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Abstract
Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream. 
To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the 
risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have 
been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of 
unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mis-
sion, cooperation, real-time implementation and three-dimensional (3-D) space, is a strategic problem due to its large-scale, 
complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed 
that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To 
minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipe-
line network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization 
schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive 
genetic simulated annealing algorithm proposed in this paper provides strong stability.

Keywords  Pipeline network · Unmanned aerial vehicle inspection · Mixed-integer nonlinear programming · Two-stage 
solution

Abbreviations
UAV	� Unmanned aerial vehicle
MINLP	� Mixed-integer nonlinear programming
GA	� Genetic algorithm
SA	� Simulated annealing algorithm
AGASA	� Self-adaptive genetic simulated anneal-

ing algorithm
PSO	� Particle swarm optimization
ACO	� Ant colony optimization

List of symbols
F	� Total length of inspection path, m
�	� Conversion coefficient of distance and 

time

I = {0, 1,… ,N}	� Number of inspection nodes including 
the start node

H = {1,… ,N}	� Number of inspection nodes without 
start node

Li,h	� Distance between inspection node i and 
node h , m

Bi,h,k	� (A binary variable): If the inspection 
mission from node i to node h is per-
formed by UAV k , it is 1; otherwise it is 
0

Ri,k	� (A binary variable): If node i is 
inspected by UAV k , it is 1; otherwise it 
is 0

�	� Maximum turning angle of the UAV
Ek	� Endurance of UAV k , h
d	� Minimum distance between the UAVs, 

m
ds	� Minimum safe distance between the 

UAVs, m
x0, y0	� Coordinate of the UAV base, m
xi, yi	� Coordinate of node i , m
Lm	� Chromosome of individual m in the 

species
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P
(
Lm

)
	� Probability of selection of an individual

pm	� Probability of mutation
T0	� Initial temperature, °C
w	� Temperature update coefficient
M	� Size of population
Gmax	� Maximum evolution generation
Tend	� Termination temperature, °C

1  Introduction

Oil and gas pipelines have features of high pressure and 
flammability, sometimes accompanied by leakage, fire and 
explosion (Zhang et al. 2018a). Accidents could result in 
great loss of lives and high economic costs, so it is of great 
significance to inspect the pipeline regularly to minimize the 
risks. In recent years, unmanned aerial vehicles (UAV) have 
attracted much attention due to the low cost, high efficiency 
as well as safety. There has been extensive research regard-
ing the civil UAV applications for pipeline inspection (Tu 
and Yang 2003; Patle et al. 2018; Reddy et al. 2011; Sedighi 
et al. 2004; Tsai et al. 2011; Hu and Yang 2004). UAVs can 
carry relevant detection equipment (Gómez and Green 2017) 
for different targets, including pipeline infrastructure, leak 
detection and pipeline environmental condition monitoring. 
UAV inspection paths of pipeline networks should be opti-
mized to reduce manpower and to use material resources 
effectively. Previous research on optimization of inspection 
path focused on power grids, railway networks (Zhang et al. 
2018b) and other networks. However, oil and gas pipeline 
network topology is more complicated (Wang et al. 2018a, b; 
Zhang et al. 2017b, d) and difficult to work out. Even though 
previous algorithms are applied, the optimal solution cannot 
be obtained in many cases.

Currently, there are three approaches to plan the inspec-
tion path for pipeline networks. The first one is the graph-
based algorithm, such as the Voronoi diagram, the proba-
bilistic roadmap and the Dijkstra’s algorithm. The Voronoi 
diagram has been widely used in robot path planning (Bhat-
tacharya and Gavrilova 2007; Candeloro et al. 2017; Chen 
and Chen 2014; Garrido et al. 2006). The inspection area 
is divided into points and these points are used to generate 
the Voronoi diagram. Then the Voronoi diagram divides the 
inspection area into many convex polygons which contain 
only one inspection point. When the graph contains the ini-
tial position and destination position, the optimal inspection 
path can be obtained. A probabilistic roadmap (Akbaripour 
and Masehian 2017; Geraerts and Overmars 2006; Wang and 
Cai 2018) is to convert the continuous space into discrete 
space and adopts a search algorithm to find the path on the 
roadmap to improve search efficiency. The Dijkstra’s algo-
rithm is one of the shortest path algorithms from one vertex 

to the rest of the vertices, solving the shortest path problem 
in the directed graph. The main feature of this algorithm 
is to extend the outer layer centering on the starting point 
until it reaches the end. Chen et al. (2015) proposed a multi-
objective optimization model for a wireless sensor network 
mobile agent problem, and the improved Dijkstra’s algo-
rithm was applied to solve the model. The optimal mobile 
agent path between any two nodes could be obtained accord-
ing to the network environment. However, it is very difficult 
to combine the motion constraints of a UAV with the graph-
based algorithm, and the number of sampling points also has 
a great effect on the path search results.

