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Abstract: In the last two decades, improvements in materials, sensors and machine learning technologies have led to a rapid extension
of electronic nose (EN) related research topics with diverse applications. The food and beverage industry, agriculture and forestry, medi-
cine and health-care, indoor and outdoor monitoring, military and civilian security systems are the leading fields which take great ad-
vantage from the rapidity, stability, portability and compactness of ENs. Although the EN technology provides numerous benefits, fur-
ther enhancements in both hardware and software components are necessary for utilizing ENs in practice. This paper provides an ex-
tensive survey of the EN technology and its wide range of application fields, through a comprehensive analysis of algorithms proposed in
the literature, while exploiting related domains with possible future suggestions for this research topic.
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1 Introduction

All kinds of innovation are possible with inspiration.
As image processing is inspired by the sense of sight, the
electronic nose (abbreviation EN, enose, e-nose) — also
known as an odor sensor, aroma sensor, mechanical nose,
flavor sensor, multi-sensor array, artificial nose, odor-
sensing system, electronic olfactometrylll — technology is
inspired by the sense of smell. The olfactory system eas-
ily enables living beings to be aware of their environment,
of possible dangers, and to identify and classify food[2l. In
technology though, automatic identification and classific-
ation of odor is a very challenging issue because the
scents in chemical mixtures intercommunicate naturally[3].
This natural interaction has three types: synergism, com-
pensation and masking. Synergism is defined as the inter-
action when two or more distinct substances produce a
mutual scent which is stronger than those of individual
components. Compensation is the case when one compon-
ent counteracts another constituent. Masking is the com-
bination of one pleasant odor with an unpleasant one.
Even though there exist reported achievements of some
earlier techniques8, such chemical mixtures in general
conditions were not able to be analyzed and split up into
its components with high accuracy until the development
of the EN technology. Together with the development of
EN devices, several studies were completed to assess odor
intensities, to understand mixtures of odor interactions
and the sensor responses to these interactions, e.g., [9— 11].

Although the first research on detecting distinctive
smells began in [4] during the 1920s, the idea to detect
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aromas with a chemical electronic sensor array was
primarily mentioned in [12] and then in [13] in the early
1980s. However, the EN concept could not be actualized
at that time due to limitations in the sensors technology.
In the late 1990s then, the term “electronic nose” was
mentioned in [14]. According to its initial definition, an
EN is composed of a multisensor array responsible for de-
tect- ing more than one chemical component. Sub-
sequently, both technological improvements in sensors
and the realization of the potential that the EN holds led
to a considerable extension of its applications. Recently,
due to the provision of reliable solutions, rapidity, low
cost and compactness, the EN concept has become popu-
lar in agriculturel'®l, the food and water industry1¢l, medi-
cinell”) security systems[!5] and many other areas/18l.

Fig.1 demonstrates the similarities between the biolo-
gical olfactory system and the EN technology. The elec-
tronic sensor array of the EN corresponds to the olfact-
ory nose receptors, which detects the traces of chemicals
in the air. When these molecules are sensed and captured,
the input signal is sent to the olfactory bulb, where the
odor information is processed. After characterizing the
aroma, the smell is recognized in the brain by the olfact-
ory cortex as a last stage in the biological system. Like-
wise, in the EN case, a preprocessor applies feature ex-
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Fig. 1 Analogy between the biological olfactory system and the
EN technology
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traction to the captured odor signal. Afterwards, data
analysis, pattern recognition and machine learning re-
lated algorithms are generally used for identifying and
classifying the input scent using the extracted digital sig-
natures.

After drawing the parallels between the biological ol-
factory system and the EN technology, an EN obviously
consists of both hardware and software components.
While the software part can be thought as the “brain”,
the hardware part can be seen as the “olfactory recept-
ors” of the EN system. The software part mainly con-
tains a data processing unit which identifies and classi-
fies each individual scent detected using digital signa-
tures of the sensed chemicals. The hardware part is basic-
ally a sensor array. Since the main objective of the EN is
detecting and classifying multiple aromas, the sensing ar-
ray should encompass different types of individual
sensors, where each sensor is responsible for detecting a
different chemical. The selection of suitable sensors to a
given specific task is a key point in this technology. It can
be concluded here that choosing the suitable hardware
and efficient software components is very important in
designing and implementing a successful EN system for a
particular problem. Hence, the main aim of this survey is
to provide a complete overview of the EN technology
while pointing out the task-dependent importance of its
hardware and software components and their character-
istic properties. Note that there are several existing re-
views in the literature which focus on a specific sub-topic
of the EN concept, e.g., the range of sensors as hardware
components used in the EN systems[!9, ENs for the food
industry20), neural networks as software components for
ENsl2l. On the other hand, this paper rather provides a
comprehensive review of broad EN application fields, a
wide range of software related algorithms and commonly
utilized sensor types and their properties as practical
hardware components.

The remaining part of this survey is structured as fol-
lows. The EN device and its main components are intro-
duced in Section 2. Then, a wide range of practical EN
applications and related topics are described in Section 3.
Afterwards, current challenges for this technology are dis-
cussed in Section 4, followed by perspectives and possible
future research directions in Section 5. This paper is fi-
nally concluded with a brief conclusion in Section 6.

2 Components of an EN

An EN consists of both hardware and software com-
ponents as briefly depicted in an odor classification ap-
plication in Fig.2. Initially, the released ambient gas is
absorbed by the sensor array. The detection of the input
signal occurs according to the change in voltage, current,
frequency, resistance parameters depending on the types
of components in the sensor array. Since distinct types of
sensors are usually employed in sensor arrays, the ob-
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tained signals should be preprocessed to understand those
physical changes properly and then processed to digital-
ize them in order to form a dataset. Hence, the sensed
signals are appropriately manipulated, e.g., amplified,
filtered or converted, in order to be easily used in further
stages?2. The processed signals are later analyzed in
terms of their specific properties in the data gathering
stage. Subsequently, sufficient data is acquired from these
signals and the obtained data is preprocessed according to
the requirements of the employed pattern recognition al-
gorithm. Lastly, the odor is classified with the pattern re-
cognition stage.

Odor |:|l> Sensor |:\l> Signal |:l|> Signal
[ release] [ array ] [conditioning] [processing]

Odor Pattern Data Data
classification recognition preprocessing gathering

Fig.2 A description of EN including both hardware and
software components

2.1 Sensors and chemicals

The olfactory system can neither detect nor identify
scents without the obtaining of chemicals released by the
objects23l. These chemicals can be found in simple or
complex structures. Nevertheless, each individual chemic-
al has its own unique quality and characteristics. Thus,
digital signatures of chemicals, which are to be the input
data for both the olfactory system and the EN instru-
ment, are exclusive. The automatic detection process can-
not be achieved without a collected library (dataset) of
the digital signatures of specific aromas.

The sensor array is responsible for detecting targeted
chemicals in a medium. Each targeted aroma is detected
with a specific sensor, in other words each individual
sensor is responsible for sensing a specific type of aroma.
Chemical sensors are used for detecting chemicals in the
medium. These sensors basically convert chemical inform-
ation into analytical signals(24.

Since the main objective of an EN is to sense more
than one chemical, this aim can be achieved with higher
accuracy only by combining several distinct sensors in the
array. While keeping in mind that the sensors in the ar-
ray have to be chosen carefully by taking the chemicals of
interest into account(?’, having a proper sensor array for
specific tasks depends on several conditions as follows/26l:
1) small size and easy to use; 2) re-usability and inex-
pensiveness; 3) short response time and regeneration
time; 4) high resistance for different mediums; 5) insensit-
ivity to temperature and humidity; 6) high sensitivity
and selectivity with respect to chemical compounds or
substance including in the gas mixtures; 7) high stability
for the selected application.
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There are numerous numbers of sensor types utilized
in the EN technology. This paper summarizes below the
most commonly used ones which have been applied in
various practical applications, and their properties includ-
ing advantages and disadvantages are given in Table 1.
2.1.1 Metal-oxide sensors (MOS)

MOS is the most commonly used sensor type in the
EN instrument because of its suitability for wide range of
gasesl?”l. The practical application areas of MOS based
ENs are mainly related to quality control, monitoring
process, aging, geographical origin, adulteration, contam-
ination and spoilage of food and beverages?8l. These
sensors can operate at high temperatures but require high
power consumption. On the other hand, oxide surface re-
actions are too slow at lower temperatures. The oxidat-
ive chemical reactions are constrained due to the low va-
por pressure of water molecules at temperatures below
100°C[29l. MOS are categorized into two main groups ac-
cording to their responses to different gasesl!9: 1) n-type
and 2) p-type. The operational principle of n-type sensors
is based on the reactions between the oxygen molecules in
the air and the surface of these sensors. As a result of
these reactions, free electrons on the surface are trapped
resulting in potential barriers between grains which inhib-
it the carrier mobility that produces large resistance
areas. The p-type sensors respond to oxidizing gases, re-
move electrons and produce holes. Their characteristic
surface reactivity and oxygen absorption significantly in-
crease the performance of the sensor, while enhancing the
recovery speed, boosting the gas selectivity and reducing
the humidity dependence of signals. These sensors are fre-

181

quently chosen in many EN applications because of their
high sensitivity and selectivity[39.
2.1.2 Conducting polymer sensors

Although there are some drawbacks such as the inabil-
ity of detecting gases like trimethylamine in fish odor ap-
plications, conducting polymers are a reliable sensor type
used in many EN instruments for medical, pharmaceutic-
al, food and beverage industries, because of their low
cost, fast response to odorants and resistance to sensor
poisoning/l9. Since the active layers are crucial parts of
sensors, there are many different manufacturing pro-
cesses of conducting polymer films including vapor depos-
ition polymerization, thermal evaporation, electrochemic-
tech-
nique, well-known Langmuir-Blodgett (LB) technique,

al deposition, layer-by-layer (LbL) self-assembly

and morel31],

Several conducting polymers are used in sensors such
as polypyrrole, polyaniline and polythiophenel3l. When a
change occurs in the material due to an interaction with
an analyte, the resistance in the sensor changes which
leads to the detection of gases.
2.1.3 Quartz crystal microbalance (QCM) sensors

QCM sensors are chosen as an EN component in sev-
eral applications including medicine, environment monit-
oring, security and food safety because of their sensitiv-
ity, convenience, rapidness, stability and portability. In
these sensors, the surfaces are covered with a sensitive
coating!9. A selective barrier on the crystal surface takes
in the released gas from the environment, which then in-
creases the total mass. Subsequently, frequency decreases
because of the mass change on the gold surface of the

Table 1 Sensor types and their properties

Sensor type Detection range Usage area

Advantages

Disadvantages

Food and beverage industry

Metal oxide 5-500ppm Indoor and outdoor monitoring
Medical industry
Conducting Pharmaceutical industry
polymer 0.1-100ppm Food and beverage industry

