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Abstract
Plankton blooms are complex nonlinear phenomena whose occurrence can be described by the two-timescale (fast-slow) 
phytoplankton-zooplankton model introduced by Truscott and Brindley (Bulletin of Mathematical Biology 56(5):981–998, 
1994). In their work, they observed that a sufficiently fast rise of the water temperature causes a critical transition from 
a low phytoplankton concentration to a single outburst: a so-called plankton bloom. However, the dynamical mechanism 
responsible for the observed transition has not been identified to the present day. Using techniques from geometric singular 
perturbation theory, we uncover the formerly overlooked rate-sensitive quasithreshold which is given by special trajectories 
called canards. The transition from low to high concentrations occurs when this rate-sensitive quasithreshold moves past the 
current state of the plankton system at some narrow critical range of warming rates. In this way, we identify rate-induced 
tipping as the underlying dynamical mechanism of largely unpredictable plankton blooms such as red tides, or more general, 
harmful algal blooms. Our findings explain the previously reported transitions to a single plankton bloom, and allow us to 
predict a new type of transition to a sequence of blooms for higher rates of warming. This could provide a possible mecha-
nism of the observed increased frequency of harmful algal blooms.

Keywords  Plankton blooms · Predator-prey models · Slow-fast systems · Rate-induced tipping · Canard trajectory · 
Transient dynamics

Introduction

Marine phytoplankton do not only form the basis of marine 
food webs and provide approximately half of the global 
primary production, they also contribute to essential bio-
geochemical processes in the ocean (Field et  al. 1998; 
Falkowski 2012). A striking feature of many phytoplankton 
populations is the occurrence of so-called plankton blooms 
— a phenomenon characterized by a rapid increase in 
plankton concentrations followed by an almost equally rapid 
decline. Plankton blooms can occur seasonally (e.g., spring 
blooms) or in a more erratic fashion (e.g., red tides). A 
potentially catastrophic situation occurs when some of the 
bloom-forming species release toxic chemicals which can 
paralyze or even kill some affected marine species (Amaya 
et al. 2018; Griffith et al. 2019). The corresponding blooms 
are called harmful algal blooms (HABs).

In the past, various drivers of both types of blooms have 
been identified. Regarding spring blooms, the role of light 
and mixing processes has been emphasized for many dec-
ades (Gran and Braarud 1935; Riley 1946; Riley et al. 1949; 
Sverdrup 1953). The certainly most prominent hypothesis 
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regarding the driving factor is the so-called critical depth 
hypothesis which has already been suggested in the middle 
of the last century (Gran and Braarud 1935; Sverdrup 1953) 
and which can still be found in more recently published 
textbooks (Simpson and Sharples 2012). Its key element 
constitutes the critical mixing depth above which improved 
upper ocean growth conditions allow for the accumulation 
of phytoplankton and thus ultimately for the formation of 
plankton blooms. Later, the role of biotic factors such as 
grazing pressure (Behrenfeld 2010; Behrenfeld et al. 2013), 
competition (Chakraborty and Feudel 2014; Busch et al. 
2019), viral infection and parasitism (Chambouvet et al. 
2008; Velo-Suárez et al. 2013; Richards 2017) or com-
munity composition (Lewandowska et al. 2015) attracted 
increasing attention. These studies include the disturbance-
recovery hypothesis proposed by Behrenfeld (2010). The 
hypothesis presumes that blooms are initiated by recurring 
physical processes that disrupt the balance between phyto-
plankton reproduction and grazer consumption. According 
to the work of Behrenfeld and colleagues, this imbalance is 
caused by the annual deepening of the mixed layer which 
“dilutes” the grazing pressure on the phytoplankton which, 
in turn, allows for its significant accumulation (Behrenfeld 
2010; Behrenfeld and Boss 2014).

In contrast to spring blooms, red tides or harmful 
algal blooms are more localized outbreaks which are not 
strongly correlated with a particular seasonal change in 
the upper ocean growth conditions. However similar to 
spring blooms, it is assumed that red tides occur due to 
an imbalance that affects the major contributing factors to 
phytoplankton growth: increasing light availability, rising 
temperature, nutrient enrichment and the reduction of the 
grazing pressure (Chakraborty and Feudel 2014; Truscott 
and Brindley 1994; Winder et al. 2012; Lewandowska et al. 
2014; Hjerne et al. 2019; Trombetta et al. 2019; Sommer 
and Lewandowska 2011).

In order to fully understand the mechanisms underlying 
the emergence of annually occurring spring blooms and less 
predictable HABs such as red tides, it is not only impor-
tant to identify the environmental conditions that induce the 
imbalance, but also to describe how this imbalance emerges. 
Interestingly, the magnitude of environmental change may 
not be the one decisive factor for the onset of a plankton 
bloom, which could disclose why the full explanation of 
this phenomenon has been elusive. The rate of change of 
environmental conditions also appears to play an important 
role (Pinek et al. 2020). The indications of rate dependence 
come from a study in which the Helgoland Roads long-
term data series are analyzed (Freund et al. 2006). The 
study reveals that the spring bloom onset is correlated with 
a rapid increase of temperature, and not so much with the 
temperature itself.

The speed of temperature increase also plays a decisive 
role in the formation of red tides in the theoretical work of 
Truscott and Brindley (1994). Inspired by the idea of an 
excitable medium capable of mimicking fast growing harm-
ful plankton blooms, they formulate a plankton model which 
consists of a fast evolving phytoplankton population that is 
controlled by a much slower reproducing zooplankton pop-
ulation. Depending on the speed of temperature increase, 
their time-scaled model shows two disparate transient behav-
iors: (i) balance of phytoplankton and zooplankton at low 
plankton densities (Fig. 1a) or (ii) the formation of a single 
plankton bloom (Fig. 1b). They further ascertain that both 
behaviors are delimited by a specific value of the speed of 
temperature increase ( � ≈ 0.003 in Fig. 1). However, they 
were not able to identify the rate-sensitive quasithreshold 
that separates these two very different transient responses to 
temperature increase. In other words, the trigger mechanism 
of the harmful algal bloom has not been identified.