The second approach is the classical heuristic search 
algorithms (Gammell et al. 2015; Li et al. 2017; Yu and 
LaValle 2016), such as the A* algorithm and Sparse A* 
Search (SAS). The A* algorithm was first described by Hart 
et al. (1968) and determined the optimal path from an initial 
node to a target node which evaluated each search position 
in the state space. In order to reduce the search space and 
realize the real-time path planning for the UAV (Szczerba 
et al. 2000), the constraints of the drone flight process are 
taken into account. However, the A* algorithm and the SAS 
algorithm can only plan the path when all environmental 
information is known. What is worse, the search space will 
be larger with an increase in the number of inspection points, 
and the computation time of the classical heuristic search 
algorithm will increase exponentially.

The third approach is the modern heuristic search algo-
rithm that mainly includes a genetic algorithm (GA) (Tu and 
Yang 2003; Nazarahari et al. 2019; Patle, et al. 2018; Sedighi 
et al. 2004; Tsai, et al. 2011; Hu and Yang 2004), particle 
swarm optimization (PSO) (Zhang et al. 2017c) and an ant 
colony optimization (ACO) (Zhang et al. 2017a). Shen et al. 
(2016) developed a novel method for the path planning for 
an electricity distribution network patrol. The vehicle rout-
ing problem (VRP) model was established, and the improved 
ACO was adopted to obtain the optimum patrol path. In this 
way, the patrol programs became more scientific, reasonable 
and efficient. Guo et al. (2017) established an optimization 
model of the logistics network to minimize the overall cost 
of the circulation-type distribution vehicle routing, and a 
genetic algorithm and a particle swarm optimization algo-
rithm are implemented to solve the model. However, the pro-
posed optimization issue is so complex that the computation 
can easily to fall into a local optimum in the evolutionary 
process, which will lead to premature convergence and miss 
the optimal solution.

Given that oil and gas pipeline networks are more com-
plex than electricity distribution networks, the self-adaptive 
genetic simulated annealing algorithm (AGASA) is intro-
duced in this paper to improve the solution quality and effi-
ciency of path planning. Moreover, based on the inspection 
demand of the pipeline network, taking the minimization 
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of the total length of the inspection path as the objective, 
and through the establishment of constraints including the 
mission scenario and the safety performance of UAVs, a 
mixed-integer nonlinear programming (MINLP) model is 
proposed. By adopting the two-stage solution methodology, 
the optimal inspection path is obtained.

2 � Methodology

2.1 � Preliminaries

In our path planner, all of the candidate routes are evaluated 
in the workspace. The pipelines are usually distributed lin-
early, so the pipeline is divided into multiple nodes and the 
two-dimensional coordinates of these nodes are identified 
as deterministic parameters in the model. It should be noted 
that the flight path consists of straight-line segments, e.g., 
a sequence of segments connecting the way nodes from the 
starting node to the goal node, and the starting node and goal 
node are the same.

2.2 � Objective function

Suppose that there are K UAVs implemented in the oil and 
gas pipeline network inspection mission. Taking the total 
inspection path length as the objective, which can be defined 
as follows:

where Li,h defines the distance between the inspection node 
i and node h . Bi,h,k is a binary variable, if the inspection mis-
sion from node i to node h is performed by UAV k , it is 1. 
Otherwise it is 0, 

(
xi, yi

)
 and 

(
xh, yh

)
 are the coordinates of 

node i and node h.

2.3 � Constraints

Each UAV starts from the base and returns to the base after 
completing the inspection mission. Also, it should be noted 
that the UAV is not allowed to return on the original path.

