
International Journal of Automation and Computing 11(3), June 2014, 308-312

DOI: 10.1007/s11633-014-0793-6

Tracking Control of a Class of Differential Inclusion
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Abstract: The tracking problem for a class of differential inclusion systems is investigated. Using global sliding mode control ap-
proach, a tracking control is proposed such that the output of a differential inclusion system tracks the desired trajectory asymptotically.
An extensive reaching law is proposed to achieve the chattering reduction. Finally, an example is given to illustrate the validity of the
proposed design.
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1 Introduction

Tracking control is always a very active research area
due to its wide applications. In the past few decades, var-
ious approaches for tracking control have been presented,
such as fuzzy control approach[1], composite tracking con-
trol approach[2], adaptive control approach[3], sliding mode
control approach[4], etc. Because sliding mode control has
attractive features such as fast response, good transient re-
sponse and insensitivity to variations in system parameters
and external disturbances[5−11], it is a substantial method
for the tracking control design of nonlinear systems.

Generally speaking, the differential inclusion systems are
considered a generalization of differential equations, and
many practical systems are described by differential inclu-
sion systems, so the study of differential inclusion systems
has been paid much attention[12−21]. In [12], a necessary
and sufficient condition for the stability of polytopic linear
differential inclusion systems was derived by bilinear matrix
equations. In [13], the problem of tracking control of non-
linear uncertain dynamical systems described by differential
inclusions was studied. In [14], a nonlinear control design
method for linear differential inclusion systems was pre-
sented by using quadratic Lyapunov functions of their con-
vex hull. Using the method in [14], Sun[15] considered the
uniformly ultimately bounded tracking control of linear dif-
ferential inclusions with stochastic disturbance and Huang
et al.[16] considered the stabilization of linear differential in-
clusion system with time delay. In [17], a frequency-domain
approach was proposed to analyze the globally asymptotic
stability of differential inclusion systems with discrete and
distributed time-delays. In [18, 19], the fundamental infor-
mation about differential inclusions is introduced. But the
research of tracking control of differential inclusion systems
using sliding mode technique is not sufficient. In [20, 21],
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the authors considered the tracking problem of linear dif-
ferential inclusion systems.

This paper applies global sliding mode control to study
the tracking control problem for a class of differential inclu-
sion systems. The main contributions of this paper lie in
the following aspects: 1) the system model is a generalized
model of those considered in [4, 8, 9]; 2) an extensive reach-
ing law is proposed to design a sliding mode controller to
make the error system asymptotically stable.

2 Problem formulation

Consider the following differential inclusion system:

⎧
⎪⎨

⎪⎩

ẋi(t) = xi+1(t), 1 � i � n − 1

ẋn(t) ∈ co{[fj(x) + gj(x)(u(t) + w(t))}, j = 1, 2, · · · , N

y(t) = x1(t)

(1)

where x(t) = [x1, x2, · · · , xn]T is the system state, co{·} de-
notes the convex hull of a set, fj(x) and gj(x) are smooth
functions from Rn to R for j = 1, · · · , N , u(t) ∈ R is
the control input, w(t) is the bounded disturbance, i.e.,
‖w(t)‖ � γ, with a positive constant γ. y(t) is the output
of the system. System (1) is most often applied in physi-
cal systems such as the Duffing-Holmes damped spring sys-
tem, Van der Pol equation, robot systems and flexible-joint
mechanisms[22]. This paper assumes that gj(x) > 0, for all
j = 1, 2, · · · , N .

The target of this paper is to design a feedback law such
that the output y(t) of the system (1) can track a known
reference function r(t).

By the conclusion established in convex analysis
theory[21], differential inclusion system (1) is equivalent to
the following uncertain system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi(t) = xi+1(t), 1 � i � n − 1

ẋn(t) =

N∑

j=1

αj [fj(x) + gj(x)(u(t) + w(t))]

y(t) = x1(t)

(2)

where αj are uncertain parameters with the properties that



L. P. Liu et al. / Tracking Control of a Class of Differential Inclusion Systems via Sliding Mode Technique 309

αj � 0 and
∑N

i=1
αj = 1.

