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Abstract Inflammatory reactions could be both beneficial
and detrimental to the brain, depending on strengths of their
activation in various stages of neurodegeneration. Mild acti-
vation of microglia and astrocytes usually reveals neuropro-
tective effects and ameliorates early symptoms of neurodegen-
eration; for instance, released cytokines help maintain synap-
tic plasticity and modulate neuronal excitability, and stimulat-
ed toll-like receptors (TLRs) promote neurogenesis and
neurite outgrowth. However, strong activation of glial cells
gives rise to cytokine overexpression/dysregulation, which
accelerates neurodegeneration. Altered mutual regulation of
p53 protein, a major tumor suppressor, and NF-κB, the major
regulator of inflammation, seems to be crucial for the shift
from beneficial to detrimental effects of neuroinflammatory
reactions in neurodegeneration. Therapeutic intervention in
the p53-NF-κB axis andmodulation of TLR activity are future
challenges to cope with neurodegeneration.

Keywords Neuroinflammation . Immune response in the
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Introduction

In the central nervous system (CNS), degenerative processes
are characterized by morphological, anatomical, and function-
al changes that lead to early, chronic, and progressive neuronal
loss. Chronic neurodegenerative diseases are defined as he-
reditary, sporadic, and protein misfolding diseases, which are
usually characterized also by the decline of cognitive func-
tions, particularly learning and memory. These include
Alzheimer’s disease (AD) and other dementias, transmissible
spongiform encephalopathies (TSEs), amyotrophic lateral
sclerosis (ALS), Parkinson’s disease (PD), Huntington’s dis-
ease (HD), and prion diseases. The causes associated with
neuronal degeneration remain poorly understood. Generally
known risk factors for most neurodegenerative diseases are
genetic polymorphisms and advanced age. The prevailing hy-
pothesis is that the protein aggregates or seeds (α-synuclein,
amyloid beta (Aβ), lipofuscin, tau protein) trigger a cascade of
events leading to neurodegeneration and neuronal apoptosis
[1–3]. Several other mechanisms may be involved in the path-
ogenesis of neurodegenerative disorders, including chronic
inflammation, vascular factors, oxidative stress, and reduced
availability of trophic factors in the brain.

Regulation of immuno-inflammatory control is one of the
relevant processes involved in the pathogenesis of neurode-
generative disorders. Innate and adaptive immune response in
the brain are tightly controlled in relation with the periphery.
Immune activation in the CNS always involves microglia and
astrocytes, which, in non-pathological conditions, contributes
in the regulation of homeostasis of the brain tissue. Endothelia
cells and perivascular macrophages are also important to the
interpretation and propagation of inflammatory signals within
the CNS [4]. In the CNS, microglia always scan the microen-
vironment by producing factors that influence adjacent astro-
cytes and neurons, particularly in response to infection or
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neuronal cell injury. This leads to the activation of an inflam-
matory response that further engages a transient, self-limiting
response through the immune system and initiates tissue re-
pair. Under pathological conditions, when the normal resolu-
tion mechanisms failed, there is an abnormal activation and
production of inflammatory factors, leading to chronic
neuroinflammatory state and progression of neurodegenera-
tive changes.

Chronic neuroinflammation is observed at relatively early
stages of neurodegenerative disease. The mentioned neurode-
generative factors impact on glial function by overactivation
of both microglia and astrocytes triggering production and
releasing large amounts of pro-inflammatory cytokines and
reactive oxygen and nitrogen species (ROS, RNS). Chronic
activation of microglia is linked to the degradation of protein,
the dysfunction of mitochondria, and the defects of axonal
transport and apoptosis, which have a detrimental effect on
neuronal function and lead to cell death. Furthermore, neuro-
inflammation results in the subsequent infiltration of immune
cells from the periphery to the CNS across the blood brain
barrier (BBB), which accelerates neuroinflammation and neu-
rodegeneration [5].

In this review, we aim to address the role of microglia,
astrocytes, and immune response in the CNS in the develop-
ment of neurodegenerative disorders. The review will present
the Btwo faces^ of neuroinflammation, which can result in the
restoration of brain homeostasis as well as initiation or/and
acceleration of neurodegenerative processes.

Inflammation, Inflammaging, and Neuroinflammation

Inflammation is a complex biological response of the body to
cell and tissue damages caused by chemical (acids, alkali),
physical (ionizing radiation, magnetic field, ultrasonic waves),
and biological factors (viruses, bacteria, fungi, exotoxins, and
endotoxins) [6]. The type and range of inflammatory response
depend on the type and intensity of the irritant. In addition, the
tissue and organ resistance is also important. The potency of
the irritant and the time of its impact on tissue determine the
type of inflammatory state, acute or chronic. Inflammation can
be beneficial as an acute, transient immune response to harm-
ful conditions such as tissue injury or an invading pathogen.
The proper inflammatory reactions facilitate the repair, turn-
over, and adaptation of tissues. In addition, moderate inflam-
matory reaction leads to the inhibition of bleeding resulting
from trauma and removal of necrotic tissues, exotoxins, and
endotoxins with exudation. Inflammation is a multistage re-
sponse. The reactions of the mobility of cells, humoral re-
sponse, i.e., activation of inflammatory mediators present lo-
cally and in body fluids, and the hemostatic response are en-
gaged. The proper inflammatory response is self-limiting and
characterized by an advantage of processes of restoring ho-
meostasis over the destructive processes [7]. However, acute

inflammatory response to pathogen-associated molecular pat-
terns (PAMPs) may be impaired during aging, leading to in-
creased susceptibility to infection. If the activity of the stimu-
lating factor is persistent in time and the mechanisms of the
proper development of inflammation are dysregulated, the
body still receives a signal of health hazard and switches from
the acute to a chronic inflammatory state [7, 8]. As a result,
this causes an imbalance in the immune system, thereby the
inflammatory markers remain permanently and generally at
low grade. Chronic inflammation consecutively leads to the
tissue degeneration and development of autoimmune or circu-
latory system diseases, arthritis, cancers, and CNS disorders
[9].

Aging is a complex process that depends on many environ-
mental factors and genetic and epigenetic events occurring in
the different types of cells and tissues throughout life.
Moreover, the aging process is a chronic oxidative and inflam-
matory stress, leading to damage of cell components, includ-
ing proteins, lipids, and DNA, and contributing to the age-
re la ted decl ine of physiological funct ions [10] .
BInflammaging,^ referred to as systemic, chronic inflamma-
tion, by Franceschi and Salvioli and colleagues [11, 12], is
also the dominant feature of body aging and most, if not all,
age-related diseases [8]. Many epidemiological studies con-
firm that inflammaging is a strong risk factor of various dis-
eases, including AD, and death in the elderly. Inflammaging is
connected with the increased level of inflammatory markers
such as C-reactive protein (CRP) or interleukin-6 (IL-6) and
also associated with many age-related changes, e.g., in the
body composition, in the production and use of energy, in
the maintenance of metabolic homeostasis, and in the immune
response in the brain.

There are several possible mechanisms of inflammaging.
Firstly, the inflammaging processes may be caused by the
endogenous host-derived cell debris (damage-associated mo-
lecular patterns (DAMPs), i.e., damaged organelles, cells, and
macromolecules) that accumulate with age as a consequence
of both increased production and impaired elimination [8].
Secondly, aging cells and various inflammatory factors
(termed the senescence-associated secretory phenotype or
SASP) which they produce may be the chronic inflammation
stimulators. Cellular senescence is a response to various stress
factors and damages. Aging cells accumulate in various tis-
sues where they contribute to the development of many path-
ological changes, for example modifying the tissue microen-
vironment and altering the function of nearby normal or trans-
formed cells. Visceral adipose tissue (VAT) is the main place
of senescent cell accumulation and is also a source of pro-
inflammatory cytokines such as IL-6 and TNF-α [13].
Moreover, an excess and changes in the distribution of viscer-
al adipose tissue and the composition and functioning of the
lipids have clinical consequences such as metabolic syn-
drome. Metabolic syndrome is related to insulin resistance
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and impaired glucose tolerance, which lead to type 2 diabetes,
obesity, dyslipidemia, elevated blood pressure, and activation
of the pro-thrombotic and pro-inflammatory processes that
lead to atherosclerosis and chronic inflammation [14, 15].
Studies of the association of distinct abdominal adipose tissue
with the cardiometabolic risk factors and metabolic syndrome
showed that metabolic syndrome individuals had significantly
lower adiponectin levels and significantly higher levels of
resistin, leptin, TNF-α, IL-6, intercellular adhesion molecule
(ICAM), monocyte chemotactic protein-1 (MCP-1), and
oxLDL than the control group. The results confirmed that
deep subcutaneous adipose tissue (dSAT) is associated with
increased inflammation and oxidative stress, suggesting that
dSAT is an important determinant of metabolic syndrome
[16]. A variety of adipokines, particularly interleukins, are
considered to be associated with inflammatory processes that
can lead to dementia and cognitive impairment. It is postulated
that adipokines as biomarkers may enhance understanding of
late-onset dementia risk over the life course, as well as the
clinical progression of prodromal and manifest dementias
[17]. Increasing evidence and clinical and epidemiological
studies suggest an association between metabolic syndrome
and type 2 diabetes and AD [18, 19]. It is indicated that dia-
betic patients have increased risk of developing AD and AD
brains exhibit defective insulin signaling [20]. Thirdly,
inflammaging may be caused by hyperactivity of the blood
coagulation that increases the risk of thrombosis in the elderly.
And finally, the reason for the development of inflammaging
is the aging immune system (immunosenescence).
Immunosenescence involves age-related remodeling changes
in the organization of lymphoid organs and functions of im-
mune cells, which have been associated with reduction of the
degree of adaptive immunity and hyperactivity of the innate
immune response. Immunosenescence may result from expo-
sure to different pathogens and antigens over a lifetime, intra-
cellular changes in immune cells, and genetic predisposition.
Chronic infections, such as cytomegalovirus (CMV), human
immunodeficiency virus (HIV), and Epstein-Barr virus (EBV)
are known to impair the immune parameters [21–24]. Decline
in cell-mediated immunity may in turn cause the age-related
increased incidence of Herpes zoster (varicella zoster virus,
VZV) and its complications in the elderly which is a world-
wide growing problem for patient, cares, healthcare systems,
and employers [25].

