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Abstract. Asymptotic regularity allows to provide simple proofs of Ba-
nach’s theorem and Kannan’s theorem. Using asymptotic regularity and
Kannan’s type conditions we generalize these results, in particular, the
Banach contraction principle (see Theorem 2.6 and Corollary 2.10). Fur-
ther, we discuss the analogous results for monotone mappings on pre-
ordered metric spaces, where a preordered binary relation is weaker than
a partial order. Next, we will prove a random version of the presented
deterministic fixed-point theorems.
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1. Banach and Kannan theorems

A sequence {xn} in a metric space (X, d) is asymptotically regular if

d(xn, xn+1) → 0 as n → ∞ (1)

The condition (1) does not guarantee a convergence of the sequence {xn}.
Notice that we cannot deduce, that a subsequence {xnk

}k of an asympto-
tically regular sequence {xn} is also asymptotically regular. For example,
consider the sequence {xn =

∑n
i=1

1
i , n � 1} in the Euclidean space R.

Let T : X → X be a mapping. For a initial point x0 ∈ X, define a
sequence of iterates xn+1 = Txn = Tn+1x0, n = 0, 1, 2, . . ., and the resulting
sequence {xn} is called the sequence of successive approximations of T .

Hillam [28] proved:

Theorem 1.1. Let T be a continuous map of [0, 1] into [0, 1]. The sequence
{xn = Tnx} of successive approximations of T converges to a fixed point of
T if and only if (1) holds.
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Smart [44] showed that this result does not extend beyond one-
dimensional case:

Example 1.2. There is a continuous mapping T of the closed unit disc in the
Euclidean plane such that the origin and points on the unit circle are fixed
points and every other point x satisfies d(Tnx, Tn+1x) → 0 but {Tnx} is not
convergent, see [44] for details.

The following observation is trivial:

Lemma 1.3. If T is a continuous map of X into X and if d(Tnx, Tn+1x) → 0,
then any limit point p of the set {Tnx} is a fixed point of T .

Proof. If Tnkx → p ∈ X, then

p = lim
k→∞

Tnkx = lim
k→∞

Tnk+1x = T

(

lim
k→∞

Tnkx

)

= Tp. �

Thus, the continuity of a mapping T : X → X and the fact that the
sequence of successive approximations {Tnx} satisfies (1) does not guarantee
the existence of a fixed point. For a guarantee that there is a (unique) fixed
point, additional assumptions are needed.

Banach’s contraction principle [4] is remarkable in its simplicity, because
the contractive condition on the mapping is simple and easy to test, because
it requires only a complete metric space for its setting, and because it finds
almost canonical applications in the theory of differential and integral equa-
tions. In this part, we will give an elementary proof of this result exposing
(1), for other proofs see [17, Chapter 2], [18].

Let us recall a few facts.

Definition 1.4. Let (X, d) be a metric space and let T : X → X be a mapping.
T is called a contraction if there exists a fixed constant 0 � L < 1 such that

d(Tx, Ty) � L · d(x, y) for all x, y ∈ X. (2)

Each contraction is a continuous mapping.
There are many mappings of this type.

Example 1.5. Let X = [a, b] be with usual metric and T : X → X be a
continuous mapping such that T is differentiable at every x ∈ (a, b) such that
|T ′(x)| � L < 1. Then, by the mean value theorem, if x, y ∈ X, there is a
point c between x and y such that

|Tx − Ty| = |T ′(c)| · |x − y| � L · |x − y|.
Here is an elementary proof of Banach’s contraction principle.

Theorem 1.6 (Banach contraction principle). Let (X, d) be a complete metric
space, then each contraction T : X → X has a unique fixed point p ∈ X, and
Tnx → p for each x ∈ X.
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Proof. Choose x0 ∈ X arbitrarily and define a sequence {xn+1 = Txn, n =
0, 1, 2, . . .} of T based on x0. Since T is a contraction

d(xn+1, xn) � L · d(xn, xn−1) � · · · � Ln · d(Tx0, x0) → 0 as n → ∞.

(3)

By triangle rule, for any n and any k > 0, we have

d(xn+k+1, xn+1) � L · d(xn+k, xn)
� L · {d(xn+k, xn+k+1) + d(xn+k+1, xn+1) + d(xn+1, xn)},

so by (3)

d(xn+k+1, xn+1) � L

1 − L
· {d(xn+k, xn+k+1) + d(xn+1, xn)} → 0 as n → ∞.

Hence {xn} is a Cauchy sequence in a complete metric space X and there
exists p ∈ X such that xn → p ∈ X. Because T is continuous and xn+1 =
Txn, it follows that p = Tp. Suppose q is another fixed point of T . Then

0 < d(p, q) = d(Tp, Tq) � L · d(p, q) < d(p, q),

a contradiction. Hence T has unique fixed point p ∈ X. Because

d(Tnx, p) = d(Tnx, Tnp) � Ln · d(x, p) → 0 as n → ∞,

we have Tnx → p for any x ∈ X. �

Remark 1.7. The following trivial fact is noteworthy in that the mapping T
is not even assumed to be continuous:

Let (X, d) be a complete metric space and T : X → X be a mapping for which
TN is contraction for some positive integer N > 1, then T has a unique fixed
point.

Not only contractions guarantee the existence of a unique fixed point
and the possibility of its approximation. In 1968, Kannan [32] established the
following theorem, see [25].

Theorem 1.8. If T is a map of the complete metric space (X, d) into itself
and if there exists 0 � K < 1

2 satisfying

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)} for all x, y ∈ X, (4)

then T has a unique fixed point p ∈ X, and Tnx → p for each x ∈ X.

Kannan’s theorem is important because Subrahmanyam [46] proved that
Kannan’s theorem characterizes the metric completeness. That is, a metric
space (X, d) is complete if and only if every mapping satisfying (4) on X with
constant K < 1

2 has a fixed point. Contractions do not have this property;
Connell [11] gave an example of metric space X such that X is not complete
and every contraction on X has a fixed point.