(1)minF =
∑

i

∑

h

∑

k

(
Li,hBi,h,k

)
i ∈ I;h ∈ H;k ∈ K

(2)Li,h =

√(
xi − xh

)2
+
(
yi − yh

)2

(3)
N∑

h

B0,h,k = 1 h ∈ H; k ∈ K

(4)
N∑

i

Bi,0,k = 1 i ∈ I; k ∈ K; i ≠ h

Each node must be inspected by the UAV.

The overall flight time of each UAV cannot exceed its 
endurance.

Set ai =
(
xi − xi−1, yi − yi−1

)
 , the flight angle of the UAV 

cannot exceed the maximum turning angle.

All of the UAVs perform the inspection mission accord-
ing to the set path and the distance between UAVs cannot be 
less than the minimum safe distance ds.

3 � Two‑stage solution methodology

In this paper, the two-stage solution methodology is pro-
posed to optimize the UAV inspection path. In the first stage, 
the pipeline is divided into some nodes according to the 
vision of UAV. In the second stage, the AGASA is adopted 
to solve the model and obtain the optimal patrol path for an 
oil and gas pipeline network.

3.1 � First‑stage solution

Figure 1 shows the schematic diagram of the inspection area: 
The flight altitude is H , the angle of view of UAV is a , then 
the inspection radius can be calculated to be R = H tan a . 
In the first stage, the pipeline is divided into some nodes 
according to the inspection radius. When the UAV is located 
at the top of the node, the whole pipeline of length 2R can be 
detected. Similarly, the UAV only needs to inspect the nodes, 
and the whole pipeline can be detected, which is shown in 
Fig. 2. In this way, the size of the model is greatly reduced, 
and the workload of the inspection task can be minimized, 
thereby improving the inspection efficiency.

3.2 � Second‑stage solution

Genetic algorithm (GA) can search for the global optimal 
solution easily, but the local search optimization ability is 
poor and premature convergence could take place easily. 
As a stochastic optimization technique that simulates the 
annealing process of heating and melting metals proposed 

(5)
N∑

h

Bi,h,k = Ri,k i ∈ I; h ∈ H; k ∈ K

(6)
∑

i

∑

h

�Li,hRi,k ≤ Ek i ∈ I; h ∈ H; k ∈ K

(7)
a
i
aT
i+1

|
|ai

|
|
|
|ai+1

|
|
≥ cos (�) i ∈ I

(8)d ≥ ds



461Petroleum Science (2019) 16:458–468	

1 3

by Metropolis, the simulated annealing algorithm (SA) is 
able to get rid of the local optimal solution and inhibit the 
precocity of a genetic algorithm, but it evolves slowly. In 
this section, the global parallel search ability of GA and 
the strong local serial search ability of SA are combined. 
By introducing heuristic rules in the process of generating 
the initial population and crossover operation, the optimal 
solution is expected to be found.

3.2.1 � Self‑adaptive genetic algorithm

(1)	 Generation of the initial population
The first step is to generate a set of flight routes for each 
UAV, and the starting node and terminal node of flight 
path are both the UAV base. To generate a large number 
of feasible solutions quickly, the pipeline is divided into 
segments, and the order of the nodes on the pipe segment 
remains unchanged. After that, the inspection path of each 
UAV is checked to see whether the constraints are satisfied. 
If the constraints are satisfied, the scheme would be feasi-
ble; otherwise, a new inspection path is generated, and the 
test is performed again. In this way, each inspection node is 
assigned to UAV, completing the layout of the initial solu-
tion. Better yet, the initial path has a lower fitness, which is 

beneficial to fundamentally improve the convergence speed 
of the algorithm and optimize the convergence result.

The encoding of the path can be expressed as follows:

where Lk defines the inspection path of the UAV k , x1s, y1s 
is segment s of the pipeline inspected by the first UAV, 
x2t, y2t is segment t of the pipeline inspected by the second 
UAV. Similarly, xkw, ykw defines segment w of the pipeline 
inspected by UAV k.

(2)	 Fitness function
Fitness is a measure of the ability of an individual in a group 
to reach or come close to the optimal solution. The prob-
ability of individuals with higher fitness to evolve to the next 
generation is larger, while the probability of individuals with 
lower adaptation to reach the next generation is relatively 
small. From the analysis above, we can conclude that path 
planning is to find the minimum of the objective function 
under some constraints. If the inspection mission can be 
completed by one UAV, only four constraints are involved. 
If the inspection mission needs multiple UAVs, all five con-
straints should be included.