The term Bneuroinflammation^means an inflammatory re-
sponse originated in the CNS (brain and spinal cord) after
injury by non-infectious or infection factors, with an accumu-
lation of glial cells (microglia, astrocytes). The critical aspects
in understanding neuroinflammation and its physiological,
biochemical, and behavioral consequences are its context,
course, and duration [4]. The active parts of the
neuroinflammatory process take cytokines, chemokines, and
complement and pattern-recognition receptors (PRR) that are

produced and expressed by microglia and astrocytes [26, 27].
All the neuroinflammatory and regulatory processes within
the CNS are generally initiated to prevent any disturbance of
cell homeostasis. An acute inflammatory response in the CNS
is caused by rapid and early activation of the glial cells as a
response to different irritants (toxic proteins, infectious agents,
stroke, depression, hypertension, diabetes, dementia, and oth-
er neurodegenerative disorders), which leads to repair of the
damaged area of the brain. However, if harmful agents act
persistent, an acute inflammatory state of the brain becomes
chronic, and activation of glial cells is exaggerated, which
leads to tissue degeneration. Moreover, chronic inflammation
in the brain dysregulates mechanisms for clearing misfolded
or damaged neuronal proteins resulting in tau-associated im-
pairments of axonal integrity and transport, accumulation of
amyloid precursor protein (APP), formation of paired helical
filaments, and synaptic dysfunction. All these events precede
and cause a prominent neurodegeneration and cognitive de-
cline [27, 28]. Increased levels of inflammatory mediators,
such as IL-1, IL-6, or TNF-α, are one of the biomarkers of
human aging and closely associated with impaired mecha-
nisms of ROS removal as well as leveling effects of their
actions. Overgeneration of ROS leads to oxidative stress and
induces NFκB expression, a key activator of inflammatory
reactions. It is clear, therefore, that chronic inflammation in
the CNS will occur frequently in people with age-related dis-
eases [27]. Although the mechanisms that ultimately lead to
neurodegeneration are different in each neurodegenerative
disease (AD, PD, ALS, etc.), chronic inflammation is typical-
ly a prominent feature in the progressive nature of neurode-
generation. Thus, the resolution of inflammation is an active
process, which is dependent on well-orchestrated innate and
adaptive immune responses, and the neuroinflammatory reac-
tions may therefore be beneficial or detrimental, depending on
their duration and strengths of activation (Fig. 1) [29].

Innate and Adaptive Immune Response in the CNS

The innate and adaptive immune systems actively participate in
CNS surveillance, which is critical for the maintenance of CNS
homeostasis and can facilitate the resolution of infections, de-
generation, and tissue damage [30]. To understand neuroin-
flammation, it is important to distinguish innate and adaptive
immune response in the CNS [5]. Innate immune reactions
activated in the CNS lead to many essential modifications in
the tissue microenvironment, e.g., changes in gene expression,
which are normally repressed under physiological conditions
and are only induced when cells are stressed, cellular differen-
tiation, cellular composition and promotion of the recruitment
of peripheral innate immune cells (macrophages, neutrophils)
through BBB and adaptive immune cells (T cells and B cells).
The main resident immune cells within the CNS are microglia,
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complemented also by CNS-derived macrophages frommenin-
ges, choroid plexus, and perivascular space, which provide in-
nate immunity [31]. In non-pathological conditions, microglia
scan the local microenvironment constantly and detect CNS
damage. In this deactivation state, microglia release many im-
mune (anti-inflammatory) and growth (neurotropic) factors that
influence astrocytes and neurons. Cell injury or pathogen infec-
tion leads to microglial activation, morphological changes, and
production of pro-inflammatory mediators. Thus, microglia are
the earliest responders to any changes in the CNS [5, 32].
Developing an inflammatory response next stimulates the im-
mune system (innate immune response), to eliminate stress
stimulus. The initiation of an immune response may next in-
volve the development of adaptive immunity. In the healthy
brain, this early inflammatory response is self-limited, after
the stimulus is terminated (phagocytosis of pathogens, abnor-
mal protein deposits, debris or apoptotic cells) and described as
beneficial and neuroprotective [33]. A recently characterized
transient form of immune activation is euflammation, which
can be induced by repeated subthreshold infectious challenges
and causes innate immune alterations without overt
neuroimmune activation. Thus, euflammation is associated
with reduced inflammation and leads to neuroprotection [34,
35].

However, if inflammatory reactions are uncontrolled and
chronic, it results in microglial overactivation (reactive microg-
lia), which releases large amounts of inflammatory agents. This
attracts other cells, microglia, and astrocytes. Innate inflamma-
tion is reported in AD, PD, ALS, and other neuropathologies
[33]. Reactive microglia and astrocytes potentially cause injury
to the BBB, which become more permeable for periphery im-
mune cells, and neuronal impairment. The release of cytokines,
chemokines, reactive oxygen species, and pro-inflammatory
mediators by reactive glial cells leads to neurotoxicity and
may accelerate neurodegeneration. Moreover, recruited periph-
eral immune cells (mainly lymphocytes) increase inflammatory
response in the CNS by releasing more inflammatory media-
tors. Indeed, most CNS pathologies are often connected with
abnormal microglial activation. An early phase of microglial
activation is essential for the effective removal of toxic agents
that could be detrimental for the brain. However, chronic
microglial activation is connected with the overproduction of
pro-inflammatory mediators which might override the benefi-
cial effect of these cells [29].

It is worth noting that until now it was believed that
neuroinflammatory response reflects systemic inflammation,

which leads to the common view that entry of circulating
immune cells to the CNS could only accelerate the parenchy-
mal damage. González and Pacheco summarize the results of
several studies showing that CD4(+) T cells infiltrate the CNS
in many neurodegenerative disorders, in which their partici-
pation has a critical influence on the outcome of microglial
activation and consequent neurodegeneration [36]. In fact, the
CNS is constantly surveyed by circulating immune cells with-
in the CSF, which entered into the brain through choroid plex-
us. The immune cell content of healthy CSF is estimated to
consist of approximately 90% T cells, 5% B cells, 5% mono-
cytes, and <1% dendritic cells [37]. In the physiological state,
activated T cells, along with circulating and local innate im-
mune cells, patrol the CNS and support brain plasticity, both
in health and in response to CNS trauma. Schwartz and col-
leagues [29, 38, 39] demonstrated that the improvement of the
CNS from acute damage is non-tissue autonomous and re-
quires the involvement of circulating leukocytes, which are
needed also for fighting off neurodegenerative conditions
and which brought to appreciation the pivotal role of CNS-
specific T cells in CNS maintenance and repair. Authors pro-
posed a Bprotective autoimmunity theory^ as an essential
physiological mechanism for CNS protection, repair, and
maintenance in both health and pathological diseases. This
theory assumes a well-controlled generation and activation
of CNS-specific T cells is a purposeful process, and only
when it is dysregulated these cells become destructive.
Yet, it is not confirmed whether protective autoimmunity is a
more general phenomenon which occurs in tissues other than
the CNS.