Environmental monitoring

Pharmaceutical industry
Environmental monitoring
Food industry

Security systems

1.5Hz/ppm
1ng mass change

Quartz crystal
microbalance

Environmental monitoring
Food and beverage industry

Acoustic wave 100-400 MHz Chemical detection
Automotive industry
Electro- 0-1000 ppm Security systems
. . Industrial applications
chemical adjustable . c .
Medical applications
Catalytic Laree scale Environmental monitoring
bead g Chemical monitoring
. Change with: - Biomedical applications
Optical light parameters . o
Environmental monitoring
low ppb

Suitable to range of gases

Operation in high temperature

High power consumption

Fast response, small size, easy to use

Sensitive to range of gases
Fast response and low cost
Resistant to sensor poisoning
Use at room temperature

Good sensitivity
Low detection limits
Fast response

Small size and low cost
Good sensitivity and response time
Response to nearly all gases

Power efficient and robust
High range operation temperature
Sensitive to diverse gases

Fast response
High specificity for combustible gases

Low cost and light weight
Immune to electromagnetic
interference

Rapid and very high sensitivity

High sensitivity and specificity
Sulphur poisoning

Weak precision

Humidity sensitive

Humidity sensitive
Temperature sensitive
Limited sensor life
Affected from drift

Hard to implement

Poor signal-to-noise ratio
Humidity sensitive
Temperature sensitive

Hard to implement
Temperature sensitive
Poor signal-to-noise ratio

Large size
Limited sensitivity

Operate in high temperature
Only for compounds with oxygen

Hard to implement
Low portability
Affected by light interference
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QCM. Therefore, QCM sensors determine small vari-
ations on the sensor surface by measuring the frequency
changes on the quartz crystal resonator(32],

QCM sensors can operate in gas and liquid environ-
ments to determine the properties of chemicals33. Along
with sensitive biosensors, they can detect even a nano-
gram of substancel34. Importantly, QCM sensors are open
for changes and improvements. The surface of these
sensors can be modified so that they can detect entire
cells or only one single molecular monolayer. Sensor en-
hancements can be actualized by an electrochemical ap-
proach, via immobilization of the silver electrode surface
polyaniline filmB5. Furthermore, the biotoxicity of metal-
lic electrodes caused by some bioactive coating films can
be eliminated through employing electrodeless crystal
configurations36l. Additionally, molecularly imprinted
polymers (MIPs)B7, polished gold filmsP8), biomimetic
peptide-based sensing materialsi39, multi-wall carbon nan-
otubes40, acidized-multiwalled carbon nanotubes! and
calixarenes?l can be used in QCM sensors to coat sur-
face layers.

As a last note, QCM based biosensors are commonly
adopted to analyze odors because of their economic and
easy manufacturing, and rapid analysis ability[43.

2.1.4 Acoustic wave sensors

The first study about these sensors was in [44]. There
are several acoustic wave sensor types, such as flexural
plate wave device, fiber acoustic wave sensor, tube acous-
tic wave device, transverse wave device, bulk acoustic
wave (BAW) and surface acoustic wave (SAW) sensors.
BAW and SAW are frequently utilized in EN applica-
tions because of their small size, sensitivity, low cost and
response to nearly all gasesl4’l. BAW sensors operate in
the same way as QCM sensors, but they are less sensit-
ive. They can measure extremely small frequency changes
by means of their stability. Low cost, simplicity and ro-
bustness are other advantages of BAW sensors. However,
the performance of these sensors in a liquid medium is in-
adequate. SAW sensors are derived from BAW devices.
High sensitivity is achieved by operating at high frequen-
cies. However, the signal-to-noise performance is poor in
SAW sensors because of the high operating frequencies[4.
2.1.5 Electrochemical (EC) gas sensors

Power efficiency, robustness, operation temperatures
and ability to sense diverse types of gases are the main
reasons for selecting and utilizing EC sensors in EN ap-
plicationsi6l. In these sensors, electrochemical oxidation
or reduction of molecules occurs on a catalytic electrode
surface. The amount of gas is calculated by measuring
the current flowl’. Security and industrial monitoring ap-
plications generally utilize EC sensors.

2.1.6 Catalytic bead (CB) sensors

CB is another sensor type in the EN technology.
These sensors basically burn the gas of interest. As a res-
ult, a combustion enthalpy is obtained which leads to the
detection of gases even in limited amounts of samplesl47.
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Especially combustible gases can be identified by CB
Sensors.
2.1.7 Optical sensors

Optical sensors are attractive for use in several EN
applications, e.g., [48], because of their compactness, im-
munity to electromagnetic interference and rapidityl19l.
Fluorescence, optical layer thickness, colorimetric dye re-
sponse, light polarization and absorbance are measured
by optical sensors, and any of these optical changes are
used to detect odors in the environment!”l. There are two
special types of optical sensors, which detect subjects
based on the differences of color, i.e., colorimetric sensors,
and light, i.e., fluorescence sensors. Colorimetric sensors
are composed of thin films made of chemically responsive
dyes. Fluorescence sensors which are more sensitive than
colorimetric sensors, identify fluorescent light emissions
released by samples.
2.1.8 Photoionization detector (PID) sensors

By wusing the ultraviolet light, via high energy
photons, the molecules of the targeted gas start to ionize.
As a result of this ionization, formed ions create an elec-
tric current which can be detected by PID sensors at dif-
ferent concentration levels (parts per million (ppm) or
parts per billion (ppb))“9. Although it was clearly stated
in [18] that “--- photo-ionization detector (PID) and
quadrupole fingerprint mass spectrometers (QFMS) are
not considered ENs in the strictest sense because they do
not provide a collective data output from a sensor array
and are designed to detect and identify individual com-
ponents of a gas mixture.”, the PID type sensors are able
to detect individual compounds and are currently used in
the EN systems[50].

2.2 Machine learning (ML) algorithms

“The capability of a computer to learn without being
explicitly programmed for a particular task” is defined as
machine learning (ML)PU and it was coined in 195932,
ML algorithms can be grouped into four groups: 1) super-
vised learning; 2) semi-supervised learning; 3) unsuper-
vised learning; 4) reinforcement learning®54. In super-
vised learning, a dataset with known (labeled) inputs and
outputs (labels) is provided to the ML algorithm. The
aim is to obtain a robust mapping function (or model)
between inputs and outputs. This mapping function or
model will later enable the system to predict the outputs
for never seen new input data. Classification, regression
and forecasting are common problems in which super-
vised learning is generally applied. Semi-supervised learn-
ing contains both labeled and unlabeled data in the data-
set. The ML algorithm learns from the labeled data, then
supervised and/or unsupervised learning methods can be
used to identify unlabeled samples. Semi-supervised ML
algorithms are practical to use in problems with a large
amount of unlabeled data to reduce computational com-
plexity and save time. Unsupervised learning uses a giv-
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en dataset which contains only inputs. The ML al-
gorithm investigates the dataset to learn inherent struc-
tures from this input data, trying to identify specific pat-
terns by looking into correlations and relationships
between data points. Clustering, association and dimen-
sionality reduction problems make use of unsupervised
learning. Finally, reinforcement learning is an adaptive
approach in ML that learns from its past experiences and
automatically determines the ideal behavior of the sys-
tem while maximizing its performance for a specific task.
When a new input sample is observed, the system evalu-
ates it and produces an accurate output.

A general block diagram of ML consists in data collec-
tion, modeling, training and evaluation stages as illus-
trated in Fig.3. A related dataset needs to be collected in
general for every ML study. The desired successful solu-
tion cannot be obtained without a dataset which is correl-
ated to the problem at hand. Therefore, either a precol-
lected or a custom-built dataset is always required. After
gathering a proper dataset confirming the information
and specifications related to the study, a model is de-
signed by using ML algorithms. In this modeling step, the
parameter selection process is indeed crucially important
for obtaining successful accuracy rates. After the training
procedure, the system can be evaluated via several meth-
ods such as cross-validation.

|::> [Modening] |::>[ Training ]|::>[Evaluation]

Fig.3 General block diagram of machine learning algorithms

In the EN technology, ML is widely used due to its
ability to process and comprehend large amounts of data,
calibrate the gas sensor array and provide accurate classi-
fication and recognition results. Among the broad range
of ML algorithms, many of them are utilized in diverse
parts of the EN technologyl®l. Pattern recognition al-
gorithms are generally used for quantifying and classify-
ing chemicals detected by an EN. Furthermore, classifica-
tion algorithms are usually combined with data analysis
techniques to recognize distinct aromas.

2.2.1 Pattern recognition

The process of identifying individual patterns through
an ML algorithm is defined as pattern recognitionlS,
Classification is then possible with the data acquired from
these identified patterns. In other words, pattern recogni-
tion is a generic term for the ability of recognizing (ir)reg-
ularities or specific patterns in the data, whereas classific-
ation is an example of pattern recognition in which a
trained model separates the data into classes. In a super-
vised setting, classifiers are modeled and trained using the
collected training data to identify the correct class label
of the object of interest. In a unsupervised learning set-
ting, similar hidden groups are detected in the unlabeled
datal7l. Several learning based approaches are used in
pattern recognition algorithms of ENs and are essential in
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improving EN systems[58]. Some frequently used tools in-
clude linear discriminant analysis (LDA)®9) discriminant
function analysis (DFA)00, stepwise discriminant analys-
is (SDA)IU, partial least squares regression (PLSR)[62 63,
generalized least squares regression (GLSR)[64 63 mul-
tiple linear regression (MLR)I6l principle component
analysis (PCA)[60. 67 support vector machines (SVMs)[68: 69]
and artificial neural networks (ANNs)[70-72], The most fre-
quently utilized data analysis algorithms for different EN
sensor types are summarized in Table 2, and algorithm
properties including advantages and disadvantages are
given in Table 3.

Table 2 Sensor types and frequently used data analysis
methods

Sensor type Data analysis method(s)

PCA, ANNSs, discriminant analysis,

Metal oxide .
regression

Conducting polymer PCA, ANNSs, discriminant analysis

Quartz crystal

. PCA, ANNSs, discriminant analysis
microbalance

Acoustic wave PCA, ANNSs, discriminant analysis

Electro-chemical Pattern recognition methods
Catalytic bead PCA

Optical PCA

2.2.2 Principle component analysis (PCA)

PCA is a traditional and widely used unsupervised
tool to reduce the dataset dimensionality linearly. It re-
tains the variance structure of the data up to rotation.
The high-dimensional data is represented in a new lower-
dimensional subspace which is spanned by the principal
components of largest variance in the original variables.
These principal components are designated as the eigen-
vectors of the data covariance matrix. The highest eigen-
value in magnitude and its corresponding eigenvector re-
tain the maximum variation, hence the most important
contribution among dimensions. PCA is widely used in
EN applications, e.g., [73-78].

