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Abstract
With the continuous growth of the quantity, scale, and speed of vessels in recent years, maritime accidents are posing increasing
risks to societies and individuals, especially in narrow inland waterways. Therefore, it is of great significance to analyze
navigational risks to ensure the safety of waterborne transportation. In this paper, the navigational risks of Nanjing Yangtze
River Bridge (NYRB) waters are investigated based on spatiotemporal mining on massive automatic identification system (AIS)
trajectories by using geographic information system (GIS) techniques. A time-series-oriented trajectory processing method is
proposed to deal with the historical AIS data in the whole year of 2019. The method adopts a periodic processing strategy to
produce traffic density estimation products in multiple temporal scales for supporting spatiotemporal analysis. The proposed
method greatly improves the data-processing efficiency and provides a flexible way to deeply understand the vessel behavior
patterns in NYRB waters. Then the complete characteristics of the spatial distribution and temporal variation of AIS trajectories
are revealed. Based on that, three types of critical navigational risks are discovered, which include the safety distance risk, the pier
collision risk, and the traffic congestion risk. Moreover, we find that the greatest risk is existed in small vessels in the flood
season, which is worth the most concern.
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Introduction

During the last few decades, we have witnessed a huge growth
of traffic volume as well as a rapid increase of capacity of
vessels, which in turn pose incrementing risks to water trans-
portation safety (Svanberg et al. 2019). Therefore, great effort
is required to prevent accidents and improve navigational
safety and traffic efficiency. A deep insight into the naviga-
tional risks is of great importance for authorities to understand
the influence of navigation environment on vessels and un-
cover the potential threats to navigation (Chen et al. 2019b).

Navigational risks are hidden in a large amount of regular
behaviors of vessels. Detection of potential risks from

accumulated vessel behaviors poses significant challenges to
researchers and maritime authorities. In literatures, plenty of
methods and models have been proposed to investigate the
navigational risks from historical data (Li et al. 2012). For
example, Pak et al. (2015) leveraged a fuzzy analytical hier-
archy approach to analyze the navigational risks in port waters
by using the navigation data collected from several captains.
Faghih-Roohi et al. (2014) proposed a simulated accident
model based on Markov Chain Monte Carlo simulation for
assessing accident risk based on limited accident data. Merrick
et al. (2003) created a simulation model of ship navigation
based on the Bayesian theory to estimate the navigational risks
and the degree of ship congestion. However, the conventional
methods for analyzing navigational risks are of limited prac-
tical use because they generally depend on subjective knowl-
edge from experts, or modeling based on small amount of data
(Zhang et al. 2020).

Nowadays with the continuous improvement of maritime
technology, the self-reporting system has been introduced to
surveil the maritime safety and collect vessel traffic data. The
most widely used self-reporting system is the automatic iden-
tification system (AIS) (Zhang et al. 2018). The AIS adopts a
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modern manner of crowdsourcing to collect real-time vessel
position data. The quality of AIS data is more reliable than
vehicle position data on road transportation since it uses a
dedicated Very high frequency (VHF) channel to communi-
cate. As its highly reliability and availability, in recent years,
AIS data has been widely leveraged in analyzing navigational
risks and maritime safety (Kulkarni et al. 2020).

Many efforts have been made to integrate the information
provided by the AIS into different risk analysis models (Bye
and Almklov 2019). For example, Chen et al. (2019c) pro-
posed a causational probability model for ship collision acci-
dent with the individual encounter information obtained from
AIS data. Wang et al. (2013) proposed a phased decision and
maneuvering model to study a two-vessel collision accident
scenario by leveraging the AIS as input. Silveira et al. (2013)
proposed a method to estimate the risk of collision through
evaluating the number of collision candidates calculated from
the AIS data. Li et al. (2018) established a multi-objective and
multi-layer fuzzy optimization model to analyze navigational
risk in different sea areas with some key parameters extracted
from the AIS data. Current literatures on AIS-based naviga-
tional risk analysis mainly depend on the expert risk model
which emphasizes on the perspective of specific vessels, for
instance, the collision probability between vessels, the vessel
maneuvering, or the vessel domain, with limited AIS informa-
tion integrated (Chen et al. 2019a). However, the applicability
of these methods is quite limited since the expert risk models
rarely consider the macroscopic behavior pattern of vessels.

Another kind of AIS-based risk analysis is realized by sta-
tistical methods. For instance, Bye and Aalberg (2018) con-
ducted statistical analyses between AIS and maritime accident
database in Norwegian waters. Correspondence analysis and
logistic regression were used to discover the associations be-
tween vessels’ and accidents’ probability. Sormunen et al.
(2016) calculated different types of accident frequencies rela-
tive to the traffic volume through numerical analysis of AIS
and accident data. Although the statistical methods can reveal
the internal correlation between risks and vessels to a certain
extent, they mainly focus on numerical analysis, ignoring the
important spatial features of AIS data.