Mathematically, the model of Truscott and Brindley 
(1994) consists of one fast variable, the phytoplankton, and 

Fig. 1   The phytoplankton 
(P)-zooplankton (Z) model 
developed by Truscott and 
Brindley (1994) is sensitive to 
rates of environmental change 
� . It changes its dynamics from 
the stationary coexistence of P 
and Z at low densities. a to the 
sudden formation of a phyto-
plankton bloom b if solely the 
growth rate of the phytoplank-
ton increases faster than the rate 
� ≈ 0.003 day−1 (as response 
to increasing temperatures). 
The phytoplankton density 
is displayed in green and red 
while the zooplankton density is 
shown in gray
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two slow variables, the zooplankton and the time-varying 
environmental condition which changes at a given rate. In such 
two-timescale systems, exceptional solutions called canards 
are typical (Benoît 1981, 1983; Dumortier and Roussarie 1996; 
Szmolyan and Wechselberger 2001), and form boundaries 
between different dynamical regimes (Wieczorek et al. 2011; 
Wechselberger et al. 2013; Perryman and Wieczorek 2014). 
For instance, canards can separate small-amplitude oscillations 
from relaxation oscillations (Brøns et al. 2008; Desroches et al. 
2012), different types of spiking behavior in neuronal models 
(Izhikevich 2007; Mitry et al. 2013), different states of CO2

-concentration in the atmosphere (Wieczorek et al. 2011; 
O’Sullivan et al. 2022), or disparate transient (Vanselow 
et al. 2019) or asymptotic (O’Keeffe and Wieczorek 2020) 
dynamics in biological systems characterized by different 
dominating species. In the latter four examples, similar to the 
observations of Truscott and Brindley (1994), a variation of the 
rate of environmental change alone can cause a transition from 
one dynamical regime to another by crossing canard solutions. 
These critical transitions have been classified as rate-induced 
tipping points by Ashwin et al. (2012). Others identified 
so-called folded-saddle canards as non-obvious thresholds 
for the onset of rate-induced tipping (Wieczorek et al. 2011; 
Mitry et al. 2013; Perryman and Wieczorek 2014; O’Sullivan 
et al. 2022). Specifically, as the rate of environmental change 
increases, the position of the rate-dependent threshold shifts 
in state space and might pass the current state of the system, 
giving rise to a large nonlinear response. It is important to 
note that in these cases there is no classical bifurcation (no 
loss of stability in the classical autonomous sense), such as 
the dangerous saddle-node bifurcation, separating different 
dynamical regimes. Instead, the different dynamical regimes 
are solely separated by rate-sensitive canard solutions.

In this work, we uncover the rate-sensitive boundary, 
that is the singular canard solution, in the model of Truscott 
and Brindley (1994). Furthermore, we demonstrate that this 
boundary gives rise to a quasithreshold for rate-induced tip-
ping, which is the dynamical mechanism responsible for 
the observed harmful algal blooms (Fig. 1). To this end, we 
start by introducing the phytoplankton-zooplankton model 
of Truscott and Brindley (1994) (Sec. “The model”). After-
wards, we reproduce their simulations in which the phyto-
plankton population is exposed to rapidly increasing growth 
rates induced by increasing temperatures. Then, we study the 
resulting rate-sensitive dynamics using geometric singular 
perturbation theory, and reveal the singular canard solution 
(Sec. “Rate-induced tipping triggers plankton bloom”). More-
over, we show that, depending on the location of the singu-
lar canard, the model can show more than one sequentially 
occurring plankton bloom (Sec. “R-tipping can trigger two 
sequentially occurring plankton blooms”). Next, we relate this 
singular canard to a family of canards that form a quasithresh-
old. Finally, we discuss our results (Sec. “Discussion”).

The model

The Truscott-Brindley model (Truscott and Brindley 1994) 
(in the following the TB-model) combines a logistic growth 
of a phytoplankton population P, a zooplankton population Z 
growing by the Holling-type III functional response (Holling 
1959a, b), and dying with standard linear mortality.

In the following, we vary exclusively the growth rate r of 
the phytoplankton population while the other parameters are 
kept constant. The constant parameters K, Rm , � , � and � repre-
sent the carrying capacity of the phytoplankton population, the 
attack rate, the half-saturation phytoplankton concentration, 
the conversion efficiency and the mortality rate of zooplankton 
population (see Table 1 for the parameter values).

We will analyze the response of the plankton model to a 
gradual increase of the phytoplankton growth rate r, which 
could be caused by a gradual increase in temperature. Spe-
cifically, we consider the simplest case in which r increases 
linearly over time at a rate � as long as r ∈ (rmin, rmax) , and 
remains constant when r = rmin or r = rmax (Fig. 2a):

In the extended TB-model (1)–(3), the phytoplankton 
population P evolves on a different time scale than its 
grazer Z. This can be demonstrated by transforming the 
model into a non-dimensional form, which we show in 
detail in Appendix A.1. Considering the non-dimensional 
TB-model Eqs. (A5), (A6) and (A9), it becomes appar-
ent that the time scale separation is determined by the 

(1)dP

d�
= r P

(
1 −

P

K

)
− Rm Z

P2

�2 + P2
∶= f (P,Z, r),

(2)dZ

d�
= � Rm Z

P2

�2 + P2
− � Z ∶= g(P, Z).

(3)
dr

d𝜏
=

{
𝜂 > 0 if rmin < r < rmax,

0 if r = rmin or rmax.

Table 1   Parameter values of the TB-model (1)–(3) according to 
Truscott and Brindley (1994)

Parameter Value

Carrying capacity K 108 � g N l −1

Attack rate zooplankton R
m 0.7 day−1

Half-saturation constant � 5.7 � g N l −1

Conversion efficiency � 0.05
Mortality rate zooplankton � 0.012 day−1

Minimum growth rate r
min 0.2 day−1

Maximum growth rate r
max 0.6 day−1

P(0) = P
0 e

P
� g N l −1

Z(0) = Z
0 e

Z
� g N l −1

r(0) = r
0 0.4 day−1
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conversion efficiency � of the zooplankton which quanti-
fies its turnover of phytoplankton biomass: the lower the 
turnover, the slower the zooplankton density changes in 
time. To emphasize that the change of the growth rate r is 
as slow as the development of zooplankton we make the 
ansatz, that � = �� . Now we discuss the representation of 
the model taking this time scale separation into account. 
Following Truscott and Brindley (1994), we fix the con-
version efficiency to � = 0.05 . Therefore, the phytoplank-
ton population evolves on the fast time scale � , while the 
zooplankton density and r change on the slow time scale t. 
Using the relationship between these two timescales t = �� 
we can write the extended dimensional TB-model  (1)–(3) 
in slow time t:

with � =
�

�
 . From now on we will analyze (4), (5) and (6) 

and fix all parameters K, Rm , � , � and � according to Table 1, 
which is based on the original parameterization in Truscott 
and Brindley (1994) following the reasonable values formu-
lated in (Uye 1986; Wake 1991). To allow for an easy com-
parison between our results and the results obtained by 
Truscott and Brindley (1994), we again employ the original 
formulation of the phytoplankton-zooplankton model (4)–(6) 
for the remainder of this work. Furthermore, we assume that 

(4)�
dP

dt
= rP

(
1 −

P

K

)
− Rm Z

P2

�2 + P2
∶= f (P,Z, r),

(5)dZ

dt
= Rm Z

P2

�2 + P2
− � Z ∶= g(P, Z),

(6)
dr

dt
=

{
𝜐 > 0 if rmin < r < rmax,

0 if r = rmin or rmax

the phytoplankton and zooplankton populations coexist at 
low densities in a stable equilibrium at t = 0 before the 
growth rate of the phytoplankton r starts to increase linearly 
in time at the rate �.