2.2.3 Linear discriminant analysis (LDA)

LDA is a linear transformation technique for dimen-
sionality reduction. It differs from PCA in the sense that
LDA is a supervised method aiming at maximizing the
class discrimination while taking the class labels into con-
sideration. It works better for larger multiple-class data-
sets in which separability of individual classes is an im-
portant feature in reducing the data dimensionality. Some
example EN applications of LDA can be found in [79-84].
2.2.4 Support vector machines (SVMs)

SVMs can be utilized for both regression and classific-
ation problems. As a supervised learning technique, they
are widely applied in linear and nonlinear binary classific-
ation problemsl® 861, SVMs basically determine a best fit-
ting hyperplane (i.e., decision boundary) that assist to
classify data points distinctly. In order to obtain the best
hyperplane, the margin between different data classes is

@ Springer



184 International Journal of Automation and Computing 17(2), April 2020

Table 3 Data analysis methods and their properties

Algorithm Advantages Disadvantages
Reduce the data dimensionality . . . .
PCA Provide set of uncorrelated components High computational time with large

amount of data

Measure probability estimations of high-dimensional data

Easy to use
Fast in classification applications
Linear decision boundary

Discriminant analysis

Easy to use
Usage in several cases
Great with small amount of data

Regression

Can work with incomplete knowledge
Fault tolerance is high

Parallel processing

Once trained, predictions are fast
Effective with the large amount of data
For both regression and classification

ANNs

Effective in high-dimensional spaces
Relatively memory efficient

SVMs Works great with nonlinear data

Effective even in the cases when the number of dimensions is greater

than the number of data samples

Fast in both binary and multi-class classification

High computational time for training
Complex matrix operations
Gaussian assumption

Outliers can cause problems
Over-fitting occurs

Hardware dependent computational time
Hard to find optimal network structure
Over-fitting may occur

High computational time with large
amount of data
Noisy data can cause overlapping classes

maximized and the closest data points from both classes
to the hyperplane are defined as support vectors. SVMs
are commonly preferred in EN related applications[82 8789,
2.2.5 Artificial neural networks (ANNs)

ANNSs are inspired by the working principles of biolo-
gical neural networks. They are generally designed as
fully-connected multilayer networks and an example
structure is given in Fig.4. The number of hidden layers
changes depending on the task to be accomplished. The
input layer and weights between the input and hidden
layers determine the activations of hidden layers). Sim-
ilarly, hidden layers and weights between them decide on
the activation of the output layer. It is worth mentioning
here that the activation functions of individual neurons
are the gates of ANNs and without them any network be-
haves like a linear regression model. Although there exist
linear functions,
chosen to assist the network to learn complex data struc-
tures and complex functional mappings to make solid pre-

nonlinear activations are generally

dictions. Another reason to choose nonlinear functions is
that they are more suitable to be used in back-propaga-
tion. As illustrated in Fig.5, some example activation
functions include identity (linear), binary step, sigmoid
(logistic), hyperbolic tangent (TanH) and rectified linear
unit (ReLU). While TanH and sigmoid functions have
widely been used previously, today ReLU is commonly
chosen because of its pace and better performance.
Moreover, ReLU can be employed where TanH and sig-
moid cannot be used in networks with multiple layers due
to their vanishing gradient problem. The updated ver-
sion of ReLU is Leaky ReLU that prevents the dying
ReLU problem for the negative input values.

Being rather than a specific algorithm, ANNs indeed
constitute a “machine learning framework” in order to
process data and present highly accurate results during
volatile chemical substance recognition for environmental
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Input Hidden layers Output
Fig. 4 An example structure of ANNs
Activation Mathematical Figure
function representation
Identity fx)=x N VA
Binary 40,  x<0
step f(x)_{l, x>0
. s
Sigmoid /(9= 7o L
-2 /
TanH Sx) = T 1 —
0, x<0
ReLU  f(x)={ L x>0 S

Fig. 5 Activation functions for individual neurons in ANNs

and medical purposesl2ll. Therefore, ANNs and their re-
cent extensions have become a common choice in diverse
EN applications when trained with datasets containing
sufficient and decent samples. Just as the data is fed to
the system, trained ANNs can easily identify individual
scents in a chemical mixture. However, the construction
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of a robust system requires large volumes of datasets dur-
ing the training process.

In a gas sensor array, it is essential to employ a
paradigm which can combine individual sensor outputs
and present a comprehensive identification and classifica-
tion result. Furthermore, the provision of sensor fusion
enables the EN to make decisions with minimum error.
ANNs contain the ability to connect the outputs from
distinct sensorsl®l. Hitherto, ANNs which have been em-
ployed in sensor fusion include quickprop learning al-
gorithms, multilayer perceptron incorporated with stand-
ard back-propagation, cascade correlation and radial basis
function®2. Moreover, there have lately been many stud-
ies on EN technology incorporated with ANNs in diverse
application fields, e.g., [93, 94].

2.2.6 Deep learning

Deep learning is yet a relatively new type of ML as a
collection of techniques for mostly learning in neural net-
works, and is defined as the ability of a machine to auto-
matically detect and classify desired information in a raw
datasetsl. As an advanced extension to ANNSs, deep
neural networks have recently been utilized in a broad
range of successful academic and industrial modeling ap-
plications. Some practical examples include image and ob-
ject classification and recognition®-9, (medical) image
and video analysis[100-103] and speech and face recogni-
tion[104-108]  Specifically, convolutional neural networks
(CNNs)[109 proposed by Hubel and Wiesel in 19620110
have been frequently used among other deep learning
techniques. CNNs as layered-structures generally consist
of an input layer, several convolutional layers, pooling
layers, nonlinear activation layers, fully-connected layers
and an output layer (typically a fully-connected ANNs
which is attached to softmax and classification layers). As
compared to conventional feature-based pattern recogni-
tion algorithms, feature extraction and selection are auto-
matically carried out in the CNNs technique, hence the
input data does not need to be preprocessed!!ll. Recent
example applications of CNNs in the EN technology in-
clude liquors classification!'l, and gas classification and
identification(112, 113],

Some additional deep learning based examples in-
clude convolutional recurrent neural networks (consisting
in both CNNs and recurrent neural networks (RNNs)) to
perform fast gas recognition!!'4 and (deep) Boltzmann
machines(!!5: 116 to overcome overlapping of odors cap-
tured by an EN in order to avoid misclassification of
aromas using dimension reduction and clustering/!17.

2.3 System performance evaluation

In a confusion matrix, results of correct predictions
(true positive (TP) and true negative (TN)) and incor-
rect predictions (false positive (FP) and false negative
(FN)) are inserted which are helpful to calculate system
performance evaluation metrics/!18l. The most frequently
used EN system evaluation metrics are accuracy, preci-
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sion, sensitivity (recall, TP rate), specificity (TN rate)
and F1l-score.

Accuracy is defined as the amount of correctly pre-
dicted values over all predictions, and calculated as

TP + TN

A - .
COUrACY = b T TN + FN + FP

(1)

Precision is the value that gives information about the
correctly predicted positive labels among all the positive
values, and calculated as

TP
Precision = ———. 2
recision = 5 s (2)
Sensitivity (recall, TP rate) is the proportion of cor-
rectly classified actual positives, and calculated as

TP

Sensitivity = m (3)

Specificity (TN rate) is the rate of correctly determ-
ined actual negatives, and calculated as

TN

_— 4
TN +FP “)

Specificity =

F1-score is the harmonic mean of the sensitivity and
precision, and calculated as

2(Precision) (Sensitivity)

()

Fl-score = T .- .
Sensitivity + Precision

2.4 Commercially available ENs

At present, commercially available ENs in the market
are listed in Table 4. These commercial ENs differ in
terms of both sensor types and application/usage areas.
As a specific example, FOODsniffer is a mobile device
which gives information related to the freshness analysis
of raw meat, poultry and fish. It can also connect to any
smart-phone via its own application. Another example
and one of the most mentioned EN in this paper,
Cyranose (SenseSigents) contains 32 sensors. It can de-
tect and analyze a wide range of gases via PCA, K-
nearest neighbors (KNNs) and SVMs.
Cyranose is still used in several indoor-outdoor monitor-

Therefore,

ing and medical purpose applications. Another commer-
cial EN which is mentioned noticeably in the paper is
AirSense portable electronic nose (PEN). Although PEN
contains 10 different sensors, the size of the device is
small. It is selected for a wide variety of purposes be-
cause of its size, pace and robustness. By using various
data analysis methods, this device can distinguish up to
10 different compounds which is an attractive property
for research studies. Likewise, Alpha MOS provides a de-
cidedly powerful detection and analysis product, Heracles
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Table 4 Commercially available ENs and their usage areas

Company Product(s)

Usage area

Computer integrated zNose
Battery operated zNose
Portable zNose

Benchtop zNose

Electronic sensor technology!(119]

AirSense analytics[120] Portable electronic nose (PEN)

Electronic Nose Co. LTD.[121] Electronic Nose

Cyranose
eNose Aqua
eNose QA

Sensigent[122]

FOODsnifferl123] FOODsniffer

E-Nose Mk3.3
E-Nose Mk3.3.0
E-Nose Mk4

EN Pty Ltd.[124]

Alpha MOSI[125] Heracles Neo

Model 307

ientificl126]
RoboScientific (available in limited quantities)

NeOse Pro
[127)
Aryballe Aryballe EN
eNose
Odotech/128] SulfNose
MultiNose

FIGARO Engineering Inc.[129]

The eNose Company!130] Aeonose

Variety of gas sensors and sensor modules

Organic, biological and chemical compounds detection and
analysis

Aviation, military, logistics
Public security, environment
Hazardous chemicals and explosives detection

Environment, health-care, food and beverage

Health-care, indoor and outdoor monitoring

Food (freshness of raw meat, poultry and fish)

Environment, health-care, security

Food and beverage, packaging
General purpose analyzer

Automotive, personal care and cosmetics
Consumer appliances, food and beverage

Environment

Domestic and industrial monitoring

Health-care

Neo which is employed in the food and beverage industry.
Its data analysis software allows it to determine various
odors with high stability and sensitivity. Heracles Neo
can also analyze data samples objectively even when it is
used repeatedly.

3 Current EN applications

With the realization of the potential of the EN tech-
nology and the increasing quantity of research estab-
lished in this field, it has become popular in very distinct
applications. ENs have become a common device in the
food and beverage industry, agriculture and forestry,
medicine and health-care, indoor and outdoor monitoring,
military and civilian security, packaging, cosmetics, air
transportation and many more. In the remaining part of
this section, a wide range of applications of EN systems
will be extensively described in more detail in terms of
their hardware and software components together with
system performance evaluation statistics. Most of the
mentioned methods will be reported with their “accur-
acy” statistics, when applicable. Interested readers are re-
commended to refer to the related publication for more
information on the other evaluation metric results.