Importantly, inflammation is not only a pathological reac-
tion that should be completely eliminated. The local inflam-
matory response and the innate and adaptive immune reac-
tions are closely related with the etiology of each disease.
Moreover, the inflammatory response involves a delicate bal-
ance between the innate and adaptive immune systems to deal
with inflammatory stimuli [4, 29].

Microglia and Astrocytes as Key Designers
of the Resolution of Inflammation

Microglia

Glial cells, described as non-excitable cells of the CNS, are a
highly heterogeneous population, which initiate, participate,
and regulate many important brain functions. Any discussion
of neuroinflammation focused on the role of microglia and
participation of astrocytes. Microglia, firstly described as
brain-resident phagocytes, derive from the mesenchyme, in
which myeloid stem cells give rise to cells, which migrate to
the CNS and go through appropriate transformations [40, 41].
Currently, microglia are considered as the resident

�Fig. 1 BTwo faces^ of neuroinflammation. Chronic inflammation is
typically a prominent feature in the progressive nature of
neurodegeneration. Neuroinflammation is an active process, which is
dependent on well-orchestrated innate and adaptive immune responses,
and the neuroinflammatory reactions may therefore be beneficial or det-
rimental, depending on their duration and strengths of activation
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mononuclear phagocytes of the CNS, belonging to the glial
system of non-neuronal cells. Microglia are broadly distribut-
ed throughout the brain, retina, optic nerve, and the spinal
cord; however, they mainly reside in the hippocampus and
gray matter and account for 5–20% of the total glial cell pop-
ulation within the CNS parenchyma. Microglia have an active
role in immune surveillance. Over a decade ago, it was shown
that under physiological conditions, microglia are not immu-
nologically quiescent cells as previously believed and con-
firmed that they are the most dynamic CNS cells. Thus, mi-
croglia are now characterized as highly motile cells that con-
tact synapses [42]. Microglia are highly specialized cells,
which can either trigger neuroinflammatory pathways leading
to gradual neurodegeneration or promote neuroprotection,
downregulation of inflammation, and stimulation of neuron
repair. Depending on the stage and context of any given le-
sion, one of these mechanisms prevails [43]. Based on many
pathophysiologic studies, it is postulated that there are three
different phenotypic states of microglia: (a) resting, ramified;
(b) activated non-phagocytic (antigen-presenting cell (APC)-
like) engaged in CNS inflammation; and (c) reactive, phago-
cytic, and present in areas of trauma or infection [44].

Physiological Surveillance

Microglia are considered among the most versatile cells in
the body, possessing the capacity to morphologically and
functionally adapt to their ever-changing surroundings.
Even in a steady state (microglia M0), the processes of
microglia, Bresting microglia^ or rather Bsurveying
microglia^, are highly dynamic and they perpetually scan
the CNS. Recent investigations show fundamental roles
for microglia in the control of neuronal proliferation and
differentiation, as well as in the formation of synaptic
connections [27, 45, 46]. Microglia are key regulators of
synaptic remodeling during development and in the adult
CNS via non-cell-autonomous mechanisms [47]. In the
non-pathological brain, microglia mature and develop a
ramified morphology characterized by motile processes
that constantly monitor their immediate surrounding by
extending and retracting their processes. Microglia are
closely linked with neurons and determine their appropri-
ate functioning (maturation and regeneration) by releasing
several growth factors important for the proper develop-
ment of the CNS. Microglia may play an important role in
the remodeling of the brain by removing apoptotic neu-
rons [48]. They were shown to be involved in the phago-
cytosis of synaptic elements during all stages of life.
Microglia have a central role in the pruning of synapses
by specifically engulfing the degenerating neurites of in-
appropriate connections. Stimulation of microglial phago-
cytosis with exosomes pointed out that exosomes may be
a regulator of synapse elimination [49]. Exosomes are

naturally occurring nanovesicles, which are implicated in
the transfer of messenger RNA (mRNA), microRNAs
(miRNA), lipids, and proteins between cells which lead
to modifications of the functions of recipient cells. Bátiz
et al. [50] present the molecules that could be expressed
or secreted in exosomes under physiological or patholog-
ical conditions by CNS cells. Well-regulated communica-
tion between cells is essential to ensure brain homeostasis
and plasticity. In healthy neurons, intercellular informa-
tion transfer through exosomes acts as a unique mecha-
nism for local and possibly systemic interneuronal trans-
fer of information within functional brain networks [51].
Exosomes are actively involved in the communication be-
tween neuron and glial cells and between particular glial
cells. It was shown that exosomes secreted by oligoden-
drocytes are endocytosed by neurons what improve neu-
ronal metabolism and viability under conditions of cell
stress (oxidative stress or lack of nutrients) [52]. Current
studies confirmed that exosomes are present in the human
CSF and may exert their function in brain sites located far
from its secretion site. It is worth noticing that proteins
related to the neuropathology of certain neurodegenerative
diseases, like AD or PD, have been found in the
exosomes from CSF samples [51]. Exosomes are also in-
vestigated to be involved in the processing of the APP
which is associated with AD. These vehicles have been
shown to contain full-length APP and several distinct pro-
teolytically cleaved products of APP, including Aβ [53].
Moreover, Turola et al. report that microglia-derived
exosomes can stimulate neuronal activity and participate
to the propagation of inflammatory signals. They suggest
that exosomes represent a secretory pathway for the in-
flammatory cytokine IL-β, and this process is activated
by the ATP receptor P2X7 [54]. Thus, exosomes are con-
sidered as novel types of intercellular messengers that
play important roles in cell function, disease, and
immunomodulation [50, 55].

Microglia are also involved in the formation of learning-
dependent synapses in the mature brain, as well as maturation
and plasticity of excitatory synapses [42]. Wang et al. [56]
investigated the constitutive role of microglia by depleting
microglia from the mouse model of retina. Their results
showed that sustained microglial depletion leads to the degen-
eration of photoreceptor synapses in the outer plexiform layer
and causes a progressive functional deterioration in retinal
light responses. They suggest that microglia are constitutively
required for the maintenance of synaptic structure in the adult
retina and for synaptic transmission underlying normal visual
function. In the steady state, in the uninjured CNS, resting
microgl ia contr ibute to neurogenes is processes ,
remyelination, and neuroprotection and also support tissue
repair and are involved in the maintenance of brain homeosta-
sis. The heterogeneity of microglia in serving housekeeping
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duties, sensing environmental signals, and organizing their
(mostly) adequate responses to a disturbed CNS homeostasis
is discussed by Gertig and Hanish [57].

Inflammatory Activity

Microglia are very reactive cells; any changes in the CNS
immediately lead to the activation, proliferation, and morpho-
logical changes of the cell structure [27, 58].In an early phase
of acute neuroinflammatory response, the number of microg-
lia increases immediately, and this is part of the microglial
activation program [59]. As mentioned, microglia are the first
line of defense against pathogens that invade and injure the
CNS, contributing to both innate and adaptive immune re-
sponses locally. As phagocytes, microglia release cytotoxic
factors and may act as APC. Microglia can be activated by a
broad range of stimuli, including nerve injury, infection, is-
chemia, toxic insults, and trauma as well as different
chemicals, cytokines, or proteins [60]. Moreover, C1q and
C3b complement cascade proteins can activate innate immune
response in microglia, thus inducing more vigorous response
[43]. Among the spectrum of molecular targets, microglia
sense and act on glycolipids, lipoproteins, peptides, nucleo-
tides, Aβ, and other abnormally processed proteins, inflam-
matory cytokines, and neurons, the strongest inducers of
microglial activation [61]. Luo and Chen [60] report that
many studies emphasize the role of crosstalk between microg-
lia and neurons in microglial activation. Healthy or injured
neurons send different signals that determine neuroprotective
or neurotoxic microglial activities. Activated microglia pro-
duce pro- and anti-inflammatory cytokines like TNF-α, IL-
1β, IL-4, IL-6, IL-10, IL-12, IL-13, IL-15, IL-18, IFN-α,
IFN-γ, TGF-β, M-CSF, and GM-CSF; chemokines (IL-8,
Groα, IP-10, MIP-1α, MIP-1β); growth factors such as fibro-
blast growth factor (FGF), platelet-derived growth factor
(PDGF), brain-derived neurotrophic factor (BDNF), and
nerve growth factor (NGF); ROS; RNS; inflammatory
markers (C-reactive protein, serum amyloid P); proteases (α-
antitrypsin, α-antichemotrypsin); and complement system
proteins [58, 61, 62]. Microglial activation is a complex pro-
cess and may proceed in three different ways (microglia po-
larization), leading to (i) classical activation (M1), which is
stimulated by IFN-γ , ( i i) alternative phagocytic/
neuroprotective activation (M2, now known as M2a with a
subcategory M2b), which is stimulated by IL-4 and IL-13,
and (iii) acquired deactivation (known asM2c), which is stim-
ulated by TGF-β, IL-10, and apoptotic cells [63, 64]. M1 and
M2 phenotypes, respectively, belong to the type (b) or (c)
microglial states. Further, the factors which cause polarization
to M1 or M2 reinforce the maintenance of that phenotype in a
cycle-like manner [44]. Different antigenic markers character-
ize the microglial phenotypes, including HLA-DR, CD68, or
ionized calcium-binding adaptor molecule-1 (IBA-1) as well

as CD 14, CD 45, or ferritin [64]. The role of microglia is still
debatable in terms of neuroprotection and neurodegeneration.
Their dual activity is connected with the phenotype changing
and interactions with other immune cells (astrocytes, T lym-
phocytes) [65].

