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Abstract According to the 2008 WHO classification, the

category of myelodysplastic/myeloproliferative neoplasms

(MDS/MPN) includes atypical chronic myeloid leukaemia

(aCML), chronic myelomonocytic leukaemia (CMML),

MDS/MPN-unclassifiable (MDS/MPN-U), juvenile myel-

omonocytic leukaemia (JMML) and a ‘‘provisional’’ entity,

refractory anaemia with ring sideroblasts and thrombocy-

tosis (RARS-T). The remarkable progress in our under-

standing of the somatic pathogenesis of MDS/MPN has

made it clear that there is considerable overlap among

these diseases at the molecular level, as well as layers of

unexpected complexity. Deregulation of signalling plays an

important role in many cases, and is clearly linked to more

highly proliferative disease. Other mutations affect a range

of other essential, interrelated cellular mechanisms,

including epigenetic regulation, RNA splicing, transcrip-

tion, and DNA damage response. The various combinations

of mutations indicate a multi-step pathogenesis, which

likely contributes to the marked clinical heterogeneity of

these disorders. The delineation of complex clonal archi-

tectures may serve as the cornerstone for the identification

of novel therapeutic targets and lead to better patient out-

comes. This review summarizes some of the current

knowledge of molecular pathogenetic lesions in the MDS/

MPN subtypes that are seen in adults: atypical CML,

CMML and MDS/MPN-U.

Keywords Atypical CML � CNL � CMML � MDS/MPN-

U � Signalling pathways � RNA splicing � Transcription

factors � Epigenetic regulation � DNA damage response

Introduction

The 2008 World Health Organization (WHO) classification

of haematopoietic and lymphoid tissue tumours includes

five subcategories of myeloid neoplasms: (i) myeloprolif-

erative neoplasms (MPNs) (ii) myeloid and lymphoid

neoplasms with eosinophilia and abnormalities of PDG-

FRA, PDGFRB and FGFR1 (iii) myelodysplastic syn-

drome (MDS) (iv) myelodysplastic/myeloproliferative

neoplasms (MDS/MPNs) or ‘‘overlap MDS/MPN’’, and

(v) acute myeloid leukaemia (AML) [1].

According to Vardiman et al. [1], MDS/MPN are clonal

myeloid disorders that characterized, at the time of their

initial presentation, by the simultaneous presence of both

myelodysplastic and myeloproliferative features, thus pre-

venting them from being classified as either myelodysplastic

syndrome (MDS) or myeloproliferative neoplasms (MPNs).

These disorders comprise chronic myelomonocytic leukae-

mia (CMML), atypical chronic myeloid leukaemia (aCML,

BCR-ABL1-negative CML), juvenile myelomonocytic leu-

kaemia (JMML), and a ‘‘by exclusion’’ subcategory, mye-

lodysplastic/myeloproliferative neoplasms unclassifiable

(MDS/MPN-U). The best characterized of the latter condi-

tions is the ‘‘provisional’’ entity defined as refractory anae-

mia with ringed sideroblasts (RARS) associated with marked

thrombocytosis (RARS-T). Of these subtypes, CMML is by
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far the most common and as a group, many MDS/MPN cases,

and particularly those with aCML, have a poor prognosis and

limited therapeutic options [2–6].

Diagnosis based on the 2008 WHO classification is pri-

marily based on leukocyte counts and morphology. Addi-

tional disease features regarding genetic data are obtained

using classic cytogenetic analysis, fluorescence in situ

hybridization (FISH) and/or polymerase chain reaction

(PCR), principally to exclude BCR-ABL1 [7]. The molecular

characterization of these conditions has advanced consider-

ably with the use of next generation sequencing technologies,

and it has become clear that there is considerable heteroge-

neity between cases at the molecular level. Furthermore, as

detailed below, there are no molecular markers known that

are absolutely specific for any MDS/MPN subtype.

This review focuses on current knowledge and chal-

lenges related to the pathogenesis of atypical CML, CMML

and MDS/MPN-U, as well as the relationship between

molecular findings, clinical phenotype and prognosis.

Cytogenetic findings in atypical CML, CMML,

and MDS/MPN-unclassifiable

Conventional cytogenetic evaluation and high-resolution

single polymorphism genotyping arrays (SNP-A) reveal

chromosomal abnormalities in almost two-thirds of patients

with aCML, CMML and MDS/MPN-U [8]. The most com-

monly detected abnormalities are aneuploidies (?8, ?9, -7)

or deletions (7q-, 13q-, 20q), [9, 10], though none are

specific to any disease subtype. A small subset of patients

(*1 %) present with reciprocal translocations, which have

led to the identification of diverse tyrosine kinase fusion

genes which are important to recognise because of the

potential for targeted therapy [11–16]. Although the initial

working diagnosis for many of these cases may be an MPN or

MDS/MPN subtype, often with prominent eosinophilia and

lymphadenopathy, many can be correctly assigned to the

category ‘‘Myeloid and lymphoid neoplasms with eosino-

philia and abnormalities of PDGFRA, PDGFRB and

FGFR1’’ following cytogenetic and molecular investigation.