3.1 Food and beverage

In the last decade, EN related research topics have
significantly increased especially in the food industryl20].
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Contamination of food leads to waste of resources and
identifying contamination in food products is possible via
ENs. Quality assessment, shelf-life and spoilage control of
food, hazardous chemicals or bacteria detection and clas-
sification in food and beverages can be achieved through
some special sensor arrays. The activity of microorgan-
isms, enzymes and fat oxidation in the food production
and storage stages result in deterioration. This decline in
quality may lead to the formation of harmful bacterias or
nutrient loss, which can later cause important food safety
issues. Fortunately, the spoiled food releases chemical
gases which can be sensed by an EN.
3.1.1 Quality assessment and adulteration of meat
Thanks to high amounts of protein, vitamins and min-
erals they contain, meat and meat products are to be con-
sidered indispensable for the diet of the most people in
the population. In research by the Food and Agriculture
Organization of the United Nations, the global meat pro-
duction rose by 20% (between 2012 and 2014) and this
number will increase again by 17% in the further
periods(20. This continuous growth proves that, in the
near future, meat quality assessment from production to
consumption and automatic classification of meat
products needs to be accomplished as fast as possible
with low cost and high accuracy. However, traditional
techniques mainly analyze the meat samples in special
laboratories and identify the spoilage by examining the
total amount of bacteria inside the meat, which is very
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time consuming.

The EN technology combined with ANNs were star-
ted at first to be used to address and overcome the above
mentioned problem. In 1996, Yano et al.['3l] introduced a
biosensor system which monitors the meat spoilage and
the aging process. Their system requires direct contact
with the meat surface, an AgAgCl and a platinum elec-
trode. The results demonstrated an estimation of meat
quality through aging, which was then improved with
several modifications.

Later in early 2000s, the EN technology proved its
high potential for both food and feed industries with the
study of Santos et al.["3l An EN was proposed using tin-
oxide gas sensors by means of PCA and ANNs to differ-
entiate between Iberian ham samples obtained from pigs
with various feeding regimes and ripening times. Their
system successfully distinguished the distinct types of
hams which have different adulteration. In addition to
[73], an EN with semiconductor thin film sensors was
later used in [132] to discriminate four types of ham. The
samples were analyzed with PCA and probabilistic ANNs
concluding the beneficial aspects of the EN technology in
discriminating food samples.

In [133], the relationship between the quality of the
pork meat pizza topping products and storage conditions
were analyzed. Moreover, the sensor quality versus stor-
age conditions were also examined. The researchers first
categorized independent data as known (i.e., production
samples) and unknown (i.e., purchased samples), and
then kept them at 5°C. PLSR was used for modeling
their system which predicts the storage time with respect
to the sensor quality changes during the storage period.
The experimental results illustrate that the storage time
of both known and unknown samples were predictable as
the sensor quality changes during storage. As a result,
this study gives strong proof that ENs will become in fu-
ture implemented devices in quality control of meat
products.

A quality assessment of red meat was accomplished
with metal-oxide semiconductor sensor arrays in [134].
Samples were taken from beef and sheep meat stored at
4°C for up to 15 days. While PCA and SVMs were selec-
ted as software components, a bacteriological method was
utilized for training the EN. According to this research,
the observed correlation between the bacteriological data
and EN signals were satisfying. Hence, the proposed EN
system proved its potential to become a simple and time
saving technique for the quality assessment of red meat.
Additionally in [80], the meat freshness was controlled
with an EN based on a metal-oxide multisensor array us-
ing the LDA algorithm. The proposed system was able to
identify whether the meat was produced by the same sup-
plier, or not, by only examining one or two samples.
Moreover, the early stage of spoilage in the stored meat,
at 4°C and 25°C, could be detected accurately by LDA.
These studies demonstrate that MOS ENs are ready to be
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used in the food industry.

In [81], an EN was developed using a PEN 2 with ten
metal-oxide sensors for the assessment of pork freshness.
LDA and back-propagation ANNs were utilized for stor-
age time prediction and MLR was used to estimate the
sensory scores. While the suggested system had the pre-
diction accuracy rate of 97.14%, the correlation between
EN signals and sensory scores was high. In a related
study in [135], hairtail fish and pork samples stored at
5°C, 10°C and 15°C temperatures were taken for the
classification of their freshness. A metal-oxide sensor ar-
ray was used to sense chemicals, and pattern recognition
based on PCA and compensation methods were adopted
to analyze the gathered data. After simultaneously meas-
uring the total volatile basic nitrogen and aerobic bacteri-
al counts of samples, the proposed EN system could rap-
idly analyze the stage of spoilage of hairtail fish and pork
with high classification accuracy rates (87.5% for fish,
91.7% for pork).

In [136], a portable EN based on electrochemical
sensors was proposed to analyze food. A successful sys-
tem adopting SVMs was developed to classify poultry
meat by taking into account their shelf-life with an accur-
acy of 100%. A fast detection and identification model for
poultry meat species and meat adulteration was de-
veloped using a PEN 3.5 portable EN in [137]. During the
heating process at 25°C, 80°C, 100°C, 120°C and 150°C
temperatures, volatile chemical samples released from
chicken, duck and goose meats were collected and then
analyzed by adopting LDA and DFA. As a result, the EN
could recognize various heating temperatures and differ-
entiate meat types with more than 95% accuracy. Anoth-
er system to distinguish different meat species and to
identify the spoilage level was developed in [138] using a
sensor array which contains six metal-oxide sensors. This
EN system was supported with a device based on an elec-
tronic tongue (e-tongue)!l. The meat samples were collec-
ted from beef, goat and sheep, and stored at 4°C. Data
analysis and classification tasks were performed by PCA
and SVMs concluding that these three kinds of red meat
can be classified successfully and also the duration spent
in the storage can be identified.

In [139], a new low cost and portable EN with metal-
oxide sensors was designed aiming at evaluating the
chicken meat freshness and microorganism population at
4°C and 30°C for up to 5 days. While PCA was em-
ployed in classification of chicken meat freshness for dif-
ferent storage temperatures and days, back-propagation
ANNSs were used to built a model for microorganism pop-
ulation assessment which demonstrates very accurate res-

1The International Union of Pure and Applied Chemistry
Analytical Chemistry Division (IUPAC) defines electronic tongue
as “The electronic tongue is a multi-sensor system, which
consists of several low-selective sensors and uses advanced
mathematical procedures for signal processing based on the
pattern recognition --- and/or multivariate analysis.”[140]
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ults. With additional studies[141-144] EN systems offer be-
nefits such as pace, portability, low cost and nondestruct-
ive measurements with high relative accuracy, hence
these systems can be used as an alternative for the ana-
lysis of bacterial population on meat and meat products.

A recent EN system based on three gas sensors and
one color (red, green, blue) sensor array was proposed in
[145] to differentiate three freshness levels of meat as
fresh, half-rotten and rotten. The developed system
reached accuracy up to 80% for these three freshness
levels using ANNs. Authors claimed that there exists pat-
tern resemblance between half-rotten and rotten meats,
hence an error of 20% occurs. The system achieves 100%
precision in the case of only distinguishing between fresh
and rotten meat.

3.1.2 Cocoa beans and chocolate

In order to determine the roasting level in cocoa
beans, ANNs are usually trained by a gas chromato-
graphy/mass spectrometry (GC/MS) system. However,
this is a time-consuming, very complicated and expensive
process. A new EN model aiming at determining the de-
gree of roasting in cocoa beans was proposed in [146] by
means of volatiles of cocoa beans roasted for different
durations. ANNs were used to estimate the level of roast-
ing using signals acquired from seven sensors. The de-
veloped system reached a 94.4% prediction accuracy in
comparison to that of GC/MS which is 95.8%.

In the chocolate industry, flavor analysis keeps an im-
portant place for the production stagell47). The study in
[147] was performed to classify regular and artificially off-
flavored chocolate aromas through an EN. Several
samples from both classes were collected and examined
via two different ENs composed of metallo porphyrins
and gold nanoparticles peptide sensors. A classification
accuracy of more than 90% was achieved by the gold
nanoparticles peptide sensors. In a different studyl!4s], a
self-constructed EN with seven metal-oxide sensors was
adopted to differentiate 26 types of distinct chocolate
samples, extra ingredients, sweetener and expiration date
status. PCA and ANNs were employed as classifiers and
an average identification rate of 81.3% was obtained.
3.1.3 Alcohol and alcoholic beverages

An EN system was utilized in [149] to identify dis-
tilled liquors with various types of pattern recognition al-
gorithms. Twelve test samples of distilled spirits were
identified using PCA and different types of ANNs (i.e.,
back-propagation ANNs, linear ANNs, radial basis func-
tion ANNs and self-organizing map ANNs) using eight
SnO2 gas sensors in the sensor array. While reporting
that the back-projection ANNs reached 100% recognition
accuracy for this test set, its slow convergence issue was
solved by applying a chaotic back-projection ANNs in-
stead. In a similar study in [111], an EN with ten metal-
oxide sensors was proposed for classifying seven types of
Chinese liquors. The sensor responses were converted in-
to gray-scale images and processed with a CNNs architec-
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ture containing two convolutional layers, two pooling lay-
ers, a fully connected layer and an output layer. The
highest test classification accuracy reached was 95.7% by
CNNs, when compared to SVMs (92.9%), ANNs (91.9%)
and LDA (85.8%).

A portable EN with twelve metal-oxide sensors was
developed in [82] to classify rice wines with different
marked ages. PCA, LDA and locally linear embedding
(LLE)[%0] were chosen to be used in the classification step
of wine samples, whereas PLSR and SVMs for the predic-
tions of the marked ages. According to this study, LDA
provides best results for classification and SVMs work
much better than PLSR in the prediction stage. A port-
able EN based on an mbed micro-controller was pro-
posed in [151] to identify synthetic wine samples. A
sensor array was built by using four different sensors and
two algorithms were adopted in the study. While ANNs
presented a classification rate of over 99%, SVMs reached
an accuracy of over 93.5%. The authors pointed out that
the designed EN is very economic to built.

Meeting aroma expectations of customers is an im-
portant task for also the beer industry and exploiting the
best standard for the beer aroma can be achieved by an
EN. A study in [152] discriminated different types of
beers with various alcohol contents through a self-de-
veloped EN based on PCA and ANNs. The beer samples
were classified with 84.72% accuracy. A similar study in
[153] proposed an EN system for classifying ten kinds of
Thai beers. Coupled with ANNs, the system had a suc-
cess rate of 87.5% in discriminating all brands. In [154],
alcoholic and non-alcoholic beers were discriminated us-
ing a metal-oxide sensor system by means of ANNs with
100% accuracy. Further research on a proposed EN sys-
tem for water evaluation in beer production sector can be
found in [155].

3.1.4 Tea and tea quality

A comprehensive study was performed in [156] to ana-
lyze tea samples with an EN with a metal-oxide sensor
array. The data was collected from five tea samples un-
der different manufacturing processes, in different qualit-
ies and in the consideration of humidity and temperature.
The gathered samples were processed and analyzed using
PCA, fuzzy C means (FCM)I57 and different types of
ANNSs, e.g., probabilistic ANNs, radial basis function
ANNSs and self-organizing map ANNs. The proposed sys-
tem was noticeably successful in distinguishing between
these five flavors of tea samples, leading to high classifica-
tion accuracy rates of 100% for radial basis function
ANNs and of 94% for probabilistic ANNs. Moreover, au-
thors emphasize that the training time of these two
ANNs methods was faster when compared to the other
ANNS.