More recently, with the advent of big data, there is an
increasing number of researches use data mining techniques
to extract useful information from AIS big data in the fields of
route recognition (Lee et al. 2020), ship emission (Li et al.
2016) and fishery activities (Kroodsma et al. 2018). Also,
several scholars begin to use machine learning or GIS intelli-
gent algorithms to process AIS big data for analyzing naviga-
tional risks (Pallotta et al. 2013; Li et al. 2019; Zhao et al.
2018). Different from previous researches, in their works,
the AIS served as the main data source, rather than assisted
data in risk analysis. Although such manner of big data can
fully explore the hidden information from AIS data and has
gradually become popular in community, there are still

research gaps in this field. The existing literatures mainly fo-
cus on the static spatial characteristics of AIS trajectories,
while the spatiotemporal dynamic characteristics are generally
ignored (Zhang et al. 2019). For navigational risk analysis,
however, it is vital to have a deep understanding of both the
spatial and the temporal characteristics of the vessel trajecto-
ries due to that some potential risk factors can only be detected
in the context of dynamic changes.

To address the above research gaps, in this paper, we pro-
vide a novel spatiotemporal dynamic perspective to investi-
gate the navigational risks hidden in massive AIS trajectories.
The contribution of this study is twofold. First, we propose a
time-series-oriented trajectory processing method to produce
traffic density maps with different time periods, and served as
the basic products for the follow-up spatiotemporal mining.
Second, the proposedmethod has been successfully applied in
NYRB waters, and three types of navigational risks are suc-
cessfully revealed. The findings can help the maritime author-
ities to improve their safety management and optimize navi-
gation rules. In fact, based on our findings, the navigation aids
in the NYRBwaters have already been adjusted pertinently by
the Yangtze River Waterway Bureau.

Study area

The NYRB is located in the Nanjing section of the lower
reaches of the Yangtze River, which has been the world’s
busiest inland waterways since 2010 (Gan et al. 2017). The
bridge is China’s first double-deck railway and highway
bridge across the Yangtze River, connecting the Nanjing
City and the Pukou District (Huang et al. 2019). As shown
in Fig. 1, the study area covers around 8-km waters from
northeast to southwest of the NYRB. The shape of the water
area is generally straight and slightly curved. The average
width of the water is 1.5 km, and the average depth is 24 m.
Due to the high density of vessels and frequent traffic acci-
dents, the NYRB waters have always been the hot spot of
maritime supervision.

The main bridge has nine piers and ten spans, as illustrated
in top left of Fig. 1; the width of the first span is 128 m and the
other nine is 160 m. According to the rule of traffic separation
scheme (TSS), there are three spans that are opened for nav-
igation. The fourth span is open for upstream vessels, the sixth
span and the eighth span are open for downstream vessels. For
each navigation span, the designed maximum navigable clear-
ance width is 120 m, and the navigable clearance height is 24
m above the designedmaximum navigation water level. There
is an approach channel set up for each navigation span by
using pairwise navigation aids, in order to guide the vessels
traveling through the bridge safely.

The general direction of the water flow is from southwest to
northeast. The water flow in the middle of the river is faster
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than that in the two banks. In the flood season, normally
comes fromMay to September; the velocity of the water flow
increases along with the rising of the water level. Moreover,
there is an angle between the water flow direction and the
normal direction of the bridge axis. The historical observation
records show that the angle at the sixth span is larger than the
fourth and eighth span.

The AIS data used covers the entire NYRB waters in the
whole year of 2019, including more than 55 million AIS dy-
namic messages. According to the official navigation rules of
the Yangtze River, in the NYRB waters, the vessel length of
80 m is used as the criterion for distinguishing large vessels
and small vessels.

Method

The framework of the time-series-oriented trajectory process-
ing method is shown in Fig. 2. The real-time dynamic AIS
data streams are received from the maritime agency of the
Yangtze River. Each record of AIS data contains the informa-
tion of Maritime Mobile Service Identity (MMSI) code, ship
name, latitude and longitude, speed over ground (SOG),
course over ground (COG), and timestamp. The static vessel
attribute data, such as length and breadth, draft-depth, and
type, are also received from the maritime agency; however,
such information is generally incomplete and unreliable due to
management issues. To complete that, we make use of a web

crawler to obtain the attribute information of vessels, in accor-
dance with the global unique MMSI codes, from online AIS
data providers.

The first step of the method is daily pre-processing. The
workflow starts automatically every day at 0:30 a.m. to pre-
process AIS data received yesterday. The pre-processing in-
cludes trajectory point reconstruction, error records removal,
and abnormal shape elimination. After pre-processing, all
corrected AIS trajectories are merged into a dataset labeling
with daily timestamp and then stored in the product database.

The second step is density estimation with different time
periods. The daily datasets are fetched from the product data-
base according to a user-defined time period such as a month,
a season, or even a whole year. Then AIS traffic density maps
are created by a density estimation algorithm based on the
daily datasets.

The third step is thematic product creation. There are two
types of thematic products for spatiotemporal analysis. One is
the vector feature products including lane boundary and lane
centerline extracted from the traffic density maps. The other
one is time-series clustering products. We will give a detailed
description for them later.

The method was implemented in Python 3.6, with some
GIS functions implemented by using arcpy. Microsoft SQL
Server 2018 was used as the products’ database. Compare
with the existing AIS data-processing methods in literatures,
the main advantage of our method is that it adopts a periodic
processing strategy to produce AIS trajectory products, which
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Fig. 1 Overview of the study area
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enables the subsequent spatiotemporal analysis more flexible
in the choice of time granularity.