Under the current classification scheme, however, cases with

involvement of other tyrosine kinases may be classified

under another disease subtype, e.g. CMML [17].

Molecular findings in atypical CML, CMML,

and MDS/MPN-unclassifiable

Until a few years ago, the only known recurrently mutated

genes in MDS/MPN were KRAS and NRAS. Approximately

one-third of cases were initially thought to present with

mutation in these genes, although the true frequency is now

believed to be lower. Subsequently, array-based compara-

tive genomic hybridization (aCGH), genome wide SNP-A,

whole genome and full exome sequencing have enabled the

identification of [40 novel somatically mutated genes in

myeloid malignancies [18, 19]. Analysis of SNP-A data has

revealed large regions of acquired uniparental disomy

(aUPD) in almost one-third of MDS/MPN cases [8, 20].

Evaluation of these areas of aUPD revealed an association

with either gain of function mutations in oncogenes or loss

of function mutations in tumour suppressor genes [21–23].

Whole genome and full exome sequencing have led to the

extensive characterization of additional recurrent somatic

alterations and the central role some of them play in the

distinctive features of disease biology [24–26]. However,

none of these abnormalities are unique to MDS/MPN, but

are also seen in a range of myeloid malignancies such as

MPN, MDS and AML. Most of these mutations affect a

range of essential, interrelated cellular mechanisms

including signalling, RNA splicing, transcriptional control,

DNA damage response and epigenetic regulation.

Mutations that activate signalling in aCML, CMML,

and MDS/MPN-U

Mutations that activate growth factor signalling pathways

constitute the largest category of somatically mutated genes

in MDS/MPN. Genes affected include growth factor recep-

tors, downstream signalling components and negative reg-

ulators. Overall, about 50 % of CMML cases have mutations

in genes that result in activated signalling (Table 1) and the

presence of such mutations correlates with more prolifera-

tive disease as well as hypersensitivity to granulocyte–

monocyte colony-stimulating factor (GM-CSF) [27, 28].

RAS

RAS proteins are membrane-associated GTPases that control

the MAP kinase cascade of serine/threonine kinases. The

most frequent mutations in KRAS and NRAS genes occur at

codons 12, 31 and 61 [29–31]. Although some earlier series

indicate a high frequency of RAS mutations in CMML and

aCML, more recent studies have indicated that the true fre-

quency of mutations is in the region of 10–15 % [25, 27].

Though these mutations may confer a competitive advantage

to haematopoietic stem cells [32], they appear to be rather

secondary events at least in CMML [33] and are often asso-

ciated with an MPN-like phenotype with monocytosis [34].

JAK2 and MPL

The JAK2V617F mutation is found infrequently in aCML

cases, [35–37], but is seen in up to 8–10 % of CMML cases
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[27, 36] and in almost 60 % of patients with RARS-T [38–

40]. JAK2 is a non-receptor tyrosine kinase that plays

essential role in transducing signals from several cytokine

receptors that are critical for normal myelopoiesis, notably

the erythropoietin receptor (EpoR), the thrombopoietin

receptor (TpoR, encoded by the MPL gene), and the

granulocyte colony-stimulating factor receptor (G-CSFR).

Activated JAK2 phosphorylates specific tyrosine residues

on itself (autophosphorylation) and other proteins (trans-

phosphorylation), thus activating specific signalling cas-

cades involving MAPK, PI3K and STAT proteins [41]. The

V617F mutation results in activation of JAK2 signalling in

the absence of class I receptor stimulation, leading thus to

constitutive activation of signal transduction pathways and

altered transcriptional activity [42].

Indirect dysregulation of JAK2 signalling can arise by

several mechanisms, the most common being activating

mutation of MPL gene, with the MPLW515L/K mutations

being seen in almost 25 % of RARS-T patients [43].

