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Abstract
The use of robots in the national economy—especially in industrialized countries—is growing. At the same time, the inter-
dependency between humans and robots is getting increasingly closer: they are engaging in direct contact with each other
as more and more organizations let robots and humans work hand-in-hand. One factor that predicts successful human–robot
interdependency is the acceptance of the robot by the human. Generally, only when an innovative assistive working system
covers human needs and expectations, it is perceived to be useful and hence accepted. Furthermore, it has been found that
cultural context has an impact on human–robot interaction, as people feel more comfortable interacting with a robot in a
culturally normative way. Therefore this paper aims at presenting a human–robot collaboration acceptance model (HRCAM)
with regard to the collaboration between humans and robots that is based on prior acceptance models, while also considering
technology affinity and ethical, legal and social implications. Additionally, similarities and differences in robot acceptance
are shown for four selected countries—both in comparison to the overall human–robot collaboration acceptance model and
between the countries. The HRCAM additionally shows which variables influence perceived usefulness and perceived ease
of use, and thus behavioral intention to use and use behavior. A further distinction is made between anchor variables, which
can be influenced in the long term, and adjustment variables, which can be influenced in the short to medium term. The model
therefore offers practitioners in the field of human–robot collaboration recommendations to increase the acceptance of robots.

Keywords Technology acceptance · Human–robot interaction · Human–robot cooperation · Human–machine interaction ·
Cross-cultural differences · TAM

1 Introduction

Since the middle of the 20th century, robots have become
a vital part of today’s production industry [1, 2]. The latest
development of robotics leads away from robots as a com-
ponent of fully automated manufacturing processes towards
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processes in which human and robot work closely together
at the same place and time. The latest generation of robots,
for example, include the ability to recognize the proximity of
a human as well as contacts and their intensity and to adapt
flexibly to them [3]. Although industrial robots are first and
foremost “working machines”, they include social aspects
(e.g. the appearance of being a co-worker) which have to
be considered and taken into account in an implementation.
Thus, the question of designing ergonomicworkplaceswhere
the human and robot can accomplish a task together in a col-
laborative operation is becoming increasingly important. In
accordance with the definition in ISO 10218-1 “Robots and
robotic devices—Safety requirements for industrial robot-
s—Part 1: Robots” from the International Standardization
Organization [4] and ISO/TS 15066 [5], the term collabo-
ration is used in this paper as a “state in which purposely
designed robots work in direct cooperation with a human
within a definedworkspace”.However, any erroneous behav-
ior of the robot could result in serious injury to the human
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so the collaboration between human and robot has to be
designed to be reliable and secure with regard to both hard-
ware components as well as human cognition. In contrast,
the term human–robot interaction is a general description of
the interdependency between humans and robots.

It is predicted that by 2019 industrial robots worldwide
will achieve a level of growth more than twice as high as was
the case in 2010.Especially in industrialized countries, robots
are used extensively in the national economy [6–8]. For
instance, according to IFR estimates, there are 314 robots per
10,000 working persons in the national economy of Japan,
followed by the Federal Republic of Germany (hereinafter
abbreviated as Germany) (292 robots per 10,000 working
persons), the United States of America (hereinafter abbre-
viated as USA) (164 robots per 10,000 working persons)
and the People’s Republic of China (hereafter abbreviated as
China) (36 robots per 10,000working persons). Furthermore,
these countries have the biggest industrial robot sales. With
67,000 robot sales in 2015, China sold the most industrial
robots worldwide, followed by Japan with 35,000 industrial
robot sales, the USA with 27,000 industrial robot sales, and
Germany with 20,000 robot sales [8]. Robots are no longer
only used in large corporations, but due to simpler program-
ming and lower costs more and more SMEs will introduce
robots in the next few years, whichwill further increase sales.
While most of these robots do not share a workspace with
human workers, it stands to reason that a similar trend of
propagation will likely be observed for collaborative robots,
as the required technologies become increasingly cheaper
and more robust.

1.1 History in Technology Acceptance Research

There are a number of different models for measuring tech-
nology acceptance. Rogers’ diffusion theory from 1962 is
fundamentally regarded as the starting point of this field of
research. This theory proposes a five-step model, beginning
with an awareness of a new technology and leading to its con-
firmation [9]. The next essential step regarding technology
acceptance is Davis’ Technology Acceptance Model (TAM)
from 1989 [10, 11]. It forecasts the acceptance and corre-
sponding use of information technologies. More precisely,
this model is based on the fundamental assumption that the
behavioral intention leads to actual behavior. The behavioral
intention, in turn, depends on two variables—the perceived
ease of use and the perceived usefulness. The perceived use-
fulness is defined as “the degree to which a person believes
that using a particular system would enhance his or her job
performance”, whereas the perceived ease of use is defined as
“the degree to which a person believes that using a particular
system would be free from effort” [10]. Some studies mea-
suring the acceptance of robots refer to the work of Davis.
These studies add other variables to the original model, such

as personal implications (social norm, voluntariness of usage
and image) and job-related variables (job relevance, output
quality, result demonstrability and experience) (TAM 2 by
Venkatesh and Davis [12]). Another noteworthy approach is
the Unified Theory of Acceptance and Use of Technology
(TAM 3 by Venkatesh and Bala [13]), which aims at com-
bining existing models of user acceptance of information
technologies. In addition, Venkatesh and Bala [13] added
variables to the TAM 3 model that relate to the anchor-
ing and adjustment of human decision-making processes
(computer self-efficacy, perception of external control, com-
puter anxiety, computer playfulness, perceived enjoyment
and objective usability). So far, however, acceptance models
have not been adapted to the context of human–robot coop-
eration in an industrial setting and therefore neglect aspects
to be considered important for this context.