Pre-processing

AIS data are generally suffered from noise information due to
the influence of signal interference, device failure, or trans-
mission loss (Qu et al. 2011). The main aim of the pre-
processing is to make AIS data reliable for traffic analysis.
The pre-processing takes three steps to eliminate data noises.

The first step is trajectory point reconstruction. The AIS
trajectory points belonging to the same vessel are grouped
according to the same MMSI code. Then the trajectory points
in the same group are reorganized by chronological order and
connected to form a trajectory line. Note that if the time inter-
val of two consecutive points in a trajectory line exceeds a
certain threshold, it should be segmented into two different
trajectory lines. Here, the predefined threshold of the time
interval is set to 10 min.

The second step is error record removal. Three types of
errors are widespread in the original AIS data and should be
removed in pre-processing, including the record with (1) the
length of MMSI code is not equal to nine; (2) the latitude
value is not in the range of (−90°, 90°), or the longitude value
is not in the range of (−180°, 180°); (3) the trajectory points of
the same vessel are too sparse; here, sparse means the number
of points is less than ten.

The third step is abnormal shape elimination. If the dis-
tances between a trajectory point and its preceding and subse-
quent nodes exceed certain values, and their connecting lines
form a sharp angle, this trajectory point is regarded as the
“jumping” point and should be removed as the outlier. In
addition, if a trajectory line intersects with land areas, it should
be excluded since it is impossible for vessels to sail on land.

Density estimation

Density estimation is the most straightforward and effective
manner for highlighting the distribution of the vessel trajecto-
ries. It is the most commonly used GIS function that maps the

vector points or lines to continuous regular grids. Density
estimation quantifies vessel navigation behaviors with proba-
bility density values; the larger the grid value means the more
vessels have traveled across the area.

There are various ways to realize density estimation. An intu-
itive and direct way is the point-based method that overlays a
very detailed grid upon AIS trajectory points and counts the
number of points falling in each grid. However, the point-based
method has an obvious flaw that if a vessel goes slowly, the
density of points is much greater than when a vessel goes fast.
This is determined by the AIS working principle that the slower
the vessel’s speed, the more trajectory points it will send out per
second, and vice versa.

Instead of the point-based method, we adopted the line-based
density estimation (LDE) method to obtain traffic density. The
basic principle of LDE is to calculate the density value of linear
elements within the neighborhood of each output grid. As shown
in Fig. 3, the blues lines represent the AIS trajectory lines. The
circle is plotted around the grid center using a predefined radius
parameter r. The weighted sum of the length of each trajectory
line falling into the circle is calculated, then divided by the cir-
cle’s area. For example, as shown in Fig. 3, L1 and L2 denote the
length of the portion of two trajectory lines falling in the circle
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Fig. 2 Framework of time-series-oriented trajectory processing method

Fig. 3 The principle of line-based density estimation
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area. The corresponding weights are w1 and w2 (in practice, the
recommended value of the weight is one). For a given grid, if
there are n trajectory lines that go across its searching circle area,
the density value of the grid is defined as Eq. (1):

D ¼
∑
n

i¼1
Li � wið Þ
πr2

; ð1Þ

After all grids are calculated, the AIS traffic density map of the
whole region is obtained. It isworth noting the distinction between
the concepts of the grid and the circle here. The grid refers to an
independent calculation unit based on the regular partitioning of
the study area, while the circle is an abstract description of the
search area for calculating the density value of each grid cell. The
radius r of the circle is a flexible parameter that reflects the
searching scope of the grid. It is an empirical value adjusted dy-
namically according to the performance of the density estimation
results. In our application, the parameter r is set to 10 m.

Vector feature extraction

In this step, such vector features that outline the shape of traffic
lanes, including lane boundaries and lane centerlines, are extract-
ed from the traffic density maps. These two vector features are
key elements for the spatiotemporal analysis in investigating del-
icate variations of the traffic lanes and quantitative spatial rela-
tionships between vessels and navigation facilities.

The lane boundary refers to the edge of themain traffic lane
with the density value in the probability range of 95% of the
total density distribution (Breithaupt et al. 2017). It is the
representative of principle waterways that is normally used
by most vessels and have the largest traffic volume (Chen
et al. 2015). The lane boundary is a two-dimensional polygon
which can be derived from a given traffic density map by
leveraging map algebra and converting functions of the GIS
software such as ArcGIS 10.2.

The lane centerline depicts the core skeleton line formed by
the highest densities in the traffic lane (Davies et al. 2006). It
describes the basic form and direction of the traffic lane. The
lane centerline can be extracted from the binarized result of the
density map using vector generation tools provided by the
ArcScan module.

Time-series clustering

Clustering is a widely used data mining technique to group a
number of objects into homogeneous clusters, where objects
have the maximum similarity with other objects in the same
cluster (Kaufman and Rousseeuw 2009). A special form of
clustering is time-series clustering (Esling and Agon 2012).
The time-series clustering focuses on analyzing a collection of
values obtained from sequential measurements over time. It is

an effective way of finding the spatiotemporal characteristics
of geospatial data since it not only measures the spatial simi-
larity but also measures the similarity of the dynamic change
pattern over time. A representative case is the time-series clus-
tering of normalized difference vegetation index (NDVI) data
(Xia et al. 2019). Monthly NDVI data of the year were re-
trieved from remote sensing images and composited into a 12-
layer dataset. After a certain clustering algorithm performed
on the dataset, the regions belonging to the same category
could be interpreted as the area with the same vegetation cov-
er, since these regions have similar phenological fluctuation
characteristics within the whole year.