CBL

CBL mutations have been reported in approximately 10 %

of cases of CMML and aCML but are possibly less fre-

quent in MDS/MPN-U [22, 27, 44–46]. CBL is a well-

characterized protein that plays both positive and negative

regulatory roles in tyrosine kinase signalling. In its positive

role, CBL binds to activated signalling complexes and

serves as an adaptor by recruiting downstream signal

transduction components. However, the CBL RING

domain has E3 ligase catalytic activity and ubiquitinylates

activated target proteins on lysine residues. This negative

regulatory role of CBL is best characterized for receptor

tyrosine kinases, in which lysine ubiquitinylation serves as

Table 1 Affected pathways

and genes in patients with

aCML, CMML and MDS/MPN-

U

Cellular pathway Gene Frequency Prognosis

aCML CMML MDS/MPN-U RARS-T

Signalling KRAS 10 % 7–11 %

NRAS 10–30 % 4–16 % 10 %

JAK2 4–8 % 10 % 60 %

MPL 5–20 %

CBL 8 % 10–20 % [10 %

KIT [5 % [5 %

FLT3 5 % 1–3 % 3 %

CSF3R \10 % 4 % Rare

SETBP1 25 % 6–15 % 10 %

NOTCH2 Rare

PTPN11 Rare Rare

NF1 Rare Rare

RNA splicing SF3B1 6 % 80 % Favourable

SFSR2 36–46 % *1 % Unfavourable

U2AF35 5–15 % Unfavourable

ZRSR2 8–10 % *1 %

Transcription RUNX1 6 % 15–20 % 14 % Unfavourable

CEBPA 4 % 4–20 % 4 % Unfavourable

NPM1 1 % 1–6 % 3 % Unfavourable

WT1 *1 % *1 % Unfavourable

TP53 Rare [1 % Rare Unfavourable

Cohesin complex STAG2 *10 % Unfavourable

DNA methylation DNMT3A Rare 5–10 % 4 % 17 % Unfavourable

TET2 30 % 50–60 % 30 % 26 %

IDH1/2 Rare 1–6 % 5–10 % Unfavourable

Histone modifications ASXL1 20–30 % 43–44 % 10 Unfavourable

EZH2 13 % 6–10 % 10 % Unfavourable

SUZ12 Rare [5 % Rare

EED Rare [5 % Rare

UTX 8–9 %
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a signal that triggers internalization of the receptor/ligand

complex and subsequent recycling or proteasomal degra-

dation in endosomes. Furthermore, CBL also targets other

proteins for degradation, most notably STAT5, a key

downstream component of JAK2 signalling. CBL muta-

tions are almost always missense changes in exons 8 and 9

that inactivate the E3 ligase activity. The loss of catalytic

activity but retention of other functions gives rise to a gain

of function and hypersensitivity to multiple cytokines [22,

46].

KIT

KIT mutations are found infrequently in CMML and aCML

cases (*1–4 %) [27, 33] and usually in cases with overt or

undiagnosed systemic mastocytosis with an associated

clonal haematological non-mast cell lineage disease [47].

The KIT proto-oncogene encodes a type III receptor

tyrosine kinase (KIT). The ligand for KIT is stem cell

factor (SCF), a haematopoietic cytokine, which plays an

important role in haematopoietic cell survival, proliferation

and differentiation [48, 49]. Activated KIT affects down-

stream a number of signal transduction pathways, including

those involving RAS/MAPK/ERK1-2, PI3K, the SRC

family and PLC-c signal. Aberrant activation of KIT

similarly leads to up regulation of target signalling path-

ways [50]. The KITD816V mutation is usually associated

with systemic mastocytosis with or without eosinophilia

when present in CMML cases [51, 52].

FLT3

Activating mutations or internal tandem duplications in

FLT3 (fms-like tyrosine kinase III) gene have been

described infrequently in CMML [27, 53], in 5 % of cases

with aCML and 3 % of patients with MDS/MPN-U [54].

Furthermore, occasional cases with FLT3 fusions have

been described in patients with aCML that are responsive

to FLT3 inhibitors [55, 56]. FLT3 is a transmembrane

tyrosine kinase that belongs to the class III receptor tyro-

sine kinase family, which also includes KIT, PDGFRB and

FMS. FLT3 is expressed by immature hematopoietic cells

and is important for the normal development of stem cell

and immune system [57, 58]. FLT3 internal tandem

duplication generates a CMML phenotype in mice, yet

FLT3 mutations are very rare in CMML (about 3 %)

compared to AML [59].

CSF3R

Oncogenic mutations in the receptor of the granulocyte

colony-stimulating factor 3 (CSF3R; G-CSFR) have been

reported to be frequent in chronic neutrophilic leukaemia

(CNL), a rare MPN subtype sharing overlapping features

with aCML [6, 60, 61]. Maxson et al. [60] reported that

*50–60 % of patients with CNL or aCML harbour

mutations in the CSF3R, whereas Pardanani et al. [61] and

Wang et al. [6] showed that CSF3R mutations were

essentially restricted to CNL and absent in aCML and

MDS/MPN-U.