Regular and quasi‑static equilibria

When growth rate r is fixed, the autonomous TB-model (1)–(2) 
has three stationary solutions (equilibria). In addition to the 
extinction and the phytoplankton-only equilibria, both of which 
are unstable, there is a stable coexistence equilibrium in the 
(P, Z) phase plane (see Appendix A.2 for more details):

This equilibrium corresponds to the balance between the 
phytoplankton P and zooplankton Z populations, and is the 
starting point for our analysis of harmful algal blooms. It 
is always taken as the initial condition for the simulations. 
Most importantly, this equilibrium is linearly stable for the 
chosen parameter settings (Table 1) and all r ∈ (rmin, rmax) . 
In other words, e(r) never bifurcates in the classical autono-
mous model within the range of phytoplankton growth rates 
considered here.

The growth rate r changes over time, e.g., with increas-
ing temperatures, and we need to consider the extended TB-
model  (4)–(6), where r becomes an additional dynamical 
variable. When r = rmax or r = rmin , the long-term behavior 
of the TB-model is determined by the unique stable equilib-
rium e(r = rmax) or e(r = rmin) , respectively. However, when 
r ∈ (rmin, rmax) , the system has no equilibrium solutions 

(7)

e(r) =
(
eP, eZ(r)

)
=

(√
��2

�Rm − �
,

r

Rm

(
1 −

eP

K

)(�2 + e2
P

eP

))
.

Fig. 2   a The growth rate of the phytoplankton r increases linearly 
in time at the rate � between r(0) = r0 > rmin and rmax (6). b The sta-
ble (red), unstable parts (blue) and folds F1(r) , F2(r) (black lines) 
of the critical manifold S (11) organize the slow-fast motion in 

phase space. Notice that S approximates the dynamics in the limit 
� → 0 . Parameters of red trajectory: a  r(0) = r0 = 0.4 , � = 0.004 , 
b, c  P(0) = P0 = eP , Z(0) = Z0 = eZ , r(0) = r0 = 0.4 , � = 0.004 , 
Rm = 0.4 , � = 0.05 . Other parameters see Table 1
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because dr
dt
= 𝜐 > 0 . In this range, we will be interested in how 

the position of the state of stable coexistence e(�t) changes 
with time, and how the system evolves relative to this chang-
ing e(�t) . Note that e(�t) is referred to as a quasi-static equilib-
rium (Ashwin et al. 2012; Wieczorek et al. 2011), or a moving 
equilibrium (Vanselow et al. 2019; O’Keeffe and Wieczorek 
2020; Wieczorek et al. 2021), which is computed by inserting 
r = r(t) = �t into ((7)). The coexistence of the phytoplank-
ton and zooplankton population at low densities is guaranteed 
when a solution stays near e(�t) for small enough growth rates 
𝜐 > 0 . In this case, the enhancing growth conditions of the phy-
toplankton are compensated by an increasing grazing pressure 
(increasing r causes an increase of eZ(r) , Fig. 1a). However, an 
interesting instability occurs for larger rates of change � . In this 
case, the top-down control by the zooplankton relaxes since it 
is no longer able to balance the faster growing phytoplankton. 
This provokes an imbalance which results in a deviation of the 
solution of the extended TB-Model (1)–(3) from the quasi-static 
equilibrium e(�t) , manifesting in the formation of a phytoplank-
ton bloom (Fig. 1b). This instability cannot be explained by the 
classical autonomous bifurcation theory, and requires an alter-
native approach. To fully understand this instability, we recall 
some basic concepts from the geometric singular perturbation 
theory for fast-slow systems.

The critical manifold

As shown in the previous Section, the system under investi-
gation possesses a timescale separation. In fact, the dynam-
ics of this 1-fast 2-slow system is slow for most of the time 
(Fig. 2b, single-headed arrows) with short time intervals of 
fast motion (double-headed arrows). Accordingly, it is rea-
sonable to begin the study of our system by approximating 
the slow dynamics by taking � → 0 . Note that we take � → 0 
while keeping � constant, which requires that � → 0.

Taking the limit � → 0 for the slow time scale t gives the 
reduced model

for the evolution of the slow variables Z and r in slow time 
t on the so-called critical manifold S:

(8)0 = f (P,Z, r)

(9)
dZ

dt
= g(P, Z)

(10)
dr

dt
=

{
𝜐 > 0 if rmin < r < rmax,

0 if r = rmin or rmax,

(11)

S =

{
(P,Z, r) ∈ ℝ

3 ∶ rP

(
1 −

P

K

)

−R
m
Z

P
2

�2 + P2
= 0,P ≥ 0, Z ≥ 0, r

min
≤ r ≤ r

max

}
,

in the (P, Z, r) phase space. Rearranging the condition above 
with respect to the Z-coordinate gives the cubic critical man-
ifold formula

Besides its approximation of the slow flow (one-headed 
arrow, Fig. 2b), the critical manifold S organizes the fast 
dynamics as follows: the (red) stable parts of S attract the 
fast flow, whereas the (blue) unstable part of S repels the 
fast flow. The stable and unstable parts connect at the two 
folds F1(r) and F2(r) (black lines) of S (see Appendix A.3 
for the formulation of the folds). In the following, we display 
the critical manifold and the trajectories of the TB-model 
together in several figures. Notice that the critical mani-
fold approximates the dynamics in the limit � = 0 , whereas 
the trajectories represent solutions of the TB-model for 
0 < 𝛾 ≪ 1.

Rate‑induced tipping triggers plankton bloom

If � = 0.004 , the extended TB-model (4)–(6) in slow time 
t reveals a plankton bloom (Fig. 1b, red), but it does not if 
� = 0.002 (Fig. 1a, green). Since the difference in � is the only 
difference between the two setups (see Table 1 for the remain-
ing parameters and the initial conditions), this indicates that, 
between the rates � = 0.002 and � = 0.004 , the system crosses 
some quasithreshold that separates both dynamical regimes. To 
comprehend what creates the qualitative different behavior of 
the green and red trajectories (Fig. 1), we examine both tra-
jectories in the (P, Z, r) phase space (Fig. 3). Since the stable 
(red), unstable parts (blue) and the folds (black solid lines) of 
the critical manifold organize the flow in phase space, we add 
the critical manifold S of the extended TB-model (4)–(6) to 
the phase portraits.

Starting at e(�t) (7) at t = 0 , the green trajectory 
( � = 0.002 ) reveals the expected behavior: it slowly follows 
the pathway of e(�t) (gray dotted line, Fig. 3a) until it settles 
on the stable long-term state e(r = rmax) . In this case, the 
slight increase in the zooplankton density, which implies 
an increasing grazing pressure, is sufficient to balance the 
growth of the phytoplankton. Consequently, we observe no 
plankton bloom. Since the green trajectory remains close 
to the quasi-static state e(�t) (7) at all times, we say that the 
system tracks the stable quasi-static state e(�t).