The research that is presented in this paper therefore
aimed at developing a human–robot collaboration accep-
tance model to investigate the acceptance of human–robot
collaboration in an industrial work setting. To the knowl-
edge of the authors, cross-cultural technology acceptance in
the context of industrial robotics has not been explored so far
with regard to collaboration but only for interaction variables.
These results are summarized in the following paragraph.

1.2 Cross-Cultural Differences in Human–Robot
Interaction

In the past few years, the interest of researchers to explore
intercultural or cross-cultural acceptance of robots has
grown. Transnational studies in this field were conducted
within a Western or Eastern/Eastern-Asian cultural area, as
well as cross-cultural studies between Western and East-
ern countries, which will be described in more detail in the
following. In the studies presented below, aspects such as
direct versus indirect communication style, attitudes towards
robots, anthropometry, robot type, and trust are discussed.

In general, it has been found that cultural background
has an impact on human–robot interaction. Therefore, peo-
ple feel more comfortable when interacting with a robot
that behaves in a culturally normative way [14–18]. Cross-
cultural communication suggests that people thinking in
Western patterns favor more direct forms of communication,
whereas Eastern-influenced people prefer an indirect style
of communication. Hall [14] introduced the idea of low and
high context cultures, whereby low context refers to cultures
in which communications are explicit and require little inter-
pretation to understand the content. High context cultures,
on the other hand, are those in which content is less central
and deciphering of contextual cues is required for accurate
decoding. Although people tend to use both forms of com-
munication, one generally dominates in a given culture [14].
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Generally, the results show that participants are more
likely to accept the recommendations of a robot that speaks
in more culturally normative ways. This illustrates that small
adoptions to cultural preferences already have a positive
effect on thewhole interactionwith a robot [18, 19].Western-
ers (those who live in the USA and Europe are more likely to
accept the robot’s recommendation and evaluate it more pos-
itively when the robot uses an explicit communication style,
whereasEasterners (specifically, theChinese) aremore likely
to accept robots and evaluate them more positively when
they use an implicit communication style [16, 19].Wang also
shows that when collaborating in a human–robot team, Chi-
nese participants were more likely to change their decision
based on the robot’s advice when the robot communicated
implicitly. American participants were more likely to do so
when the robot communicated explicitly [18]. Consequently,
the communication types that are used in a society and by a
robot influence the acceptance of recommendations provided
by a robot [18, 19].

Cultural differences can also have an impact on
human–human interaction. Based on a Taiwanese–German
management team, Mahadevan [20] showed that tacit cul-
tural differences can directly affect the team. In this study,
cultural patterns were more general rather than contextual. In
terms of comfort, the results show that people feel more com-
fortable when interacting with a robot that behaves in a more
culturally normative way. Evers et al. [15] found that when a
robotic assistant was characterized as a group member, Chi-
nese subjects reported feeling more comfortable compared
with Americans.

Moreover, Bartneck et al. [21] studied cultural differ-
ences in attitudes towards robots and found different attitudes
depending on the cultural background of the subjects. In
this cross-cultural study, the attitude of Dutch, Chinese
and Japanese subjects using the “Negative Attitude towards
Robots Scale” (NARS) questionnaire was examined. In con-
tradiction to the popular belief that Japanese love robots, the
results show that the Japanese are significantly more con-
cerned with the impact that robots might have on society. A
possible explanation could be that through their high expo-
sure to robots, the Japanese are more aware of the robots’
abilities and also their lack thereof [21]. In a follow-up study
conducted by Bartneck et al. [22], different appearances of
robots were examined, which indicated that American sub-
jects rated a robot as more favorable when it was more
anthropomorphic, while Japanese subjects showed the oppo-
site trend. In general, the Japanese do not seem to have
significantlymore positive attitudes andpositive assumptions
towards robots than Europeans [23]. By using the NARS
questionnaire, Bartneck et al. [22] found that the Japanese
are even significantly more concerned with the impact that
robots might have on society than Westerners (e.g. Ameri-
cans and the Dutch). A possible explanation could be related

to their higher exposure to robots e.g. in real life, but pre-
dominantly through the Japanese media [21–23]. Therefore,
it is assumed that the Japanese have more robot-related expe-
riences than the Chinese, Germans or Americans. However,
Nomura et al. [24] found out that UK citizens felt more neg-
ative toward humanoid robots than did the Japanese when
using the “Frankenstein Syndrome Questionnaire” (FSQ).

In addition, several studies have been conducted on the
subject of trust. After interacting with a robot in a judgement
task, Chinese participants evaluated the robots as being more
trustworthy than German participants did [19]. When collab-
orating in a preference decision-making task together with a
robot, Chinese participants were more likely to report trust-
ing the robot than Americans did [18]. After interacting with
a robot in four different scenarios (teaching, guide, entertain-
ment and security) Germans rated the robot less trustworthy
thanChinese andKoreans [25]. A study conducted byHaring
[26], showed that Australians rated the robot more trustwor-
thy after an economic trust game than Japanese participants
did.