CSF3R is the transmembrane receptor of the granulo-

cyte colony-stimulating factor 3 and is believed to play an

essential role in the growth and differentiation of granu-

locytes [62, 63]. Under normal circumstances CSF3 (better

known as G-CSF) binds to CSF3R and promotes growth

and survival of myeloid precursor cells, which ultimately

differentiate into neutrophils. Deletion of CSF3R leads to

neutropenia in murine models [64]. CSF3/CSF3R signal-

ling affects downstream the JAK/STAT signalling pathway

and the SRC family kinase signalling through activation of

LYN tyrosine kinase [65–67]. Mutations in CSF3R fall into

2 types: nonsense or frameshift mutations leading to pre-

mature truncation of the cytoplasmic tail of the receptor

(truncation mutations) and point mutations in the extra-

cellular domain of CSF3R (membrane proximal muta-

tions). The most common CSF3R mutation in CNL/aCML

is T618I, a membrane proximal mutation that strongly

activates the JAK/STAT pathway and along with the other

membrane proximal mutations, is sensitive to JAK2

inhibitors such as ruxolitinib in model systems [60, 68]. On

the other hand, CSF3R truncation mutations (which are

often seen in combination with membrane proximal

mutations) may be sensitive to SRC kinase inhibitors, such

as dasatinib [60, 68, 69]. Whether JAK2 or SRC inhibitors

are of benefit to patients with CSF3R mutations remains to

be investigated in appropriate clinical studies. The fact that

CSF3R mutations occur frequently in CNL and probably,

occasionally in aCML, identifies a novel diagnostic crite-

rion for these diseases and suggests the need for a careful

pathological analysis to distinguish putative ‘‘CSF3R

positive aCML’’ from CNL [70]. Whether this distinction

is of any clinical significance remains to be determined.

Mutations in CSF3R have been previously reported in

patients with severe congenital neutropenia (SCN), on a

background of inherited ELANE, HAX1 and G6PC3 gene

mutations, especially when this disease progresses to AML

[71, 72]. Furthermore, Kosmider et al. [73], reported var-

iant CSF3R somatic mutations, other than the ones found in

CNL/aCML, in 4 % of CMML cases, in which they pref-

erentially occur in the context of an ASXL1 gene mutation

and they are being associated with poor prognosis.

SETBP1

Recurrent mutations of SETBP1 gene have been identified

in almost 25 % of aCML patients [25], and less frequently
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in MDS/MPN-U (10 %) and CMML (6–15 %), in which

they are often associated with ASXL1 and CBL mutations

[25, 74–76], SETBP1 is also mutated in occasional JMML

cases [77, 78], 1.7–7 % of secondary AML arising from

MPN or MDS [75, 76] and in Schinzel-Giedion syndrome,

a rare genetic disease characterized by congenital malfor-

mations, mental retardation, and a high prevalence of

epithelial tumours [25, 79]. Furthermore, SETBP1 has been

identified as a partner gene in rare chromosomal translo-

cations involved in acute lymphoid and myeloid leukae-

mias [80, 81].

SETBP1 encodes SET binding protein 1, a protein that is

localized predominantly in the nucleus and is expressed in

haematopoietic stem/progenitor cells and also in commit-

ted progenitors [82, 83]. SET plays a role as a negative

regulator of the tumour suppressor protein phosphatase 2A

(PP2A) [83]. SETBP1 protects SET from proteasomal

degradation, thus increasing the amount of SET available

to repress the activity of PP2A [82]. The somatic mutations

seen in myeloid disorders are identical to those seen in

Schinzel-Giedion syndrome, and are tightly clustered and

disrupt a consensus binding motif that binds an E3 ubiq-

uitin ligase when phosphorylated. Piazza et al. and Maki-

shima et al. [25, 84] have shown that mutant SETBP1

conferred overall diminished PP2A activity, which leads to

increased self-proliferation. However, it is not clear if this

is the main mechanism underlying SETBP1 oncogenic

activity. It has also been shown that SETBP1 can directly

activate transcription of the HOXA9 and HOXA10 genes in

both human and mouse myeloid progenitors, promoting

increased self-renewal of progenitor cells [85]. Potentially,

of relevance to this is the fact that SETBP1 shows regions

of homology with several chromatin modifying factors.

Finally, transcriptional profiling indicates that a significant

number of TGF-b target genes are differentially expressed

in aCML cells with mutated and wild-type SETBP1 [25].

Thus, there are a number of potential mechanisms by

which mutant SETBP1 might drive myeloproliferation and

further work is needed to understand.

SETBP1 and CSF3R mutations are not mutually exclu-

sive in aCML/CNL and CMML [60, 61, 68, 73]. In

CMML, mutations on SETBP1 gene might complement

CSF3R mutations and associated with poor prognosis on an

ASXL1 background [73].

NOTCH pathway

Rare inactivating mutations in NOTCH2 and downstream

NOTCH effectors (NCSTN, APH1 and MALM) have been

reported in CMML. Although, abrogation of NOTCH

signalling leads to an MDS/MPN phenotype in murine

models, its relevance to human disease is still unknown

[86].