Here is an elementary proof of Kannan’s theorem.
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Proof. Choose x0 ∈ X arbitrarily and define a sequence {xn+1 = Txn, n =
0, 1, 2, . . .}. By (4),

d(xn+1, xn) � K

1 − K
· d(xn, xn−1) � · · · �

(
K

1 − K

)n

· d(Tx0, x0) → 0,

as n → ∞. By triangle rule, for m > n,

d(xn, xm) � d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)
� (K + 1) · {d(xn, xn+1) + d(xm+1, xm)} → 0 as m > n → ∞.

Hence {xn} is a Cauchy sequence in a complete metric space X and there
exists p ∈ X such that xn → p ∈ X. Since,

d(p, Tp) � d(p, Tn+1x) + d(Tn+1x, Tp)
� d(p, Tn+1x) + K · {d(Tnx, Tn+1x) + d(p, Tp)},

so

d(p, Tp) � 1
1 − K

· d(p, Tn+1x) +
K

1 − K
· d(Tnx, Tn+1x) → 0 as n → ∞.

Hence, p = Tp. Suppose q is another fixed point of T . Then

0 < d(p, q) = d(Tp, Tq) � K · {d(p, Tp) + d(q, T q} = 0,

a contradiction. Hence T has unique fixed point p ∈ X. From (4), we have
lim

n→∞ d(Tnx, p) = 0 for any x ∈ X. �

Remark 1.9. Theorem 1.8 remains true when (4) is replaced by

d(Tx, Ty) � K · {d(x, Ty) + d(y, Tx)} for all x, y ∈ X. (5)

The proof is analogous. For more information on mappings satisfying (5), see
[5,10,39] and references therein.

Obviously conditions (2) and (4) are independent. Condition (4) is nei-
ther stronger nor weaker than the contraction mappings. In particular, the
mapping satisfying (4) need not be continuous. In the following examples,
the spaces are with the usual metrics.

Example 1.10. Mapping Tx = 0 for x � 2 and Tx = − 1
2 for x > 2, satisfies

(4) with K = 1
5 , and T is not continuous.

Example 1.11. Contraction Tx = x
3 , x ∈ [0, 1], not satisfied (4) with K < 1

2 ,
take x = 0 and y = 1. If T is a contraction with L < 1

3 , then T satisfies (4)
with K < 1

2 .

Example 1.12. The condition (2) with L = 1, does not imply the existence
of a fixed point. The mapping Tx = x + 1 for x ∈ R is fixed point free. The
condition (4) with K = 1

2 , does not imply the existence of a fixed point. Take
the unit circle S on the Euclidean plane and Tz = −z, z ∈ S.

There are many generalizations of Theorem 1.6 and Theorem 1.8, and
unification of conditions (2) and (4), see [5,14,31,39], and references therein.
The literature of this subject is extensive.

Conclusion. In this part, we have presented elementary proofs of Banach’s
theorem and Kannan’s theorem on a fixed point.
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2. Asymptotic regularity, continuity and fixed points

We know many conditions that guarantee the existence of a fixed point,
see [2,17,26], and references therein. In this part, we present a very simple
situation when the mapping T not only satisfies some conditions of Kannan’s
type, but it is also continuous and asymptotically regular (as in the Banach
theorem).

We recall, asymptotic regularity is a fundamentally important concept
in metric fixed point theory, see [2, Chapter IX], and [17, Chapter 9]. It was
formally introduced by Browder and Petryshym [7].

Definition 2.1. A mapping T of a metric space (X, d) into itself is said to be
asymptotically regular if

lim
n→∞ d(Tnx, Tn+1x) = 0 for all x ∈ X.

Obviously, if a mapping T : X → X is a contraction or satisfy (4) or
(5) with K < 1

2 , then T is asymptotically regular. Asymptotic regularity
is also satisfied by other mappings. But already the asymptotic regularity
and nonexpansiveness (i.e. d(Tx, Ty) � d(x, y) for all x, y), more generally,
continuity, are independent.

Example 2.2. Let B = {x ∈ R
2 : ‖x‖ � 1} be the closed unit disc in the

Euclidean plane and let T be an anticlockwise rotation of π
4 about the origin

of coordinates. Then T is nonexpansive with the origin as the only fixed
point and T is not asymptotically regular. Moreover, the sequence defined by
{xn+1 = Txn, x0 = (1, 0)} does not converge to zero.

Example 2.3. The mapping Tx = 1 − x, 0 � x � 1, is continuous, is not a
contraction and does not satisfy the condition (4), take x = 0 and y = 1. T
has a unique fixed point 1

2 , and d(Tn(0), Tn+1(0)) �→ 0.
By an averaged mapping we mean one of the form Tλ = (1 − λ)I + λT ,

where 0 < λ < 1 and I is the identity operator. When T is nonexpansive, so
is Tλ and both have the same fixed point set, but Tλ has more much felicitous
asymptotic behavior than the original mapping.

Ishikawa [30] proved the following theorem with no restrictions on the
geometry of the Banach space!

Theorem 2.4. If C is a nonempty bounded closed convex subset of a Banach
space X and T : C → C is nonexpansive, then the mapping Tλ is asymptoti-
cally regular for each λ ∈ (0, 1).

It is known [17] that a nonexpansive mapping T : C → C, acting on
weakly compact convex subsets of uniformly convex Banach spaces, has a
fixed point. Lin [34] gave an example an asymptotically regulate Lipschitzian
mapping acting on a weakly compact convex subset of the Hilbert space l2

which has no fixed point.
Asymptotically regular mappings were studied in many papers, in dif-

ferent contexts, for instance [3,8,13,16,19–23,41,48].
In 1974, De Blasi [12] proved the following theorem, see [14].
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Theorem 2.5. Let C be a nonempty weakly closed subset of a Hilbert space.
Suppose that T : C → C is continuous, asymptotically regular and satisfies

‖Tx − Ty‖ � ‖x − Tx‖ + ‖y − Ty‖ for all x, y ∈ C.