The objective function is chosen as a fitness function:

(3)	 Selection of genetic operator
Selection operators are used to simulate the survival of the 
fittest in the process of biological and genetic evolution. 
Crossover operators are used to imitate the production of 
new biological individuals or species, and mutation opera-
tors are used to imitate the accidental errors resulting from 
cell division and replication. Also, the selection operator 
generates a next generation of the population by replicat-
ing individuals, and crossover and mutation operators are 
responsible for generating new individuals.

(9)

Lm =
(
L1, L2,… , Lk

)

=

(
x0, y0, x11, y11,… , x1s, y1s, x0, y0, x21, y21,…

… , x2t, y2t, x0, y0, xk1, yk1,… , xkw, ykw, x0, y0

)

(10)min f = Lm =
∑

i

∑

h

�Li,hBi,h,k

Pipeline

R

H

α

Fig. 1   Schematic diagram of the inspection area

CA B D

Pipeline

R R R R

Fig. 2   Top view of UAV implements inspection mission
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(A)	 Selection operator

The algorithm adopts the roulette wheel selection and the 
elitist model to select the individual.

(1)	 Roulette wheel selection
The probability of an individual being selected is propor-
tional to the fitness value. This can be expressed as follows:

The specific implementation of the algorithm is as 
follows:

•	 Summing up the fitness function values of all individuals 
in the population and getting the ftotal;

•	 A random number frandom is generated in the interval [
0, ftotal

]
;

•	 The fitness function values are incremented one by one 
starting from the first individual. The chromosome Lm 
will be chosen if qm ≥ frandom;

qm is named as the accumulated probability of the chro-
mosome Lm , whose formula of calculation is expressed in 
Eq. (12)

(2)	 Elitist model
The genetic algorithm continuously generates new indi-
viduals by performing crossover and mutation operations. 
Although more and more good individuals will be produced 
as the evolutionary process of the population increases, they 
may also destroy the individuals with the best fitness in the 
current population due to the randomness of genetic opera-
tions such as replication, crossover and mutation. Therefore, 
the elitist model is used to perform the survival of the fit-
test, the individuals with the highest fitness in the current 
population do not participate in the crossover and mutation 
operation. Instead, it is used to replace the individuals with 
the lowest fitness value after genetic manipulation in the 
current generation.

The specific operation steps of the elitist model are as 
follows:

•	 Identify the individuals with the highest fitness value f m
best

 
and the lowest fitness value f m

worst
 in the current popula-

tion.

(11)P
�
Lm

�
=

f
�
Lm

�

∑M

m=1
f
�
Lm

�

(12)qm =

M∑

k=1

P
(
Lm

)

•	 If f m
best

> f all
best

 , take the individual with the highest fitness 
value f m

best
 as the best individuals in all populations, i.e., 

f all
best

= f m
best

.

•	 Replace the individual with the lowest fitness value f m
worst

 
in the current population with the best individuals f m

best
 in 

all populations, i.e., f m
worst

= f all
best

.

(B)	 Crossover

The individuals generated by the parent generation will per-
form the multi-segment crossover operation, during which 
the nodes on the segment remain unchanged. In this way, the 
UAVs are restricted to fly along the pipeline, avoiding the 
redundant path in the process of crossover operation.

It can be described as follows:

(1)	 Set the number of intersections to W  and select the 
intersection range p ∈ [p, p +W] randomly. Mean-
while, set r = 1.

(2)	 Search the position of the intersection in the individuals 
C1 and C2 , and record it as x and y.

(3)	 Switch the position of individuals C1(1, p) and C2(1, p).

(4)	 Switch the position of individuals C1(1, x) and C2(1, y) , 
r = r + 1.

(5)	 If r < W  , go back to Step 2, otherwise, the crossover 
operation is finished.