In non-pathological states, microglia can support neurons
by releasing neurotrophic factors and are capable of assisting
in synaptic plasticity and structure remodeling [66].
Moreover, microglia play an important role in regulating neu-
ronal network excitability. In the review of Ferrini and
Koninck [67], the mechanisms by which BDNF, released
from microglia, control neuronal excitability are described.
They showed that microglia alter neuronal excitability by af-
fecting synaptic inhibition mediated by γ-amino-butyric acid
(GABA) and glycine (Gly) which activate ionic channels
(GABAAR and GlyR) permeable to anions, like chloride
(Cl−) and bicarbonate (HCO3

−). Mild activation of microglia
connected with the release of neurotrophic factors and cyto-
kines, which translate environmental into molecular signals
[68], has been shown to promote synaptic plasticity and pro-
mote neurons repair [69]. For example, certain basal levels of
TNF-α are required for the development of normal cognition
[70]. Steinmetz and Turrigiano [71] confirmed that glial-
derived TNF-α is critical for maintaining synapses in a plastic
state in which synaptic scaling can be expressed. Interestingly,
the beneficial microglial state resembles an activatedmorphol-
ogy and protein expression, but the function is distinct from a
classic pro-inflammatory response. In general, microglial
functions and activation are beneficial and necessary for a
healthy CNS. If microglia become neurotoxic, it is always
connected with the loss of the beneficial functions and/or a
shift to a reactive phenotypic state. In this stage, the mecha-
nism through which microglia are thought to cause neuron
damage is through the excessive and inappropriate release of
toxic factors [72].

The classical, M1, microglial activation pathway that initi-
ates tissue defense mechanism is beneficial for the survival of
the organisms and leads to the restoration of normal tissue
homeostasis [63]. Many disease proteins and environmental
toxicants trigger a toxic microglial response because they are
misinterpreted as a pathogen M1 pathway which is connected
with the activation of interferon regulatory factors (IRFs), es-
pecially IRF5, which in turn activates genes for pro-
inflammatory cytokines IFN-γ, IL-1β, TNF-α, IL-6, IL-18,
IL-12, and IL-23. This process is also related to the elevated
level of NO, ROS, RNS, and chemokine and loss of phago-
cytic activity and support of defense-oriented Th1-type im-
mune reactions [73]. Inflammatory agents regulate innate im-
mune defense and modify synaptic function. To reduce the
defense response and promote repair of the damage brain tis-
sue, replacement of lost and damaged cells and restructuring
of the damaged extracellular matrix are essential. The de-
crease in the activation of PRR and bystander injury caused
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by pro-inflammatory cytokines results from the reducing path-
ogen levels and the increasing catabolism of pro-
inflammatory mediators. Moreover, during innate immune re-
sponse in the brain tissue, invasion of monocytic cells from
the periphery is also observed. Newly recruited macrophages
phagocytose dead or dying immune cells then exit the tissue
via the lymphatic system. This removal of the pro-
inflammatory immune cells allows to restore tissue homeosta-
sis [63]. However, strong activation of microglial cells can be
associated with cytotoxicity. Overactivation of microglia,
when they continually produce inflammatory mediators
(chronic activation), can directly damage neurons and accel-
erate neurodegeneration [61]. Lull and Block suggest that
many disease proteins and environmental toxicants trigger a
toxic microglial response because they are misinterpreted as a
pathogen [72, 74]. Longstanding microglial activation follow-
ed by sustained release of inflammatory mediators, which aid
in enhanced nitrosative and oxidative stress, leads to chronic
inflammation. The long-drawn release of pro-inflammatory
mediators propels the inflammatory cycle by increased
microglial activation and proliferation, thus stimulating en-
hanced release of pro-inflammatory agents [75]. Cytokines
produced by microglia can stimulate another glial cells which
next increase the pool of neurotoxic cytokines. Large amounts
of pro-inflammatory cytokines, NO, ROS, and RNS lead to
mitochondrial respiratory chain failure in glial cells and neu-
rons [76]. Additionally, ROS may cause mutations in mito-
chondrial DNA (mtDNA), which in turn increase ROS pro-
duction and deregulation of Ca(2+) homeostasis [43, 77].
Inflammatory factors secreted by microglia under the influ-
ence of Aβ may also increase the production of the Aβ.
Impairment of intercellular communication leads to neurode-
generation and is connected with development of AD, PD,
MS, ALS, Huntington’s disease, HIV dementia, and others
[65, 72]. Moreover, extensive oxidative stress is linked with
lipid peroxidation and oxidative modification of proteins [78].
Numerous studies confirm that the pro-inflammatory pheno-
type of microglia contributes to a reduction in the number of
neurons, destabilizes synaptic connections, and impairs
neurogenesis [79]. In fact, microglia present a tendency for a
chronic pro-inflammatory response, rather than demonstrating
a resolution of the innate immune response, as is common in
the peripheral immune system. It is suggested that this tenden-
cy is a key factor driving progressive neuron damage, contrib-
uting to the chronic nature of neurodegenerative diseases [72].
As demonstrated, inhibition of microglial overactivation re-
sults in suppression of neurotoxic events and increases surviv-
al of neurons in early stages of neurodegeneration.

To stop the inflammatory phase of classically activated
microglia, the change of macrophage activation state from
pro-inflammatory gene profile to anti-inflammatory is
essential. Microglia activated through the alternative, M2
pathway are characterized by increased level of anti-

inflammatory cytokines, like IL-4, IL-10, IL-13, TGF-β,
IGF, NGF, and BDNF, and increase in phagocytic activity
without NO production. This phenotype assists Th2-type im-
mune responses, resolves inflammation, and supports tissue
repair and reconstruction [63, 73]. It is suggested that polari-
zation to M2 microglia promotes remyelination. Recently, a
new homeobox protein (msh-like homeobox-3 (Msx3))-de-
pendent mechanism for driving microglia M2 polarization
was described [80]. Increased phagocytic features allow for
effective removal of Aβ deposits, which indicates the neuro-
protective role of M2 microglia [26, 63]. The lack of an ap-
propriate M2 response might be an important mechanism un-
derlying neurodegeneration [81].

The third microglial activation state, associated with anti-
inflammatory and repair activities, is an acquired deactivation
(M2c phenotype). Both M2 phenotype and acquired deactiva-
tion downregulate innate immune response and present simi-
lar gene profiles. For that reason, many investigators include
these two phenotypes into one category, but this is not justi-
fied. The explanation of the differences in acquired deactiva-
tion and alternative activation of microglia was previously
shown by Colton [63]. In contrast to M2 activation, acquired
deactivation is challenged by apoptotic cells, TGF-β and/or
IL-10. Microglia are the main phagocytes engaged in the re-
moval of apoptotic cells, and this mechanism is linked to
suppression of pro-inflammatory cytokine production (immu-
nosuppression of macrophage functions). TGF-β and IL-10
are released by several brain cell types including astrocytes
and microglia. Additionally, an uptake of apoptotic cells in-
creases the production of TGF-β and IL-10 by microglia.
TGF-β and IL-10 have growth factor properties and promote
survival of neurons and other cells through an activation of
anti-apoptotic proteins, increasing tight junction at the BBB.