Then T has a unique fixed point p ∈ C and Tnx → p for each x ∈ C.

Now, we prove the following new theorem, which is an extension of
previous results.

Theorem 2.6. If (X, d) is a complete metric space and T : X → X is a con-
tinuous asymptotically regular mapping and if there exists 0 � M < 1 and
0 � K < +∞ satisfying

d(Tx, Ty) � M · d(x, y)+K · {d(x, Tx)+d(y, Ty)} for all x, y ∈ X, (6)

then T has a unique fixed point p ∈ X and Tnx → p for each x ∈ X.

Proof. Choose x0 ∈ X arbitrarily and define a sequence {xn+1 = Txn, n =
0, 1, 2, . . .}. According to asymptotic regularity, by triangle rule and (6), we
get for any n and any k > 0,

d(xn+k, xn) � d(xn+k, xn+k+1) + d(xn+k+1, xn+1) + d(xn+1, xn)
� d(xn+k, xn+k+1) + M · d(xn+k, xn)

+K · {d(xn+k, xn+k+1) + d(xn, xn+1)} + d(xn+1, xn),

so

(1 − M) · d(xn+k, xn) � (K + 1) · {d(xn+k, xn+k+1) + d(xn, xn+1)} → 0,

as n → ∞. This shows that {xn} is a Cauchy sequence in complete space
X. There exists p ∈ X such that xn → p. Because T is continuous and
xn+1 = Txn, it follows that p = Tp. Suppose q is another fixed point of T .
Then

0 < d(p, q) = d(Tp, Tq) � M · d(p, q) + (K + 1) · {d(p, Tp) + d(q, T q)}
= M · d(p, q) < d(p, q),

a contradiction. Hence T has unique fixed point p ∈ X. Because

d(Tnx, p) = d(Tnx, Tnp) � d(Tnx, Tn+1x) + d(Tn+1x, Tn+1p)
� d(Tnx, Tn+1x) + M · d(Tnx, Tnp)

+K · d(Tnx, Tn+1x),

so

(1 − M) · d(Tnx, p) � (K + 1) · d(Tnx, Tn+1x) → 0 as n → ∞.

This shows that Tnx → p for any x ∈ X. �

Remark 2.7. If M � 0, K � 0 and M + 2K < 1, then assumptions of
continuity and asymptotic regularity are not necessary for the thesis to hold.
If 0 � M < 1 and 0 � K < 1, then the continuity assumption is not necessary
for the thesis to hold, see [25,39].
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Remark 2.8. Theorem 2.4 remains true when condition (6) is replaced by

d(Tx, Ty) � M · d(x, y)+K · {d(y, Tx)+d(x, Ty)} for all x, y ∈ X, (7)

see [5,10,49].

Example 2.9. Let X = [0, 1] ∪ [32 , 5
3 ] with the usual metric d(x, y) = |x − y|

and T : X → X be given by Tx = 0, if 0 � x � 1 and Tx = 1, if 3
2 � x � 5

3 .
Then, T0 = 0 and
(a) T does not satisfy the Banach theorem, take x = 1 and y = 3

2 ;
(b) T does not satisfy the Kannan theorem, take x = 0 and y = 3

2 ;
(c) T is asymptotically regular;
(d) T is continuous;
(e) T satisfies (6) with K = 2 and any 0 � M < 1.

Indeed, if x, y ∈ [0, 1] or x, y ∈ [32 , 5
3 ], then d(Tx, Ty) = 0, when the

condition (6) is obviously satisfied. If x ∈ [0, 1] and y ∈ [32 , 5
3 ], then

d(Tx, Ty) = 1 and d(x, y) � 1
2 , d(x, Tx) + d(y, Ty) � x + y − 1 � 1

2 .
Therefore,

d(Tx, Ty) � M · d(x, y) + 2 · {d(x, Tx) + d(y, Ty)} for all x, y ∈ X,

and any 0 � M < 1.

When M = 0, then from Theorem 2.6 we have a significant extension
of Banach’s theorem in a new direction:

Corollary 2.10. Let (X, d) be a complete metric space and T : X → X be a
continuous and asymptotically regular mapping satisfying (4) with 0 � K <
+∞ (especially, K � 1), then T has a unique fixed point p ∈ X and Tnx → p
for each x ∈ X.

Remark 2.11. Note that each contraction with constant L < 1 satisfies (4)
with constant K = L

1−L . Indeed, for all x, y ∈ X,

d(Tx, Ty) � L · d(x, y) � L · {d(x, Tx) + d(Tx, Ty) + d(Ty, y)},

so

d(Tx, Ty) � L

1 − L
· {d(x, Tx) + d(y, Ty)}.

Therefore, all contractions satisfy the assumptions of Corollary 2.10.

Example 2.12. Let T : [0, π
2 ] → R be defined by Tx = cos x. T is not a

contraction. Suppose there exists L ∈ (0, 1) such that
∣
∣
∣
∣
cos x − cos y

x − y

∣
∣
∣
∣ � L for all x �= y.

Letting y → x, we get | sin x| � L for all x, y ∈ [0, π
2 ], which is false. For

x, y ∈ [0, π
2 ] we have

| cos x − cos y| =
∣
∣
∣
∣−2 sin

x + y

2
sin

x − y

2

∣
∣
∣
∣ � |x − y|

� |x − 1| + |y − 1| � |x − cos x| + |y − cos y|.
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Obviously T is continuous and if xn = Tnx = cos xn−1, x0 ∈ [0, π
2 ], then

|Tn+1x − Tnx| = | cos xn − cos xn−1| = | sin cn| · |xn − xn−1|,
where a point cn is between xn and xn−1, so | sin cn| < 1 for n = 1, 2, . . .
Hence T is an asymptotically regular mapping. Corollary 2.10 guarantees that
T has a unique fixed point p ∈ [0, π

2 ] and p = lim
n→∞ xn, where xn+1 = cos xn,

x0 ∈ [0, π
2 ]. Approximate solution of the equation x = cos x is p ≈ 0.739.