PTPN11

PTPN11 gene encodes for the SHP2 (Src-homology-2

domain containing protein tyrosine phosphatase), a non-

receptor protein tyrosine phosphatase (PTPase) that medi-

ates signalling from activated growth factor receptors to

RAS and other signalling components [87, 88]. Mutations

in PTPN11 cause Noonan syndrome (NS), a developmental

disorder characterized by cardiac and skeletal defects [89,

90]. NS is also associated with a spectrum of haemato-

logical disorders, including juvenile myelomonocytic leu-

kaemia (JMML). Mutations in the PTPN11 gene cause a

gain of function of the SHP2 protein. This results in acti-

vation of the guanine nucleotide exchange factors

(GNEFs), that are necessary for the conversion of GDP-

RAS into GTP-RAS and subsequently to the constitutively

activation of RAS. Tartaglia et al. [91] observed somatic

mutations in exons 3 and 13 of the PTPN11 gene in 35 %

of the JMML patients without Noonan syndrome, however,

CMML and other MDS/MPN patients are only rarely found

to have PTPN11 mutations [92, 93].

NF1

Mutations of the NF1 gene reported from Niemeyer et al.

[94] in 11 % of JMML patients, who had clinical signs of

neurofibromatosis type 1. The NF1 gene is a tumour sup-

pressor gene encoding for neurofibromin, and is a GTPase

activating protein hydrolysing GTP-RAS into GDP-RAS

[95]. Primary cultures from children with JMML that car-

ried NF1 mutations showed a reduced neurofibromin

activity, resulting in an elevated GTP-RAS activity and

aberrant growth in haematopoietic cells [96]. NF1 deletions

and mutations are seen in about 5 % of myeloid malig-

nancies, including some cases of CMML [97].

Mutations that affect RNA splicing

RNA splicing machinery components are another class of

mutational targets, revealed initially through exome

sequencing studies in MDS [26, 98]. RNA splicing is the

mechanism through which a pre-messenger RNA (pre-

mRNA) is processed by removing introns and fusing exons

into a mature protein encoding mRNA (Fig. 1). The 50-
mRNA splice site of an upstream exon is fused to the 30-
mRNA splice site of the downstream exon in spliceosomes.

Even small changes in the spliceosome complex can alter the

specificity of splicing and lead to changes at protein level

[99]. The spliceosome is a complex that consists of five

small nuclear ribonucleoproteins (snRNPs) and between 100

and 300 associated proteins [100]. The spliceosome is

assembled via sequential binding of snRNPs to the pre-
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mRNA and splicing is initiated by the recognition of 50splice

site by U1 snRNP, and the U2-auxiliary factor (U2AF) to the

30 splice site [100, 101]. The U2AF protein is a heterodimer

consisting of a U2AF35 (U2AF1) subunit and a U2AF65

(U2AF2) subunit. Furthermore, the splicing factor (SF1) is

thought to bind the branchpoint sequence early, through its

component SF3B1, and can bridge the 50splice site upstream

to the 30splice site of the intron and protect the region before

the splicing reaction [100, 102, 103]. The complex that is

formed by the U2AF35/65 heterodimer, the Zinc finger

RNA binding motif and serine/arginine rich 2 (ZRSR2), and

one of the serine/arginine rich splicing factors, SRSF1 or

SRSF2, binds to the polypyrimidine tract, which is located

between the branchpoint and the 30splice site. SRSF1 and

SRSF2 are involved in the removal of introns from the pri-

mary transcript and also influence patterns of alternative

splicing, thus playing a particularly crucial role in the reg-

ulation of this process [100, 101, 103].

Remarkably, mutations in components involved in the

recognition and processing of 30-mRNA splice sites are

very common in MDS and MDS/MPN. Approximately

60 % of CMML cases harbour mutations on splicing

machinery components [27]. The most mutated splicing

gene among CMML patients is SRSF2 (*50 %) [27], with

a further 20 % of patients carrying mutations in other

splicing complex genes including ZRSF2, SF3B1, U2AF35,

U2AF65 and SF3A1 [98, 104–107]. The SRSF2 mutations

cluster to the hotspot residue Pro95 and are frequently

associated with TET2 mutations, particularly in CMML

[27, 106, 108]. Mutations in ZRSF2 or SF3B1 genes affect

\10 % of CMML patients [26, 109]. Furthermore, SF3B1

mutations are seen in almost 72–75 % of patients with

RARS-T [98, 110]. A characteristic feature of RARS/

RARS-T is the presence of abnormal sideroblasts charac-

terized by iron overload in the mitochondria. The SF3B1

mutations seem to be associated with altered iron distri-

bution characterized by coarse iron deposits compared with

wild-type RARS patients, and lead the formation of mor-

phological feature of ring sideroblasts [111], possibly as a

consequence of alterations in splicing of SLC25A37, a

crucial importer of Fe2? into the mitochondria [112].

Mutations in splicing components are usually mutually

exclusive [26], suggesting either functional redundancy or

a combined lethal effect. Apart from the specific associa-

tion between SF3B1 mutations and ringed sideroblasts,

other more subtle differences have been noted with regard

to patterns of genes that are co-mutated in cases with

splicing component mutations, implying that the conse-

quences of mutations in different splicing genes are not

identical [113].

Functional studies of mutant U2AF35 on model sys-

tems have confirmed global impairment of splicing

Fig. 1 Somatic mutations affect genes involved in RNA splicing.