Cultural differences were also found concerning the eval-
uation of the robot after interaction (e.g. [18, 19, 25–27])
or after watching human–robot interaction (e.g. videos) (e.g.
[15]). For instance, people with an Eastern cultural back-
ground (e.g. Chinese, Koreans and Japanese) rated the robot
higher in animacy and anthromorphism [15, 18, 27], likeabil-
ity [19, 25], trust [18, 19], perceived intelligence [27] and
perceived safety [26, 27] than people with aWestern cultural
background (e.g. Americans, Germans andAustralians). Fol-
lowing these results, it is assumed that Chinese and Japanese
subjects evaluate the robot more positively after becoming
more familiarizedwith it.Moreover, Easterners (Chinese and
Koreans) show more engagement while interacting with a
service robot in collaborative tasks thanWesterners (e.g. Ger-
mans).ComparedwithGerman subjects,Chinese andKorean
subjects perceived the service robots used in the experiment
to be more likeable, satisfactory and trustworthy, and they
had higher dedication with the robot. This finding is consis-
tent with a previous study by Bartneck et al. [21] showing
that German subjects had more anxiety and more concern
about the robot’s negative influence than Chinese subjects
did [25].

Cultural differences were also found regarding future
intentions to use a robot in a collaborative situation after
watching a video in which a human and robot perform a
collaborative task together [28] or after direct human–robot-
interaction [29]. Indeed, these differences were found within
Europeans (British and Italians or Germans and Dutch).

However, the evaluation of the robot can also differ regard-
ing the type of robot in terms of the autonomy level. For
example, the Japanese assume autonomy of humanoid robots
more strongly than Koreans or Americans [30, 31]. In con-
trast, Lee et al. found that American subjects expected
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domestic robots to have high levels of autonomy [32]. Thus,
it is expected that there are cultural differences regarding the
robot’s type (active vs. passive robot).

Previous studies have been mostly limited to measuring
single aspects of cultural differences regarding the accep-
tance of social robots in a few countries. So far, to the best
knowledge of the authors, there are no comparable studies
measuring cross-cultural differences in industrial contexts.
Moreover, a significant body of work is conducted mainly
with test subjects recruited from universities (e.g. [18, 21,
29–31]) or unspecified test subjectswithout a precise descrip-
tion (e.g. [16, 23, 24, 32]). As far as we know, there are
no studies measuring the acceptance of industrial workers.
Therefore, the transferability of the available study result-
s—with findings on social robots and test subjects from the
university or everyday life—to industrial robots as well as
work systems and test subjects from the industrial work envi-
ronment is limited.

In short, based on the differences found in the attitudes
towards robots in earlier studies (which compared Eastern-
ers andWesterners), this study aims at studying human–robot
collaboration using Germany, Japan, China, and the USA
as an example. The specific investigation of these four
countries offers the potential to investigate the previously
assumed dichotomy between a western and eastern culture
in a more selective way and to identify possible causes for
different technology acceptance more precisely. One fac-
tor, which predicts both effective and efficient technology
usage, is the acceptance of the innovative assistive working
system. A working system is perceived to be useful, cover
human needs, capabilities and expectations only if accep-
tance scores are high. Therefore, human–robot collaboration
acceptance should be evaluated with regard to differences in
the predictors of acceptance depending on the cross-cultural
background of subjects fromGermany, Japan, China, and the
USA.

1.3 The Present Study

The aim of our research was to build an acceptance model
with regard to human–robot collaboration that builds on
already existing knowledge and takes context-specific factors
of the interaction between human and robots in an industrial
setting into account. Therefore, the model was developed
over four consecutive stages.

First, a research model based on the literature was devel-
oped and reviewed in a workshop with associates of robot
manufacturing companies, associates of companies that use
industrial robots, employees working with robots, and sci-
entists in the fields of psychology, computer science and
engineering. This model took variables of the traditional
technology acceptance models, such as TAM [10], TAM 2
[12] and TAM 3 [13] into account and was extended with

regard to factors which came up during the workshop. As
such, the model contains context-specific factors that might
be the subject for adaptation in work systems, such as per-
ceived enjoyment, perceived safety, ethical, legal and social
implications and, on the other hand, personal characteristics
such as self-efficacy, robot anxiety, affinity towards technol-
ogy (adapted from [33]) and perceptions of external control,
which are considered as variables with uncertain influence
on the predictors. The ELSI factors were added due to the
context of human–robot collaboration (e.g. “I fear that I lose
the contact to my colleagues because of the robot”). ELSI
deal, among other things, with the advantages and disadvan-
tages of the technology. On the one hand, employees can
be supported in physically demanding or monotonous tasks.
On the other hand, the growth of robot systems can lead
to job losses and a decline in human skills and knowledge.
This dualism of technology leads to the need to consider
ethical, legal and social implications in the development of
human–robot systems. [34]. As a second step, a survey based
on the emerged variables was developed and iteratively val-
idated with experts. Third, the survey was implemented in
form of an online tool and completed by 1326 participants.
The participantswere recruited according to the chosen coun-
tries with the support of a specialized survey panel company.
Participants with at least 1 month of professional working
experience as operational production workers were selected
for the study. Lastly, the model was analyzed statistically by
correlation analyses in order to draw conclusions with regard
to possible predictors concerning the acceptance of robots.