Research in [158] was carried out to identify five dif-
ferent quality degrees of green tea samples using a PEN 2
with ten metal-oxide sensors. While PCA was used to op-
timize the system and reduce the dimensionality, LDA
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and back-propagation ANNs were used to analyze the
processed data. Tea grading results indicate that both
LDA and ANNSs algorithms were more successful for tea
beverages than tea leaf and tea remains. Another tea
quality assessment was performed in [87] using an EN
and three types of multi-class SVMs. The designed EN
includes an array of four sensors, and the aromas were
collected from dried black tea samples to avoid humidity.
The accuracy of tested SVMs models had more than 97%
to estimate various qualities of black tea. A recent study
was proposed in [159] to estimate black tea flavors using
a “low-cost hand-held” EN containing four metal-oxide
gas sensors. The data samples were processed and invest-
igated through PCA, self-organizing map ANNs and
back-propagation ANNs. The designed system was suc-
cessful with the accuracy of 90% over a set of 80 differ-
ent tea samples collected from various places.

3.1.5 Coffee and coffee quality

A study was carried out in [160] for the quality assess-
ment of seven different instant coffee types from Brazil
and England. The coffee samples were collected via
PEN 2 EN equipped with ten metal-oxide sensors. The
proposed system was able to distinguish the evaluated
coffee types with an accuracy of 100% using ANNs. Addi-
tionally, a recent study in [161] successfully classified six
different instant coffee types produced by the same in-
dustry. A PEN 2 with seven metal-oxide sensors was used
to gather 53 aromatic pattern profiles of coffee samples.
LDA and common dimension analysis were applied to
these data for classification. The proposed system was
able to noticeably discriminate different instant coffee
products.

Another study in [65] described a PEN 3 based EN
system for online monitoring of industrial coffee roasting,
for assessing the roasting degree of coffee beans origin-
ated from Brazil, Costa Rica, India and Vietnam. While
the correlation between EN signals and roasting degrees
was obtained with both PLSR and GLSR, it turned out
to be the proposed system with GLSR that could success-
fully differentiate all roasted coffee beans by checking
their volatile organic compound profiles. A related work
based on PCA and ANNs was performed in [74] to pre-
dict coffee roasting degrees using an EN containing a
metal-oxide sensor array. The developed method was able
to produce high success rates for both estimating the
roasting time and coffee quality parameters.

Some research was performed in [162] to determine
the origins of different coffee samples based on their fla-
vor. The Heracles II EN system was utilized and the col-
lected samples were analyzed through PCA and DFA.
Experimental validations indicate that the DFA was a
successful tool for predicting the geographical origins of
coffee samples.

3.1.6 Oil and vinegar

In contrast to gas chromatography and chemical ana-

lysis, ENs can rapidly assess edible oil quality and identi-
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fy the origin of oil types[!63l. In addition, since deep fat-
frying and storing conditions alter the quality and aroma
stability of products(l64 165 it has become another field in
which ENs were adopted. In [166], it was aimed to de-
termine the quality of vegetable oils which engage with
thermal treatment. A system based on ultra-fast gas
chromatography along with chemometrics and flame ion-
ization detector was designed. Although very promising
results were obtained, the researchers desire to built an
EN in order to construct a generic system to assess the
quality of vegetable oils.

In [136], rapeseed oil was successfully classified using
SVMs with a success rate of 100% and adulterations of
extra virgin olive oil with rapeseed oil were of 82%
through considering the degree of thermal degradation.
Yet a QCM sensor array based EN system developed in
[75] was able to classify the quality of olive oil samples
from aromatic profiles using PCA. Experimental results
of this easy to use and low cost approach were satisfact-
ory for distinguishing virgin olive oils from lampante
ones. A related method was presented in [167] to detect
adulteration of olive oils using Cyranose 320. The collec-
ted samples of olive oil from different regions of Balikesir
in Turkey were analyzed through various algorithms such
as PCA, LDA, ANNs, SVMs, KNNs. The best success
rate was reported with a Naive Bayes classifier having a
70.83% accuracy. A recent study was performed in [168]
to assess the quality of olive oil samples. An EN with
MQ-series SnO2 gas sensor array was designed and used
to collect samples. The proposed system was able to dis-
tinguish between virgin oils from pomace oils by around
90% prediction accuracy.

In addition to olive oil, vinegar is also widely used in
homes and industry; hence ENs can be employed to
identify and classify different types and qualities of vineg-
ar. For example in [169], an EN consisting of 14 tin-ox-
ide sensors was used to identify six types of Chinese vin-
egar using a new kernel based DFA method. The collec-
ted vinegar samples were successfully classified by up to
100% success rate.

3.1.7 Dairy products

Milk requires a strict quality control due to its com-
plicated structure and traditional methods for milk qual-
ity control are expensive, complex and sometimes subject-
ivell’l. In [170], a portable EN with MQ-135 (responsible
to detect carbon dioxide and ammonium) and MQ-3 (re-
sponsible to detect ethanol, hexane, methane and carbon
monoxide) sensor array was designed to identify mastitis
milk and to estimate the milk parameters such as acidity,
lactose, protein, ashes and casein content. In a recent
studyl!7l], milk spoilage identification and diseases detec-
tion problems were addressed through an EN system with
a metal-oxide sensor array. To sum up, experimental res-
ults reported in both above studies show that EN sys-
tems are beneficial in milk quality control and provide a
new, rapid method for the dairy industry.
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3.1.8 Water quality control and monitoring

Water concerned EN applications are diverse. An ex-
ample study was performed in [172] to develop an EN
system for the identification of microbial and chemical
contamination of potable water. The system designed was
based on two different conductive polymer sensor arrays
with PCA, DFA and cluster analysis, and resulted in a
model effectively distinguishing between the different bac-
terial and fungal species. Yet another example work in
[173] was put into practice in Bangkok to classify the
odors of wastewater and fresh water. Wastewater samples
were collected from different domestic canals with an EN
with three metal-oxide sensors. The system was able to
successfully detect relative amounts of organic solvent va-
pors, ammonia, liquid petroleum gas, hydrogen and car-
bon monoxide in the collected samples. In a recent
studyll™l, to identify scents from wastewater plants, re-
searchers suggested an EN system based on PCA to dis-
tinguish odors emitted from wastewater treatment plant,
and a PLSR model to predict the odor concentration. A
successful EN application in [175] aimed at detecting oil
pollution in seawater samples via six paper-conducting
polymer gas sensors using ensemble machine learning
classifiers. Additionally, the study in [176] proposed to
monitor the early activity of Streptomyces in water. An
EN system was developed with 14 conducting polymer
sensor array using PCA and DFA. The developed model
was able to not only detect the Streptomyces but also
discriminate between species.

3.2 Agriculture and forestry

The EN technology is commonly used in agriculture,
in which related applications are used for agronomy, hor-
ticulture, botany, biochemical procedures, pesticide detec-
tion, infestation detection, plant physiology, plant patho-
logy, environment monitoring, and many morell”?l. More
specifically, fruits, vegetables, flowers, plants, tobacco
and all related products release specific volatile organic
compounds which can be sensed by an EN.

An investigation was performed in [178] to monitor
the quality of fruits and to classify their maturity. An EN
system was employed with a metal-oxide sensor array us-
ing PCA, KNNs and SVMs algorithms. The samples were
collected from bananas with four different maturity states
leading to an accuracy of 90% or higher for the classifica-
tion of the maturity of fruits. A related study was per-
formed in [179] to classify four different ripening stages of
bananas by using an EN together with a camera. The
camera system was used to capture the peel color of the
fruit as an extra feature, while the EN sensor array was
established from seven metal-oxide sensors. PCA, LDA,
KNNs and SVMs were applied to analyze data samples
and the proposed EN/camera system could distinguish
the maturity stages of bananas with an accuracy rate of
100%. A very recent study was proposed in [83] to pre-
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dict the ripeness level of post-harvest kiwifruit using
PEN 3 EN. The collected aroma samples were analyzed
with LDA to discriminate kiwifruits at different ripening
times. Moreover, the aroma volatiles were examined
through several algorithms such as random forest (RF)
classifier(180), PLSR and SVMs. The prediction model
based on the RF classifier showed better performance
than PLSR and SVMs, in order to estimate the overall
ripeness, soluble solids content and firmness of post-har-
vest kiwifruits. Another fruit-based successful EN
(PEN 3) related research was accomplished in [181] to
distinguish the damage severity of Fuji apples. After
dropping each apple from a different height onto a ce-
ment floor, the collected apple volatile compound samples
were analyzed with PCA, LDA, SDA and different types
of ANNs. According to reported results, LDA was more
efficient than PCA for distinguishing damage severity of
apples and multilayer perceptron ANNs resulted in 100%
with the SDA dataset.

In [182], 584 samples of mixed vegetable soup were ar-
tificially contaminated by Enterobacter hormaechei and
Escherichia coli. An EN (EOS-507C[183]) composed of four
metal-oxide sensors was adopted along with the LDA al-
gorithm. The classification accuracy of contaminated
samples was 98%. In another studyl®l, a bionic EN with
five metal-oxide sensors was employed aiming at detect-
ing the potato tuber soft rot infection in its early stages.
Soft rot is a common bacterial disease in potatoes and
may cause important economic loss during storage. To
address this problem, the collected data analyzed accord-
ing to the maximum, average and minimum gradient fea-
tures through radial basis function ANNs and SVMs.
SVMs reached a classification accuracy of 89.7% which
was superior to the ANNs algorithm. Yet another study
in [184], a portable EN based on PCA was developed to
identify tomato plants infested by aphids and white-flies
by means of their volatile profiles. The early stage of the
infestation was detected with an accuracy rate of 86%.

Alkaloid degrees in tobacco products must be re-
tained at certain levels according to regulations[!85. In
[185], an EN utilized with 18 metal-oxide sensors using
PCA and PLSR analysis to control nicotine alkaloid
levels in tobacco. As a result of this study, it was stated
that the EN device was successful in detecting the degree
of nicotine alkaloids, but further study is needed to im-
prove the robustness of the system. Another tobacco re-
lated EN proposed in [186] to distinguish cigarette brands
and improve the identification rate. The smell-prints of
four different cigarette leaves were collected via Cyranose
320 with 32 sensors, and these samples were analyzed
through ANNs. Experimental results indicate that ANNs
could greatly improve the accuracy of classification while
comparing with the Cyranose 320 software results.

Forestry has also become an important application
area of ENsll77. Preventing waste in forests, processing
wood and paper, monitoring and protecting the forest
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health, classifying plants and animals according to their
biochemical composition are some example tasks in which
ENs can be employed. An extensive review of a wide
range of EN applications in agriculture and forestry can
be found in [177].

3.3 Medicine and health-care

In traditional methods of diagnosing diverse illnesses,
human-driven mistakes may occur and these approaches
are generally slow, and more importantly expensive. The
EN technology offers an alternative, fast and cost effi-
cient solution to diagnose certain diseases. Moreover,
health-care and well-being applications already contain a
broad usage of ENs. The EN technology has confirmed its
benefit in health-care with some example studies such as
[187-189]. Various volatile organic compound patterns in
the breath of a patient can be sensed, hence ENs are able
to recognize and classify various illnesses releasing case-
specific chemicals. Moreover, ENs have a promising po-
tential in separating healthy and sick subjects with dis-
eases of different severity[19].