On the contrary, the red trajectory ( � = 0.004 ) leaves the 
vicinity of the stable quasi-static state e(�t) and performs a large 
excursion before converging to e(rmax) (Fig. 3b). At first, the red 
trajectory slowly proceeds towards the fold F1(r) (black solid 
line). In the vicinity of F1(r) , its motion changes from slow to 

(12)Z = h(P, r) =
r

Rm

(
1 −

P

K

)(
�2 + P2

P

)
,
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fast and remains fast until it reaches the vicinity of the right sta-
ble part of S. This fast motion away from the quasi-static state 
e(�t) entails a rapid increase in the phytoplankton density — the 
plankton bloom arises. When the trajectory reaches the vicinity 
of the right stable part of S, the plankton bloom possesses its 
maximal concentration. From here, the red trajectory slowly 
proceeds towards lower phytoplankton concentrations along the 
right stable part. Hence, the bloom slowly starts to recede due 
to an increasing zooplankton concentration controlling it. When 
the red trajectory approaches the second fold F2(r) , it starts 
to move fast towards the left stable part: the bloom collapses 
rapidly due to the still persisting high zooplankton concentra-
tion. Along the left stable part, it finally converges to the sta-
ble long-term state e(rmax) . Since the zooplankton feeds on the 
phytoplankton on a slower time scale than the phytoplankton 
reproduces, its evolution in time always lags behind the devel-
opment of the phytoplankton. For instance, the zooplankton 
bloom reaches its peak when the phytoplankton density is close 
to zero (Figs. 1b and Fig. 3b).

Hence, in order to better understand the initiating mecha-
nism, we examine the evolution of the fast variable P on the 
critical manifold S. To this end, we consider the reduced 
system, which describes the evolution of the slow variables 
Z and r on the critical manifold S. On the basis of the 
reduced system, we find a three-dimensional system that 
also captures the evolution of the fast variable P on S. 
Finally, for the sake of simplicity, we lower the complexity 
of the resulting system by projecting its three-dimensional 
flow on the two-dimensional critical manifold S using 
Z = h(P, r) (see Appendix B for the transformation of the 
extended TB-model (4)–(6) to the projected-reduced system 
(13)–(14) and also for the detailed formulation of the numer-
ator Λ(P, r, �) and the denominator �f

S(P,r)

�P

|||S in Eq. (13)). The 
resulting projected-reduced system is given by:

Since the plankton bloom arises when the dynamics of 
the TB-model (4)–(6) changes from slow to fast motion 
close to the fold F1(r) , we start our analysis of the projected-
reduced system (13)–(14) on the stable part of S near the fold 
F1(r) and vary the phytoplankton growth rate r. Depending 
on the sign of the numerator Λ(PF1, r, �) which changes with 
r, we can distinguish three different types of trajectories (see 
Fig. 4 and Appendix B for more details): (i) For growth rates 
where Λ(PF1, r, 𝜐) < 0 , (red) trajectories are attracted to the 
fold F1(r) . However, at the fold F1(r) , the denominator 
�f (PS

F1
,r,�)

�P

|||S becomes zero. Hence, solutions of the projected-
reduced system P(t) blow up (go to infinity in finite time t) 
when they reach typical points on the fold F1(r) . In other 
words, solutions cease to exist within S when they reach 
typical points on F1(r) (Fig. 4b,  d). (ii) For values of r where 
Λ(PF1, r, 𝜐) > 0 , the (green) trajectories never reach F1(r) 
because they are repelled from the fold (Fig. 4a, c). (iii) 
There can be special points (special values of r) along the 
fold F1(r) at which both the numerator Λ(PF1, r, �) = 0 and 
the denominator become zero such that dP

dt
 remains finite (see 

Appendix B for more details). The corresponding (blue) tra-
jectory approaches such a point on the fold F1(r) slowly and 
is able to cross it with finite speed (Fig. 4). Afterwards it 
proceeds slowly along the unstable part of S without being 
repelled in the fast P-direction (Fig 4c). Hence, this special 
trajectory — called singular canard — combines aspects of 
both dynamical regimes, i.e., of the green and red trajectory: 

(13)
dP

dt
= −

Λ(P, r, �)

�f S(P,r)

�P

|||S
,

(14)
dr

dt
= �.

Fig. 3   Dynamics of the three-dimensional TB-model (4)–(6) for two 
different rates � = 0.002 and � = 0.004 . Stable, unstable part and 
folds F1(r) , F2(r) of the critical manifold S (11) are shown in red, 
blue and as solid black line. a The green trajectory remains close 

to the quasi-static equilibrium e(�t) (7) (gray dotted line). b The red 
trajectory leaves the vicinity of e(�t) close to the fold F1(r) towards 
the fast P-direction causing the formation of the plankton bloom. 
P0 = eP , Z0 = eZ and r0 = 0.4 . Parameters see Table 1
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moving away from the quasi-static state (red, bloom) but 
slowly (green, no bloom). The special fold point 
FS = (PFS, rFS) (Fig. 4c), at which Λ(PF1, r, �) = 0 , is called 
the folded saddle singularity (Szmolyan and Wechselberger 
2001) (see Appendix B for the computation of the folded 
saddle and the canard). Since the term Λ(PF1, r, �) depends 
on the rate � , the position of the folded saddle and thus the 
position of the singular canard on the critical manifold S also 
depends on the rate � (see Appendix B). For this reason, the 
location of the singular canard changes from the scenario 
without bloom ( � = 0.002 , green trajectory) to the scenario 
with plankton bloom ( � = 0.004 , red trajectory). For 
� = 0.002 , the singular canard is located below the initial 
condition of the green trajectory. Fold points above the sin-
gular canard, respectively above the folded saddle FS 
( PF > PFS and rF > rFS ), are repelling fold points ( Λ > 0 , 
Fig. 4c). Consequently, the green trajectory is repelled by 
the part of the fold F1(r) above the singular canard and tracks 
the stable quasi-static state e(�t) : no bloom is formed. For 
� = 0.004 , the singular canard is located at higher values of 
the growth rate r. As a consequence, the singular canard is 
now located above the initial condition of the red trajectory. 

The fold points below the singular canard are attracting 
(Λ < 0) and therefore, the red trajectory crosses the fold and 
runs away in the fast direction. As a result, a plankton bloom 
emerges ( Λ < 0 , Fig. 4d). Thus, in the limit � → 0 , there 
exists an isolated critical rate � = �crit for each initial condi-
tion. This critical rate is the value of � for which the given 
initial condition lies exactly on the �-dependent singular 
canard. This singular canard can be thought of as a singular 
threshold for rate-induced tipping.