In the human brains, the classically, inflammatory activated
microglia (M1) and an alternative, anti-inflammatory pheno-
type (M2) are present and are hybrids of these two pheno-
types. It was shown that at the same time, different microglia
can be at different stages of activation, differentiation, and
function [64]. Currently, it is postulated that disturbances in
the switching of microglial phenotypes may be one of the
reasons for the development of chronic inflammation and neu-
rodegenerative diseases. As a result, the relation of pro-
inflammatory to anti-inflammatory phenotype is invalid, and
it is known that microglial phenotypeM1 is the biggest source
of NO, ROS, RNS, and pro-inflammatory cytokines in the
CNS that are disruptive to the adjacent neurons [82]. New
approach to therapies in neurodegenerative diseases should
also be based on to administer agents that inhibit the inflam-
matory stimulation of microglia or modulation of microglial
activities by converting the inflammatory on anti-
inflammatory phenotype [83]. Moreover, as suggested by
Latta et al., evaluation of plasma proteins that are indicative
of microglial immune profile (M1/M2) may allow for
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appropriate selection of patients for trials and immune therapy
(personalized therapy) [84]. Microglial cell polarization may
be regulated by many molecular signals, among which
microRNAs have recently been identified. It is suggested that
microRNA-155 (miR-155) regulates pro-inflammatory re-
sponses in both blood-derived and central nervous system
(CNS)-resident myeloid cells [85]. Furthermore, microRNA-
124 (miR-124) injection resulted in a significantly increased
neuronal survival and a significantly increased number ofM2-
like polarized microglia/macrophages [86]. The role of miR-
124 in the adaptation of microglia and macrophages to the
CNS microenvironment and the influence of miR-155 and
miR-124 on the polarization of macrophages are intensively
discussed by Ponomarev et al. [87].

Astrocytes

The second, most important glial cells are astrocytes.
Astrocytes are ubiquitous and heterogeneous types of glial
cells, which occupy 25 to 50% of the brain volume.
Astrocytes are stellate cells, but their morphology differs de-
pending on their development stage, subtype, and localization.
Gray matter astrocytes are the protoplasmic ones, which ex-
hibit short branches, whereas in the white matter, astrocytes
exhibit long unbranched processes and are usually called fi-
brous astrocytes [88, 89]. Astrocytes are the only cells in the
brain that contain the energy storage molecule glycogen, the
largest energy reserve of the brain. They also contain a unique
protein called glial fibrillary acidic protein (GFAP). It was
presented that overexpression of GFAP can be lethal and is
responsible for several neurodegenerative diseases, like
Alexander disease [90, 91]. Astrocytes are multifunctional
cells that control the brain homeostasis and are responsible
for proper neuron functioning [58]. Their neuro-supportive
role and participation in the formation and functioning of
BBB are well documented. Astrocytes have an influence on
pH, ion homeostasis and blood flow and regulate oxidative
stress. Furthermore, these cells contribute to synaptogenesis,
modulate neuronal conductivity, and regulate neural and syn-
aptic plasticity [88, 92, 93]. Under physiological conditions,
astrocytes can also metabolize Aβ. The receptor for advanced
glycation endproducts (RAGE), expressed by astrocyte, binds
Aβ, phagocytoses, and is taken up for lysosomal degradation
in order to maintain Aβ homeostasis [89]. Astrocytes, like
microglia, respond quickly on pathology within the CNS.
They change the morphology, antigenicity, and function
[58]. However, recent investigation suggests the dual role in
either clearing and producing Aβ. Zhao et al. demonstrate that
cytokines including TNF-α + IFN-γ and Aβ42 increase levels
of endogenous beta-secretase 1 (BACE1), APP, and Aβ and
stimulate amyloidogenic APP processing in astrocytes. These
results suggest that mentioned factors promote astrocytic Aβ
production, which means that activated astrocytes may

represent significant sources of Aβ during neuroinflammation
in AD. On the other hand, exposure to Aβ causes deleterious
consequences on astrocyte functioning [94]. Thus, evidence
suggests that astrocytes interact with neurons both chemically
and physically, supporting their role as pivotal for higher brain
functions (learning and memory). However, astroglial, as well
as microglial, dysfunction following brain injury can alter
mechanisms of synaptic plasticity and may be related to an
increased risk for persistent memory deficits [69].

The interactions between astrocytes and microglia turn
microglial inflammatory response. However, this mechanism
could be impaired in inflammatory state where down-
regulation of the astrocyte-suppressive function may lead to
microglial overactivation and release large amounts of pro-
inflammatory cytokines [65]. The numerous activities of as-
trocytes, similarly as microglia, following injury can either
promote recovery or underlie the pathobiology of memory
deficits [69]. Several studies investigate that the pathological
changes of the astrocytes are associated with the occurrence of
neurodegenerative diseases. Large amounts of astrocytes were
found in the senile plaques in the brains of patients with AD
and murine models, which is very characteristic of the disease
progression and is described as reactive astrogliosis [27].
Astrocyte reactivity (astrogliosis) is characterized by three
hallmarks, GFAP elevation, hypertrophy, and increased pro-
liferation, and depends on interplay with activated microglia
[26, 69]. Generally, astrocytes can be activated by various
pathological factors, including Aβ, and pro-inflammatory cy-
tokines such as IL-1β. Moreover, and the most important, is
that astrocytes may be activated also by reactive microglia.
Activation and inflammatory response of astrocytes is the re-
sponse associated with the expression of many receptors for
pro-inflammatory factors, including the receptors for cyto-
kines IL-1β or TNF-α and chemokine. Astrocytes also pro-
duce ligands for TLRs. In response to this activation, astrocyt-
ic NF-κB is activated, and these cells release large amounts of
p r o - i n f l amma t o r y c y t o k i n e s , NO , a n d o t h e r
neuroinflammatory agents, contributing to the increase in neu-
roinflammation in the brain and neuronal death. Astroglia-
dependent toxicity was observed by Efremova et al. when
immortalizedmurine astrocytes were stimulated with cytokine
mix (TNF, IL-1) and the culture medium was transferred to
human neurons [95]. The activation of NF-κB in astrocytes is
also responsible in mediating the inflammatory process
through the expression of adhesion molecules and
chemokines which allow for the invasion by peripheral leuko-
cytes, further fueling the inflammatory response [58].

Modulation of Microglial Activity

Receptors and Intracellular Signaling Pathogens which
penetrate BBB activate a mixed response of microglia charac-
terized by enhanced phagocytosis and pro-inflammatory
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cytokine production, as well as adaptive activation of T cells.
Thus, phagocytic activity of microglia may rescue neurons
from degeneration and injury. Reactive microglia remove
from the CNS not only pathogens but also damaged cells from
neighboring tissues and maintain CNS homeostasis. CD200,
expressed on the neuronal membrane, and its receptor
CD200R present in the microglia are actively involved in
phagocytosis. Interaction between these proteins determine
the high threshold of microglial excitability, which allows
for control of the inflammatory response in the CNS. The
M2 activation pathway leads to increased CD200R expression
under IL-4 stimulation. It was also shown, in the brains of the
elderly and in AD patients, that the decrease in CD200 expres-
sion is age-related, which in turn increases the pro-
inflammatory microglial activity or switch from M2 to M1
phenotype [60]. Microglial activation is also related to cyto-
skeletal rearrangements that alter the pattern of receptors on
the cell surface. Microglial receptors include toll-like recep-
tors (TLRs), which belong to the PRR that recognize PAMP
and DAMP, nucleotide-binding domains, the leucine-rich re-
peat-containing receptors (NOD-like receptors (NLRs)),
whose function is dependent on the multimolecular com-
plexes termed Binflammasomes^, RAGE, Fc receptors, com-
plement receptor 3, various scavenger receptors, C-type lectin
receptor, mannose receptor MRC1, cytokine and chemokine
receptors, receptors related to endocytosis (e.g., BIN1,
PICALM, CD2AP) and lipid biology (e.g., CLU, ABCA7),
several scavenger receptors, or receptors for several neuro-
transmitters [31, 62]. Moreover, TLR, SCARA1, CD36,
CD14, α6β1integrin, and CD47 are important receptors for
regulating microglial responses to Aβ. According to genome-
wide association studies (GWAS), different gene variants of
some of these receptors are associated with an increased risk
of late-onset AD (LOAD) [96, 97].

Among PRR in CNS, membrane-bound TLRs, which
sense extracellular or endosomally located signals, and
NLRs, located within the cytoplasm and sense intracellular
signals, are the key innate immune receptors expressed by
microglia, macrophages, and astrocytes. NLRs are a part of
the mult iprotein complex cal led inflammasomes.
Inflammasomes generally have three main components: a cy-
tosolic PRR (which is a member of the NLR family of protein
or pyrin and the HIN domain-containing family of proteins
(PYHIN)), the enzyme caspase 1, and an adaptor protein that
facilitates an interaction between the two [31]. This cytosolic
platform enables the activation of caspase 1 which leads to the
cleavage and release of pro-inflammatory cytokines.
Inflammasomes are essential protein complexes that direct
the innate immune system’s responses and apoptotic response
in the human brain to pathogenic and non-pathogenic stimuli
[98]. De Vasconcelos et al. present recent advances in the role
of inflammasomes in regulated cell death signaling [99].
Indeed, initiation of the activation of inflammasomes in

astrocytes and microglia leads to release in inflammatory fac-
tors, IL-1β and IL-18, which next activate more astrocytes
and microglia and cause secretion of more inflammatory mol-
ecules. Inflammasomes are chiefly known for their roles in
maturation and secretion of IL-1β and IL18. These molecules
are responsible for the elevation of amyloidogenesis and neu-
rofibrillary tangles (NFTs) in neurons and the recruitment of
another immune cells (monocytes, lymphocytes) from the pe-
riphery, which are the source of even more pro-inflammatory
factors. This feedback loop creates and propels neuroinflam-
mation that leads to AD, PD, and other neurodegenerative
disorders [100]. Many different types of stimuli may be the
inflammasome’s activators, e.g., viruses, bacteria, fungi, pro-
tozoa, microbial proteins, crystalline urea, RNA, Alum, ATP,
potassium efflux, Aβ, fatty acids, and degraded mitochondrial
DNA [100]. In AD pathogenesis, it is postulated that activa-
tion of the NLRP3 inflammasome in microglia by Aβ may
promote disease progression [98, 101]. Thus, NLRP3 is
suspected to be a critical determinant of the development of
low-grade sterile inflammatory responses during aging [102].