The different taxonomies of human–robot collaboration
and robots are complex and can be divided into communi-
cation channel, robot task, physical and temporal proximity,
kind of collaboration, field of application, robot morphol-
ogy, human interaction role, degree of robot autonomy and
team composition [35]. In this study, the role of the robot in
the human–robot system is presented as active and passive
in a simplified way. As robots can adopt an active role (e.g.
handing over heavy components) or a passive role (e.g. hold
a component so that the human can work on that compo-
nent), we built two scenarios for the survey in order to make
predictions concerning both ways of interacting. Participants
were instructed to base their response behavior on the sce-
nario including the robot as an active partner for interaction
or as a passive partner for interaction.

2 Method

2.1 Participants

Altogether, N � 1326 subjects completed the online survey
of the study, recruited via a panel survey (N � 322 from
Germany, N � 360 from Japan, N � 349 from China and
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Fig. 1 Histograms of the study’s age distribution

N � 295 came from the USA). All of them were working
in manufacturing. Gender was balanced but representative
for production employees: 74.9% of the survey participants
were male and 25.1% were female. Ages ranged from 18 to
65 years (M � 42.6, SD � 10.5). Figure 1 shows a histogram
of the study’s age distribution. For the evaluation only com-
pleted questionnaires were considered.

In the context of conducting this study, the Ethics Com-
mittee at the RWTH Aachen School of Medicine discussed

the ethics proposal and assessed it as follows: “From an eth-
ical and professional law perspective, there are no concerns
about the research project” (EK 013/16).

2.2 Instrument

The specific items of the survey are presented in Table 1
and include the reference to the original research except for
questions related to ELSI that the researchers of this study
developed, as described according to the procedure in the
previous section. All items developed in the corresponding
language were deemed to be adequate for the survey par-
ticipants. As the researchers who conducted the study were
native German speakers, the questionnaire was first devel-
oped in German. As a next step, a forward translation was
carried out (i.e. the questionnaire was translated by a bilin-
gual translator able to both speak German and the target
language of the questionnaire). Third, a back translation was
administered. Using the same approach as in the forward

Table 1 Items of the study

Factors Items

TAM (Davis [10]) Perceived usefulness Using the robot improves my performance in my job

Perceived ease of use My interaction with the robot is easy

Behavioral intention If I could choose whether the robot supports me at work, I
would appreciate working with the robot

Use behavior I prefer the robot to other machines in the industrial environment

TAM 2 (Venkatesh and Davis [12]) Subjective norm In general, the organization supports the use of the robot

Image People in my organization who use the robot have more prestige
than those who do not

Job relevance The use of the robot is pertinent to my various job-related tasks

Output quality The quality of the output I get from the robot is high

Result demonstrability I have no difficulty telling others about the results of using the
robot

TAM3 (Venkatesh and Bala [13]) Perceived enjoyment I find using the robot to be enjoyable

Self-efficacy I can use the robot if someone shows me how to do it first

Robot anxiety Robots make me feel uncomfortable

Perception of external control I have the resources necessary to use the robot

ELSI Social implication I fear that I will lose the contact to my colleagues because of the
robot

Legal implication (occupational safety) I do not mind if the robot works with me at a shared workstation

Legal implication (data protection) I do not mind if the robot records personal information about me

Ethical implication I fear that I will lose my job because of the robot.

Perceived safety I feel safe while using the robot

Other Technology affinity (Karrer et al. [33]) I like to visit shops for electronic devices
Electronic devices lead to intellectual impoverishment
Electronic devices make things cumbersome
I inform myself about electronic devices, even if I do not have
the intention to purchase them

Electronic devices make people independent
Trying new electronic devices is fun
I know most of the functions of the devices I own
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Table 2 Structure of the online survey

Part Factors/information

Introduction Project aim and funding

Call for participation

Anchor variables Self -efficacy, robot anxiety,
technology affinity,
perceptions of external
control

Scenario description Active robot, passive robot
(permuted)

Adaptation variables (for each
scenario)

Perceived enjoyment, social
implication, legal
implications, ethical
implications, perceived safety

Other variables (for each
scenario)

Subjective norm, image, job
relevance, output quality,
result demonstrability,
perceived usefulness,
perceived ease of use,
behavioral intention, use
behavior

Demographical data Gender and age

Conclusion Possibility for final comments
on human–robot collaboration
and comments on the survey

translation, the questionnaire was given to an independent
translator who spoke the questionnaire language and Ger-
man in order to find any discrepancies in the translation. In
case the translation was regarded as equivalent and properly
translated, the questionnaire was used for the study. Other-
wise, the procedure was repeated for critical terms in the
questionnaires. The participants rated the degree of consent
with the statements on a 7-point Likert scale, with 1 � fully
disagree and 7 � fully agree.

2.3 Procedure

The survey was structured into explanatory parts, such as
the project description and questionnaire parts, e.g. for the
variables of the model (see Table 2). The software used for
the online survey was Unipark, the academic program of
Questback. The two scenarios were described as follows:

Active robot: “You are an order picker, working with a
robot arm at a shared workstation. Your job is to take a case
and the corresponding snap lid and hold these components
compatible between you and the robot arm onto the working
plate. The robot takes the corresponding screws one after the
other and fastens the snap lids to the housing. After mounting
the components, the robot puts the constructed part in the
order picking area next to the workstation and a new process
begins.”

