standard deviation

Inputs Variables Minimum Maximum Mean value Stda

Input 1 Width (mm) 150.00 400.00 202.94 33.92
Input 2 Height (mm) 140.00 400.00 208.30 34.22
Input 3 Shear span ratio (a/d) 1.00 10.71 2.42 1.61
Input 4 Concrete compressive strength (MPa) 18.30 158.00 38.67 17.11
Input 5 Fibre fraction ratio (%) 0.00 3.00 0.92 0.67
Input 6 Fibre yielding strength (MPa) 0.00 1600.00 581.49 344.87
Input 7 Maximum lateral force (kN) 13.50 636.50 138.73 79.24

Table 3   Inputs and outputs of 
database

a Compressive strength and lateral load were employed both as input and output according to their orders in 
the database

Inputs and outputs Variables Minimum Maximum Mean value Stda

Input 1 Width (mm) 150.00 400.00 202.94 33.92
Input 2 Height (mm) 140.00 400.00 208.30 34.22
Input 3 Shear span ratio (a/d) 1.00 10.71 2.42 1.61
Input 4 Concrete compressive strength (MPa) 18.30 158.00 38.67 17.11
Input 5 Fibre fraction ratio (%) 0.00 3.00 0.92 0.67
Input 6 Fibre yielding strength (MPa) 0.00 1600.00 581.49 344.87
Input 7 Maximum lateral force (kN) 13.50 636.50 138.73 79.24
Output 1 Concrete compressive strength (MPa)a 18.30 158.00 38.67 17.11
Output 2 Maximum lateral force (kN) 13.50 636.50 138.73 79.24
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5.1 � ANFIS–PSO

ANFIS–PSO which operates based on the random popu-
lation generation and also based on the modelling and 
simulation of avian mass flight behavior or mass move-
ment of fish, is a global minimization method that deals 
with the shortcomings whose answer is a point or surface 
in n-dimensional space. In this case, a random population 
is assumed, and an elementary velocity is assigned as 
well as the channels of communication between the par-
ticles which move through the response space followed 
by the results that are calculated on a “merit basis” after 
each time interval. Particles accelerate towards the par-
ticles of higher competence in the same communication 
group during the time. Despite the good performance of 
each method towards the problems, there is a great suc-
cess in solving continuous optimization problems. The 
results of regression graphs and comparative graphs are 
shown in Figs. 8 and 9. The processing results analysis is 
also presented (Table 5). According to Fig. 8 and Table 5, 

ANFIS–PSO is more capable in predicting the lateral 
load than the compressive strength due to its properties 
or in principle to more predictable output. Also, the test 
results in lateral load prediction are very close to the 
Train results, while the compressive strength output is 
more significant, indicating that it is more reliable for 
predicting the lateral load. Though the outputs of other 
type are acceptable, the discrepancy of test results and 
train results reduced our confidence over the outputs 
(Fig. 10).

According to Fig. 7, another point deducted from the 
regression diagram (c) is that the low results of the com-
pressive strength output test are due to 2–3 points with 
high error rates and the other samples that provide accept-
able results and also due to the standard deviation results 
for this output. While the Std difference in two phases of 
Test and Train for the lateral load is 14%, this difference 
for the compressive strength is 33%, indicating less con-
centration of errors in the second output than that of the 
first output (Fig. 9).

Table 4   Parameter 
characteristics used for ANFIS–
PSO in this study

FIS clusters Population size Iterations Inertia weight Damping ratio Learning coef-
ficient

Personal Global

10 300 150 1.00 0.99 1 2

Fig. 8   ANFIS–PSO prediction vs experimental results regression for a lateral load test phase, b lateral load train phase, c compressive strength 
test phase, d compressive strength train phase
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Fig. 9   ANFIS–PSO prediction vs experimental diagram for a lateral load test phase, b lateral load train phase, c compressive strength test phase, 
d compressive strength train phase

Table 5   Analytical prediction 
results through ANFIS–PSO 
algorithm

a Std standard deviation

Lateral load prediction Test Train
Stda 11.19545547 Std 9.823105383
e mean 0.607023834 e mean 0.07197157
R2 0.8756 R2 0.9019
r 0.935723509 r 0.949682397
RMSE 11.20264199 RMSE 14.99834454

Compressive strength prediction Test Train
Std 4.06790175 Std 3.058751324
e mean 0.000881726 e mean − 0.08208611
R2 0.609 R2 0.8078
r 0.780358665 r 0.898755692
RMSE 4.064532983 RMSE 4.671791712

Table 6   Parameter characteristics used for ANFIS–GA in this study

FIS clusters Population size MAX-iteration Cross over percentage Mutation percentage Mutation rate Selection pressure

10 180 200 1.00 0.5 0.1 8
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5.2 � ANFIS–GA

GA is a special type of EA to gain the optimal formula for 
the prediction or pattern matching. GA is a good option for 
the regression-based prediction techniques. It is also a pro-
gramming technique in problem-solving including inputs that 
are transformed into solutions during a patterned process of 
genetic evolution. The solutions are verified candidates by the 
Fitness Function, and the algorithm is terminated if the prob-
lem exit condition is provided. Generally, it is an iteration-
based algorithm in which many parts are randomly selected. 
The results of ANFIS–GA neural network are presented in 
Table 7 and Figs. 11, 12. Besides, the combination settings 
used for this hybrid grid are shown in Table 6.