Positron emission tomography showed that microglial ac-
tivation correlates with AD progression [103–105]. Aβ plays
a pivotal role in the progression of AD through its neurotoxic
and inflammatory effects. Aβ binds to microglia through
receptor-mediated phagocytosis and degradation. Binding of
Aβ to microglial membrane receptors appears to be a critical
step. Activated microglia exert neuroprotection mediated
through Aβ phagocytosis in the early stage, whereas, as the
disease progresses, they fail in Aβ clearance and exert detri-
mental effects, including neuroinflammation and neurodegen-
eration [106–108]. Receptors expressed on microglia alone or
with their co-receptors play complementary and non-
redundant roles in the interaction with Aβ in AD.
Pathogenic Aβ aggregate-activated microglia release various
neurotoxic inflammatory mediators in classical M1 inflamma-
tory activation [108]. Microglia express pattern recognition
receptors, such as CD14 and especially TLRs, which were
originally discovered based on their response to invading mi-
croorganisms [106]. TLRs are a family of pattern recognition
receptors that are expressed by a variety of immune and non-
immune cells [107, 108]. There are at least 13 distinct TLR
family members known in mammals, of which the pathogen
specificities of 10 (TLR 1–9 and 11) have been identified
[108]. Recent studies have pointed out that immune stimula-
tion targeting TLR9 could dramatically attenuate Aβ neuro-
toxicity and reduce Aβ levels in in vitro and in vivo AD
models. Meanwhile, this reduction in amyloid is associated
with cognitive improvement in AD mice [109–111]. Very im-
portant is that each TLR has a different ligand specificity that
is extended through dimerization of the TLRs or additional co-
receptors, such as CD14 for TLR4 and TLR2 [109, 112].
Recently, studies have provided evidence that CD14 and
TLR2/TLR4 form a receptor complex, and together they
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participate in the inflammatory response induced by Aβ. It
has been reported that CD14 binds fibrillary Aβ but not
non-fibrillary Aβ. Neutralization with antibodies against
CD14 and genetic deficiency of this receptor significantly
reduced Aβ-inducedmicroglial activation [112]. These results
indicate that CD14 along with TLR4 can induce transcription
factors such NF-kB nuclear translocation and consequently
induce production of pro-inflammatory mediators in murine
microglia and human peripheral blood monocytes [113].
Some studies cite crosstalk with NF-kB involving p53 as an
example [113]. NF-kB and p53 can both be activated bymany
of the same stimuli with a common link frequently being
DNA-damaging agents, which include ROS [114]. Besides
CD14, there is also a direct interaction between TLR2 and
the aggregated Aβ42. TLR2 deficiency reduces Aβ42-
triggered inflammatory activation but enhances Aβ phagocy-
tosis in cultured microglia and macrophages [113].

Recent studies focused on beclin 1 protein, which regulates
autophagy, phagocytosis, and functioning of the receptors in-
volved in this process in health and disease. Beclin 1 is in-
volved in the degradation of proteins and immune defense. In
mouse models of AD and PD, it has been shown that beclin 1
plays a key role in reducing amyloidosis and neurodegenera-
tive processes. Beclin 1 deficiency results in reduced expres-
sion of the CD36 and TREM2 receptors that determine the
proper process of phagocytosis. In AD brains, the expression
of beclin 1 is decreased which is associated with ineffective
phagocytosis and autophagy. Aβ deposits and the tau protein
are not removed, which play a key role in AD pathogenesis
[115–117]. One of the most important recent findings supports
a role of immune dysfunction in AD, which is the connection
between LOAD risk and TREM2 gene mutations [96].
TREM2, which belongs to the immunoglobulin (Ig) super-
family of receptors, and DAP-12, a type I transmembrane
protein, form a receptor signaling complex on the cell surface
of microglia, which triggers phagocytosis and the release of
reactive oxygen species. TREM2, same as TLR4, can detect
both a PAMP and a DAMP. TREM2 is able to bind gram-
positive and gram-negative bacteria as well as anionic and
zwitterionic lipids and interacts with other endogenous li-
gands on neurons, leading to the direct removal of damaged
cells [118–120]. Anti-inflammatory properties of TREM 2 are
well known. TREM2 reduces macrophage activation and in-
hibits cytokine production in response to TLR2 and TLR4
ligands [102]. Moreover, TREM2 is associated with increased
phagocytosis and a promotion of a M2-like activation state of
microglia, which is thought to have protective effects [121].
Mutations in TREM2, e.g., rare functional variant (R47H)
[122, 123], cause impaired signaling by the TREM2-DAP12
pathway. The loss of the functionality of the complex leads to
altered immune responses in phagocytosis, cytokine produc-
tion, microglial proliferation, and survival, which in turn di-
rect to the demyelination of neurons and development of

dementia, increasing the risk for AD and other neurodegenera-
tive disorders [118, 119]. Animal and human studies have in-
dicated that TREM2 variants have been linked to an enhanced
ability of microglia to clear Aβ and amyloid plaques. The loss
of TREM2 functions is connected with Aβ-associated
microgliosis and tau dysfunction [124–126]. Moreover, addi-
tional variants of TREM2, described by Colonna and Wang
could be related to AD pathology. Based on these investiga-
tions, it is postulated that TREM2 variants may be the new key
to deciphering Alzheimer’s disease pathogenesis [127].

Aging Microglial activation has both detrimental and benefi-
cial effects. Many studies with mouse model of AD suggests
that early microglial activation is neuroprotective due to its
Aβ clearance function, but as the disease progresses, pro-
inflammatory cytokines downregulate genes involved in Aβ
clearance, promoting Aβ accumulation [97]. Luo and Chen
[60] showed the dual nature of microglia. Weather microglia
have positive or negative effects on neuronal survival is con-
text-dependent, but the aging has a great impact on microglial
function and successive neurotoxicity. Thus, it was shown that
the structure of aging microglia changes from a highly rami-
fied morphology to spheroid formation with HLA-DR anti-
gens, shortened and twisted cytoplasmic processes, and in-
stances of partial or complete cytoplasmic fragmentation.
This morphological alteration is described as Bdystrophy^
[59]. Moreover, the number of microglia increases and their
layout becomes more irregular. Aging microglia function ab-
normally. They become less dynamic and more slowly re-
spond to tissue injury [47]. The concept of Bmicroglial aging^
was proposed most recently. Microglial senescence is mani-
fested by an altered inflammatory profile and switch from
neuroprotective with production of anti-inflammatory media-
tors in young adult to neurotoxic with production of pro-
inflammatory mediators in the aged brain upon activation [4,
60]. Importantly, chronic inflammation induces microglial ag-
ing from middle age. Senescent types of microglia respond
incorrectly to stimuli and are driven by the emergence of in-
creased intracellular ROS which activates the redox-sensitive
transcription factors (including NFκB) and leads to mitochon-
drial DNA damage [78]. What is more, the NF- B signaling
pathway may be activated by hypoxia and in turn induce
microglial aging.

Timing The timing of microglial activation is another deter-
minant of their function, which decides microglia’s destruc-
tive or neuroprotective role in the CNS [60]. Hamelin et al.
[128] investigated, in a prospective study using 18F-DPA-714
PET imaging, the microglial activation in early AD. They
showed that microglial activation appears at the prodromal
and possibly at the preclinical stage of AD and plays a pro-
tective role in the clinical progression of the disease at early
stages. Importantly, the different dynamic profiles of
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microglial activation and their timing in the progression of the
neurodegenerative process can be critical in identifying the
correct therapeutic window to target microglial activation for
disease modification [129].