Passive robot: “You are an order picker, working with a
stationary robot arm at a shared workstation. The robot takes
an automobile door from the reserve storage and holds it in
front of you. You then take individual car components from
a shelf and mount these components on the automobile door.
After the car components are mounted, the robot puts the
door in the order picking area next to the workstation and a
new process begins.”

2.4 Statistical Analysis

Correlation coefficients were used to determine the relation-
ships in our model and were calculated by using Spearman’s
rho. According to Cohen [36], effect sizes can be classified
into low (r� .10), medium (r� .30) and large (r� .50). The
level of significance was set to α � .05. The complete HRC
acceptance model based on the accumulated data from Ger-
many, Japan, China and the USA is presented in Fig. 2.

3 Results

TheHRCAMfor all four countries is described inmore detail
in the following sections. Regarding perceived usefulness,
the most important predictor in the robot acceptance model
is job relevance, followed by subjective norm, which might
be caused by the job-related and industrial context of the
model.

Perceived ease of use is influenced by the anchor vari-
ables and the adjustment variables. Regarding the anchor
variables, the highest correlation coefficients were found for
the variables of the traditional TAM 3 model self-efficacy,
robot anxiety and perceptions of external control. Techno-
logical affinity was negatively correlated with perceived ease
of use.

Concerning the variables for adjustment, it was shown
that perceived enjoyment, perceived safety and occupational
safety are the best predictors for perceived ease of use show-
ing high correlation coefficients, whereas social and ethical
implications are less important as they show correlation coef-
ficients which can be classified as medium.

Altogether, correlation coefficients between perceived
usefulness, perceived ease of use, behavioral intention and
use behavior reachedmedium to high levels, showing that the
original model is transferrable to the domain of human–robot
interaction.

The robot acceptance models for the individual countries
of Germany, Japan, China and the USA can be found in the
Appendix under Figs. 3, 4, 5, and 6. The differences between
the overall robot acceptancemodel and the individualmodels
worth highlighting are briefly explained below.
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Fig. 2 HRCAM with correlation coefficients as strength of associations, *p < .05, **p < .001, (N � 1326)

3.1 TAM in Germany

The acceptance model of the German sample is shown in
Fig. 3 of the Appendix. It is noticeable that the correlation
coefficients for both active and passive robot types are large
(r > .50) for the variables of subjective norm, job relevance,
perceptions of external control, perceived safety and occupa-
tional safety. The highest correlation coefficient in the model
is found between job relevance and perceived usefulness
for the active type of robot, implying that job relevance is
the greatest predictor for perceived usefulness. For the vari-
ables of result demonstrability, self-efficacy, robot anxiety,
social implications and data protection, the correlation coef-
ficients vary between medium and large (.30< r < .50) for
both active and passive types of robots, whereby the cor-
relation coefficient for self-efficacy and output quality are
highest. The lowest correlation coefficients in the model are

found between image and perceived usefulness and between
ethical implications and perceived ease of use.

In general, it is noticeable that correlation coefficients are
on average smaller for the German sample compared to the
overall model. The greatest difference between the models is
detectable between thevariables of age, technological affinity
and image.

3.2 TAM in Japan

The results of the sample from Japan are shown in Fig. 4 of
the Appendix. The most striking finding about technology
acceptance in Japan is the fact that the correlation coeffi-
cients for ethical implications and the perceived ease of use
are much smaller (r < .10) compared to the other analyzed
countries. Furthermore, it is noticeable that the correlation
coefficients for both active and passive robot types are large
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for the variables of subjective norm, job relevance and result
demonstrability, whereby the correlation coefficient between
result demonstrability and perceived usefulness is the great-
est predictor in the model—as was already found in the
German sample. For the variables of perception of exter-
nal control and perceived safety, the correlation coefficients
are large for the active or passive robot type; for the passive
robot type, the correlation coefficients are between medium
and large. For the variables of output quality, self-efficacy,
perceived enjoyment, occupational safety and data protec-
tion, the correlation coefficients are between medium and
large for the active and passive robot type.

Generally, comparing Japan and the overall model shows
that the correlation coefficients for the variable of job rele-
vance are noticeably higher for Japan and significantly lower
for the variables of self-efficacy, robot anxiety, technology
affinity, perceived enjoyment, social implications and ethi-
cal implications.

3.3 TAM in China

The results of the sample from China are shown in Fig. 5 of
the Appendix. The greatest correlation coefficient is found
between perceived enjoyment and perceived ease of use, fol-
lowed by the correlation coefficient between output quality
and perceived usefulness. In addition, it is noticeable that
the effect sizes for both active and passive robot types are
large for the variables of subjective norm, result demonstra-
bility, perception of external control, perceived enjoyment,
perceived safety, occupational safety and data protection. For
the variables of image, job relevance, self-efficacy, robot anx-
iety and ethical implications, the effect sizes are between
medium and large for the active and passive robot type.

Comparing China and the overall model, the effect sizes
for the variables of image and data protection are noticeably
higher for China and significantly lower for the variables of
job relevance and self-efficacy.