After performing the crossover operation, two new indi-
viduals D1 D2 can be obtained:

(13)

C1 = LC1

m
=

[
S
C1

1
, S

C1

2
,… , S

C1

k

]

=

[
x
C1

0
, y

C1

0
, x

C1

11
, y

C1

11
,… , x

C1

1s
, y

C1

1s
, x

C1

0
, y

C1

0
, x

C1

21
, y

C1

21
,… ,

x
C1

2t
, y

C1

2t
, x

C1

0
, y

C1

0
, x

C1

k1
, y

C1

k1
,… , x

C1

kw
, y

C1

kw
, x

C1

0
, y

C1

0

]

(14)

C2 = LC2

m
=

[
S
C2

1
, S

C2

2
,… , S

C2

k

]

=

[
x
C2

0
, y

C2

0
, x

C2

11
, y

C2

11
,… , x

C2

1s
, y

C2

1s
, x

C2

0
, y

C2

0
, x

C2

21
, y

C2

21
,… ,

x
C2

2t
, y

C2

2t
, x

C2

0
, y

C2

0
, x

C2

k1
, y

C2

k1
,… , x

C2

kw
, y

C2

kw
, x

C2

0
, y

C2

0

]

(15)

D1 = LD1

m
=

[
S
D1

1
, S

D1

2
,… , S

D1

k

]

=

[
x
D1

0
, y

D1

0
, x

D1

11
, y

D1

11
,… , x

D1

1s
, y

D1

1s
, x

D1

0
, y

D1

0
, x

D1

21
, y

D1

21
,… ,

x
D1

2t
, y

D1

2t
, x

D1

0
, y

D1

0
, x

D1

k1
, y

D1

k1
,… , x

D1

kw
, y

D1

kw
, x

D1

0
, y

D1

0

]
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(C)	 Mutation

The individuals that will undergo a mutation operation can 
be expressed as follows:

The specific mutation operation is described as follows:

(1)	 A random mutation probability pm is generated in the 
interval [0, 1].

(2)	 A random two elements on the chromosome Lm will 
switch position if 0 ≤ pm ≤ 0.5 , otherwise, a random 
three elements on the chromosome Lm will switch posi-
tion if 0.5 < pm ≤ 1.

(3)	 The new individuals F1 and F2 are generated after a 
mutation operation.

3.2.2 � Simulated annealing algorithm

(1)	 Initial temperature
The initial temperature needs to be high enough to ensure 
that the algorithm has strong ergodicity from the beginning 
to avoid falling into the local optimal solution. T0 is selected 
as the initial temperature which can be denoted as:

(16)

D2 = LD2

m
=

[
S
D2

1
, S

D2

2
,⋯ , S

D2

k

]

=

[
x
D2

0
, y

D2

0
, x

D2

11
, y

D2

11
,⋯ , x

D2

1s
, y

D2

1s
, x

D2

0
, y

D2

0
, x

D2

21
, y

D2

21
,⋯ ,

x
D2

2t
, y

D2

2t
, x

D2

0
, y

D2

0
, x

D2

k1
, y

D2

k1
,⋯ , x

D2

kw
, y

D2

kw
, x

D2

0
, y

D2

0

]

(17)

E1 = LE1

m
=

[
S
E1

1
, S

E1

2
,… , S

E1

k

]

=

[
x
E1

0
, y

E1

0
, x

E1

11
, y

E1

11
,… , x

E1

1s
, y

E1

1s
, x

E1

0
, y

E1

0
, x

E1

21
, y

E1

21
,… ,

x
E1

2t
, y

E1

2t
, x

E1

0
, y

E1

0
, x

E1

k1
, y

E1

k1
,… , x

E1

kw
, y

E1

kw
, x

E1

0
, y

E1

0

]

(18)

E2 = LE2

m
=

[
S
E2

1
, S

E2

2
,⋯ , S

E2

k

]

=

[
x
E2

0
, y

E2

0
, x

E2

11
, y

E2

11
,⋯ , x

E2

1s
, y

E2

1s
, x

E2

0
, y

E2

0
, x

E2

21
, y

E2

21
,⋯ ,

x
E2

2t
, y

E2

2t
, x

E2

0
, y

E2

0
, x

E2

k1
, y

E2

k1
,⋯ , x

E2

kw
, y

E2

kw
, x

E2

0
, y

E2

0

]

(19)F1 = LF1

m
=

[
S
F1

1
, S

F1

2
,… , S

F1

k

]

(20)F2 = LF2

m
=

[
S
F2

1
, S

F2

2
,… , S

F2

k

]