Some example applications of EN in medicine are as
follows. An EN system was designed in [191] to distin-
guish subjects with renal dysfunction from the healthy
ones by means of the odor changes of human body. The
proposed system contains three thick-film metal-oxide
based gas sensors. The odor samples were collected from
11 healthy controls, 42 patients with end-stage renal fail-
ure (DP) and 20 with chronic renal failure (CRF). The
collected samples were analyzed via PCA and quadratic
discriminant analysis (QDA) leading to promising results
such that the patients with CRF were distinguished from
the DP with a success rate of 95.2%. In [192], the agents
of the Chagas disease (ECh), Trypanosoma cruzi, were
investigated according to triatomines of different sexes
and development stage using the Laser Vaporization EN
technique. The data samples collected from the EN were
analyzed with PCA and LDA. Consequently, ENs were
proved to be sufficient for categorizing these parasites in-
to their sexes and nympha stages, by checking their
volatile emissions. In another study proposed in [193], the
anesthetic dose level prediction was achieved through an
EN with QCM sensors and ANNs. ANNs were trained
with the Levenberg-Marquardt algorithm[194 to illustrate
the relationship between eight anesthetic dose levels and
the frequency changes on QCM sensors. The developed
system demonstrated acceptable anesthetic dose level pre-
dictions with an accuracy rate of 95%.

A common disease, namely Bile acid diarrhoea (BAD)
was detected in [195] by using a system based on Alpha
MOS Fox-4000 EN and an Owlstone Lonestar Field
Asymmetric ITon Mobility Spectrometer. LDA was adop-
ted to analyze the collected data from 110 patients; 23
with BAD, 45 controls and 42 with ulcerative colitis
(UC). According to experimental results, a classification
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success of 85% was reached for all groups.

The EN technology was further employed in the dia-
gnosis of urinary tract infections (UTI). In [196], an EN
system combined with ANNs was able to distinguish the
patients with the disease. The data samples were ob-
tained from 25 and 45 patients using an array of 14
sensors (RoboScientific model BH114-Bloodhound) to
complete two different experiments. The results of both
experiments demonstrated that ENs can be used in early
detection of UTI. A related EN study in [197] also sup-
ports these promising results of the UTI disease identific-
ation.

The breath sampling and data collection through ENs
is diverse in medical research studies['%8]. Performing a re-
liable and accurate breath sampling has indeed major im-
portance for obtaining correct analysis results19% 200, Due
to limitations in the sensors technology, some analytes
might not be recognized by the sensor20ll. Usually sensors
in the market are able to detect compounds at 1 ppb con-
centration levels, however analytes can be present at very
low concentration levelsi202l which will inevitably lead to
an analyte-ignorance by the sensor during the breath
sampling process. Biosensors on the other hand are more
sensitive and can be adopted in the medical field, but
these sensor types are rarely employed in medical applica-
tions due to their high cost and difficult manufacturing
process(201],

3.3.1 Asthma

In [203], the aim was to classify patients with asthma
with different disease severity from healthy controls, by
analyzing their smell-prints of exhaled air using an EN
(Cyranose 320). The samples were collected from differ-
ent ages and disease severity groups. The gathered data
were analyzed using LDA on PCA. As a result, the EN
could successfully differentiate exhaled breath samples
taken from patients with asthma from controls. However,
it was less accurate in determining severity of the disease.
A related study was performed in [204] to analyze if EN
systems were able to classify allergic rhinitis with and
without concomitant extrinsic asthma, and healthy con-
trols. The samples of exhaled breaths of patients were
gathered with a Cyranose 320 which include patients with
extrinsic asthma and allergic rhinitis, patients with aller-
gic rhinitis without asthma and controls. The PCA and
canonical discriminant analysis (CDA) based model then
tested with 21 newly recruited samples. The outcomes of
this study was promising with a peak cross-validation ac-
curacy of 85.7%.

A Cyranose 320 based EN system was proposed in
[205] to distinguish between patients with asthma and
chronic obstructive pulmonary disease (COPD) which can
have overlapping clinical symptoms with asthma. The ex-
haled breath samples were taken from subjects including
patients of COPD, patients of asthma, non-smoking and
smoking controls. The system based on PCA and CDA
was able to successfully discriminate asthma patients

@ Springer



192 International Journal of Automation and Computing 17(2), April 2020

from COPD patients, non-smoking controls and smoking
controls with accuracy rates of 96%, 95% and 92.5%, re-
spectively.

3.3.2 Cancer

A recent study was performed in [206] to detect lung
cancer from the breath samples via an EN with metal-ox-
ide gas sensors. The collected breath samples from lung
cancer and healthy controls were analyzed with PCA and
LDA to reduce the raw data to two-dimensions in order
to explore the data distribution. The system was de-
veloped with KNNs and SVMs, resulting in the best ac-
curacy of 84.4% by means of the PCA-KNNs method. A
similar work was accomplished in [207] for detecting lung
cancer with an Aeonose EN through ANNs. The breath
samples were taken from lung cancer patients and
healthy controls exhaled through five EN devices for five
minutes. As a result of this study, an overall diagnostic
accuracy of 86% was achieved for the blinded validation
set.

Yet another study was proposed in [208] to diagnose
head and neck cancer by means of an EN with twelve
metal-oxide sensors. The exhaled breath samples were
collected from patients with head and neck squamous cell
carcinoma and analyzed through pattern analysis of their
volatile organic compounds. The control group was selec-
ted from patients visiting the outpatient clinic for other
conditions. The designed system was successful while in-
dicating its usefulness in diagnosing the head and neck
cancer.

3.3.3 Tuberculosis

In [209], an EN was designed with an array of con-
ducting polymer sensors using PCA and ANNs. PCA was
able to differentiate between tuberculosis infection alone,
the controls, Mycobacterium avium, Pseudomonas aeru-
ginosa and a mixed infection. Moreover, through ANNs
and cross-validation, tuberculosis cultures were discrimin-
ated from others with an accuracy of 100%. A similar EN
was developed with 14 conducting polymers in [210] to
diagnose tuberculosis in order to avoid the Ziehl-Neelsen
staining procedure which is time-consuming and lacks
sensitivity. 330 culture-proven samples of virus-tested
tuberculosis and nontuberculosis were analyzed with
PCA, DFA and ANNs. The system was able to identify
the tuberculosis with an accuracy rate of 89% for culture-
positive patients. An additional relatively recent research
was performed in [211] to detect tuberculosis via an EN
(DiagNose), i.e., an EN with metal-oxide sensors, being
four different sensor types in triplicate. The exhaled air
samples were collected from subjects including parti-
cipants for the pilot and validation study. The ANNs
based EN identified samples with tuberculosis from
healthy controls with a sensitivity of 93.5% and a spe-
cificity of 85.3% in the validation step. These mentioned
studies have very important conclusions for the develop-
ment of fast and objective EN systems to diagnose tuber-
culosis via patient samples.
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3.3.4 Sinusitis

The objective of the study in [212] was to investigate
the nasal breath samples of the patients with chronic
rhinosinusitis and healthy controls using the EN techno-
logy with a QCM sensors array. The developed simple
technique with PCA correctly classified all individual
data for chronic rhinosinusitis and misclassified two
samples from the controls with a classification success
rate of 80%, whereas ANNs had a success rate of 60%. In
[213], colorimetric sensor arrays were suggested to be
used for distinguishing between exhaled breath from pa-
tients with and without chronic bacterial sinusitis. 11 si-
nusitis patients and 9 controls were selected and the col-
lected data from the array (color changes for each time
point) were classified with binary logistic regression us-
ing PCA. As a result, the accuracy of suggested method
peaked at 90% which is very promising.
3.3.5 Cystic fibrosis

With some example studies in [214, 215], the exhaled
breath samples were collected from both cystic fibrosis
patients and healthy controls via an EN. Volatile organic
compounds have been processed in this domain and it
was concluded that breath analysis is feasible and holds

potential for the diagnosis of cystic fibrosis lung disease.
3.3.6 Smokers and non-smokers

ENs are useful not only in disease diagnostics but also
in distinguishing smokers from non-smokers by examin-
ing their breath smell-prints. A study was performed in
[216] to differentiate the breath volatile organic com-
pounds of smokers from those of non-smokers with
Cyranose 320 based on PCA. The smokers were differen-
tiated from non-smokers with a cross-validation value of
95%. Another related study in [217] aimed to compare
the efficiency of ENs with SnOs and WO3 sensor arrays.
Experimental results reported indicate that WOs based
EN is better than the one with SnO: in discriminating
among smokers, non-smokers and normal air samples us-
ing PCA and SVMs. In [218], an EN system was de-
veloped to detect odor changes of human body due to
cannabis consumption. The samples were collected from
40 volunteers consisting of 20 cannabis-smokers and 20
tobacco-smokers. The obtained samples were analyzed
through PCA with a classification success rate of 70%
and SVMs with 92.5%.
3.3.7 Human space-missions

The EN technology can be used in human deep-space
missions in order to support the health of astronauts219,
Considering small-size compact EN devices with medical
diagnostic capability, it might be implemented into the
spacesuits to analyze blood, breath, saliva and measure
any biomarker.
3.3.8 Drug-related fields

An important field related to the health-care and
medicine is the pharmacy. It is an obvious fact that hu-
man beings overcome various diseases with medications.
Therefore, the drug production process needs to be done
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minutely. To eliminate human errors and gain pace in the
production stages of these medications, ENs are used in
the pharmaceutical industry in quality control, formula-
tion studies, illegal drug detection, etc.220l For instance,
the study in [221] aimed to detect illegal drugs using a
portable EN and ML algorithms, PCA and SVMs. The
designed model was successful at distinguishing five dif-
ferent drug samples (cannabis buds, cannabis plants,
hashish, snuff tobacco, tobacco leaves) and detecting il-
legal drugs. Moreover, the samples of Radix Angelica Sin-
ensis collected from different locations in China were ana-
lyzed through PCA and DFA in [222] using the Fox-4000
EN. The proposed model demonstrated great results in
identifying samples from different growing places.