Inspired by the NDVI case, we apply clustering on time-
series traffic density maps. Specifically, monthly traffic den-
sity maps are organized in chronological order and composit-
ed into a 12-layer raster dataset. All the density values are
normalized before clustering. As for the specific clustering
algorithm, K-Means is chosen due to its simplicity and effi-
ciently (MacQueen 1967). K-Means aims to partition n ob-
jects into k clusters in which each object belongs to its nearest
centroid. Given n objects (x1, x2, …, xn) in d-dimensional
space Rd, the problem is to determine k centroids (C1, C2…,
Ck) for disjoint clusters S1, S2… , Sk, to minimize the mean
squared distance norm in the partitioning metric:

J ¼ ∑
k

i¼1
∑x j∈SiD

2 x j;Ci
� �

; ð2Þ

where D2(xj, Ci) denotes the Euclidean distance of object xj
from centroid Ci.

Through the time-series clustering, we can identify those
water areas with the similar spatiotemporal variation charac-
teristics. Particularly, we can recognize which parts of the
waters are in stably high navigation density throughout the
year in the context of monthly dynamic changes. These results
can provide reliable references to analyze navigational risks.

Results

Yearly distribution of AIS trajectories

Figure 4 shows the overall distribution of the vessel trajecto-
ries in the whole year. Figure 4a and Figure 4b represent the
large vessels and the small vessels respectively. As we can see
from the figure, in general, the distribution of the vessel tra-
jectories highlighted three distinct traffic lanes. The upstream
vessels enter the approach channel of the fourth span after
passing the #141 black navigation aid. After traveling through
the bridge, the vessels take an obvious turn to the north bank
of Pukou and continued to travel closely to the shore. The
downstream vessels enter the approach channel of the sixth
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span or the eighth span to go through the bridge after passing
the #142 red navigation aid. After that, the two traffic streams
are converged.

On the other hand, we can also observe the differences of
the trajectory distributions between the large vessels and the
small vessels.

1. For upstream vessels, Fig. 4a shows that the large vessels
generally choose the fourth span to go through the bridge,
while Fig. 4b indicates that there are a certain number of
small vessels which choose the third span. Furthermore,
by comparing the two figures, we can find that after trav-
eling through the bridge, the average distance between the
vessel trajectory of the small vessels and the north shore is
smaller than that of the large vessels.

2. For downstream vessels, Fig. 4a shows that the traffic
densities of the large vessels in the approach channel of
the sixth span and the eighth span are basically the same;
while in Figure 4b, the traffic density of the small vessels
in the approach channels of the sixth span is much lower
than that of the eighth span. This indicates that the down-
stream small vessels are more inclined to choose the
eighth span to go through the bridge.

3. Figure 4b shows that near the #142 red navigation aid,
there exists an obvious crossing track, which is mainly
formed by the small city ferries (40 m–50 m) connecting
the Nanjing City and the Pukou District.

Figure 5 is the comparison result of the lane boundaries. It
can be clearly seen that the lane boundary of the upstream
small vessels is closer to the north shore than that of the large

vessels. Besides, the overlap between the lane boundary of the
upstream vessels and the designed waterway, denoted with
dotted lines, is much lower than that of the downstream
vessels.

Seasonal variation of AIS trajectories

Figure 6 shows the variations of the AIS trajectories in
different seasons. Here, for vessels traveling in the
Yangtze River, the seasons refer in particular to the flood
season (May to September) and the dry season (January to
April and November to December). In this case, center-
lines were used to represent the traffic lines for a clear
contrast. The solid lines represent the large vessels and
the dotted lines represent the small vessels; the red lines
represent the flood season and the blue lines represent the
dry season. Note that the lane centerlines of the small
vessels in the approach channel of the sixth span could
not be explicitly extracted due to the traffic lanes that
were not salient. To demonstrate the differences in detail,
we further took two cross sections at the upstream and
downstream of the bridge respectively, and drew traffic
density curves of the cross sections, as shown in Fig. 7
and Fig. 8. It can be found that the red lines are always on
the north side of the blue lines, whether they are dotted
lines or solid lines. This indicates that vessels are always
closer to the north shore in the flood season than in the
dry season whether they travel upstream or downstream.
This trend can be observed more clearly from the varia-
tions of the density curves in Fig. 7 and Fig. 8.
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Fig. 4. Overall distribution of AIS trajectories in the NYRB waters
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Next, the spatial relationship between vessels and the
bridge axis was quantitatively investigated. This relation-
ship provides an important reference for analyzing navi-
gational risks in NYRB waters since it reflects the attitude
and position of the vessels when passing through the
bridge span. Figure 9 describes two indices for measuring
the spatial relationship between the bridge axis and a sail-
ing vessel. The α means the included angle between the
vessel’s bow direction and the normal direction of the
bridge axis (dotted line). The d means the distance be-
tween the central axis of the hull and the center of the
bridge span. Here, the extracted lane centerlines were
used to represent the central axis of the hull for calculat-
ing the indices of α and d.