Recurrent mutations in components involved in the recognition and

processing of 30-mRNA splice sites are very common in MDS/MPN.

These mutations can be either gain of function through exon skipping

or alternative splicing or loss of function by intron retention of target

genes. The spliceosome is assembled via sequential binding of

snRNPs to the pre-mRNA and splicing is initiated by the recognition

of 50splice site by U1 snRNP, and the U2-auxiliary factor (U2AF) to

the 30 splice site. The U2AF protein is a heterodimer consisting of a

U2AF35 and a U2AF65 subunits. Furthermore, the splicing factor

(SF1) is thought to bind the branchpoint sequence early, through its

component SF3B1, and can bridge the 50splice site upstream to the

30splice site of the intron and protect the region before the splicing

reaction. The complex that is formed by the U2AF35/65 heterodimer,

the Zinc finger RNA binding motif and serine/arginine rich 2

(ZRSR2), and one of the serine/arginine rich splicing factors, SRSF1

or SRSF2, binds to the polypyrimidine tract, which is located between

the branchpoint and the 30splice site. SRSF1 and SRSF2 are involved

in the removal of introns from the primary transcript and also

influence patterns of alternative splicing, thus playing a particularly

crucial role in the regulation of this process
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including intron retention, induction of mRNA surveil-

lance pathways and growth impairment [26, 109, 114].

The disturbed spliceosome function could also lead to

genomic instability [115], and deregulation of the epige-

netic machinery [116]. It is currently unclear whether the

critical effects of such mutations are indeed global or if

they have molecular and cellular consequences only for a

small subset of genes.

Mutations that affect transcription and DNA damage

response

RUNX1

Mutations in the RUNX1 (also named AML1 or CBFA2)

transcription factor are found in 15–37 % of CMML

patients [27, 92, 117, 118] and less frequently in other

MDS/MPN cases [117]. RUNX1 is located on chromosome

band 21q22.12 and encodes the alpha subunit of the core-

binding factor (CBF) complex [119]. This complex acti-

vates and represses transcription of key regulators of

growth, survival and differentiation pathways. RUNX1 is

one of the most frequent targets of chromosome translo-

cations in leukaemia and somatic mutations have also been

identified, especially in AML M0 subtype [120, 121], de

novo high-risk MDS [122], and therapy-related MDS/AML

[123, 124]. RUNX1 mutations seem to be associated with

poor prognosis in CMML and higher risk of AML pro-

gression [117, 118].

CEBPA

CEBPA mutations have been described in 4–20 % of

CMML patients but seem to be rare events in other MDS/

MPN cases [117, 125]. The CEBPA gene, located on

chromosome band 19q13.11, encodes the transcription

factor CCAAT/enhancer-binding protein-alpha which is

essential for normal differentiation of granculocytes [126].

The involvement of CEBPA in leukaemogenesis has been

confirmed in many studies, with inactivating mutations

reported predominately in AML M0, M1 and M2 [127,

128]. Mutations are usually acquired but can occasionally

be inherited [129].

NPM1

NPM1 (Nucleophosmin 1, also known as B23) mutations

have been described in about 3 % of MDS/MPN patients

[117] and in 1 % of CMML patients [27]. The NPM1 gene,

is located on chromosome band 5q35.1 and encodes a

phosphoprotein which moves between the nucleus and the

cytoplasm. NPM1 is involved in cellular activities related

to both proliferation and growth-suppression pathways. It

is thought to be involved in regulation of the ARF/p53

pathway [130, 131].

TP53

Mutations on TP53 (tumour protein p53) are uncommon in

MDS/MPN and aCML, but have been described in about

1 % of CMML cases [27, 132]. The TP53 gene, which is

located on chromosome band 17p13.1, encodes a tumour

suppressor protein that has transcriptional activation, DNA

binding, and oligomerization domains. TP53 plays a major

role in various biologic activities, including the control of

cell cycle checkpoints and apoptosis [133]. TP53 mutations

occur occasionally in MDS/MPN but are more common in

high-risk/therapy related MDS, MDS-derived leukaemia,

and in the context of complex chromosomal abnormalities

including 17p- and they are associated with poor prog-

nosis [134, 135]. MDS/MPN with an isolated isochromo-

some 17p leading to TP53 haploinsufficiency may be a

distinct disease entity with increased risk of AML pro-

gression [136].

Cohesin complex

Mutations in several members of the cohesin complex

(SMC1, SMC3, RAD21 and STAG) have been reported in

myeloid neoplasms, including 5–10 % of CMML or MDS/

MPN cases [24, 137]. Cohesin is a highly conserved mul-

timeric protein complex composed of four core subunits,

i.e. SMC1, SMC3, RAD21 and STAG proteins, along with

a number of regulatory molecules. This multimeric com-

plex is involved in sister chromatid separation during cell

division, post-replicative DNA repair, and regulation of

global gene expression through long-range cis-interactions

[24, 138, 139]. Combined mutations of cohesin compo-

nents are also found in 10–15 % of AML and MDS cases,

in a mutually exclusive manner.