In ANFIS–GA method, the results of the lateral load out-
put are more reliable than that of the compressive strength, 
and the there is no a significant difference between the test 
and train phase results for the first output.

Given the low result of R2, average result of r, and consid-
ering the regression graph (c) and (d) in Fig. 13, the approxi-
mation NN results for the second output at the boundary are 
unacceptable. Higher error results were likely occurred, par-
ticularly during the testing phase. According to the graphs 
in Fig. 13, lower error for the compressive strength data 
below 40 MPa and higher error for the data above 40 MPa 
were observed. During the test phase, it seems that NN for 
the second output with a value higher than 40 MPa was not 
well trained due to a large number of samples below 40 MPa 
(Fig. 12).

5.3 � Extreme learning machine

ELM as the final NN is used in the settings shown in Table 8. 
The obtained results are acceptable for both outputs. How-
ever, as shown in Table 9, it was found that by comparing the 
lateral load output performance parameters to the compres-
sive strength, and by comparing the Test and Train results, 
the lateral load outputs are very close, while it is very dif-
ferent for the other output (Fig. 14).

By examining the standard deviation as well as the error 
histogram diagram (Fig. 15), errors with a greater focus on 
the lateral load make the outputs more reliable. Compressive 
strength outputs might provide appropriate results, however, 
due to the lack of focus on center-axis of errors, an unprec-
edented response could likely provide high and unacceptable 
errors (Fig. 16).

6 � Discussion

ANFIS is trained for each input to separately delineate the 
inputs of RMSE, R2 and r to define the effect of every input 
on the output. The input with the smallest training RMSE 

has the most significant effect on output. Testing RMSE is 
applied to track the overfitting between training and testing 
data. A higher testing RMSE means that the regression of 
data is not useful. Thus, the combination of two inputs in 
order to obtain the most potent combinations of inputs on 
the output could be further studied. The training and test-
ing RMSE for the combinations of two inputs are shown 
(Table 2). According to the training RMSE, the combina-
tion of inputs 2 and 3 provides the optimal combination 
with the most substantial effect on the output parameter. 
The quality of the estimations made by the algorithms and 
used in this paper, beside the actual points used in Cai 
and Degee paper (2017), along with the regression lines 
of each algorithm, are presented in Fig. 17. Comparing 
the regression results obtained from the Test section, GA 
and ELM algorithms are closer to each other than the PSO 
algorithm, even if the PSO regression covers more data 
range (Fig. 17a). Also, considering the results of the Train 
section, the PSO regressions are closer to the main points 
than the other regressions (Fig. 17b, d). Finally, the most 
significant difference between regressions with the main 
points is seen in Fig. 17c. In Fig. 17c, the alignment of 
the regression lines with the real points is highly different 
from the other parts. Also, ELM shows the highest dif-
ference among the other algorithms, while GA and PSO 
indicate consistent regressions.

Considering the responses received from all methods, it 
is clear that the lateral load is excessively predictable than 
the compressive strength, which might be due to the type of 
inputs or type of NN. For the lateral load output, the best 
result for ANFIS–PSO method provides the performance 
parameters of R2= 0.8756 r = 0.9357, and RMSE = 11.2026. 
Other approaches have provided close and acceptable 
responses (Fig. 18). By observing the histogram of test 
phase error (Figs. 10, 12, and 16), in terms of concentration, 
all three graphs have a good concentration around the cen-
tre, while due to the smaller error interval in ANFIS–PSO 
method, it is concluded that the probability of receiving a 
high error response in this method is lower than the other 
methods.

For the compressive strength output, ELM method 
also provides the best response (Fig. 19). The test phase 
evaluation criteria for this method are R2= 0.6574, 
r = 0.810771741, and RMSE = 5.474340963. Therefore, the 
response presented by ANFIS–GA method in the test phase 
is almost unacceptable. Although it is reliable for data with 
less than 40 MPa, high errors in data over 40 MPa have 
caused system failure. Therefore, the test phase error dia-
grams at this output are not significantly different except 
the ANFIS–PSO diagram that has the widest range and no 
centralization. However, given that only one output with an 
error is high, the diagram of this method can be taken close 
to the other two methods.
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7 � Conclusions