The critical manifold S only approximates the slow dynam-
ics in the limit when the time scale separation is perfect, 
i.e., � = 0 (Wechselberger et al. 2013). However, in the full 
extended TB-model (4)–(6), we consider a finite time scale 
separation between phytoplankton and zooplankton, and, 
hence, 0 < 𝛾 ≪ 1 . To evaluate if the singular canard persists 
in the full extended TB-model (neither reduced nor projected), 
we need to translate the dynamics in the singular limit ( � = 0 ) 
to the full dynamics ( 0 < 𝛾 ≪ 1 ). In the full system, the criti-
cal manifold S is replaced with a nearby slow manifold S� , and 
the stable and unstable parts of S� typically split along the fold 
(Fig. 5b). They only intersect near the point FS (white circle 
in Fig. 5a) which represents the folded saddle in the singular 

Fig. 4   a, c The green trajectory 
starts above the canard (blue) 
where it is repelled by the fold 
points of F1(r) ( Λ > 0 , black 
line) and returns to e(�t) — no 
bloom emerges. b, d The red 
trajectory starts below the 
canard where it is attracted by 
the fold points ( Λ < 0 ), reaches 
them and moves fast away 
resulting in the large excur-
sion away from e(�t) — the 
bloom occurs. The canard (blue 
trajectory) crosses the fold F1(r) 
at the folded saddle FS where 
Λ = 0 . Parameter: P0 = eP , 
Z0 = eZ , r0 = 0.4 . Other param-
eters see Tab. ()
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limit system. This intersection point gives rise to a maximal 
canard that crosses from the stable part of the slow manifold 
into the unstable part of the slow manifold where it stays for 
as long as the unstable part exists (Fig. 5b). On the lower-r 
side of the maximal canard, the unstable part is located above 
the stable part. Hence, (red) trajectories can proceed beneath 
the unstable part and then run away in the fast direction — a 
bloom arises. Conversely, on the higher-r side of the maxi-
mal canard, the unstable part is located below the stable part 
whereby (green) trajectories proceed above the unstable part 
and are thus repelled back towards the left stable part — P and 
Z remain at low densities.

Therefore, also in the full system ( 0 < 𝛾 ≪ 1 ), there is 
a boundary separating (green) trajectories, reflecting the 
maintenance of the balance between P and Z, from (red) tra-
jectories, that show the formation of a plankton bloom. The 
difference is that, in contrast to the singular case ( � = 0 ), this 
boundary is not clear cut. This can be understood as follows. 
In addition to the maximal canard, which is in a one-to-one 
correspondence with the singular canard (Wechselberger 
et al. 2013) and follows the unstable part of the slow mani-
fold for the longest time, there are additional canards. These 
additional canards stay close to the maximal canard for some 
shorter time, after which they leave the unstable part of the 
slow manifold towards the left stable part. This whole fam-
ily of canards is responsible for the transition to a plankton 
bloom, and is referred to as a quasithreshold for rate-induced 
tipping (Wieczorek et al. 2021; O’Sullivan et al. 2022). 
Crossing such a quasithreshold occurs for a narrow critical 
range of � rather than at one isolated critical rate � = �crit.

In summary, we have demonstrated that the harmful algal 
bloom or red tide is solely triggered by rate-induced tipping 
(Ashwin et al. 2012; Wieczorek et al. 2011). An increase 

of the rate of change � , which describes the speed at which 
the growth rate of the phytoplankton r increases, changes 
the position of the maximal canard on the slow manifold S� 
in a way that causes the (red) trajectory to leave the region 
nearby e(�t) , resulting in the formation of a plankton bloom 
in the full system (Fig. 4b).

R‑tipping can trigger two sequentially 
occurring plankton blooms

Interestingly, the extended TB-model (4)–(6) can show 
more than one plankton bloom (Fig. 6). In the previous sec-
tion, we have demonstrated that if initial conditions of the 
extended TB-model (4)–(6) are located on S� on the lower-r 
side of the maximal canard, the model shows a rate-induced 
plankton bloom. Clearly, when the red trajectory still finds 
itself on the lower-r side of the maximal canard following 
the bloom, it can exhibit another bloom before it settles on 
the long-term state e(rmax) (Fig. 6). The number of possi-
bly recurring blooms naturally increases with parameter 
changes that shift the maximal canard towards higher values 
of r accompanying a higher maximum growth rate rmax . For 
instance, increasing the maximum growth rate rmax from 0.6 
to 0.8 and simultaneously increasing the rate of change � to 
0.006 triggers two recurring plankton blooms (Fig. 6). Other 
parameter changes that promote the occurrence of multiple 
blooms are an increase of the zooplankton’s mortality � or a 
decrease of the zooplankton’s attack rate Rm (see Appendix C  
for more details). Obviously, parameter changes reducing 
the grazing pressure and therefore relaxing the top-down 
control by the zooplankton encourage the formation of more 
than one bloom.

Fig. 5   a Stable (red) and unstable (blue) part of the critical mani-
fold S merge along the fold F1(r) (black solid line). (Red) trajecto-
ries cease to exist at the fold whereas a singular canard (blue trajec-
tory) is able to cross the fold via the point FS. (Green) trajectories are 
repelled by the fold and approach e(�t) (gray dashed line). b Stable 

and unstable part are perturbed along the position of the fold F1(r) 
for � = 0 . At their intersection point (FS when � → 0 ), the maximal 
canard crosses from stable to unstable part separating (green) trajec-
tories that are repelled by the unstable part from (red) trajectories that 
leave the stable part in the fast P-direction
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Discussion

In ecology, several factors which are responsible for the 
emergence of regularly and irregularly occurring plankton 
blooms have already been identified (Behrenfeld 2014; 
Sommer et  al. 2012; Lewandowska et  al. 2015; Freund 
et al. 2006; Chakraborty and Feudel 2014) but still, some 
mechanisms are not fully understood. Hence, there exists some 
uncertainty how future climate change will impact the severity 
and frequency of plankton blooms (Doney 2006; Hillebrand 
et al. 2018; Winder et al. 2012). We demonstrate that rate-
induced tipping constitutes a possible mechanism explaining 
the occurrence of erratically occurring blooms such as red 
tides. We proceed from the work of Truscott and Brindley 
(1994) in which they developed a time-scaled phytoplankton 
(P, fast variable)-zooplankton(Z, slow variable) model using 
ideas from the theory of excitable media. In their work, they 
studied the response of the model to fast environmental 
changes that provoke an increase of the phytoplankton’s 
growth rate. Depending on its speed of change, the model 
reveals two disparate behaviors: conservation of the balance 
of P and Z (no bloom), or an imbalance of both that manifests 
in a plankton bloom. Using fast-slow system theory, we 
uncover the quasithreshold phenomenon which separates 
both behaviors in state space: a special trajectory called 
maximal canard together with a family of shorter canards. 
The position of the quasithreshold determines whether 
solutions remain close to the balance state corresponding to 
low plankton concentrations or leave its vicinity leading to 
an imbalance that manifests in a large plankton bloom. Since 
the location of the quasithreshold depends on the speed, or 
the rate, at which the phytoplankton growth rate increases, 
rate-induced tipping constitutes the mechanism being 
responsible for the emergence of the harmful algal bloom. 
We further demonstrate that decreasing the grazing pressure 
or broadening the interval in which the growth rate increases 
allows for multiple recurring plankton blooms.