Mutations that affect the epigenetic regulation of gene

expression

Epigenetics refers to changes in phenotype or gene

expression that are heritable through cell division but are

caused by mechanisms other than changes in the underly-

ing DNA sequence. Mechanistically epigenetics generally

refers to DNA methylation of CpG dinucleotides, a modi-

fication associated with gene silencing, or histone tail

modifications that are associated with transcriptional acti-

vation or repression (Fig. 2). Mutations in genes known or

suspected to encode proteins involved epigenetic regula-

tion are very common in MDS/MPN.
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DNA methylation

DNMT3A (DNA-methyltransferase 3A) is a member of the

DNA methyltransferase proteins that enzymatically add a

methyl group to 50 cytosine in the CpG dinucleotides [140].

Removal of the methyl group from the 50 cytosine nucle-

otides can be actively mediated by the (Ten-Eleven

Translocations) TET family proteins (TET1, TET2 and

TET3). Specifically, TET2 participates in the conversion of

5-methylcytosine (5mC) to 5-hydroxymethylcytosine

(5hmC) [141]. TET2 function depends on a-ketoglutarate

(aKG) for this reaction, which is produced by Isocitrate

Dehydrogenase 1 and 2 (IDH1 and IDH2) [142, 143].

IDH1/2 normally catalyzes the oxidative decarboxylation

of isocitrate to aKG (the third step in the Krebs cycle), but

IDH mutants exhibit a neomorphic gain of function char-

acterized by aberrant production of 2-hydroxyglutarate

(2HG). 2HG, in turn, inhibits TET proteins directly, which

leads to a reduction of 5hmC levels and the presence of

widespread promoter hypermethylation [41, 141]. IDH1/2

and TET2 mutations are mutually exclusive and associated

with similar epigenetic defects [141].

TET2 mutations are very common and found in

40-61 % of CMML patients and around 30 % of aCML

and MDS/MPN-U [18, 27, 144–150]. Mutations affecting

DNMT3A and IDH1/2 are found less frequently in CMML

Fig. 2 Somatic mutations affect genes involved in epigenetic regu-

lation. Recurrent mutations affecting genes involved in histone

modifications and DNA methylation have been described in a range

of myeloid malignancies. a Histone modifications. Loss of function

mutations affect the PRC2 members EZH2, EED and SUZ12. PRC2

complex places methyl- groups on the H3K27 residues, a process

associated with repression of gene transcription. ASXL1 is member of

PRC1 complex and appears to play a role in the recruitment of the

PRC2 complex to its target sequences, while it seems to be involved

in the control of chromatin structure and is believed to be a

component that deubiquitinates histone H2AK119. Mutations of

either ASXL1 or EZH2 lead to loss histone H3K27 methylation

regulation, thus resulting in non-regulated transcriptional activation

and associated with poor prognosis. b DNA methylation. Mutations

affect genes involved in DNA methylation, i.e. cytosine

modifications. Specifically, in DNMT3A gene, a member of the

DNA methyltransferase proteins that enzymatically add a methyl

group to 50 cytosine in the CpG dinucleotides, have been described

mutations of unclear function. The removal of the methyl group from

the 50 cytosine nucleotides can be actively mediated by the TET

family proteins (TET1, TET2 and TET3) and TET2 participates in the

conversion of 5-methylcytosine to 5-hydroxymethylcytosine. Loss of

function mutations has been identified in TET2 gene. Finally, TET2

function depends on a-ketoglutarate for this reaction, which is

produced by IDH1 and IDH2. Gain of function mutations has been

described in myeloid malignancies the mutants exhibit a neomorphic

function characterized by aberrant production of 2-hydroxyglutarate

which inhibits TET proteins directly and leads to a reduction of 5hmC

levels and the presence of widespread promoter hypermethylation
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(around 5 % and 1–6 % respectively), MDS/MPN-U (4 %

and 5–10 % respectively); notably, DNMT3A mutations

have been reported in about 17 % of patients with RARS-

T [110], but are rather rare events in aCML [27, 151–

153].

Histone modifications

EZH2

EZH2 (Enhancer of the Zeste Homolog 2), is a well-char-

acterized gene that encodes the catalytic subunit of the

polycomb repressive complex 2 (PRC2), the highly con-

served histone H3 lysine 27 methyltransferase (H3K27)

that influences stem cell renewal by epigenetic repression

of genes involved in cell-fate decisions. Mutations of EZH2

gene are loss of function, are seen in about 10 % of MDS/

MPN cases and appear to be associated with poor prognosis

[21, 27]. Inactivating mutations affecting other PRC2

complex components EED and SUZ12 are less frequent

([5 %), while mutations in the gene encoding for the

H3K27 demethylase UTX, have also been identified in up

to 9 % of CMML patients [23, 153].