Example 2.13. Let X = R be with the usual metric and let T be defined as
follows: T0 = 0 and Tx = x

2 sin 1
x if x �= 0. Taking x = 2

π and y = 2
3π , we

obtain

|Tx − Ty| =
8
3π

>
4
3π

= |x − y|.
Taking x = 0 and y = 2

π , we have
∣
∣
∣
∣T0 − T

(
2
π

)∣
∣
∣
∣ =

1
π

= |0 − T0| +
∣
∣
∣
∣
2
π

− T

(
2
π

)∣
∣
∣
∣ ,

so there is no universal constant K < 1 satisfying (4), therefore Corollary 2.10
is also some extension of Theorem 3.1 from [25]. On the other hand,

|Tx−Ty| � |Tx|+|Ty| � |x|
2

+
|y|
2

=
∣
∣
∣x − x

2

∣
∣
∣ +

∣
∣
∣y − y

2

∣
∣
∣ � |x − Tx| + |y − Ty|

for all x, y ∈ R. Obviously T is asymptotically regular and continuous, there-
fore, all assumptions of the Corollary 2.10 are fulfilled.

Remark 2.14. For clarity of this presentation we omit discussion in b−metric
spaces (see [33]) and G−metric spaces (see [1]) and consideration of semi-
groups [20].

Conclusion. In this part, we presented a new extension of Banach’s theorem
with examples.

3. Fixed point theorems in preordered sets

An interplay between the order and metrical structure of the space turned
out to be very fruitful. In Refs. [36,37], we find an analogue of Banach theo-
rem in partially ordered sets, further extensions are contained in [24,42,43].
In all these works, the mapping considered are monotone. For such map-
pings one of the fundamental results in fixed-point theory is the classical
Knaster–Tarski theorem (also known as the Abian–Brown theorem), see [26],
[38]. Recently, Esṕınola and Wísnicki [15] studied the problem whether the
classical Kirk’s theorem for nonexpansive mappings (see [17]) still holds for
monotone-nonexpansive mappings. They proved in some partially ordered
sets a general theorem which guarantees the existence of a fixed point for
monotone mappings (which need not be either monotone-nonexpansive nor
continuous), and which does not impose any conditions on the Banach space.

An interesting reference with many applications of the fixed point theory
of monotone mappings is [9].
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In this section, we extend Corollary 2.10 on preordered metric spaces,
where a preordered binary relation is weaker than a partial order. The key
feature in this theorem is that the Kannan’s type condition on the map is
only assumed to hold on elements that are comparable but not on the entire
set on which they are defined, see Example 3.9.

Definition 3.1. Let X �= ∅ be a set. Binary relation � on X is
(a) reflexive if x � x for all x ∈ X,
(b) transitive if x � z for all x, y, z ∈ X such that x � y and y � z.

A reflexive and transitive relation on X is a preordered on X. In such case
(X,�) is a preordered space. Write x ≺ y when x � y and x �= y. We will say
that x, y ∈ X are comparable whenever x � y or y � x.

Example 3.2. Let � be the binary relation on R given by

x � y ⇔ (x = y or x < y � 0).

Then � is a partial order (and so preordered) on R, but it is different from
�.

Definition 3.3. A preordered metric space is a triple (X, d, �) where (X, d) is
a metric space and � is a preordered on X.

One of the most important hypothesis that we shall use in this section
is the monotonicity of the involved mappings.

Definition 3.4. Let � be a binary relation on X. A map T : X → X is
monotone if Tx � Ty whenever x � y.

The following result is the extension of Corollary 2.10 to Kannan’s type
mappings on preordered metric spaces.

Theorem 3.5. Let (X, d, �) be a preordered metric space and let T : X → X
be a mapping. Suppose that the following conditions hold:

(i) (X, d) is complete,
(ii) T is monotone,
(iii) T is continuous,
(iv) there exists x0 ∈ X such that x0 � Tx0,
(v) T is asymptotically regular, i.e. lim

n→∞ d(Tnx, Tn+1x) = 0 for all x ∈ X,

(vi) for all x, y ∈ X with x � y,

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)} for some 0 � K < +∞. (8)

Then there exists a fixed point of T , and it is unique, say u, if

∀(x,y)∈X×X∃w∈X (x � w and y � w). (9)

Moreover, for each x0 ∈ X such that x0 � Tx0, the sequence {Tnx0} of
iterates converges to u.

Proof. Let x0 ∈ X be a point satisfying (iv), that is, x0 � Tx0. We define a
sequence {xn} ⊂ X as follows

xn = Txn−1, n � 1. (10)
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Regarding that T is a monotone mapping together with (10) we have

x0 � Tx0 = x1 implies x1 = Tx0 � Tx1 = x2.

Inductively, we obtain

x0 � x1 � x2 · · · � xn−1 � xn � xn+1 � · · ·
Now, by triangle rule and asymptotic regularity, for m > n, we get

d(xn, xm) � d(xn, xn+1) + d(xn+1, xm+1) + d(xm+1, xm)
� d(xn, xn+1) + K · {d(xn, xn+1) + d(xm, xm+1)} + d(xm, xm+1)
= (K + 1) · {d(xn, xn+1) + d(xm, xm+1)} → 0

as m > n → ∞. This implies that {xn} is a Cauchy sequence in X. From
the completeness of X there exists u ∈ X such that xn → u. Because T is
continuous and xn+1 = Txn, it follows that u = Tu.

To prove uniqueness, we assume that v ∈ X is another fixed point of
T such that u �= v. By hypothesis, there exists w ∈ X such that u � w and
v � w.