The Role of Cytokines in Neuroinflammation Cytokines
play a key role in the induction and maintenance of neuroin-
flammation. They activate both microglia and astrocytes, but
the duration of cytokine exposure is short and the effect is
transient [4]. Activated astrocytes and microglia are in turn
the main sources of cytokines in the CNS (Table 1).
Numerous studies confirmed that the levels of classical pro-
inflammatory cytokines such as IL-1, IL-6, IFN-γ, and
TNF-α are elevated in chronic neurodegenerative diseases,
especially in AD, which significantly contribute to the disease
progression [138, 151, 153]. The correlation between AD
prevalence and polymorphisms in IL-1, IL-6, TNF-α, and
MIP-α genes was also demonstrated [154]. Additionally, the
level of anti-inflammatory cytokines such as IL-4, IL-10, and
IL-13 is generally reduced. Inflammatory state presents in the
brains of AD patients and in transgenic mouse with cerebral
amyloidosis, reaching a destructive size, which in turn in-
creases the risk of transition from mild AD to dementia [26].
Thus, it is important that microglial and astrocyte actions are
dependent on the nature of the activating stimulus. Smith et al.
[138] summarize that microglial phagocytosis of invading
pathogens is associated with their release of pro-
inflammatory factors while clearance of apoptotic debris is
associated with production of anti-inflammatory factors.

Generally, pro-inflammatory cytokines may directly
contribute to neuronal degeneration, induce apoptosis in
neurons and glial cells, increase BBB permeability, and
promote trafficking of peripheral immune cells into the
CNS, which cont r ibu te to damage of neurons .
Additionally, these cytokines promote the increase in pro-
duction of factors (ROS, NO) which are toxic for neurons
[138, 155]. TNF is a strong pro-inflammatory stimulator
for most cells of the immune system and the most impor-
tant neuroinflammatory cytokine. In the case of CNS,
TNF, released by activated microglia, may recruit periph-
ery immune cells via the BBB into neuronal tissue, which
is a critical step for the development of inflammatory
diseases. Persistently elevated levels of TNF have been
implicated in chronic inflammation and have been associ-
ated with neurodegenerative diseases. However, Fischer
and colleagues confirmed earlier reports that TNF plays
a region-specific and dual role in neurodegenerative dis-
eases [76, 138, 151, 152]. They showed that the TNF
receptor (TNFR) 1 is predominantly associated with neu-
rodegeneration. Simultaneously, activation of TNFR2 sig-
naling by TNC-scTNF(R2) promotes anti-apoptotic re-
sponses and leads to tissue regeneration and neuroprotec-
tion [76, 156]. Neuroprotective or neurodegenerative

properties of TNF are also dependent on the concentra-
tion. The experiments with the use of primary cultures of
astrocytes showed that the combination of pro-
inflammatory cytokines such as TNF-α and IFN-γ in-
creases the level of Aβ42 oligomers, APP and β-
secretase. This in turn leads to an increase in the produc-
tion of Aβ. These results indicate that activated astrocytes
have a significant impact on the total volume of Aβ in
AD during inflammation [94]. In the brain, IL-1, as an
important regulator of the inflammatory cascade, is re-
leased primarily by activated microglial cells. It has been
observed that IL-1 is the most important cytokine in the
early stage of AD and its level is elevated in CSF and
serum of AD patients [130, 134]. In vitro studies have
demonstrated that IL-1 increases the level APP and Aβ,
which leads to neuronal cell death [131]. Furthermore, L-
1 may induce apoptosis, and this appears to be dependent
on the presence or absence of additional cytokines
(TNF-α and IFN-γ) and signaling molecules [138]. Pro-
inflammatory cytokines, such as IL-1, can mediate in neu-
ronal damage and death by stimulation of IL-6 produc-
tion, induction in astrocyte iNOS activity, and release in
nitric oxide (NO) and its derivative ONOO− [132]. The
use of cytokine cocktail IL-1β + IFN-γ + TNF-α leads to
the production of nitric oxide synthase (NOS-2) and a
dangerously large amount of NO through activation of
mitogen-activated kinases (MAPKs) by normal human as-
trocytes [157]. IL-33, a member of IL-1 family cytokines,
is a pro-inflammatory cytokine, highly expressed in the
CNS by endothelial cells and astrocytes but not by mi-
croglia or neurons. Microglia and astrocytes stimulated
with IL-33 responded by proliferating and releasing in-
flammatory molecules such as TNF-α, IL-1β, and NO
as well as the anti-inflammatory cytokine IL-10 [142].
Kempuraj et al. report that IL-33 mediates neurotoxic ef-
fects causing neuronal damage and neurodegeneration
changes by releasing mentioned pro-inflammatory media-
tors (NO, TNF) and induction of CCL2 release from
mouse astrocytes in vitro [158]. However, IL-33 and its
receptor ST2 show both protective (physiologic) and anti-
inflammatory activities depending upon the concentration
and cell types/organ. IL-33 induces microglia and enhance
phagocytosis, suggesting a protective role of IL-33 in
neurodegenerative diseases [149]. IFN-γ, as TNF, has a
pleiotropic nature. It possesses antiviral activity but also
increases TNF act iv i ty and induces NO [132] .
Interestingly, it was noted that acute but not chronic acti-
vation of certain types of immune responses, with short-
term expression of IL-1, IL-6, and TNF, in the brain may
be beneficial [58]. IL-8 exhibits the largest increase in
expression of any inflammatory factor in human microglia
incubated with amyloid-beta (Aβ1-42), and this increase
is dose-dependent. Elevated levels of IL-8 in the CSF of
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AD patients have also been documented [134, 141].
Moreover, IL-8 has been reported to potentiate Aβ1-42-
induced expression and production of a number of pro-
inflammatory cytokines in cultured human microglia.
Thus, IL-8 and its receptor CXCR2 contribute to chemo-
tactic responses in AD. The results of Ryu et al. [159]
evidence that upregulation of CXCR2 may be linked with

microglial-mediated responses which in turn are correlat-
ed with neuronal damage in inflamed brain. However,
recent studies demonstrate that IL-8 protects neurons pos-
sibly by paracrine or autocrine loop and regulates neuro-
nal functions. Although IL-8 alone did not alter neuronal
survival, it did inhibit Aβ-induced neuronal apoptosis and
increase production of BDNF. Therefore, IL-8 may play a

Table 1 Pro- and anti-inflammatory cytokines involved in the inflammatory response in the CNS

Cytokine Role in the neuroinflammatory response Literature

IL-1 Contributes to neuronal degeneration
May induce apoptosis in neurons and glial cells
Increases the level of APP and Aβ
Increases the iNOS activity and NO production by astrocytes

[130–133]

IL-3 Neuroprotective effects against toxic activity of Aβ
Released by peripheral leukocytes and microglia
Microglial activator
Anti-apoptotic activity mediated by Bcl-2 activation in neurons

[134–137]

IL-4 Induces microglia neuroprotective activity and neurogenesis
Suppresses genes for pro-inflammatory cytokines IL-1 and TNF
Switches microglia toward M2a response

[132, 138–140]

IL-6 Multifunctional cytokine
Promotes astrogliosis and activation of microglia
Contributes to neuronal degeneration
May induce apoptosis in neurons and glial cells

[132, 133]

IL-8 Potentiates Aβ1–42-induced expression and production of pro-inflammatory cytokines in microglia
May play a protective role in the AD pathogenesis

[134, 141]

IL-10 The main anti-inflammatory cytokine
Plays an important role in neuronal homeostasis and cell survival
Prevents overactivation and deficiency of the immune system
Inhibitor of IL-1β, IL-6, and TNF-α secretion by microglia
Controls the ROS and RNS production

[132, 142]

IL-12 Higher level in sera of EOAD (early-onset AD) patients
Released by glial cells
Regulator of immune responses

[143, 144]

IL-13 Suppresses genes for pro-inflammatory cytokines IL-1 and TNF
Switches microglia toward M2a response

[132, 139]

IL-15 Marker of inflammation in the brain
Microglial activator
Unclear role in AD pathogenesis

[145, 146]

IL-18 Stimulates inflammatory factor production in the brain
Increases tau phosphorylation and neurofibrillary tangle formation
Accelerates aging processes and deteriorate brain cognitive functions

[147, 148]

IL-33 Nuclear alarmin (released after cell injury)
Participates in gene silencing
Amplifier of the innate immune response
Induces glial cells to release inflammatory mediators causing either neuroprotective or neurotoxic

effects (depending upon the concentrations)
Stimulates microglial phagocytosis

[138, 149, 150]

TNF-α Master regulator of the immune system
Propagates inflammation
Mediates the passage of periphery immune cells into the brain
Dual activity—promotes neurodegeneration and apoptosis in neurons and glial cells, and also

tissue regeneration
Increases Aβ aggregation (as well as IFN-γ)

[76, 133, 151, 152]

IFN-γ Important pro-inflammatory cytokine in the innate immune system
Strong microglial and astrocyte activator
Overexpression leads to decrease in Aβ deposits and infiltration of peripheral monocytes
Both neuroprotective and neurodegenerative action depending on the concentration

(low level induces microglial neuroprotective activity and neurogenesis)
Antiviral activity

[94, 132, 151]
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protective role in the AD pathogenesis [141]. Pro-
inflammatory cytokine IL-12 is produced by microglia
in response to cytokines, LPS, or a neurotropic virus
[143]. Vom Berg et al. [144], using the APPPS1 AD
mouse model, found increased production of the common
interleukin-12 (IL-12) and IL-23 subunit p40 by microg-
lia. Genetic ablation of the IL-12/IL-23 signaling mole-
cule p40, p35, or p19 resulted in decreased cerebral am-
yloid load. Thus, they suggest that inhibition of the IL-12/
IL-23 pathway may attenuate AD pathology and cognitive
deficits.