In accordance with Truscott and Brindley (1994), we 
assume that the rate-induced HAB is triggered by fast 
enhancing growth conditions of the phytoplankton due to 
temperatures increasing at a certain speed. However, other 
scenarios in which the growth conditions improve gradu-
ally at a certain speed are just as conceivable, e.g., due to 
an increase of the light intensity (Rumyantseva et al. 2019; 
Winder et al. 2012) or the nutrient supply (Largier 2020; 
Guseva and Feudel 2020). Moreover, an imbalance between 
phytoplankton growth and predator control can be obtained 
if traits of the grazers, such as attack rate or mortality rate, 
are affected by rapid environmental changes (Behrenfeld 
2010; Busch et al. 2019). Consequently, the notion that 
rate-induced tipping is able to cause irregularly occurring 
plankton blooms does not depend on any particular envi-
ronmental driver but rather on its dynamics: As long as any 
environmental condition changes at a certain speed, rate-
induced tipping is a potential trigger mechanism of plankton 
blooms. The same argument holds also for regular spring 
blooms as long as their grazing function is described with 
the same functional response as for harmful algal species.

A second precondition for the occurrence of rate-induced 
blooms is that phytoplankton reproduces faster than their 
grazers. This condition is often met since the hourly to daily 
cell division of phytoplankton (Franks 2001) is typically 
much faster than the reproduction of their grazers which 
mainly possess generation times from hours to a month 
(Hirsche 2013; Klais et al. 2016). Empirical evidence for 
the importance of time scale separation in the formation of 
plankton blooms comes from iron enrichment experiments 
carried out in the 1990s (Cavender-Bares et al. 1999; Cul-
len 1995; Morel et al. 1991). A particularly vivid example 
was given by the IronEx II experiment (Coale et al. 1996), 
in which iron enrichment only led to about a doubling of 
the picoplankton biomass, but up to an 85-fold increase in 
some diatom species (phytoplankton). Picoplankton are usu-
ally grazed by protists which have often short response time 

Fig. 6   Two sequentially recur-
ring plankton blooms occur if 
the red trajectory reaches the 
left stable part of the critical 
manifold S (red) beneath the 
canard (blue) after performing 
the first excursion. Parameter: 
P0 = eP , Z0 = eZ , r0 = 0.4 , 
rmax = 0.8 . Other parameters see 
Table 1
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scales — similar to the generation times of the picoplankton. 
Accordingly, protists can keep the picoplankton at low den-
sities. On the contrary, phytoplankton like diatoms tend to be 
grazed by metazoan zooplankton, which have relatively long 
generation times and therefore long response times which 
allows for the formation of temporary imbalances and thus 
for the formation of plankton blooms (Franks 2001).

Finally, we want to point out two shortcomings of the current 
state of the art in ecological modeling concerning the impact 
of environmental change. We have seen that the observation of 
rate-induced phenomena, like the formation of plankton blooms, 
depends on (i) the evolution of the time horizon of environ-
mental change and (ii) the presence of multiple time scales in 
species’ development. (i) Regarding the time scale of environ-
mental change, most studies employ the concept called “tipping 
point” which underlies the idea of a catastrophic bifurcation of 
the involved long-term states if a critical threshold is exceeded 
(Scheffer et al. 2001; Lenton et al. 2008; Lenton 2020; Krönke 
et al. 2020; Dakos et al. 2019). Bifurcation analysis implies that 
environmental conditions change infinitely slow. Hence, tipping 
points are only relevant in cases where it can be assumed that the 
speed of environmental change is much slower than the intrinsic 
ecological dynamics. By contrast, rate-induced tipping occurs 
on time scales comparable to the dynamics of ecosystems and, 
hence becomes apparent only in the transient dynamics — the 
dynamics prior to the long-term dynamics (Hastings et al. 2018; 
Morozov et al. 2020). Hence, the plankton bloom described in 
this work would be overlooked if we would focus exclusively on 
the long-term dynamics.

Concerning the omission of the presence of multiple time 
scales: if the presence of multiple time scales is neglected, 
no canard solution can exist and thus, without the existence 
of any other instability (e.g., a tipping point), no rate-induced 
phenomena can be observed in the system. Such phenomena 
are, however, crucial when examining the effect of the speed 
of environmental change as they reveal critical states which 
would be missed otherwise. Since present climate change 
accelerates environmental changes, corresponding studies 
will be of paramount importance in the future (Walther et al. 
2002; Parmesan 2006; Smith et al. 2015).

In summary, to meet the accelerating speed of environmen-
tal change, we suggest three key elements for consideration in 
future ecological studies. First of all, we believe that it will be of 
paramount importance to take into account the temporal evolu-
tion of environmental disturbances or changes (which is usually 
not infinitely slow). Secondly, in order to capture the full impact 
of fast rates of environmental change, it is essential to explicitly 
consider the different intrinsic time scales which are present 
in an ecological system. Thirdly, since critical phenomena — 
like rate-induced tipping — act on time scales comparable to 
the system dynamics, the evaluation of environmental impacts 
should not be exclusively based on the long-term response but 
on the transient dynamics as well. In addition we would like to 

emphasize that an experimental test for rate-induced transitions 
in the laboratory requires explicit measurement of the rate of 
environmental change.

For certain, the Truscott-Brindley model misses essential 
physical processes, such as vertical mixing and sinking, as 
well as other ecological processes, such as viral infection 
and the diverse composition of interacting communities. 
However, just like any theoretical model, due to its delightful 
simplicity it enables the understanding of otherwise unsolv-
able relationships between ecological actors and their envi-
ronment. Our findings suggest that plankton communities, 
which typically involve species evolving on multiple time 
scales, are potentially prone to environmental disturbances 
evolving at a certain speed. Hence, we propose to consider 
multiple time scales in theoretical models of ecosystems, 
such as food webs, and to examine their transient dynamics.

Appendix A. The Truscott‑Brindley model

A.1 Non‑dimensionalization

The phytoplankton(P)-zooplankton(Z) model developed by 
Truscott and Brindley (1994) is given by the following two 
equations:

with the growth rate of the phytoplankton population r and 
its carrying capacity K. The attack rate of the zooplankton 
Rm , its half-saturation constant � , conversion efficiency � 
and mortality rate � complete the model.

In the following, we introduce the non-dimensional vari-
ables P̂ =

P

K
 , Ẑ =

Z

K
 and the non-dimensional time t̂ = 𝜏 ⋅ Rm . 