Table 1 and Table 2 show the different values of α and d
at different bridge spans in different seasons. From
Table 1, we can find that the angle α is maximum at the
eighth span, followed by the fourth span and the sixth span.
In addition, we can also find that the angle α in the flood
season is larger than that in the dry season, and the angle of
the small vessels is larger than large vessels. From Table 2,
we can observe that the absolute value of the distance d of
small vessels is generally larger than that of large vessels.
For small vessels, the absolute value of d is maximum at
the fourth span, followed by the eighth span and the sixth

span. For large vessels, the absolute value of d is maximum
at the eighth span, followed by the fourth span and the
sixth span.

Monthly evolution of AIS trajectories

Figure 10 depicts the monthly evolution of the AIS trajecto-
ries. For clarity, the representative centerlines are drawn in the
first and second half of the year, and different colors are used
to represent different months. As depicted in Fig. 10a, the lane
centerlines of the upstream large vessels show a distinct
changing trend from southeast to northwest over time. The
downstream large vessels show the same trend, while the
changing extend is relatively smaller. Meanwhile, the change
of the centerlines in the approach channel of the sixth span is
not obvious. In Fig. 10b, we can find the same changing trend
for the small vessels. In Fig. 10c and Fig. 10d, we can observe
that in the second half of the year, the centerlines show a
reverse changing trend from northwest to southeast, and the
changing extend is even greater than the first half of the year.

We infer that there is a correlation between the monthly evo-
lution of the AIS trajectories and the change of water level. To
verify our speculation, we measured the monthly change extent
of the AIS trajectories by calculating the average distance be-
tween the centerline and the right-side boundary line of the

Fig. 5 Comparison of the lane
boundaries between large vessels
and small vessels
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waterway; here, the right-side is relative to the waterway’s direc-
tion. As shown in Fig. 11, the bar charts represent the distances
between the centerlines and the boundary lines of the waterway,
the line charts represent the monthly average water level in the
Nanjing section of the Yangtze River from January to December
in 2019.We can find that themonthly change extent is consistent
with the change of the water level. Such consistency is particu-
larly marked as the water level rises suddenly from February to
March (which is called the spring flood).

Time-series clustering of traffic density maps

Figure 12 shows the results of the time-series clustering,
where Fig. 12a represents the large vessels and Fig. 12b rep-
resents the small vessels. As an unsupervised learning algo-
rithm, the output classes of K-Means have no labels. We iden-
tified each class manually based on the prior knowledge of the
actual traffic distribution. Here, in the two figures, class 1 with
red represents those water areas with the highest density value

Fig. 6 Spatiotemporal variations
of the AIS trajectories in different
seasons

Large vessels in flood season

Small vessels in flood season

Large vessels in dry season

Large vessels in dry season

South
Bank

North
Bank

Fig. 7 Traffic density curves of
the cross section at the upstream
of the bridge
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and the most similar variation pattern, which means the nav-
igation pressure is stably high. The representativeness gradu-
ally decreases from class 2 to class 4 due to that the inner
similarities of the density values descend. From Fig. 12a, we
can observe that the class 1 mainly distributes in the three
approach channels of the navigable spans. The red area in
the approach channel of the fourth span is distinctly longer
than that of the sixth and the eighth span. This indicates that
the navigation pressure of the waterway for the upstream large
vessels is stably high throughout the year. Figure 12b shows
the same high pressure in the approach channel of the fourth
span for small vessels. Besides, the navigation pressure also
focuses on the approach channel of the eighth span, mainly
because the small vessels always choose the eighth span to go
through the bridge.

Discussions

Safety distance risk

As we discovered from the overall distribution of AIS trajec-
tories, the upstream vessels prefer to travel closely to the north

shore of Pukou after passing through the bridge, and this trend
is evenmore pronounced for small vessels in the flood season.
Moreover, based on the monthly results, the distance between
vessels and the north shore has become closer as the water
level rises.

These can be explained by the vessels’ choice for the most
economic traveling in considering the water flow condition.
As we introduced in the “Study area” section, the water flow
in the middle of the river is faster than that of the two banks.
Therefore, the upstream vessels prefer to sail in nearshore
waters with lower resistance for reducing the oil consumption,
increasing the speed, and promoting the economic benefits.
Especially in the flood season, as the flow velocity increases
and the water surface widens, the vessels are closer to the
north shore.

However, such behavior presents great risks to navigation-
al safety. If the safety distances between the vessels and the
coastal wharves are too small, it may cause serious collisions,
particularly when there are several vessels berthing side by
side at the wharves. We highlight such safety distance risks
by capturing snapshots from remote sensing images of the
NYRB waters. As we marked in Fig. 13a, the distances be-
tween the starboard side of the sailing vessels with wakes and
the portside of the berthing vessels are merely 14 m and 16 m
respectively. Therefore, if a sailing vessel is not maneuvered

Large vessels in flood season

Small vessels in flood season

Large vessels in dry season

Large vessels in dry season

South
Bank

North
Bank

Fig. 8 Traffic density curves of
the cross section at the
downstream of the bridge

Fig. 9 The spatial relationship between the bridge axis and a vessel

Table 1 The variation of angel α at different bridge spans in different
seasons

Span 4 Span 6 Span 8

Large vessels Flood season 13.58° 11.46° 17.7°

Dry season 13.54° 11.11° 16.24°

Small vessels Flood season 18.9° - 19.95°

Dry season 16.47° - 19.05°
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properly, it is very likely to touch with berthing vessels. The
situation would be even worse when berthing vessels begin to
move. As shown in the white box of the Fig. 13b, the large
container is moving, while the small cargo is passing by, se-
rious collision may occur if either of them made a mistake.
Hence, it is very important for maritime authorities to enhance
the supervision for the safety distance between vessels and the
north shore. In addition, special attention should be paid to the
behavior of small vessels since in the Yangtze River a lot of
small vessels are owned by family businesses, who usually
lack formal navigation education.