Anti-inflammatory cytokines can suppress pro-
inflammatory cytokine production and action, an effect that
is critical to the concept of balance among pro- and anti-
inflammatory cytokines. Il-10 as well as IL-4 has an anti-
inflammatory activity and suppress the inflammation through
inhibiting the secretion of IL-1β, IL-6, IL-8, IL-12, and
TNF-α by microglia [132]. Moreover, IL-10 triggers microg-
lia to M2c deactivation state. Zheng et al. [151] summarized
current reports of IL-10 activity in the CNS. On the other
hand, recent investigations showed that forced IL-10 expres-
sion in brains of APP transgenic mice leads to increased Aβ
accumulation and worsening of behavioral deficits. Guillot-
Sestier et al. [142] report that stimulation of microglia by
recombinant IL-10 reduces Aβ phagocytosis, whereas IL-10
deficiency increases Aβ uptake by cultured microglia. It sug-
gests that induction of a pro-inflammatory activation state
endorses cerebral amyloid clearance. IL-4, as well as IL-13,
is considered to be the strongest polarizing cytokine toward an
M2a response [139, 140]. The neuroprotective effect of IL-4
might be related also to the inhibition of IFN-γ and the con-
sequent decrease in the concentration of TNF-α and NO
[132]. IL-3 could play a neuroprotective role in AD.
According to recent literature, IL-3 level is reduced in the
plasma of AD patients [134]. Zambrano et al. [135, 136]
showed that IL-3 provides cellular protection against Aβ neu-
rotoxicity in primary cortical neuronal cells. Moreover, they
investigate that IL-3 induces an increase of the anti-apoptotic
protein Bcl-2.

MicroRNAs and p53 a s the Key P layer s i n
Neurodegeneration The cause of AD has not been fully
established; a close correlation between sporadic AD and
the role played by p53 and microRNA is well documented
in many publications [160–165]. The tumor suppressor
and nuclear transcription factor p53 regulates major cel-
lular functions, among them DNA synthesis and DNA
repair, gene transcription, cell cycle, cellular senescence
program, and cell death by apoptosis [160]. In post-
mitotic neurons, p53 could be activated by various cell
stressors, as hypoxia, oxidative stress, viral infections,
metabolic stress, and trophic withdrawal, various insults
which lead to DNA damage, oncogene activation, and

excitotoxicity [160, 161]. According to severity of the
stress signal, p53 protein helps in the cell adaptive re-
sponse or, finally, triggers cell death program [162]. It is
now clear that p53 plays an important role in neurodegen-
eration, and many studies reported neuronal cell death
being associated with increased level of p53 in brain tis-
sue cells [162, 166, 167]. Recently, the important function
of p53 in the regulation of cellular metabolic homeostasis
is revealed. By activation of its target transcription genes,
p53 contributes to the regulat ion of glycolysis ,
glutaminolysis, oxidative phosphorylation, fatty acid oxi-
dation, antioxidant activity, autophagy, and mitochondrial
integrity [166, 168–170]. Lack of p53 or its abnormal
folding affects neuronal function, leading to neuronal dys-
function [163, 171, 172]. P53 transactivates neuronal
growth-associated protein-43 (GAP-43), a protein en-
gaged in axonal growth and formation of new connec-
tions, and downregulation of GAP-43 expression is per-
ceived as important molecular lesion that progresses with
synaptic disconnections and neurodegeneration [173]. It is
worth noticing that in cultures of fibroblast from AD sub-
jects, exposure to low (nanomolar) concentrations of am-
yloid beta 1–40 peptide induced expression of aberrantly
folded p53, and unfolded p53 could participate in the
early pathogenesis of AD and would be a specific marker
of the early stage of the disease [163, 173]. Together, data
cited above accentuate the role of basal p53 level in the
physiological regulation of metabolic, antioxidant, and re-
generative processes. On the other hand, increased p53
expression induced by various chronic cellular stressors
of moderate forth leads to significant changes in cellular
metabolism, signaling, and expression of pro-oxidant tar-
get protein p53-inducible genes PIG3, PIG8, and ferre-
doxin reductase-FDRX [171], and these changes marked-
ly contribute to progression of neurodegeneration.

MicroRNAs and a Crosstalk Between p53 andMicroRNA
NetworkMicroRNAs (miRNA) are single-stranded, small
(19–23 nucleotides), endogenous, non-coding RNAs that
regulate gene expression in eukaryotic cells by inducing
translational arrest and degradation of messenger RNAs
[164, 174]. MicroRNAs are proposed to allow organisms
and cells to effectively deal with stress [175, 176]; in
response to stress, cells adapt by altering their gene ex-
pression programs, upregulating a subset of mRNAs,
which modulate the existing pool of mRNAs without
any de novo synthesis, that is, by selectively translating
certain mRNAs while halting translation of the rest [177].
Since miRNAs can also modulate the translation and/or
stability of multiple targeted transcripts, it is assumed that
miRNAs play an important regulatory role in coping with
a spectrum of stresses, among them an oxidative stress,
nutrient deprivation, DNA damage, or oncogenic stress
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[175, 177, 178]. The biological functions of miRNAs de-
pend on the cellular context, i.e., on the differential ex-
pression of their target mRNAs in various cells which is
preceded by specific action of transcription factors on
gene expression. The p53 protein is a transcription factor
which functions mainly by regulating expression of target
genes; additionally, non-transcriptional functions of p53
are well documented [167–170, 179]. It regulates the ex-
pression not only of protein-coding genes but also of non-
coding microRNAs, which act as mediators of p53 impact
on gene expression. Interestingly, also the expression and
activity of p53 itself are under the control of microRNAs
[165]. In response to stress, p53 regulates microRNA syn-
thesis and maturation, and the microRNAs participate in
diverse cellular regulatory loops that modulate appropriate
cellular adaptation [165, 180]. The transcription-
independent modulation of microRNA biogenesis matura-
tion and stability, which is carried out through p53 inter-
action with the processing complex (the Drosha complex),
enables fine-tuning of cellular response to DNA damage
and to other stresses of various origin [180, 181].
Likewise, transcriptionally inactive p53 mutants could in-
teract with the Drosha complex leading to attenuation of
several microRNA processing [181].

As p53 is a key player in the response to different types
of cellular stress, its influence on several aspects of cell
adaptations comprises also a metabolic shift in cells ex-
posed to stress. The important executor of the p53 action
on stressed cell is the microRNA network, and crosstalks
between p53 and microRNA induction and processing are
important in maintaining cellular homeostasis. Aberrant
expression of the p53/microRNA axis leads to diseases,
among them also to neurodegenerative processes. Future
research on regulation of the p53/microRNA axis prom-
ises significant improvement of the repertoire of early
diagnostic biomarkers and could open a new avenue for
treatment of neurodegenerative disorders such AD.

Neuroinflammation: Friends or Foe? The intrinsic inflam-
matory response of the CNS is a key player in the protec-
tion against CNS insults. The coordinate chain of events
that initiate, modulate, and then lead to the resolution of
inflammatory response help the CNS to fight against a
myriad of local and systemic insults and maintain the
brain health. However, in many instances, the delicate
balance and control of the neuroinflammatory responses
is lost and disease may arise. The imbalance of inflamma-
tory responses in the CNS may be an initiating factor for
many neurodegenerative diseases, i.e., Alzheimer’s dis-
ease. In other instances, the perpetuation of a chronic
inflammatory response by activated microglia in response
to the buildup of amyloid-β in the brain can lead to pro-
gressive neurodegenerative changes and neuronal death

that ultimately lead to the clinical progression of dementia
syndrome in AD. The relevance of neuroinflammation for
maintenance of CNS health, as well as its being a player
in several disease-initiating events and progression, makes
it an interesting target for the development of novel treat-
ment strategies for different CNS disorders.
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