3.4 Indoor and outdoor monitoring

Air pollution is one of the crucial problems in modern,
developed and developing countries. Hazardous chemic-
als can cause serious diseases and decrease the quality of
lifel55]. Moreover, decreasing the unpleasant odor amount
released from sewers and wastewater treatment plants is
an important issuel?23l. Eliminating these problems is im-
possible without detecting toxic gases which cause the
pollution. There are various studies concerned to address
these problems through ENs. For instance in [224], an EN
application which was based on SAW sensors, PCA and
ANNs were successfully used to detect the binary mix-
ture of dimethyl methylphosphate (simulant of nerve
agent) and methanol. An EN system was proposed in
[225] to monitor and predict indoor air quality via metal-
oxide gas, and temperature and humidity sensors. Three
ANNs models were trained with the Levenberg-
Marquardt algorithm and the system was able to success-
fully detect and predict the concentration levels of the
methane and carbon dioxide gases even when there ex-
ists an interfering in-place hydrogen gas. In another re-
lated study[226], a successful EN with three gas, temperat-
ure and humidity sensors array using back-propagation
ANNs was developed to monitor indoor air quality in liv-
ing environments. Statistical analysis results were higher
than those of competing methods including SVMs, radial
basis function ANNs and self-organizing maps. Recent re-
search completed in [227] compares the performance of
three different sensors based ENs for real-time outdoor
air monitoring. The ENs were based on semi-conducting
gas sensors only, amperometric gas sensors only and both
type of gas sensors. SVMs were used for calibration and
proved to be useful in the semiconductor sensor re-
sponses of CO, NO3 and Os. Note here that there are oth-
er examples of published studies related to detection and
identification of diverse odors, toxic vapors and gases
(such as ammonia, acetone and ethanol) based on
ANN&[228, 229]

In a further study, a 38-layer Deep CNNs (GasNet)
was adopted in gas classification!12l, Compared with mul-
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tilayer perceptron ANNs and SVMs, CNNs provided bet-
ter results however the processing time was longer. An
accuracy of 95.2% was achieved with CNNs in 154s,
while SVMs reached 79.9% in 2s and ANNs reached
82.3% in 17s. Similarly, LeNet-5230) CNNs were adopted
in [113] to classify gases through an EN with twelve met-
al-oxide sensors. While identifying CHy, CO and their gas
mixtures, a test set classification accuracy rate of 98.67%
was achieved, which was more accurate than ANNs and
SVMs.

In [231], the aim was to identify the scents released
from a landfill with respect to their odor nuisance. An EN
system was designed with six semiconductor gas sensors
by Figaro and its performance was compared with the
commercially available Heracles II EN. The data samples
were collected from different locations around the landfill
and classified with LDA using cross-validation. Although
Heracles gave better results, the developed prototype EN
provided a classification success rate of 40%.

The EN technology can further be employed to assess
the air quality near municipal processing plants9. It is
very important to monitor the surrounding area of these
plants due to the odor nuisance. For instance, an EN net-
work can be built to determine the unpleasant odors
present around the plant. Data transmission can be actu-
alized through the Internet, therefore the system can be
remotely reached by operators. In locations where the en-
vironment cannot be held under control, it is important
to employ robust ENs to avoid the interference of para-
meters, such as humidity, in the gas -classification
process(18l,

3.5 Security systems

Because of their high selectivity, portability, wide lin-
ear range, minimal space and power requirements and
low deployment cost in mass production, ENs are em-
ployed also in security applications[232l. Moreover, this
technology received tremendous attention from countries
for national security in particular for detecting explosive
compounds(233], Similar to homeland security, ENs are
further adopted in monitoring and protecting confined
spaces. For example, an environment monitoring experi-
ment was performed in [234] to analyze atmospheric air
samples using an EN with metal-oxide sensors, along with
oxygen, temperature and humidity sensors. The gas
samples were stored in two distinct gas cylinders, in
which one contains hydrogen sulphide, carbon monoxide
and methane while the other contains air with zero
grades. Experimental results illustrated the success of
ENs in monitoring enclosed areas.

3.6 Packaging

ENs are useful devices in controlling the freshness of
commercial products. In [235], an EN study (using
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PEN 2) was accomplished to analyze packaging and fresh-
ness decay parameters of minced beef stored in high-oxy-
gen modified atmosphere at different temperature condi-
tions. A system based on PCA and cluster analysis was
successfully utilized to determine the correct time of
spoilage. As a result, the meat lasted 9 days at 4.3°C, 3—4
days at 8.1°C and 2 days at 15.5°C on average. The EN
technology can also be used in reducing food waste which
is a growing issue around environmental and economical
angles236], The shelf-life of products can be extended by
using smart (intelligent) packaging tools, which in return
leads to a decrease in wasted food. Recent advances of in-
telligent packaging tools for freshness monitoring via op-
tical (optoelectronic nose) systems can be found in [236].

4 Challenges in EN systems

Despite the fact that the EN technology develops rap-
idly with success, EN devices still contain hardware and
software challenges, which need to be further eliminated.
In this paper, major difficulties are investigated as below.

4.1 Sensor sensitivity

Sensor types such as MOS, QCM, BAW and SAW are
frequently used in EN devices. Unfortunately, these
sensors are sensitive to temperature and humidity
changes, which indeed is a serious drawback of ENs espe-
cially to be used in food and beverage industries. After
the production of mass spectrometry based ENs (which
are expensive and complicated in operation), the sensitiv-
ity problem was solved[!46], Additionally, problems like
sensor poisoning and the response signal nonlinearity
were eliminated.

4.2 Sensor selectivity

Selectivity (the detection and measurement of desired
chemicals) is noted as a difficulty in sensor arrays/20l.
Hitherto, there has not been an accurate mathematical
model developed to solve this issue. In [237], a method
combining Deep Q Network (DQN) and CNNs was pro-
posed to improve the selectivity of metal-oxide sensors.
Multisensor sensing approaches238 239 fluctuation en-
hanced sensing(?39 249 and synchronizing the temperature
in experiments are a few of the ideas put forward, but
they do not provide a significant improvement for over-
coming this challenge.

4.3 Humidity

ENs have several advantages compared to olfactomet-
ric methods, such as detecting and saving information
about odor samples present in the environment for a very
limited timel3l. However, gas arrays have to be calibrated
according to olfactometric techniques in some fields where
especially humidity is a challenge for ENs. Since poly-
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mers tend to absorb water vapor, the sensor sensitivity
decreases when the humidity level in the environment in-
creases(?4ll. As a result, this fact can cause the EN sensors
to produce unreliable responses(242l and odor samples with
exactly the same characteristics may be classified as dif-
ferent gases.

In [243], a drying agent called anhydrous sodium car-
bonate was used to decrease the amount of water vapor
for the detection of adulteration in cherry tomato juices.
However, this employment reduced the detection accur-
acy. A successful strategy was proposed in [244] to over-
come the humidity problem through a gas sensor array
containing a nano-structured metal-oxides combined with
metal-organic framework, with a significantly improved
performance on sensor response and detection limit. Hu-
midity remains a challenge in several practical EN applic-
ations such as development of mobile robots for gas
source localization4], detection of respiratory diseases(246]
and monitoring environmental pollution[227],

4.4 Sensor drift

Sensor drift, defined as the small changes in the out-
put independent of the measured feature, is another issue
in the EN technology. There are two reasons behind the
drift problem. The first reason is the chemical process
between the environment and sensor materials (first-or-
der drift), and the second one is the noise produced in the
system (second-order drift). Although various compensa-
tion techniques have been developed and the accuracy of
drift driven gas recognition has greatly been enhanced,
just a small number of these proposed methods consider
online processing, e.g., [247]. Moreover, there are sensor
selection strategies, long-lasting materials, post-pro-
cessing mechanisms and transfer learning techniques to
cancel out the drift.

4.5 Sensor stability

Over time, sensor drift tends to increase. For this
reason, sensor response differs in time for the same odor.
This causes a problem during gas classification with an
algorithm[248]. Baseline manipulation, through which the
sensor output is transformed by using the initial response,
is a common method to enhance sensor stability.

In particular, metal-oxide sensors have poor long-term
stability and their employment in commercial applica-
tions is impractical due to this issuel29. A successful
study was conducted in [249] to decrease the drift and
improve the stability of metal-oxide sensors. The pro-
posed method was based on baseline manipulation along-
side orthogonal signal correction and PLSR. In addition,
nano-structured materials are one of the preferred paths
to overcome the stability problem. Recently in [250], tin-
oxide nanosensors were proposed to improve sensor sta-
bility in ENs. While these nanosensors presented a good
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performance up to 100°C, stability issues occurred at
higher temperatures.

4.6 Reproducibility

Reproducibility is a common challenge in ENs. Signal
characteristics of the chemical sensor response change in
time because of repetitive usagel2l]. Signal generation and
interior variation in sensors occur due to the same envir-
onmental procedures, therefore this challenge cannot be
entirely eliminated. However, it is possible to decrease the
alteration degree by using durable materials in sensors.
Another issue regarding reproducibility is related to the
manufacturing stage of sensors. Since the sensing proper-
ties of produced sensors are only nearly identical, trying
to replace a single sensor in an EN would result in repro-
ducibility problems[?52 253, As a solution to this challenge,
sensors in an array were divided into blocks in [254].
Whenever a sensor fails to produce a response, the block
in which the failed sensor belongs to represents the miss-
ing sensor response through a linear model.

4.7 Sensor fault tolerance

During the sensor array design, it is a critical aspect
to consider that a sensor failure can be unnoticeable due
to poor design control?%. Manufacturing defects, ageing
and environmental conditions are some of the reasons for
sensor failure, which usually results in a decrease in the
classification accuracy. A system with a sensor array
based on several clusters was proposed in [255] to toler-
ate sensor failure in artificial olfactory systems. The de-
veloped method achieved an odor classification success
rate of 97.92% even though sensor failure was present in
the system. In [256], an algorithm called self-repairing
(SR) was designed to replace the broken sensors with rep-
licas, without recalibrating the whole system or stopping
the ongoing procedure. When compared to the standard
classifiers, e.g., KNNs, LDA, PLSR, the SR algorithm
presented better performance in increasing the fault toler-
ance.

4.8 Cross sensitivity

In practical applications, cross sensitivity can be
defined as the interference of an unwanted smell to the
odor that is desired to be detected[?7). Irrelevant sub-
stances are always present in the environment which can
mislead the EN device and cause incorrect outcomes.

4.9 Size of sensor array
Yet another challenge is the large sizes of the sensor

arrays146, To place ENs effectively in the industry and
households, the size of the system has to be reduced.
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4.10 Material selection

For practical applications, material selection in the
design process of ENs is a key factor for achieving high
success rates. To choose optimal polymers, analysis of
sensor array response or linear solvation energy relation-
ship parameters of polymers and analytes approaches can
be used258]. Moreover, the gas signatures obtained from
sensors must be distinct in the feature space, otherwise
the adopted algorithm will have difficulties in the classi-
fication stagel2%9].

4.11 Algorithms and parameter selection

Importantly, the employed machine learning and pat-
tern analysis algorithm(s) must meet the requirements of
EN systems. It is not easy to choose the correct ap-
proach and sometimes none of the available methods is
sufficient for the targeted task[200. For instance, ENs are
adopted in Chinese Herbal Medicines, however these are
very complex and usually contain a varieties odors with
different strengths/26ll, Hence, the designed algorithm
must be highly accurate in order to use EN systems in
practice.

Hyper-parameter selection in machine learning al-
gorithms is a very crucial step for developing robust and
efficient systems. Grid search and manual search are two
popular methods in choosing hyper-parameters. However,
experimental results in [262] prove that random search is
more efficient than these two search methods. Random
search also provides freedom while performing experi-
ments, i.e., an interruption during the process does not
necessarily cause a requirement of the grid to be readjus-
ted. Moreover, new computational resources can be eas-
ily introduced to ongoing experiments for additional tri-
als without any need of reusing the same hyper-paramet-
ers.