Let {wn = Twn−1} be the sequence of successive approximations of T
based on w0 = w. As T is monotone, v = Tv � Tw = w1 and u = Tu �
Tw = w1. By induction, v � wn and u � wn for all n � 0.
Case 1. If v = wn0 for some n0 � 0, then v = Tv = Twn0 = wn0+1 and by
induction, wn = v for all n � n0, so wn → v.
Case 2. If v ≺ wn for all n � 0, then

d(v, wn+1) = d(Tv, Twn) � K · {d(v, Tv) + d(wn, Twn)}
= K · {d(v, Tv) + d(Tnw, Tn+1w)} → 0,

as n → ∞, by asymptotic regularity. Hence wn → v.
Thus wn → v and wn → u. The uniqueness of the limit concludes that

u = v, so T has a unique fixed point. �

Remark 3.6. Theorem 3.5 remains true when condition (6) is satisfied (with
0 � M < 1 and 0 � K < +∞) in place of condition (8). Then in Case 2 we
have an estimate:

d(v, wn+1) = d(Tv, Twn)
� M · d(v, wn) + K · {d(v, Tv) + d(wn, Twn)}
� M · {d(v, wn+1) + d(wn+1, wn)} + K · {d(v, Tv) + d(wn, Twn)}

so

(1 − M) · d(v, wn+1) � M · d(wn+1, wn) + K · {d(v, Tv) + d(wn, Twn)} → 0

as n → ∞. Hence wn → v. Then, we act as in the proof of Theorem 3.5.

After the appearance of the Ran and Reurings’ result [37], Nieto and
Rodŕıguez-López [36] changed the continuity of the mapping T with the con-
dition nondecreasing regularity (Definition 3.7). Now, we exchanged the con-
tinuity of the mapping T with the condition nondecreasing regularity and we
obtain in preordered metric spaces an analogue of [25, Theorem 3.1].
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Definition 3.7. Let (X, d) be a metric space, let A ⊂ X be a nonempty subset
and let � be a binary relation on X. Then triple (A, d,�) is said to be
nondecreasing regular if for all sequence {xn} ⊂ A such that {xn} → x ∈ A
and xn � xn+1 for all n ∈ N, we have that xn � x for all n ∈ N.

Theorem 3.8. Let (X, d, �) be a preordered metric space and let T : X → X
be a mapping. Suppose that the following conditions hold:

(i) (X, d) is complete,
(ii) T is monotone,
(iii) (X, d, �) is nondecreasing regular,
(iv) there exists x0 ∈ X such that x0 � Tx0,
(v) T is asymptotically regular, i.e. lim

n→∞ d(Tnx, Tn+1x) = 0 for all x ∈ X,

(vi) for all x, y ∈ X with x � y,

d(Tx, Ty) � K · {d(x, Tx) + d(y, Ty)} for some 0 � K < 1.

Then there exists a fixed point of T , and it is unique, say u, if (9) is satisfied.
Moreover, for each x0 ∈ X such that x0 � Tx0, the sequence {Tnx0} of
iterates converges to u.

Proof. Following the proof of Theorem 3.5, we have a monotone (nondecreas-
ing) sequence {xn = Txn−1} which is convergent to u ∈ X. Due to (iii), we
have xn � u for all n � 1. Now, we show that u is a fixed point of T . Fix an
ε > 0. Since Tnx0 → u, given ε

2 > 0, there exists n1 ∈ N such that for all
n � n1,

d(Tnx0, u) <
ε

2
(1 − K) and d(Tnx0, T

n+1x0) <
ε

2
(1 − K).

Taking n � n1 and using that Tnx0 � u for all n ∈ N, we get

d(Tu, u) � d(Tu, Tn+1x0) + d(Tn+1x0, u)
� K · {d(u, Tu) + d(Tnx0, T

n+1x0)} + d(Tn+1x0, u),

so

d(Tu, u) � K

1 − K
d(Tnx0, T

n+1x0) +
1

1 − K
d(Tn+1x0, u)

<
1

1 − K
d(Tnx0, T

n+1x0) +
1

1 − K
d(Tn+1x0, u) < ε.

In consequence, since ε > 0 is arbitrary, d(Tu, u) = 0. Hence u = Tu. Unique-
ness of u can be observed as in the proof of Theorem 3.5. �

Observe that condition (4) with 0 � K < 1, see [25, Theorem 3.1], is
slightly stronger than condition (vi) of Theorem 3.8, which only requires the
inequality for comparable points, that is, for all x, y ∈ X such that x � y or
y � x.

Example 3.9. Let X = [−1, 1] be endowed with the metric d(x, y) = |x − y|
for all x, y ∈ X. Consider on X the partial order

x � y ⇐⇒ (x = y or x < y � 0).
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Define T : X → X by Tx = −x
4 for −1 � x � 0 and Tx = 9

10x for 0 < x � 1.
Obviously mapping T is asymptotically regular. Let x, y ∈ X be such that
x � y. If x = y, then

d(Tx, Ty) = 0 � 1
3

· {d(x, Tx) + d(y, Ty)}

trivially holds. Assume that x �= y. Then x < y � 0. Hence

d(Tx, Ty) � 1
4
(|x| + |y|) and d(x, Tx) + d(y, Ty) � 3

4
(|x| + |y|).

Thus

d(Tx, Ty) � 1
3

· {d(x, Tx) + d(y, Ty)}

for all x, y ∈ [−1, 0]. Hence (vi) holds. However, condition (4) with 0 � K < 1
is false in this case because if x = 0 and y = 1, then d(T (0), T (1)) = 9

10 >
1
10 = d(0, T (0)) + d(1, T (1)).

In the next example, we have shown that if condition (9) in Theorems
3.5 and 3.8 fails, it is possible to find examples of functions T with more than
one fixed point.