Replacing P, Z and � by their non-dimensional equivalent, we 
can rewrite the TB-model (A1)–(A2) as follows:

Setting � =
�

K
 , � =

r

Rm

 and � =
�

�Rm

 , the non-dimensional 
TB-model (A3)–(A4) becomes:

(A1)dP

d�
= rP

(
1 −

P

K

)
− RmZ

P2

�2 + P2
,

(A2)dZ

d�
= �RmZ

P2

�2 + P2
− �Z,

(A3)
dP̂

dt̂
=

r

Rm

P̂(1 − P̂) − Ẑ
P̂2

(
𝛼

K

)2

+ P̂2

,

(A4)
dẐ

dt̂
= 𝛾Ẑ

⎛⎜⎜⎜⎝
P̂2

�
𝛼

K

�2

+ P̂2

−
𝜇

𝛾Rm

⎞⎟⎟⎟⎠
.
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The parameter � quantifies the separation between the 
time scale of the phytoplankton and the time scale of the 
zooplankton. For this reason, we call � the time scale 
parameter. If 𝛾 < 1 , the zooplankton population reproduces 
slower than the phytoplankton and vice versa. For � = 1 , 
there exists no time scale separation.

We further assume that the growth rate of the phyto-
plankton r becomes time-dependent: r = r(�) and increases 
at a constant rate �:

Using the dimensionless time t̂ = 𝜏 ⋅ Rm , Eq. (A7) 
becomes:

with � =
r

Rm

 , we can write:

Equations (A5), (A6) and (A9) show the three-dimen-
sional plankton model in fast time t̂ . We now assume that 
the temporal evolution of r and � happens on the same time 
scale as the temporal evolution of zooplankton. Therefore 
we use the time scale separation parameter to scale the 
rate of change of r: � = �� . We can write the whole model 
system in slow time t̃ = 𝛾 t̂ using d

dt̂
=

d

dt̃

dt̃

dt̂
=

d

dt̃
𝛾:

A.2 Long‑term states and linear stability

To find the long-term states of the TB-model (A1)–(A2), 
we set the dynamics of the phytoplankton and zooplankton 
population equal to zero:

(A5)
dP̂

dt̂
= 𝛽P̂(1 − P̂) − Ẑ

P̂2

𝛿2 + P̂2
,

(A6)
dẐ

dt̂
= 𝛾Ẑ

(
P̂2

𝛿2 + P̂2
− 𝜔

)
.

(A7)
dr

d�
= �.

(A8)
dr

dt̂∕Rm

= 𝜂,

(A9)
d𝛽

dt̂
= 𝜂.

(A10)𝛾
dP̂

dt̃
= 𝛽P̂(1 − P̂) − Ẑ

P̂2

𝛿2 + P̂2
,

(A11)
dẐ

dt̃
= Ẑ

(
P̂2

𝛿2 + P̂2
− 𝜔

)
,

(A12)
d𝛽

dt̃
= 𝜐

Solving Eqs. (A13)–(A14) with respect to P and Z leads 
to the following three long-term states e1–e3(r) (A15)–(A17)

The equilibrium e1 describes the situation in which phyto-
plankton and zooplankton are extinct. In e2 , the phytoplank-
ton possesses the maximum density that the environment 
can “carry” (K) while the zooplankton is extinct. In the third 
equilibrium e3(r) , phytoplankton and zooplankton coexist at 
densities unequal zero. Notice that only the equilibrium e3(r) 
depends on the growth rate of the phytoplankton r. Within 
the interval r ∈ [0.2 2] , it represents the unique stable state 
of the TB-model (Fig. 7). Hence for values of the growth 
rate between rmin and rmax , the phytoplankton and zooplank-
ton coexist in a stable long-term equilibrium when t → ∞.

A.3 The critical manifold

The extended Truscott-Brindley model with time-dependent 
growth rate r can be written in slow time t = �� ( � = �∕� , 
� = �∕� ) (Truscott and Brindley 1994):

The TB-model with time-dependent growth rate r 
(A18)–(A20) is determined, as the original TB-model, by a 
fast and a slow time scale. In fact, the dynamics of such slow-
fast systems is primarily slow with short interruption by fast 
motion. The critical manifold S approximates the slow motion 
and is therefore a useful tool to obtain a first impression of a 
part of the full dynamics.
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,
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P2
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P2
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− � Z ∶= g(P, Z),

(A20)
dr

dt
=

{
𝜐 > 0 if rmin < r < rmax,

0 if r = rmin or rmax.
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The critical manifold S (A21) can be further written as:

with the two folds F1,2(r) = (PF1,2
, ZF1,2

) given by the follow-
ing equations

(A21)

S =

{
(P,Z, r) ∈ ℝ

3 ∶ rP

(
1 −

P

K

)

−R
m
Z

P
2
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= 0,P ≥ 0, Z ≥ 0, r

min
≤ r ≤ r

max

}
,

(A22)Z = h(P, r) =
r
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)(
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P

)
,

(A23)
2P3

F1,2

K
− P2

F1,2
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(A24)Z =
r

Rm

(
1 −

PF1,2

K

)(�2 + P2

F1,2

PF1,2

)
.

Appendix B. The canard trajectory

When studying the slow-fast dynamics of the extended 
TB-model (B25)–(B27) with time-dependent growth rate 
r for different rates � , we find a plankton bloom when the 
growth rate r increases faster than � ≈ 0.003 ( � ≈ 0.0015 ) 
(Fig. 1, see Sec. “Rate-induced tipping triggers plankton 
bloom” for more details)

(B25)�
dP

dt
= rP

(
1 −

P

K

)
− RmZ

P2

�2 + P2
∶= f (P,Z, r)

(B26)dZ

dt
= RmZ

P2

�2 + P2
− �Z ∶= g(P, Z)

(B27)
dr

dt
= 𝜐 > 0.

Fig. 7   Linear stability of the 
three equilibria e1–e3(r) (A15)–
(A17) of the TB-model (A1)–
(A2) depending on the growth 
rate r ∈ [0.2 2] . Solid/dotted 
line denotes the real parts of 
the eigenvalues 𝜆1,2 < 0 (stable) 
respectively 𝜆1,2 > 0 (unstable). 
For the other parameters see 
Table 1



101Theoretical Ecology (2024) 17:89–105	

To simplify notations, we use from now on the follow-
ing abbreviations. Note that q is denoting f and g and k 
stands for P, Z and r.

The bloom forms when (red) trajectories cross the fold 
F1(r) of the critical manifold S and run away in the fast 
P-direction (Fig. 4). For this reason, we study the fast flow 
close to the fold F1(r) on the critical manifold S. To study 
the dynamics on S, we set the fast dynamics dP

dt
 equal to 

zero ( � → 0 ) which gives the reduced system:

Differentiating the algebraic constraint (B30) with 
respect to the slow time t leads to:

The Eq. (B35) describes the fast flow P on the criti-
cal manifold S. Replacing the constrain Eq. (B30) by Eq. 
(B35), we obtain:

Using Z = h(P, r) (A22), we project the flow onto the 
critical manifold S. The so-called projected-reduced system 
is given by:

(B28)qS(P, r) = q(P,Z, r)||Z=h(P,r),

(B29)qS
k
(P, r) =

�q(P, Z, r)

�k

||||Z=h(P,r).