4.12 Lack of data

Collecting sufficient and reliable data is usually a diffi-
cult, laborious and long process. For specific processing
tasks in EN applications, unsupervised learning and clus-
tering algorithms can be employed if the acquired data is
limited[!63]. To overcome the shortage of the labeled data,
semi-supervised learning can be preferred[263],

5 Perspectives and future directions

The understanding process of smell differs in many
people as the subjective past experience changes the way
they perceive things. Consequently, the standardization
of odors is a complicated process which cannot be com-
pletely actualized by the odor experts264. However, with
the combination of a proper sensor array and suitable ML
methods, an EN system which behaves similar to the
mammalian olfactory system can standardize aromas.

@ Springer



196 International Journal of Automation and Computing 17(2), April 2020

After sensing the scents and processing these signals, the
visualization of diverse aromas can be accomplished via
wide range pattern recognition algorithms/263,

Olfactory sensory neurons, which have one odor re-
ceptor in each, are present in human nose and they allow
a connection from the nose to the brainl266. The per-
ceived odors are later classified in the brain and genes en-
coding receptor proteins help understand how the identi-
fication of odors occurs?67. The distinct structures of
these receptor proteins decide on the interaction with dif-
ferent substances(265]. The reaction spectrum of various
sensory neurons is established through the molecular re-
ceptive range of these receptors268l. All findings achieved
about these genes led to the development of bioelectronic
noses. A Dbioelectronic nose contains two parts, the
primary transducer which recognizes the biological data
and the secondary transducer that transforms the biolo-
gical data into a quantitative signall269. QCMs, field-ef-
fect transistors and conducting polymers are some of the
materials employed as the secondary transducer. Further-
more, it is observed that nanomaterials are highly sensit-
ive when they are used as secondary transducers. There-
fore, tools such as nanomaterial based field-effect transist-
ors and carbon nanotubes are adopted in bioelectronic
noses.

There are two types of bioelectronic noses27. As the
first type, protein-based biosensor exploits the olfactory
receptor protein and it can directly detect the binding
between odorant and receptor. The second kind is the
cell-based biosensor and it employs living cells. Cell-based
biosensors are considered to be economic and can be used
for intrinsic signal measurement of cells. Moreover,
through taking advantage of substances such as synthet-
ic polypeptides, the properties of biosensors can be fur-
ther developed3l. In general, bioelectronic noses have the
potential to be adopted as devices to detect and identify
odorants at low concentration levels(265. SAW sensors
and odorant-binding proteins based bioelectronic noses
have already been used to detect different molecules in
food27l, In upcoming years, the detection of hazardous
gases might be a field where bioelectronic noses could be
employed.

Data fusion defined as combining the outputs of mul-
tiple sensors, databases and tools is a promising method
to enhance EN systems272l. Using ENs together with oth-
er devices such as e-tongues can improve their effective-
ness. For instance, an EN and an e-tongue were adopted
in [273] to detect the submerged fermentation of Tremella
aurantialba, which is an edible jelly fungus. Fusion of the
data from both tools led to encouraging results. Further-
more, an other data fusion system was designed in [274]
to classify and assess edible olive oil quality. The data
was gathered through three devices (using an EN, an e-
tongue and an electronic eye) and the oil samples were
successfully classified into two classes according to their
freshness level with an average accuracy of 94%. In con-
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clusion, data fusion is a promising method to further en-
hance the EN technology in the near future.

Lately, the concept of microfluidics has been intro-
duced to gas sensing technologies. Microfluidics deals
with systems that control and transport small amount of
fluids in microscale dimensions(275l. Although some claim
that microfluidic-based gas detectors can be an alternat-
ive to ENs[276 the microfluidics concept may become a
big step forward for ENs with the right combinations and
modifications. As an example, a metal-oxide sensor was
put together with an open digital microfluidic system in
[277] for the classification of wine types. The developed
system was successful at identifying different types of
wine.

Chemometric tools are another promising technology
for the EN development. Chemometrics is an interdiscip-
linary science of gathering data from chemical systems(278l
and has already been used in several EN applica-
tions(278, 279, Recently in [83], an EN containing 10 metal-
oxide sensors incorporated with chemometrics was em-
ployed to identify different stages of postharvest kiwifruit
ripeness. LDA was adopted for classification with a cross-
validation accuracy of 99.4%.

Flexible circuits have come on to the scene of circuit
technology and can be utilized in wearable textiles280. By
combining flexible circuits with ENs, health monitoring of
astronauts can be achieved minutely in the upcoming
space missions. Moreover, the brain computer interface
(BCI) systems may be employed in the EN technology.
The odors at remote distances can be sensed by an EN
and a signal through an adopted BCI can be sent to the
olfactory cortex, resulting in an artificial olfactory
system(281l, The combination of flexible circuits and BCI
with the EN technology would definitely lead to more ad-
vanced systems.

Regarding algorithms, machine learning together with
data analysis and pattern recognition tools need to
demonstrate higher accuracy in actual environments after
being trained with suitable datasets. For instance, in
some practical applications such as [145, 184, 207, 210,
212, 261] the overall precision of the algorithms was lower
than desired. Hitherto, deep learning adoption in the EN
technology is rarely encountered in the literature, e.g.,
CNNGis[111-113, 282, 283]  While considering the benefits of
deep learning in other research domains, these tools
should be used more frequently to increase the accuracy
of ENs. In terms of multi-dimensional CNNs, the output
of the sensor array can be converted into images to train
and test the network. Crucially, this conversion process
has to be relevant and robust, otherwise data loss and
critical errors may occur. On the other side, there are also
very rare studies reported in the literature which use one-
dimensional CNNs for mixture gases recognition and clas-
sification(282, 283],

The nature of the EN problem in terms of machine
learning algorithms would lead to a conclusion that
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sparsity-related tools could be very efficient. For the mo-
ment, to the best of available knowledge, just a small
number of studies relate this problem in a sparse and re-
dundant representations perspective. Some related re-
search samples can be given but no more than in [284,
285]. By nature, the sparsity property strongly holds in
most real world examples. As an example, interactions
between proteins are very selective in molecular biology.
Similarly, social network friendships are sparse, i.e., not
everyone is a friend with everyone. A powerful example
can be given as the working principles of the human
brain. The brain, based on its functional segments, not
only has spatial but also temporal sparsity. Just a small
number of neurons are active in only very short time in-
tervals(280],

In more detail, natural smell-prints of each individual
volatile organic compound should be sparse in nature,
hence can be successfully distinguished from others via al-
gorithms exploiting this natural phenomenon. In contrast
to frequently used dimensionality reduction methods such
as PCA and LDA, sparse learning algorithms apply an
appropriate data transformation to sparsify the data rep-
resentation, while increasing the space dimensionality.
Later within this new higher-dimensional space, a search
for related subspaces can be employed for classification or
clustering purposes(286], Another interesting aspect of the
sparsity related concept is that structural constraints are
highly possible to be introduced into the optimization
problem. Group sparsity287-290 and its specific varieties,
such as block sparsity29l 2921 are examples of addition-
ally employed structural constraints into sparse learning
algorithms, in which the support of sparse codes gener-
ally define distinct subspaces and later can be used for
the classification problem, e.g., [293]. As a result, one pos-
sible algorithms related research can be in the direction of
the structurally constrained sparsity concept for the mix-
ture of gases detection and classification problem. Fur-
thermore, related to block sparsity, deep sparse struc-
tures286] would be another encouraging aspect as a prac-
tical application to the EN technology paving the way for
more successful EN devices. (Interested readers are re-
commended to refer to [294] for theoretical foundations
and practical applications of sparse and redundant repres-
entations.)

Last but not least, the up-to-date practical trend in
deep learning methodologies is of increasing the number
and variety of training samples with different augmenta-
tion tools, and even more, with external data sources
which apparently leads to much better success rates[29,
More crucially, the overall success rates are obviously im-
proved with ensembles of several classifiers and output
fusion techniques. Ensembles of deep learning techniques
with supporting techniques such as widely used SVMs
and even sparse models could be another alternative
promising research direction in the EN technology.
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6 Conclusions

Transferring human characteristics to non-living sys-
tems takes us one step closer to the science fiction stories
in our dreams. The replication of human senses has been
one of the most popular research topics for decades and
the EN technology is a product of these long term stud-
ies. The human olfactory system is extremely complex,
however it is not impossible to replicate. Since the day of
the first prototype EN was developed, it has become a
useful device in several applications, in solving urgent
problems. Especially in the food industry and medicine,
traditional ways of distinguishing subjects are too slow,
expensive and mostly subjective which may result in fatal
errors. The EN technology instead offers a fast, sensitive,
low cost and objective alternative. Moreover, the poten-
tial of this new way of sensing is still rapidly growing
with the new developments in sensors and machine learn-
ing technologies.

An EN consists of two main components, the sensor
array which is responsible for sensing the chemicals and
algorithms which provide an analyzing software model in
the system. There are several improvements required in
both parts. More compact sensors need to be designed
with the rising importance of wearable technologies. In
the near future, the production of robust nanosensors for
various tasks will presumably eliminate this difficulty. A
further concern in ENs is the recalibration of sensors.
Particularly, dynamic systems such as metal-oxide gas
sensors require regular recalibration%l which leads to
time waste and high economic costs. Manufacturing
stable sensors with durable materials will save time and
money, especially in space missions, medicine and secur-
ity applications.

Moreover, algorithms need to be fast and accurate in
satisfying the requirements of the system for the targeted
task. Another major issue remaining to be solved is the
low number of publicly available research datasets. In al-
most every individual study, a setup has been designed to
form a dataset2%] which is indeed time consuming. On
the other hand, the problem naturally requires specific
datasets to be collected due to the used hardware charac-
teristics, i.e., types and numbers of sensors may be differ-
ent from one application to another. If these already col-
lected datasets for chemical classification can be made
publicly available in a common space, not only a great
amount of time will be saved but also further competing
research can be carried out on these datasets. Addition-
ally, reducing or eliminating the noise from collected data
will sharply increase the accuracy of EN systems.

Smell does not contain features like image textures,
colors and edges. Therefore, creating a neural network
structure based on the olfaction system results in lower
computational time compared to that of computer
vision[297]. Much less data is required to train the system
with relatively efficient outcomes to test for. In experi-
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ments which the computational time is limited and rough
experimental results are acceptable, olfaction-inspired
neural networks can be preferred. Hence, olfaction-in-
spired neural networks hold a development-potential for
the software part of the EN technology.

As a final note, a new practical application of the EN
technology might be the identification of acute necrotiz-
ing ulcerative gingivitis (ANUG), which is a disease
arising on the papillas of the gingiva. ANUG is usually a
result of stress and it is mostly seen among old and
middle aged women. It causes the papillas to turn white
in color and a bad smell emerges inside the mouth. The
odor released is sometimes confused with other diseases
and a reliable solution for this issue is not present at the
moment. Therefore, an EN will be helpful for dentists to
identify ANUG.
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