ASXL1

ASXL1 (Addition of sex combs-like 1) plays a role in the

recruitment of the PRC2 complex to its target sequences, as

well as being a component of a complex that deubiquiti-

nates histone H2A lysine 119 (H2AK119) [154].Mutations

of ASXL1 gene are loss of function mutations that promote

myeloid transformation through loss of PRC2-mediated

gene repression [155]. Clonal analyses suggest that ASXL1

mutations could the initial driving event in CMML in many

cases, and the fact that concomitant ASXL1 and TET2

mutations are less frequent than expected, suggests that

they represent independent, though synergistic, pathogenic

mechanisms in CMML. ASXL1 is the most frequently

mutated histone modifying enzyme in CMML (40 % of

cases) [27, 156].

Genomic findings and clinical implications

The mutational profile of adult MDS/MPN subtypes is

summarised in Table 1. It is clear from this table that our

knowledge of genes mutated in CMML is good, but further

systematic and collaborative studies are required to define

the mutational spectrum of rarer MDS/MPN entities. Fur-

thermore, at least with current knowledge, mutational

analysis does help in diagnosing specific MDS/MPN sub-

types, although analysis of SETBP1 and CSF3R might help

to distinguish aCML from CNL [70].

In terms of prognostic significance of molecular aber-

rations, again the most complete data come from analysis

of CMML. In a landmark targeted resequencing study of 18

genes, Itzykson et al. [27] showed that mutations of ASXL1

and SRSF2 were of adverse prognostic significance on

univariate analysis but only ASXL1 remained significant on

multivariate analysis in hypomethylating agents naı̈ve and

treated patients. The adverse significance of ASXL1 muta-

tions has been confirmed in a larger collaborative study

[157]. Other studies in myeloid disorders, and particularly

MDS, have implicated several genes to be adverse prog-

nostic factors with ASXL1, RUNX1, EZH2 and TP53

probably emerging as the most consistent between studies

[18, 113, 158]. It is likely that mutations in these genes, and

probably others [18], will also emerge as adverse prog-

nostic factors in MDS/MPN. Much larger cohorts, how-

ever, will be required to define the clinical significance of

uncommon abnormalities. For rarer disease subtypes

(aCML, MDS/MPN-U) this will require international col-

laborative studies with careful and probably centralised

morphological and clinical review to accurately compare

somatic genotype to phenotype. In addition, the prognostic

significance of cytogenetic abnormalities detected by

conventional cytogenetics or SNP-A should be considered,

with trisomy 8, complex karyotype (C3 abnormalities), and

abnormalities of chromosome 7 being considered as high-

risk elements to be considered alongside clinical findings

[159].

In addition to providing an in-depth assessment of

mutations occurrence in CMML, Itzykson et al. [33] have

also studied the clonal architecture of this disease.

According to the model they propose, early dominance of

the mutated clone, in particular in the presence of a TET2

mutation, accounts for the accumulation of monocytes in

CMML. They also demonstrated by mutation-specific dis-

crimination analysis of single-cell derived colonies that

these mutations create a state of early clonal dominance in

which secondary mutations are acquired in a linear manner

with limited branching of clones from the main dominant

clone. This early clonal dominance could distinguish

CMML from other myeloid malignancies with similar

genetic background [33]. It is currently unclear why indi-

viduals with clonal haemopoiesis driven by mutant TET2

may develop different myeloid malignancies, e.g. MPN,

MDS/MPN or MDS but important contributory factors are

likely to be inherited factors along with the chance of

acquisition of specific secondary phenotype-driving

mutations.

Apart from mutations in specific genes the overall

somatic complexity, i.e. the number of somatically mutated

genes has emerged as an important factor in CMML with

more mutated driver genes being associated with inferior

survival [27]. Similar studies have shown that somatic
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complexity is associated with adverse survival in other

myeloid disorders, e.g. MDS [113] and myelofibrosis [160]

and these molecular findings mirror the well-established

fact that cytogenetic complexity is a poor prognostic factor

[159]. Although screening for mutations in multiple genes

is now feasible on a routine basis by second generation

sequencing, it remains to be defined how many and which

genes should be screened to provide clinically useful and

cost-effective information for the appropriate clinical

management of MDS/MPN patients.

Conclusions

MDS/MPN represents a class of diseases with considerable

genetic and epigenetic complexity and heterogeneity.

Recent technologies, including genome wide SNP-A kar-

yotyping and next generation sequencing have revealed a

substantial number of genes that are affected and have

helped in the elucidation of the clonal nature of these

diseases. TET2, ASXL1 and SFRS2 represent the most

commonly mutated genes but it seems unlikely that a

molecular definition of disease subtypes will emerge that

maps to the current WHO-defined entities. The presence of

combinatorial mutations suggests the need for therapeutic

approaches based on the molecular profile of individual

patients, while further functional genomic studies will

provide insights and better understanding on the molecular

complexity of this disorder.
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