(B30)0 = f (P,Z, r),

(B31)
dZ

dt
= g(P, Z),

(B32)
dr

dt
= 𝜐 > 0.

(B33)0 =
d

dt
f (P,Z, r),

(B34)

0 = fP(P,Z, r) ⋅
dP

dt
+ fZ(P,Z, r) g(P, Z) + fr(P,Z, r)�,

(B35)
dP

dt
= −

fZ(P,Z, r) g(P, Z) + fr(P,Z, r)�

fP(P,Z, r)
.

(B36)
dP

dt
= −

fZ(P,Z, r) g(P, Z) + fr(P,Z, r)�

fP(P,Z, r)
,

(B37)
dZ

dt
= g(P, Z),

(B38)
dr

dt
= 𝜐 > 0.

With Λ(P, r, �) = f S
Z
(P, r) gS(P) + f S

r
(P, r)� and f S

P
(P, r) =

f
�f (P,r)

�P

||||S we can write the projected-reduced system as:

For completeness, we write the projected-reduced system 
in full terms

If f S
P
(P, r) = 0 (B39), the flow on the critical manifold 

S (11) is not defined — it goes to infinity in finite time. 
Unfortunately, these points for which f S

P
(P, r) = 0 are the 

fold points of the critical manifold S (11). Since the bloom 
formation occurs close to the fold, we have to enable the 
analysis near the fold F1(r) . This can be achieved by using 
the scaling known as desingularization:

which preserves the direction of time on the stable part of the 
critical manifold S (red, Fig. 9), but reverses it on the unstable 
part (blue, Fig. 9). The desingularized system is given by:

respectively in full terms,

(B39)
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r
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dr
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Interestingly, setting dr
dt̂
= 0:

and rearranging Eq. (B50) with respect to P gives the PF1

-values of the fold F1(r) . When we further set PF1
 into Eq. 

(B48), we can analyze the fast flow dP
dt̂

 at the fold F1(r) (Fig. 8). 
For � = 0.002 , there exist a special solution at which dP

dt̂
= 0 

(B49)
dr

dt̂
=

⎛
⎜⎜⎜⎝
−1 +

2P

K
+

2𝛼2

�
1 −

P

K

�
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+

2�2

�
1 −

P

K

�
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⎞
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,

Fig. 8   The fast flow dP
dt̂

 (B48) (black solid line) on the fold F1(r) 
(A23)–(A24) is shown for two different rates � = 0.002 and 
� = 0.004 . Fold Points with dP

dt̂
< 0 attract trajectories (red) while fold 

points with dP
dt̂

> 0 are repelling (blue). The fast flow dP
dt̂

 remains only 
finite at the point FS. For other parameters see Table 1

Fig. 9   Dynamics of the desin-
gularized system (B48)–(B49) 
for two different rates � = 0.002 
(a, c, e) and � = 0.004 . (b, d, 
f). The singular canard (blue 
trajectory) is given by the 
stable manifolds of the folded 
saddle FS (white filled circle). 
It represents the threshold 
separating (green) tracking 
from (red) tipping trajectories. 
a, c The green trajectory starts 
above the singular canard and 
tracks — no bloom emerges (e). 
b, d The red trajectory starts 
below the canard, is attracted 
by the fold F1(p, r) , crosses it 
and approaches the stable folded 
focus FF (black filled circle) — 
a plankton bloom occurs (f)
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(white circle) within r ∈ [0.2 0.6] . This special solution is an 
equilibrium of the desingularized system (B48)–(B49) and it 
marks the boundary between fold points that attract trajectories 
( dP
dt̂

< 0 , red) and fold points that repel them ( dP
dt̂

> 0 , blue). 
Such special points are called folded singularities (Szmolyan 
and Wechselberger 2001). For � = 0.004 , we found no folded 
singularity in the interval r ∈ [0.2 0.6].

Studying the linear stability of the folded singularity at 
F1(r) gives one negative eigenvalue ( 𝜆 < 0 ) and one posi-
tive eigenvalue ( 𝜆 > 0 ). Hence, it is called a folded saddle 
singularity FS.

And indeed, solutions that cross the fold via the folded 
saddle singularity show a kind of boundary behavior: they 
can cross the fold with finite speed and move away from 
the quasi-static state (bloom) but slowly (no bloom). Such 
trajectories are called (singular) canards (Fig. 9). In the des-
ingularized system (B48)–(B49) exist besides the folded sad-
dle FS ( 𝜆1 < 0, 𝜆2 > 0 ) folded focus FF (Re(�1,2 ) < 0 ) at 
the second fold F2(r) . In the case of a folded saddle FS, the 
singular canard trajectory is given by its stable manifolds.

Appendix C. More than one recurring bloom 
— parameter studies

The occurrence of more than one plankton bloom while thes 
growth rate r increases in time depends i.a. on the attack rate 
Rm and the mortality rate � of the zooplankton as well as the 
maximum growth rate rmax of the phytoplankton. Of course, 
rmax = 20 is far from any realistic approach; nevertheless, we 
choose this value to evaluate how many recurring blooms 
can be theoretically observed for extreme high maximum 
growth rates.

In the following, we outline our procedure for finding the 
number of blooms exemplary for rmax = 0.8 (Fig. 10b, d) and 
different values of the attack rate Rm (Fig. 10a). (i) At first, 
we compute the parameter interval of Rm for which e(�t) rep-
resents the unique stable state. (ii) Then, we evaluate the rate 
� for which the r-coordinate of the folded saddle FS is equal 
to rmax . (iii) We simulate the three-dimensional TB-model 
(B25)–(B27) for the corresponding attack rates Rm and values 
of the rate � ( P(0) = e3P , Z(0) = e3Z (see Table 1 for other 

Fig. 10   The number of recur-
ring blooms Pmax > Pb = 60 
depending on the attack rate Rm 
(a, c) and the mortality rate � of 
the zooplankton (b, d) as well 
as the maximum growth rate 
rmax . Decreasing attack rate Rm 
and increasing mortality rate � 
promote the occurrence of more 
and more plankton blooms dur-
ing the growth rate r increases 
linearly in time. Parameter: 
P(0) = eP , Z(0) = eZ ; others see 
Table 1
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parameters). (vi) If the maximum phytoplankton density Pmax 
exceeds the threshold Pb = 60 , we increase the parameter Nb 
which displays the number of blooms, by one. (v) We check 
randomly if we have detected the correct number of blooms by 
visible examination of the corresponding trajectory.

Obviously, decreasing the attack rate Rm and increasing 
the mortality rate � of the zooplankton cause an increase of 
the number of recurring blooms (Fig. 10). Hence, decreasing 
the predation pressure on the phytoplankton allows for more 
and more blooms while r increases linearly in time.
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