(2)	 Temperature update function
The temperature update function is used to modify the tem-
perature value in the external cycle. It is generally required 
that the temperature drops to nearly zero and then converges 
to the global optimal solution. Equal proportion temperature 
is chosen as the temperature update function since it is effec-
tive and easy to implement:

(3)	 Acceptance function
Generally, the Metropolis criterion is selected as the accept-
ance function for generating a solution to a combinatorial 
optimization problem. At the same time, it is used to dis-
criminate against the probability Pt that the new solution 
qnew will replace the old solution qold . t  is the temperature 
of the isothermal process. The formula for calculating the 
probability is as follows:

3.2.3 � Path planning steps

The steps to plan the patrol path of UAVs by AGASA are 
shown in Fig. 3 and described as follows:

(1)	 Initialize a group of paths with the size of M and set 
the parameters of the initial temperature T0 , maximum 
evolution generations Gmax , and termination tempera-
ture Tend.

(2)	 Initialize the genetic algebra counter g = 0 and evaluate 
the fitness of each path.

(3)	 According to the crossover probability and mutation 
probability, the individuals selected from each subpop-
ulation to undergo the operations of selection, crosso-
ver as well as mutation are decided, then the fitness 
value of each new individual is calculated.

(4)	 Decide whether to replace the old individual with the 
new individual according to the Metropolis criterion.

(5)	 If g < Gmax , g = g + 1 , go back to Step 3, Otherwise, 
go to Step 6.

(6)	 If T < Tend , update the temperature and go back to Step 
2, otherwise, the optimal or near-optimal routes are 
found.

(21)T0 = 10 × N

(22)Tn+1 = wTn, n ≥ 0, 0 ≤ w ≤ 1

(23)Pt =

{
1

exp
(
(f (qold)−f (qnew))

t

) f
(
qold

)
≥ f

(
qnew

)

f
(
qold

)
< f

(
qnew

)
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4 � Computational studies

UAVs are equipped with high-resolution cameras and sen-
sors that transmit information in real time, through which 
they can detect changes in the environment around the 

pipeline and identify any pipeline leaks. Table 1 presents 
the parameters and configuration of UAV.

4.1 � Example 1

A 5 × 5 km virtual pipeline network is set as a research 
example. In this paper, we propose a two-stage solution 
method for the inspection path optimization as shown in 
Fig. 4. The proposed method shows a relatively universal 
frame and realizing methodology for the comprehensive 
solution of optimization. The coordinates of production 
wells and valves are known. The base was chosen to be built 
at the valve to facilitate the operation of UAVs. The method 
is decomposed into two parts: One is the pipeline segmen-
tation according to the vision capability of the UAV, which 
can select an effective inspection range and greatly reduce 
the scale of the model. In the second part, the self-adaptive 
genetic simulated annealing algorithm is introduced to deal 
with the inspection path optimization problem for the oil and 
gas pipeline network. Finally, the optimal solution shows 
that only one UAV is required for the inspection task, and 
the total length of the inspection path is 16,250 m.

In this paper, three algorithms (AGASA, GA and SA) are 
applied to solve the model. During initialization, the popula-
tion size is set to 500, the maximum evolution generations 
are 2000, the temperature update coefficient is 0.97, and the 
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Fig. 3   Flowchart of the second-stage solution

Table 1   The parameters and 
configuration of UAV Flying altitude Low (< 100 m)

Velocity 5–15 km/h
Endurance 5 h
Payload < 7 kg
Platform Fixed wing
Sensor Optical or 

IR camera, 
LIDAR
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termination temperature is set to 0.001. To test the stability 
of each algorithm, the calculation was repeated 10 times, 
and the results are shown in Fig. 5. It can be noted that the 
calculation stability of GA and SA is unsatisfactory. As for 
GA, the solution is not tending to be stable after 2000 itera-
tions. SA has a better performance than GA; it tends to be 

stable after 150 iterations. However, the calculation results 
are not consistent each time, which means that there is a 
serious risk that the algorithm missed the optimal solution 
and fell into a local optimum in the calculation process. On 
the contrary, the calculation results of AGASA are consistent 
each time after 900 iterations, which can be attributed to the 
treatment of the initial solution and introduction of heuristic 
rules in the algorithm. This further verified that the AGASA 
proposed in this paper has a great advantage in solving the 
problem of UAV inspection path optimization for oil and gas 
pipeline networks.