Example 3.10. Let X = {(1, 0), (0, 1)} ⊂ R
2, and consider the order

(x, y) � (z, t) ⇐⇒ (x � z and y � t).

Thus, (X,�) is a partially ordered set, whose different elements are not com-
parable. The metric space (X, d) with the Euclidean distance is a complete
metric space. The identity map T (x, y) = (x, y) is trivially continuous, asymp-
totically regular, non-decreasing and condition

d(T (x, y), T (z, t)) � K · {d((x, y), T (x, y)) + d((z, t), T (z, t))},

holds for any 0 � K < +∞, since elements in X are only comparable to
themselves. Moreover, (1, 0) � T (1, 0) = (1, 0). In this case, there are two
fixed points in X. Hypotheses in Theorem 3.5 hold. Theorem 3.8 is also
applicable since if {(xn, yn)} ⊂ X is a monotone (nondecreasing) sequence
converging to (x, y) ∈ X, then necessarily (xn, yn)} is a constant sequence
and (xn, yn) = (x, y) for all n ∈ N, so the limit (x, y) is an upper bound for
all the terms in the sequence.

This shows that conditions in Theorems 3.5 and 3.8 do not imply unique-
ness of the fixed point.

In this example, condition (9) does not hold, since given two different
elements in X, there is no upper bound of them. In this case, T may have
more than one fixed point.

Conclusion. In this section, we discussed the extension of Banach’s theorem
in preordered metric spaces.
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4. Random fixed-point theorems

An interesting aspect of the nonlinear analysis is to randomize deterministic
fixed-point theorems of nonlinear mappings. The study of fixed-point theo-
rems for random operators was initiated by the Prague school of probability
research. The first results were studied in 1955–1956 by Špaček and Hanš
in the context of Fredholm integral equations with random kernel, see for
instance [45]. In a separable metric space, random fixed-point theorems for
contraction mappings were proved by Hanš [27] (for some set-valued map-
pings see [40]).

In many cases, the mathematical models or equations used to describe
phenomena in biology, physics, engineering contain certain parameters whose
values are unknown. Then, it is more realistic to consider such equations
as random operator equations. These equations are much more difficult to
handle mathematically than deterministic equations [6].

It has been shown that when the underlying measurable space (Ω,Σ) is
a Suslin family (see [47] for definitions), a deterministic fixed-point theorem
may, in general, correspond to a random fixed-point theorem. However, it is
unknown if the same is true when the measurable space (Ω,Σ) is not a Suslin
family.

Nieto et al. [35] proved the random version in partially ordered metric
spaces of the classical Banach contraction principle. In this section, we will
prove some random fixed point theorems for single-valued operators which
are asymptotically regular and satisfies some Kannan’s type conditions.

Let (Ω,Σ) be a measurable space with Σ a σ-algebra of subsets of Ω.
For a metric space (X, d), we denote by CL(X) the family of all nonempty
closed subsets of X.

Definition 4.1. A set-valued operator F : Ω → 2X is called Σ-measurable if
for any open subset B of X, the set F−1(B) = {ω ∈ Ω : F (ω) ∩ B �= ∅}
belongs to Σ.

Definition 4.2. A measurable (single-valued) operator x : Ω → X is called a
selector for a measurable set-valued operator F : Ω → 2X if x(ω) ∈ F (ω) for
all ω ∈ Ω.

Definition 4.3. A mapping T : Ω × X → X is called a random operator if for
each x ∈ X, the map T (·, x) : Ω → X is measurable.

Definition 4.4. A measurable operator x : Ω → X is said to be a random
fixed point of random operator T : Ω × X → X if T (ω, x(ω)) = x(ω) for all
ω ∈ Ω.

Equivalently, it is a measurable selection for the set-valued map Fix T :
Ω → 2X defined by Fix T (ω) = {x ∈ X : T (ω, x) = x}.

We recall, a random mapping T : Ω×X → X is said to be continuous if
for each fixed ω ∈ Ω, the map T (ω, ·) : X → X has this particular property.

We will list the following results related to the concept of measurability.

Theorem 4.5 [29]. Let (Ω,Σ) be a measurable space, X be a separable metric
space and Y a metric space. If T : Ω × X → Y is measurable in ω ∈ Ω and
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continuous in x ∈ X, respectively, and if x : Ω → X is measurable, then
T (·, x(·)) : Ω → X is a measurable.

Theorem 4.6 [47]. Let (Ω,Σ) be a measurable space, (Y, d) be a Polish space
(i.e. complete and separable metric space) and F : Ω → CL(Y ) a measurable
map. Then F has a measurable selection.

Definition 4.7. Let (Ω,Σ) be a measurable space and (X, d) be a metric space.
A random operator T : Ω × X → X is said to be asymptotically regular if for
each fixed ω ∈ Ω,

lim
n→∞ d(Tn(ω, x), Tn+1(ω, x)) = 0

for all x ∈ X. Here Tn(ω, x) is the value at x of the nth iterate of the map
T (ω, ·), i.e. Tn(ω, x) = T (ω, Tn−1(ω, x)).

The following result is the randomization of Theorem 2.6.

Theorem 4.8. Let (Ω,Σ) be a measurable space and (X, d) be a Polish space.
If T : Ω × X → X is a random continuous operator which is asymptotically
regular, and exists functions M : Ω → [0, 1) and K : Ω → [0,∞) such that
for each ω ∈ Ω,

d(T (ω, x), T (ω, y))
� M(ω) · d(x, y) + K(ω) · {d(x, T (ω, x)) + d(y, T (ω, y))} (11)

for all x, y ∈ X, then T has a unique random fixed point.