Denote z(t) =

⎡

⎢
⎢
⎢
⎢
⎣

z1(t)

z2(t)
...

zn(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

y(t) − r(t)

ẏ(t) − ṙ(t)
...

y(n−1)(t) − r(n−1)(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

x1(t) − r(t)

x2(t) − ṙ(t)
...

xn(t) − r(n−1)(t)

⎤

⎥
⎥
⎥
⎥
⎦

, where z(t) is called as the error of

tracking. z(t) satisfies the following

⎧
⎪⎨

⎪⎩

żi(t) = zi+1(t), 1 � i � n − 1

żn(t) =

N∑

j=1

αj [fj(x) + gj(x)(u(t) + w(t))] − r(n)(t).

(3)

Then the target of the design is to find a feedback law
u(t) such that z(t) → 0 as t → ∞.

The following Lemma will be useful in this paper.
Lemma 1. Consider the following linear system

ẋ(t) = Ax(t) + Bu(t) (4)

where A is a Hurwitz matrix and u(t) = e−λtγ(t) for a
positive constant λ and a bounded function γ(t). Then

lim
t→∞

x(t) = 0.

Proof. Because A is a Hurwitz matrix, there exist pos-
itive constants a and b such that ‖eAt‖ � ae−bt. And we
assume ‖γ(t)‖ � q, where q � 0 is a constant.

Solving (4), we obtain

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Be−λτγ(τ )dτ (5)

thus,

‖x(t)‖ �ae−bt‖x(0)‖ + aq‖B‖
∫ t

0

e−b(t−τ)−λτdτ =

⎧
⎨

⎩

ae−bt‖x(0)‖ + aq‖B‖e−btt, if b = λ

ae−bt‖x(0)‖ + aq‖B‖e−λt − e−bt

b − λ
, if b �= λ

(6)

where the denotation ‖ ·‖ may have different meanings, but
we always assume that they are compatible.

From (6), obviously we get

lim
t→∞

x(t) = 0. (7)

�

3 Main results

For the nonlinear system (2), the control law design con-
sists of two phases. Firstly, an appropriate sliding surface
is chosen, so that sliding mode dynamics has desired per-
formance. Secondly, a control law is designed, which guar-
antees that the state of system (2) converges to the sliding
surface in a finite time.

3.1 Sliding surface design

The sliding surface is designed to ensure the error system
stable asymptotically on the sliding surface.

The sliding surface is considered as

s(t) = C(z(t) − e−μtz(0)). (8)

where C = [c1, c2, · · · , cn−1, 1] and ci(i = 1, 2, · · · , n − 1)
will be determined, μ > 0 is an appropriate constant, z(0)
is the initial state of the error.

Let s(t) = 0. Then (8) leads to

zn(t) = −
n−1∑

i=1

cizi + e−μtCz(0). (9)

From (3) and (9), the sliding mode dynamics is obtained
as

⎧
⎪⎨

⎪⎩

żi(t) = zi+1(t), 1 � i � n − 2

żn−1(t) = −
n−1∑

i=1

cizi + e−μtCz(0).
(10)

The matrix description of (10) is

˙̄z(t) = Az̄(t) + Be−μtCz(0) (11)

where z̄(t) = [z1, z2, · · · , zn−1]
T, A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 · · · · · · 0

0 0 1 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1

−c1 −c2 · · · · · · · · · −cn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
...

0

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We now choose ci(i = 1, · · · , n − 1) such that A is a
Hurwitz matrix, then sliding mode dynamics (10) or (11) is
asymptotically stable by Lemma 1.

3.2 The controller design

Before illustrating the scheme of the controller, a reach-
ing law is introduced in this subsection.

Lemma 2. When the reaching law is adopted as

ṡ(t) = −ks − εe−λt‖s‖αsgn(s),

k > 0, ε > 0, λ � 0, 0 � α < 1 (12)

where ‖ · ‖ is the Euclidean norm, the state x(t) of system
will reach the sliding surface s(t) = 0 in a finite time T ,
where

T =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

k(1 − α)−λ
ln

[

1+
k(1 − α)−λ

ε(1−α)
‖s(0)‖1−α

]

,

if k(1 − α) �= λ

‖s(0)‖1−α

ε(1 − α)
, if k(1 − α) = λ.

(13)

Proof. Pre-multiplying (12) by sT, we have

sTṡ = −k‖s‖2 − εe−λt‖s‖α+1. (14)

We also have

sTṡ =
1

2

dsTs

dt
=

1

2

d‖s‖2

dt
= ‖s‖d‖s‖

dt
. (15)
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Replacing (14) by (15), we get

d‖s‖
dt

= −k‖s‖ − εe−λt‖s‖α. (16)

Denote z(t) = ‖s‖1−α, The time-derivative of z(t) yields

dz

dt
= (1 − α)‖s‖−α d‖s‖

dt
= −k(1 − α)z(t) − ε(1 − α)e−λt.