3.4 TAM in the USA

The results of the subjects from the USA are shown in Fig. 6
of the Appendix. It is noteworthy that the correlation coef-
ficients are highest for perceived enjoyment and perceived
ease of use aswell as output quality and perceived usefulness.
Furthermore, it should be noted that the correlation coeffi-
cients for both active and passive robot types are large for the
variable subjective norm, job relevance, perception of exter-
nal control, perceived safety and occupational safety. For
the variable of result demonstrability, the correlation coeffi-
cients are large for the passive robot type; for the active robot
type, the effect sizes are a little lower than large and between

medium and large. For the variables of image, self-efficacy
and data protection, the effect sizes are between medium and
large for the active and passive robot type.

Comparing the model of the USA and the overall model,
the correlation coefficient between robot anxiety and per-
ceived ease of use are noticeably higher and significantly
lower between self-efficacy and perceived ease of use.

3.5 Cross-Cultural Comparison of TAM

The cross-cultural differences between Germany, the USA,
Japan and China are shown in Table 3. In the following,
striking cultural differences in robot acceptance are men-
tioned. The greatest cross-cultural differences between the
four countries considered are in the variables job relevance,
technology affinity, perceived enjoyment, social implica-
tions, data protection and ethical implications.

For the variable job relevance, the correlation coefficients
for China deviate noticeably from the other three cultures,
especially compared to Germany and Japan. Regarding tech-
nology affinity, the correlation coefficients for China differ
from the other three cultures, with the greatest differences
compared to Germany and Japan. Further cultural differ-
ences are notable in the variables of perceived enjoyment,
social implications, data protections, and ethical implica-
tions. For the variable of perceived enjoyment, the correlation
coefficients for Japan differ from Germany and the USA in
particular. With regard to the variable of social implications,
the correlation coefficients for Germany differ above all from
those for the USA and Japan. For data protection, the cor-
relation coefficients for Germany differ mainly from those
for China. For ethical implications, the correlation coeffi-
cients for Japan differ considerably, especially from those
for China.

4 Discussion

4.1 Comparison to Historical Technology Acceptance
Models

A comparison between the results from the basic technol-
ogy acceptance model (TAM 1) according to 10 [10, 11]
and the human–robot collaboration acceptance model pre-
sented in this paper (with correlation coefficients as strength
of associations between person-specific anchor variables,
context-specific adjustment variables, and the target variable
use behavior) fromFig. 2 shows that the basic direction of the
significant effects is consistent. In addition, it is striking that
the effect size between perceived ease of use and perceived
usefulness is large (r > .50) for both models. Moreover, the
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Table 3 Cross-cultural
differences in robot acceptance
for Germany, Japan, the
People’s Republic of China and
the United States of America

Germany Japan PRC USA

Type of Robot
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Ufo

esaE
deviecreP

Percep�ons of External Control 

Self-efficacy 

Technology Affinity 

„Robot“ Anxiety 

Age 

Perceived Safety 

Perceived Enjoyment 

Occupa�onal Safety 

Data Protec�on 

Ethical Implica�ons 

Social Implica�ons 

ot
noitnetnIlaroivaheB

U
se

Perceived Usefulness 

Perceived Ease of Use

Subjec�ve Norm

es
U

roivaheB

Behavioral Inten�on to Use 

.542

.562
.524
.459

.597

.623
.613
.643

.481

.486
.382
.345

.438

.432
.308
.330

-.267
-.310

-.285
-.230

-.518
-.524

.399

.439
.219
.142

.443

.447
.287
.332

-.027
.024

-.044
.043

-.116
-.106

.598

.668
.505
.442

.591

.623
.622
.719

.504

.495
.444
.429

.653

.678
.633
.688

.600

.675
.463
.440

.505

.538
.593
.636

.314

.317
.367
.325

.527

.543
.434
.472

.234

.280
.052
.046

.304

.350
.241
.238

.326

.339
.104
-.135

.254

.252
.199
.077

.677

.663
.613
.525

.468

.471
.634
.615

.545

.570
.419
.351

.587

.562
.562
.622
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.495
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.444

.489

.489
.499
.489
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.670
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Job Relevance 
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Output Quality 
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.535
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.606

.675
.633
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.471
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.584
.526
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.566
.512
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.151
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.251

.437

.454
.393
.490

.450

.483
.417
.356

.546

.563
.522
.651

-.333
-.383
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effect size of the correlation between perceived usefulness
and behavioral intention to use for the HRCAM is large.
Analogously, the correlation in theTAM1between perceived
usefulness and intention to use is large. It also appears for
the HRCA model that perceived ease of use has a large and
significant effect on behavioral intention to use. This is anal-
ogous to the context in the TA model that perceived ease of
use has a smaller but nonetheless significant effect on atti-
tude towards using. This shows that TAM 1 can be used as a
starting point for developing the human–robot collaboration
acceptance model [10, 11].

Furthermore, a comparison between the second technol-
ogy acceptance model (TAM 2) according to 12 [12], the
third technology acceptance model (TAM 3) according to 13
[13] and the human–robot collaboration acceptance model
presented in this contribution shows that the direction of the
correlations are the same. These similarities with the already
sufficiently validated historical models (TAM 1–3) shows
that the fundamental assumption of technology acceptance
can be applied to the context of robotics.