Table 2 The variation of distance d at different bridge spans in different
seasons (south is positive)

Span 4 Span 6 Span 8

Large vessels Flood season −8.02 m 5.21 m 8.55 m

Dry season −6.56 m 4.44 m 8.9 m

Small vessels Flood season −26.54 m - 13.73 m

Dry season −25.93 m - 17.93 m

a

118 43′ 50″

32 7′ 0″

32 6′ 50″

118 43′ 10″ 118 44′ 30″

32 6′ 40″

32 6′ 30″

32 6′ 20″

32 7′ 0″

32 6′ 50″

32 6′ 40″

32 6′ 30″

32 6′ 20″

118 43′ 50″ 118 43′ 10″ 118 44′ 30″

b

c d
Fig. 10 Monthly evolution of the AIS trajectories. a Large vessels (Jan.–Jun.). b Small vessels (Jan.–Jun.). c Large vessels (Jul.–Dec.). d Small vessels
(Jul.–Dec.)
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Pier collision risk

In investigating the spatial relationship between vessels and
the bridge, we find that the bow directions of vessels are not
perpendicular to the bridge axis as they passed though the
bridge span, and the positions of vessels are not within the
middle of the bridge span either. The abovementioned angle α
and the distance d in the flood season are distinctly larger than
those in the dry season. Besides, we also find that the α and d
of small vessels are larger than large vessels.

This phenomenon is caused by the water flow conditions
under the NYRB. As we mentioned, there is an angle between
the water flow direction and the normal direction of the bridge

axis. Hence, the unfavorable force of the water flow would
easily carry the vessels to collide to the bridge piers. In fact,
the reason why there is a high degree of consistency between
the monthly evolution of AIS trajectories and the water level
change is that vessels have taken maneuvers to avoid such
collision. Vessels need to adjust the hull to north before they
sailed into the narrow approach channel, in order to obtain
more space to rectify their position to aim at the span. The
higher the water level and the faster the water flow, the further
north the vessel would take.

As shown in Fig. 14, we highlight such pier collision risk
by overlaying the lane centerlines on a remote sensing image.
The bridge piers were numbered with tags 3# to 9#. As we can
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Fig. 12 Time-series clustering results of traffic density maps
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see from Fig. 14, the distribution of the extracted vessels from
the image is generally consistent with the lane centerlines. The
vessels near the fourth span (between the 3# pier and the 4#
pier) and the eighth span (between the 7# pier and the 8# pier)
are not perpendicular to the bridge, and they are relatively
closer to the 3# pier and the 8# pier respectively. The colli-
sions may occur between the vessels and the 3# pier and 8#
pier if they are not properly operated, especially when they are
in high speeds. Therefore, it is of great importance for mari-
time authorities to remind vessels to slow down before they
passed through the fourth and the eighth span. Furthermore,
collision-preventing devices are also necessary to protect
these piers of the NYRB.

Traffic congestion risk

Based on the time-series clustering results, we discover that
the navigation pressure in the approach channels of the fourth
and the eighth span are stably high throughout the year. It is
not difficult to understand the high pressure of the fourth span
because it is the only navigable span for vessels to travel
upstream. While for the eighth span, the stably high pressure
is mainly caused by the traffic flow of small vessels. Although
small vessels can choose the sixth span to route, they prefer to
choose the eighth span due to that the water flow near the sixth
span is irregular and the velocity is faster.

However, such long-term persistent high pressure will
bring great traffic congestion risk to safety navigation. The
narrow bridge span is the primary cause of accidents. The
literature from Park et al. (2008) reported that nearly 90% of
the accidents associated with bridges across waterways hap-
pened when the width of the navigable span is less than 500
m. However, the clearance width of the navigable span of the

NYRB ismerely 120m.Due to this limitation, only one vessel
can pass at a time, and other vessels must slow down and
queue up to wait in the approach channel. A certain number
of small vessels even choose the unofficial third span to travel
in order to catch up with time. Figure 15 demonstrates the
traffic congestion risk through snapshots from remote sensing
images. In Fig. 15a, a crowd of sailing vessels congests in the
narrow approach channel of the fourth span; among them,
there is even a fleet of 14 vessels. It is easy to rub against each
other in the narrow space. Moreover, the distance between the
front and rear vessels may be sometimes very close when
speed is fast. As shown in Fig. 15b, the distance between the
two small vessels is less than 23 m, nearly colliding with each
other. Note that the remote image was captured in April 2020,
which means it was still in the period of Coronavirus 2019, the
traffic flow was much lower than usual. Once an accident
occurs near the bridge span, more serious secondary accidents
will happen due to the large inertia of subsequent vessels.