(We do not assume the measurability of the functions M(·) and K(·).)
Proof. Fix a measurable function x0 : Ω → X. If for each ω ∈ Ω, T (ω, x0(ω))
= x0(ω), then x0 is a random fixed point of T . Suppose that, for some ω ∈ Ω,
T (ω, x0(ω)) �= x0(ω). We define the sequence

y0(ω) = x0(ω) and yn(ω) = T (ω, yn−1(ω)) = Tn(ω, x0(ω)),

for all ω ∈ Ω and integers n � 1. Using (11), by triangle rule and asymptotic
regularity, we get for m > n,

d(yn(ω), ym(ω))
� d(yn(ω), yn+1(ω)) + d(yn+1(ω), ym+1(ω)) + d(ym+1(ω), ym(ω))
� d(yn(ω), yn+1(ω)) + M(ω) · d(yn(ω), ym(ω))

+K(ω) · {d(yn(ω), yn+1(ω))+d(ym(ω), ym+1(ω))}+d(ym+1(ω), ym(ω)),

so

(1 − M(ω)) · d(yn(ω), ym(ω))
� (K(ω) + 1) · {d(yn(ω), yn+1(ω)) + d(ym(ω), ym+1(ω))} → 0,

as m > n → ∞. Hence {yn(ω)}n is a Cauchy sequence for every ω ∈ Ω. Since
X is a complete space there exists y∗(ω) ∈ X, ω ∈ Ω, such that y∗(ω) =
lim

n→∞ yn(ω). Since y0(·) is measurable, then y1(·) is measurable. Hence, by

induction, we can easily prove that for each n ∈ N, the function ω → yn(ω)
is measurable. The mapping y∗ : Ω → X is the pointwise limit of measurable
mappings, so it is measurable.
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Now, we show that y∗ is a random fixed point of T , i.e. y∗(ω) =
T (ω, y∗(ω)), ω ∈ Ω. It is clear, for each ω ∈ Ω, by asymptotic regularity,
we get

lim
n→∞ d(yn(ω), yn+1(ω)) = lim

n→∞ d(Tn(ω, x0(ω)), Tn+1(ω, x0(ω))) = 0,

and because T (ω, ·) is continuous,

d(y∗(ω), T (ω, y∗(ω))) = lim
n→∞ d(yn(ω), T (ω, yn(ω))) = 0.

Thus,

y∗(ω) = T (ω, y∗(ω)) for each ω ∈ Ω.

The uniqueness of the random fixed point follows from the uniqueness of
y∗(ω) for every ω ∈ Ω. Suppose z∗(ω) = T (ω, z∗(ω)) is another random fixed
point of T , then by (11),

0 < d(y∗(ω), z∗(ω)) = d(T (ω, y∗(ω)), T (ω, z∗(ω)))
� M(ω) · d(y∗(ω), z∗(ω))

+K(ω) · {d(y∗(ω), T (ω, y∗(ω))) + d(z∗(ω), T (ω, z∗(ω)))}
= M(ω) · d(y∗(ω), z∗(ω)) < d(y∗(ω), z∗(ω)),

a contradiction. Hence y∗(ω) = z∗(ω). �

Corollary 4.9. Let (Ω,Σ) be a measurable space and (X, d) be a Polish space.
If T : Ω×X → X is a random operator, and exists a function M : Ω → [0, 1)
such that for each ω ∈ Ω,

d(T (ω, x), T (ω, y)) � M(ω) · d(x, y)

for all x, y ∈ X, then T has a unique random fixed point.

Corollary 4.10. Let (Ω,Σ) be a measurable space and (X, d) be a Polish space.
If T : Ω × X → X is a random continuous operator which is asymptotically
regular, and exists a function K : Ω → [0,∞) such that for each ω ∈ Ω,

d(T (ω, x), T (ω, y)) � K(ω) · {d(x, T (ω, x)) + d(y, T (ω, y))}
for all x, y ∈ X, then T has a unique random fixed point.

Now, we establish a random version of some fixed-point theorem in
preordered metric spaces.

Theorem 4.11. Let (Ω,Σ) be a measurable space, (X, d, �) be a Polish pre-
ordered metric space and let T : Ω × X → X be a mapping. Suppose that the
following conditions hold:

(i) T is a continuous random operator,
(ii) for each ω ∈ Ω, the function T (ω, ·) is monotone operator, i.e.

(x, y ∈ X and x � y) =⇒ T (ω, x) � T (ω, y),

(iii) there exists a random variable x0 : Ω → X with

x0(ω) � T (ω, x0(ω)) or x0(ω) � T (ω, x0(ω)) for each ω ∈ Ω,

(iv) T is asymptotically regular,
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(v) there exists a function K : Ω → [0,∞) such that for each ω ∈ Ω,

d(T (ω, x), T (ω, y)) � K(ω) · {d(x, T (ω, x)) + d(y, T (ω, y))}
for every comparable x, y ∈ X, i.e. x � y or y � x.

Then there exists a random variable x : Ω → X which is a random fixed point
of T , and it is unique if

for every x, y ∈ X, there exists z ∈ X that is comparable to x and y.

Proof. Fix a measurable function x0 : Ω → X. If for each ω ∈ Ω, T (ω, x0(ω))
= x0(ω), then x0 is a random fixed point of T . Suppose that, for some ω ∈ Ω,
T (ω, x0(ω)) �= x0(ω). We define a sequence

y0(ω) = x0(ω) and yn(ω) = T (ω, yn−1(ω)) = Tn(ω, x0(ω)),

for all ω ∈ Ω and integers n � 1. From the conditions (ii) and (iii), we have

y0(ω) = x0 � T (ω, x0(ω)) = y1(ω)

implies

y1(ω) = T (ω, y0(ω)) � T (ω, y1(ω)) = y2(ω).