4.2 Differences Between Active and Passive Robot
Types

For the two scenarios—the robot in the role of active and pas-
sive collaboration partner—the correlation coefficients rep-
resenting the strength of association between person-specific
anchor variables, context-specific adaptation variables, and
the target variable use behavior differed in several respects.

For the variables of image (passive robot: .349/active
robot: .397), output quality (.591/.623), perceived safety
(.653/.692), and data protection (.354/.390), the correlation
coefficients between the robot in the passive and the active
role differ noticeably (by more than � � .03), with lower
values for the passive robot.

For the variables of result demonstrability (.570/.525) and
social implications (.239/.188), the correlation coefficients
between the robot in the passive and the active role differ
markedly, with lower values for the active robot.

Initially, as already mentioned in Chapter 1.2, differ-
ences regarding an active and passive robotic type could be
expected (Nomura et al. [30, 31], Lee et al. [32]). However,
neither the results of this study regarding the robot in an
active role compared to the robot in a passive role nor the
above-mentioned literature show large differences, suggest-
ing that either the area of operation of robots can be ignored
whenmodeling acceptance or that our scenarios did not differ
sufficiently.

4.3 Human–Robot Collaboration Acceptance Model

Regarding perceived usefulness, the most important predic-
tor in our model is job relevance (.629/.655), followed by

subjective norm, output quality, and result demonstrability.
A possible explanation for this is the industrial context of the
model.

Regarding the anchor variables, we found the highest
correlation coefficients for the variables of the traditional
TAM 3 perceptions of external control, self-efficacy, and
robot anxiety. Technology affinity was negatively correlated
with perceived ease of use. Possible reasons for the neg-
ative correlation of technological affinity and ease of use
may be that persons with a higher technological affinity have
more information and technical expertise and therefore are
better informed about the complexity of technology. Thus,
they are more likely to know the vulnerabilities of novel
systems. From this, it can be assumed that persons with a
higher technological affinity have a more distinct opinion
and higher expectations about human–robot collaboration
scenarios. With regard to anchor variables and physiological
factors such as age, it should be noted that these are person-
related or individual and cannot simply be influenced.

In contrast, the adjustment variables can be positively
influenced by the ergonomic criteria and the aspect of robot
acceptance. The adjustment variables of perceived enjoy-
ment, perceived safety and occupational safety are the best
predictors for the perceived ease of use showing high effect-
sizes,whereas social implications, data protection and ethical
implications are of lesser relevance showing medium effect
sizes. It follows that the adjustment variables, in particu-
lar perceived enjoyment, perceived safety and occupational
safety, should be given special attention in the design of
human–robot collaboration. Through a design that takes
ergonomics and user experience into account, perceived ease
of use and thus behavioral intention to use can be positively
influenced.

For example, an ergonomic design according to ISO
9241-210 can increase the usability or user experience of
human–robot collaboration (effectiveness, efficiency, satis-
faction) and thus perceived enjoyment. By means of an
ergonomic design of the adjustment variables, perceived ease
of use and hence behavioral intention to use and the use
behavior of human–robot collaboration can be increased.

Overall, correlation coefficients between perceived use-
fulness, perceived ease of use, behavioral intention and use
behavior reachedhigh levels, indicating that the original tech-
nology acceptance model is transferrable to the domain of
human–robot collaboration.

4.4 Cross-Cultural Differences in Robot Acceptance

In addition, striking cultural differences in robot acceptance
(more than�� .2 between the highest and lowest correlation
coefficients for the robot in the role of active and passive
interaction partner) are discussed on the basis of Table 3.
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Regarding cultural differences for perceived usefulness,
the most substantial finding is job relevance. For the vari-
able of job relevance, the correlation coefficients for China
(.487/.489) deviate noticeably from the other three cul-
tures, the biggest difference being compared to Germany
(.748/.712) and Japan (.668/.739). One possible explanation
for this is that the level of automation in China is lower than
in Germany and Japan.

In terms of the anchor variables, which refer to perceived
ease of use, it is striking that for technology affinity the cor-
relation coefficients for China (− .518/− .524) differ from
those of the other three cultures, with the greatest differ-
ences compared to Germany (− .267/− .310) and Japan (−
.285/− .230). One possible reason for this difference is that
in China, the spread and use of technology in everyday life,
such as smartphones, has increased considerably in recent
years across all ages, and smartphones with various apps are
used for cashless payments in everyday situations such as
shopping.

With a view to the adjustment variables, which also relate
to perceived ease of use, cultural differences are notable in
the variables of perceived enjoyment, social implications,
data protection, and ethical implications. For the variable of
perceived enjoyment, the correlation coefficients for Japan
(.444/.429) differ from those for China (.653/.678) and the
USA (.633/.688) in particular. This lower correlation coef-
ficient between perceived enjoyment and perceived ease of
use for Japan could be caused by a high habituation effect
and the immense spread of robots in everyday life as in
restaurants and hotels in Japan. With regard to the vari-
able of social implications, the correlation coefficients for
Germany (.326/.339) differ above all from those for the
USA (.199/.077) and Japan (.104/− .135). The fear of los-
ing contact with colleagues in the future due to the robot
may be smaller in Japan than in other countries, because
robots are alreadywidespread in Japan. The correlation coef-
ficients between data protection and perceived ease of use
for Germany (.314/.317) differ mainly from those for China
(.527/.543). The correlation coefficients between data pro-
tection and perceived ease of use may be comparatively low
for Germany due to the extensive data protection laws and
comparatively high for China due to the extensive spread
of video surveillance. The correlation coefficients between
ethical implications and perceived ease of use differ consid-
erably between Japan (.052/.046) andChina (.304/.350). Two
explanations for this are the already high level of automation
and the positive connotation of automation in Japan, which
may lead to a low fear of losing the job due to a robot.