In order to reduce the traffic congestion risk in the NYRB
waters, we suggest optimizing the navigation rules that opens
the third span or the fifth span for navigation, to release the
navigation pressure of the fourth span.Meanwhile, we suggest
opening the ninth span for navigation to divert the traffic flow
of the eighth span as well.

Compared with the existing researches of AIS-based nav-
igational risk analysis, the contribution of our method is that it
can find the potential navigational risks hidden in the spatial
and temporal variation of massive AIS trajectories. For safety
distance risk analysis, the traditional static mining method can
only find the phenomenon that the safety distance is too small.
However, by using our method, we can not only find out the
phenomenon but also identify the relationship between the
distances and water levels. For traffic congestion risk analysis,

Fig. 13 Examples of the safety distance risk in the NYRB waters. a The dangerous distances between the sailing vessels and the berthing vessels. b
Possible collision between the two vessels
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Fig. 14 An example of the pier collision risk in the NYRB waters

Fig. 15 Examples of the traffic congestion risk in the NYRB waters. a A crowd of sailing vessels congests in the narrow approach channel. b Possible
rear-end collision between the two vessels
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the traditional static mining method can only detect which
places are congested roughly, while by using our time-
series-oriented method, we can gain a deep insight on which
routes are under high navigation pressure all year round.

Conclusions

In this paper, navigational risks in the NYRB waters are ana-
lyzed based on spatiotemporal mining on massive AIS trajec-
tories by using GIS techniques. A time-series-oriented trajec-
tory processing method was proposed to deal with the AIS
data in the whole year of 2019. The method leverages the line
density estimation to produce vessel traffic products and pro-
vides temporal dynamic traffic information for the spatiotem-
poral analysis. Supported by the flexible framework of the
method, complete pictures of the spatiotemporal distribution
and variation characteristics of AIS trajectories were painted.
Based on that, a comprehensive analysis for navigational risks
was conducted, and several critical potential risks in the
NYRB waters were revealed.

First, we identify that as the water level rises, the safety
distances between upstream vessels and the north shore of
Pukou become smaller, which increases the probability of
the collision between sailing vessels and the vessels berthed
at wharves. Second, when vessels pass through the narrow
spans of the NYRB, the angle between the vessel and the
normal direction of the bridge axis increase with the rise of
water level, which may bring serious collision to the 3# and
the 8# bridge piers. Third, we detect that the approach chan-
nels of the fourth and the eighth span are under high naviga-
tion pressure all year round. This may bring the traffic con-
gestion risk and cause severe rear-end collision accidents.
Furthermore, we suggest the maritime authorities should pay
special attention to the supervision for small vessels in the
flood season based on our findings.

The research on leveraging AIS big data mining to analyze
navigational risk is still in its infancy. Although our work has
shown its promise for precisely capturing vessel behaviors
and uncovering potential navigational risks, there are still
many challenges in future works. Due to the data limits, in
this paper, the vessel size was the only criterion for classifying
the spatiotemporal characteristics of the AIS trajectories,
while in future works, more criteria including the vessel type
and the vessel draft would be used for distinguishing risk
analysis objects more precisely. In addition, other factors
which may impact navigational risks such as the speed and
the course of vessels will also be considered. The exploration
of adding the meteorological information to risk analysis will
be another interesting future research topic.

Declarations The author declares that he has no competing interests.

References

Breithaupt SA, Copping A, Tagestad J, Whiting J (2017) Maritime route
delineation using AIS data from the atlantic coast of the US. J
Navigat 70(2):379–394

Bye RJ, Aalberg AL (2018) Maritime navigation accidents and risk indi-
cators: an exploratory statistical analysis using AIS data and acci-
dent reports. Reliab Eng Syst Saf 176:174–186

Bye RJ, Almklov PG (2019) Normalization of maritime accident data
using AIS. Mar Policy 109:103675

Chen J, Lu F, Peng G (2015) A quantitative approach for delineating
principal fairways of ship passages through a strait. Ocean Eng
103:188–197

Chen P, Huang Y, Mou J, van Gelder PHAJM (2019a) Probabilistic risk
analysis for ship-ship collision: state-of-the-art. Saf Sci 117:108–
122

Chen YJ, Liu Q,Wan CP (2019b) Risk causal analysis of traffic-intensive
waters based on infectious disease dynamics. J Mar Sci Eng 7(8):
277

Chen P, Mou J, Van Gelder PHAJM (2019c) Integration of individual
encounter information into causation probability modelling of ship
collision accidents. Saf Sci 120:636–651

Davies JJ, Beresford AR, Hopper A (2006) Scalable, distributed, real-
time map generation. IEEE Pervasive Comput 5(4):47–54

Esling P, Agon C (2012) Time-series data mining. ACM Computing
Surveys (CSUR) 45(1):1–34

Faghih-Roohi S, Xie M, Ng KM (2014) Accident risk assessment in
marine transportation via Markov modelling and Markov Chain
Monte Carlo simulation. Ocean Eng 91:363–370

Gan S, Liang S, Li K, Deng J, Cheng T (2017) Trajectory length predic-
tion for intelligent traffic signaling: a data-driven approach. IEEE
Trans Intell Transp Syst 19(2):426–435