Also, the influence of algorithm parameters on the opti-
mal solution is tested in this paper. Generally, two main 
parameters affecting the performance of the algorithm 
include population size and temperature update coefficient. 
According to that, the experiments are conducted, respec-
tively, with the specified w value of 0.95 and then continued 
with the specified M value of 500. Tables 2 and 3 show the 
calculation results under different population and tempera-
ture update coefficients. From Table 2, it can be noted that 
the performance of genetic optimization is not very good 
if the population size is too small. Conversely, selecting a 
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Fig. 5   Calculation results of different algorithms

Table 2   Influence of population size on calculation results

Population size Best fitness value

50 19,811
100 19,787
150 18,937
200 18,891
250 18,696
300 17,819
350 16,250
400 16,250
450 16,250
500 16,250

Table 3   Influence of temperature update coefficient on calculation 
results

Temperature update coefficient Best fitness value

0.90 18,932
0.91 18,067
0.92 17,406
0.93 16,858
0.94 16,826
0.95 16,250
0.96 16,250
0.97 16,250
0.98 16,250
0.99 16,250
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larger number of initial populations can process more solu-
tions at the same time, thereby finding the global optimal 
solution easily. In detail, the optimal solution can be found 
when the population size reaches 350. Meanwhile, there 
is a similar phenomenon in the temperature update coeffi-
cient. When the value of the temperature update coefficient 
is closer to 1, the chance of finding the global optimal solu-
tion is greater.

4.2 � Example 2

A real case in North China is studied as a research example, 
including a central processing facility (CPF), four valves and 
twenty-nine production wells. Figure 6 shows the topology 
of the gathering and transportation network. The base was 
chosen to be built at the CPF.

During the generation of the initial solution and crosso-
ver operation, the nodes on the pipeline segment remain 

unchanged, which means that the size of the model is largely 
related to the number of segments divided. For the sake 
of simplification, pipelines of less than 1.5 km in length 
will not be divided and considered as segments directly. In 
contrast, pipelines with a length greater than 1.5 km will 
be divided into segments at a distance of 1.5 km. This can 
greatly reduce the model scale and accelerate the conver-
gence speed, thereby finding the optimal solution quickly.

Similarly, the population size is set to be 500, the maxi-
mum evolution generation is 3000, the temperature update 
coefficient is 0.97, and the termination temperature is set to 
be 0.001. Meanwhile, the calculation is repeated 10 times 
by adopting SA and AGASA, and the results are shown 
in Fig. 7. As seen from the table, the stability and conver-
gence of SA are unsatisfactory as the model scale increases. 
Differently from that, AGASA showed great stability and 
good convergence owing to the reduction in model scale 
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Fig. 6   The topology of the gathering and transportation network
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Fig. 8   Inspection path of UAVs for the oil and gas pipeline network 
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and the introduction of heuristic rules. This shows that the 
AGASA proposed in this paper has a great advantage in 
solving the problem of UAV inspection for oil and gas pipe-
line networks. Figure 8 shows the inspection paths obtained 
by AGASA, and the total length of the inspection path is 
82,389 km.

5 � Conclusions

In this paper, a new inspection path optimization method for 
oil and gas pipeline networks is proposed. A mixed-integer 
nonlinear programming model is established by setting the 
minimum length of the inspection path as the objective func-
tion, which also takes the mission scenario and the safety 
performance of UAVs into account. In model solving part, 
a two-stage solution methodology is proposed. In the first 
stage, the pipeline is divided into some nodes according to 
the vision capability of the UAV. In the second stage, the 
AGASA that introduces heuristic rules is adopted to solve 
the model. Finally, three algorithms (GA, SA and AGASA) 
are employed for calculation, and the results show that the 
AGASA proposed in this paper has great stability and con-
vergence. What is more, it can be applied to the inspection 
path planning optimization problem of most oil and gas 
pipeline networks. This paper considered the importance of 
each inspection node is the same, ignoring the difference in 
the inspection of high-leakage danger zones, densely popu-
lated areas and no-man’s land. Therefore, further research 
can add the requirement for the number of inspection times 
in each area and solve the optimization problem of inspec-
tion path planning.
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