The prediction of the most influential factors on the ulti-
mate strengths of FRC rectangular columns subjected to 
simulated seismic loading is very complicated because 
of the existence of many parameters. In the current 
research study, a soft computing method was carried out 

to overcome this prediction difficulty by eliminating some 
extra input parameters. ANFIS was applied to choose the 
most dominant parameters for the prediction of the most 
influential factor on the ultimate strengths of FRC rectan-
gular columns subjected to the simulated seismic loading. 
In this research, ANN and backed-up data from the experi-
mental results of 317 rows Width (mm), Height (mm), 

Fig. 10   ANFIS–PSO error histogram for a lateral load test phase, b lateral load train phase, c compressive strength test phase, d compressive 
strength train phase

Table 7   Analytical prediction 
results through ANFIS–GA 
algorithm

Lateral load prediction Test Train
Std 13.28704509 Std 12.38533298
e mean − 0.928540841 e mean − 0.282863646
R2 0.8560 R2 0.8300
r 0.925213544 r 0.911058857
RMSE 13.30847329 RMSE 18.91489176

Compressive strength prediction Test Train
Std 5.353261106 Std 3.669653297
e mean − 0.076964023 e mean 0.021877075
R2 0.5069 R2 0.6715
r 0.711978515 r 0.819432184
RMSE 5.34938145 RMSE 5.602935407
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Fig. 11   ANFIS–GA prediction vs experimental results regression for a lateral load test phase, b lateral load train phase, c compressive strength 
test phase, d compressive strength train phase

Fig. 12   ANFIS–GA prediction vs experimental diagram for a lateral load test phase, b lateral load train phase, c compressive strength test phase, 
d compressive strength train phase
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Fibre Fraction Ratio (%), Maximum Lateral Force (kN), 
Fibre Yielding Strength (MPa), Concrete Compressive 
Strength (MPa), and Shear Span Ratio (a/d) are related to 
the prediction values of the two types of outputs as lateral 
load and compressive strength.

Fig. 13   ANFIS–GA error histogram for a lateral load test phase, b lateral load train phase, c compressive strength test phase, d compressive 
strength train phase

Table 8   Parameter characteristics used for ELM in this study

Classifier Regression Hidden neurons Activation function

1.0 0.0 350 Hard limited

Table 9   Analytical prediction 
results through ELM algorithm Lateral load prediction Test Train

Std 15.37184851 Std 10.66578843
e mean − 0.462510647 e mean 7.35656E−14
R2 0.8502 R2 0.8442
r 0.922063022 r 0.918794552
RMSE 15.36608044 RMSE 16.28455228

Compressive strength prediction Test Train
Std 5.472551655 Std 2.301456853
e mean 0.263004755 e mean − 1.69063E−14
R2 0.6574 R2 0.8620
r 0.810771741 r 0.928414563
RMSE 5.474340963 RMSE 3.513870042
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Fig. 14   ELM prediction vs experimental results regression for a lateral load test phase, b lateral load train phase, c compressive strength test 
phase, d compressive strength train phase

Fig. 15   ELM prediction vs experimental diagram for: a lateral load test phase, b lateral load train phase, c compressive strength test phase, d 
compressive strength train phase
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•	 ANFIS–PSO results for the lateral load output in 
the test phase are R2= 0.8756 and r = 0.9357, and 
RMSE = 11.2026. Also, the results for the com-
pressive strength are R2= 0.5069, r = 0.712, and 
RMSE = 5.34938145.

•	 ANFIS–GA results for the lateral load are R2=0.856, 
r =0.9252, and RMSE =13.3085, which is not the best 
answer, but satisfactory. The results of compressive 
strength are R2=0.5069, r =0.712, and RMSE =5.3494 
which are not acceptable.

•	 The results of Lateral load prediction by ELM algorithm 
are R2=0.8502, r =0.9221, and RMSE =15.3661, which 
are not the best, but acceptable. For the compressive 
strength, ELM provides the best results as R2= 0.6574, 
r =0.8108, and RMSE =5.4743.

To sum up, although the prediction results of lateral 
seismic loads by all three methods are outstanding and 
reasonable, ANFIS–PSO method provides the best results. 
Moreover, for the compressive strength, the best results 
belong to ELM neural network. Although the results of 
this output are not as reliable as the first output results, the 
results of ANFIS–GA method could also be unacceptable. 
Consequently, the ANFIS–GA and ANFIS–PSO methods 
are identified to be suitable for the lateral load prediction 
and compressive strength due to the abysmal results, rec-
ommending to use ELM method in the case of neural net-
work with better results. For future studies, investigating 
the performance of triple hybrid MT algorithms with com-
bination of ANFIS–PSO such as ANFIS–PSO-GA is highly 
recommended.

Fig. 16   ELM error histogram for a lateral load test phase, b lateral load train phase, c compressive strength test phase, d compressive strength 
train phase
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Fig. 17   The comparisons between a flexural load test phase, b flexural load train phase, c deflection test phase, d deflection train phase

Fig. 18   The comparisons between performed algorithms results of lateral load based on analytical parameters as a RMSE, b determination coef-
ficient, c Pearson’s correlation value
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