Huang L, Yu L, Zhang H, Yang Z (2019) Composition and microstruc-
ture of 50-year lightweight aggregate concrete (LWAC) from
Nanjing Yangtze River bridge (NYRB). Constr Build Mater 216:
390–404

Kulkarni K, Goerlandt F, Li J, Banda OV, Kujala P (2020) Preventing
shipping accidents: past, present, and future of waterway risk man-
agement with Baltic Sea focus. Saf Sci 129:104798

Kroodsma DA, Mayorga J, Hochberg T, Miller NA, Boerder K, Ferretti
F, Woods P (2018) Tracking the global footprint of fisheries.
Science 359(6378):904–908

Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduc-
tion to cluster analysis, vol 344. Wiley

Li L, LuW, Niu J, Liu J, Liu D (2018) AIS data-based decision model for
navigation risk in sea areas. J Navigat 71(3):664–678

Li M, Mou J, Liu RR, Chen P, Dong Z, He Y (2019) Relational model of
accidents and vessel traffic using AIS Data and GIS: a case study of
the Western port of Shenzhen City. J Mar Sci Eng 7(6):163

Li S, Meng Q, Qu X (2012) An overview of maritime waterway quanti-
tative risk assessment models. Risk Analy 32(3):496–512

Lee JS, Son WJ, Lee HT, Cho IS (2020) Verification of novel maritime
route extraction using kernel density estimation analysis with auto-
matic identification system data. J Mar Sci Eng 8(5):375

Li C, Yuan Z, Ou J, Fan X, Ye S, Xiao T, Zheng J (2016) An AIS-based
high-resolution ship emission inventory and its uncertainty in Pearl
River Delta region, China. Sci Total Environ 573:1–10

MacQueen J (1967) Some methods for classification and analysis of
multivariate observations. Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability (pp. 281-297).
University of California Press.

Merrick JR, Van Dorp JR, Blackford JP, Shaw GL, Harrald J, Mazzuchi
TA (2003) A traffic density analysis of proposed ferry service ex-
pansion in San Francisco Bay using a maritime simulation model.
Reliab Eng Syst Saf 81(2):119–132

229    Page 14 of 15 Arab J Geosci (2021) 14: 229



Park YS, Lee YS, Park JS, Cho IS, Lee U (2008) A proposal of bridge
design guideline by analysis of marine accident parameters occurred
at bridges crossing navigable waterways. J Navigat Port Res 32(10):
743–750

Pallotta G, Vespe M, Bryan K (2013) Vessel pattern knowledge discov-
ery from AIS data: a framework for anomaly detection and route
prediction. Entropy 15(6):2218–2245

Pak JY, Yeo GT, Oh SW, Yang Z (2015) Port safety evaluation from a
captain’s perspective: the Korean experience. Saf Sci 72:172–181

Qu X, Meng Q, Suyi L (2011) Ship collision risk assessment for the
Singapore Strait. Accid Anal Prev 43(6):2030–2036

Sormunen OV, Hänninen M, Kujala P (2016) Marine traffic, accidents,
and underreporting in the Baltic Sea. Sci J Maritime Univ Szczecin
46(118):163–177

SvanbergM, SantenV,HortebornA,HolmH, Finnsgard C (2019) AIS in
maritime research. Mar Policy 106(AUG) 103520.1-103520.10

Silveira PAM, Teixeira AP, Soares CG (2013) Use of AIS data to char-
acters marine traffic patterns and ship collision risk off the coast of
Portugal. J Navigat 66(6):879–898

Wang Y, Zhang J, Chen X, Chu X, Yan X (2013) A spatial–temporal
forensic analysis for inland–water ship collisions using AIS data. Saf
Sci 57:187–202

Xia H, Huang W, Li N, Zhou J, Zhang D (2019) PARSUC: A parallel
subsampling-based method for clustering remote sensing big data.
Sensors 19(15):3438

Zhang W, Feng X, Goerlandt F, Liu Q (2020) Towards a convolutional
neural network model for classifying regional ship collision risk
levels for waterway risk analysis. Reliab Eng Syst Saf 204:107127

Zhang L, Meng Q, Fwa TF (2019) Big AIS data based spatial-temporal
analyses of ship traffic in Singapore port waters. Transp Res Part E
129:287–304

Zhang L, Meng Q, Xiao Z, Fu X (2018) A novel ship trajectory recon-
struction approach using AIS data. Ocean Eng 159:165–174

Zhao M, Yao X, Sun J, Zhang S, Bai J (2018) GIS-based simulation
methodology for evaluating ship encounters probability to improve
maritime traffic safety. IEEE Trans Intell Transp Syst 20(1):323–
337

Page 15 of 15     229Arab J Geosci (2021) 14: 229


	Navigational risk analysis based on GIS spatiotemporal trajectory mining: a case study in Nanjing Yangtze River Bridge waters
	Abstract
	Introduction
	Study area
	Method
	Pre-processing
	Density estimation
	Vector feature extraction
	Time-series clustering

	Results
	Yearly distribution of AIS trajectories
	Seasonal variation of AIS trajectories
	Monthly evolution of AIS trajectories
	Time-series clustering of traffic density maps

	Discussions
	Safety distance risk
	Pier collision risk
	Traffic congestion risk

	Conclusions
	References