The studies presented in the literature review in Chap-
ter 1.2 focus only on individual factors such as, for example,
style of communication, attitudes towards robots or trust,

neither of which are according to TAM 3 or the technology
acceptance model regarding human–robot collaboration pre-
sented in this paper (see Fig. 2). Therefore, the findings in
the literature regarding cultural differences and the cultural
differences in robot acceptance illustrated in Table 3 are not
directly comparable.

On the basis of the results, the examined countries cannot
be classified as “western” or “eastern” cultures. In addition,
the potential causes for differences in technology accep-
tance between the countries under consideration are not
mono-causal and cannot be explained in general terms by
cross-cultural differences between West and East. Rather,
possible causes such as level of automation and positive con-
notations of automation, spread and use of technology in
everyday life, habituation effects and spread of robots, data
protection laws versus spread of video surveillance indicate
that there are multiple causes of difference, including social
and political differences.

4.5 Limitations

The findings of this study should be interpreted in light of
certain limitations, however. First, the developed models,
although they involved participants of four different cultures,
are not globally valid, as they are restricted to the analyzed
cultures. Further research would be needed in order to make
more precise predictions regarding other cultures.

Another limitation regarding the classification of the sam-
ple of the study concerns the fact that a panel company was
commissioned to select the subjects. The aim of a sample is
always to be able to make statements about the population
based on an analysis of a sample. In a representative sam-
ple, the results of the panel participants can be extrapolated
to the respective population without systematic errors. If a
non-representative sample is used, the results are distorted
and extrapolation is not possible. Distortion may be caused
by the non-participation of selected persons or by incorrect
sample selection.

The problem of lack of representativeness as a result
of selection processes can have two causes. Self-selection
occurs when the initiative to participate comes from the
participants themselves and not from the organization con-
ducting an online panel. Such a sample is distorted in the
sense that the people who consciously decide to participate
usually overrepresented certain groups of people. The pop-
ulation of online panels can also lead to distortions, as it
consists only of Internet users. Without Internet access, no
one can take part in the studies, so that a large part of the
total population is excluded from the outset. These are fac-
tors which might have an influence on the panel that was
selected in order to build the technology acceptance models
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and which needs to be considered when using panel compa-
nies in order to select samples.

A last limitation that is worth mentioning deals with the
translation of the questionnaires that were used to build the
technology acceptance models. As was described in more
detail in the method section of the paper, a forward and back
translation were administered in order to translate the Ger-
man questionnaire to the three other languages.However, this
procedure does not rule out the possibility of having improp-
erly translated words or terms in the questionnaire that, in
the worst case, miss the intended meaning.

5 Conclusion

Basically, this contribution shows that the historical find-
ings on technology acceptance research, which are based
on human–computer interaction, can also be applied to
human–robot collaboration with the appropriate adaptations.
With knowledge of the variables that influence behavioral
intention to use robots, the interaction with robots can be
positively influenced.

Anchor variables are person-specific and cannot be
changed in the short or medium term, but a corresponding
corporate management can promote robot acceptance in the
long term, for instance. The factor perceptions of external
control (“The degree to which an individual believes that
organizational and technical resources exist to support the
use of the system”) from TAM 3 [13] is an example of an
anchor variable that can be influenced by corporate manage-
ment to change the attitude of employees in the long term.

On the other hand, adjustment variables can be posi-
tively influenced in the short to medium term. The factor
of perceived safety (“I feel safe while using the robot”) is
an example of such an adjustment variable. This can be
done either preventively when the development team designs
the innovative assistive working system or reactively when
corporate management takes the suitable technical, orga-
nizational and personal measures. Beyond that, scientific
and practical findings on industrial engineering, ergonomic
design and occupational health and safety can be helpful.
Among other things, the design requirements and protective
measures of relevant standards such as 4 must be taken into
account. This can be supplemented by information on cross-
cultural differences of acceptance.
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Fig. 3 Robot acceptance model for Germany with correlation coefficients as strength of associations between general acceptance variables, person-
specific anchor variables, age and context-specific adjustment variables, on the target variables, *p < .05, **p < .001, (N � 322)
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Fig. 4 Robot acceptance model for Japan with correlation coefficients as strength of associations between person-specific anchor variables, context-
specific adjustment variables, age and the target variable use behavior, *p < .05, **p < .001, (N � 360)
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Fig. 5 Robot acceptance model for the People’s Republic of China with correlation coefficients as strength of associations between person-specific
anchor variables, context-specific adjustment variables, age and the target variable use behavior, *p < .05, **p < .001, (N � 349)
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Fig. 6 Robot acceptance model for the United States of America with correlation coefficients as strength of associations between person-specific
anchor variables, context-specific adjustment variables, age and the target variable use behavior, *p < .05, **p < .001, (N � 295)
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