Inductively, we obtain

y0(ω) � y1(ω) � y2(ω) � · · · � yn−1(ω) � yn(ω) � yn+1(ω) � · · · ,

or in the second case

y0(ω) � y1(ω) � y2(ω) � · · · � yn−1(ω) � yn(ω) � yn+1(ω) � · · ·
Using triangle rule and asymptotic regularity, we get for m > n,

d(yn(ω), ym(ω))
� d(yn(ω), yn+1(ω)) + d(yn+1(ω), ym+1(ω)) + d(ym+1(ω), ym(ω))
= d(yn(ω), yn+1(ω)) + d(T (ω, yn(ω)), T (ω, ym(ω))) + d(ym+1(ω), ym(ω))
� (K(ω) + 1) · {d(yn(ω), yn+1(ω)) + d(ym(ω), ym+1(ω)) → 0,

as m > n → ∞. So {yn(ω)}n is a Cauchy sequence for every ω ∈ Ω. Since
X is a complete space there exists y∗(ω) ∈ X, ω ∈ Ω, such that y∗(ω) =
lim

n→∞ yn(ω). Since y0(·) is measurable, then y1(·) is measurable. Hence, by

induction, we can easily prove that for each n ∈ N, the function ω → yn(ω)
is measurable. The mapping y∗ : Ω → X is the pointwise limit of measurable
mappings, so it is measurable.

Now, we show that y∗ is a random fixed point of T , i.e. y∗(ω) =
T (ω, y∗(ω)), ω ∈ Ω. It is clear, for each ω ∈ Ω, by asymptotic regularity,
we get

lim
n→∞ d(yn(ω), yn+1(ω)) = lim

n→∞ d(Tn(ω, x0(ω)), Tn+1(ω, x0(ω))) = 0,

and because T (ω, ·) is continuous,

d(y∗(ω), T (ω, y∗(ω))) = lim
n→∞ d(yn(ω), T (ω, yn(ω))) = 0.

Thus,

y∗(ω) = T (ω, y∗(ω)) for each ω ∈ Ω.
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It remains for us to show that y∗ is the unique random fixed point of T . We
prove that, if we take any random variable x0 : Ω → X and we define the
sequence

y0(ω) = x0(ω) and yn(ω) = T (ω, yn−1(ω)) = Tn(ω, x0(ω)),

for all ω ∈ Ω and integers n � 1, we get yn(ω) → y∗(ω), as n → ∞, for every
ω ∈ Ω, where y∗ is the random fixed point of T obtained in the previous part
of the proof.

If x0(ω) is comparable to x0(ω) for every ω ∈ Ω, it is obvious, since
T (ω, x0(ω)) is comparable to T (ω, x0(ω)) for every ω ∈ Ω, so that yn(ω) is
comparable to yn(ω) for every ω ∈ Ω. Hence, by (v) and asymptotic regular-
ity

d(yn(ω), yn(ω)) = d(T (ω, yn−1(ω)), T (ω, yn−1(ω)))
� K(ω) · {d(yn−1(ω), T (ω, yn−1(ω))) + d(yn−1(ω), T (ω, yn−1(ω)))}
= K(ω) · {d(yn−1(ω), yn(ω)) + d(yn−1(ω), yn(ω))} → 0, ω ∈ Ω,

as n → ∞. Therefore

d(yn(ω), y∗(ω)) � d(yn(ω), yn(ω)) + d(yn(ω), y∗(ω)) → 0,

as n → ∞, and yn(ω) → y∗(ω), as n → ∞, for every ω ∈ Ω.
On the other hand, for an arbitrary random variable x0 : Ω → X then,

for each ω ∈ Ω, there exists z(ω) ∈ X that is comparable to x0(ω) and x0(ω)
simultaneously, then if we define the sequence

z0(ω) = z(ω) and zn(ω) = T (ω, zn−1(ω)) = Tn(ω, z(ω)),

for all ω ∈ Ω and integers n � 1, then yn(ω) is comparable to zn(ω), for every
ω ∈ Ω, and yn(ω) is comparable to zn(ω), for every ω ∈ Ω. Therefore

d(yn(ω), yn(ω)) � d(yn(ω), zn(ω)) + d(zn(ω), yn(ω))
= d(T (ω, yn−1(ω)), T (ω, zn−1(ω))) + d(T (ω, zn−1(ω)), T (ω, yn−1(ω)))
� K(ω) · {d(yn−1(ω), yn(ω)) + d(zn−1(ω), zn(ω))}

+K(ω) · {d(zn−1(ω), zn(ω)) + d(yn−1(ω), yn(ω))} → 0, ω ∈ Ω,

as n → ∞, which proves that yn(ω) → y∗(ω), as n → ∞, for every ω ∈ Ω.
This proves the theorem. �

Remark 4.12. Theorem 4.11 remains true when condition (v) is replaced by

(v′) there exists functions M : Ω → [0, 1) and K : Ω → [0,∞) such that for
each ω ∈ Ω,

d(T (ω, x), T (ω, y))
� M(ω) · d(x, y) + K(ω) · {d(x, T (ω, x)) + d(y, T (ω, y))}

for every comparable x, y ∈ X, i.e. x � y or y � x.

Conclusion. In this part, we presented the extension of Banach’s theorem in
stochastic situations.
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[9] Carl, S., Heikkilä, S.: Fixed Point Theory in Ordered Sets and Applications,
from Differential and Integral Equations to Game Theory. Springer, New York
(2011)

[10] Chatterjea, S.K.: Fixed-point theorems. C.R. Acad. Bulgare Sci 25, 727–730
(1972)

[11] Connell, E.H.: Properties of fixed point spaces. Proc. Am. Math. Soc. 10, 974–
979 (1959)

[12] De Blasi, F.S.: Fixed points for Kannan’s mappings in Hilbert spaces. Boll.
Un. Mat. Ital. (4) 9, 818–823 (1974)

[13] Edelstein, M., O’Brien, R.C.: Nonexpansive mappings, asymptotic regularity
and successive approximation. J. Lond. Math. Soc. 17, 547–554 (1978)

[14] Emmanuele, G.: Fixed point theorems in complete metric space. Nonlinear
Anal. 5, 287–292 (1981)
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