(17)

Integrating (17) from 0 to t, we have

z(t)=

⎧
⎪⎪⎨

⎪⎪⎩

e−k(1−α)tz(0)−ε(1−α)e−k(1−α)t e[k(1−α)−λ]t−1

k(1−α)−λ
,

if k(1 − α) �= λ

e−k(1−α)tz(0)−ε(1−α)e−k(1−α)tt, if k(1−α)=λ.

(18)

Let s(T ) = 0. Then z(T ) = 0. Through a simple calcu-
lation, we can obtain

T =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

k(1 − α) − λ
ln

[

1 +
k(1 − α) − λ

ε(1 − α)
‖s(0)‖1−α

]

,

if k(1 − α) �= λ

‖s(0)‖1−α

ε(1 − α)
, if k(1 − α) = λ.

(19)

�
Remark 1. The reaching law presented in this paper

includes three cases:
1) if k = 0, λ = 0, 0 < α < 1, then ṡ(t) = −ε‖s‖αsgn(s);
2) if λ = 0, α = 0, then ṡ(t) = −ks − εsgn(s);
3) if α = 0, then ṡ(t) = −ks − εe−λtsgn(s).
The reaching law 1) is known as power rate reaching

law[5], 2) is widely used in many papers, for examples in
[7−10], 3) is presented in [11]. The term e−λt is added to
reduce the chattering phenomenon in this paper.

Remark 2. The right term of the reaching law presented
in this paper is continuous in s = 0, but in [6], the reaching
law ṡ(t) = −(μ + ηe−λt‖s‖−α)s is not continuous in s = 0
when 0 < α < 1.

From the discussion above, the sliding mode controller
design is given in the following theorem.

Theorem 1. For system (1), if u(t) is designed as

u(t) = − 1

g(x)

[ n−1∑

i=1

cizi+1 + μe−μtCz(0) − r(n)(t)+

ks + (η(x) + εe−λt|s|α)sgn(s)
]

(20)

where

η(x) =

(
ḡ(x)

g(x)
− 1

)

|
n−1∑

i=1

cizi+1 + μe−μtCz(0) − r(n)(t)|+

f̄(x) + ḡ(x)γ,

g(x) = min{g1(x), · · · , gN(x)} > 0,

ḡ(x) = max{g1(x), · · · , gN(x)},
f̄(x) = max{|f1(x)|, · · · , |fN (x)|},
k > 0, ε > 0, λ � 0, 1 > α � 0

then the trajectory of the error system (3) converges to the
sliding surface s(t) = 0 in a finite time T and remains on it
thereafter.

Proof. Consider a Lyapunov function candidate as fol-
lows:

V (t) =
1

2
s2. (21)

Calculating the time derivative of V (t) with the trajec-
tory of (3), we have

V̇ (t) =s

{
n−1∑

i=1

cizi+1 + μe−μtCz(0) − r(n)(t)+

N∑

j=1

αj [fj(x) + gj(x)(u(t) + w(t))]

}

=

s

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −

N∑

j=1

αjgj(x)

g(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(
n−1∑

i=1

cizi+1 + μe−μtCz(0)−

r(n)(t)) −

N∑

j=1

αjgj(x)

g(x)
ks2 + s

N∑

j=1

αj [fj(x)+

gj(x)w(t)]−

N∑

j=1

αjgj(x)

g(x)
(η(x) + εe−λt|s|α)|s| �

|s| ·
[
(

ḡ(x)

g(x)
− 1

)

|
n−1∑

i=1

cizi+1 + μe−μtCz(0)−

r(n)(t)|+f̄(x)+ḡ(x)γ
]
−ks2−(η(x)+εe−λt|s|α)|s|.

(22)

Define

η(x) =

(
ḡ(x)

g(x)
− 1

)

|
n−1∑

i=1

cizi+1 + μe−μtCz(0) − r(n)(t)|+

f̄(x) + ḡ(x)γ. (23)

Substituting (23) into (22) yields to

V̇ (t) � −ks2 − εe−λt|s|α+1. (24)

By Lemma 2 and the sliding mode theory, we conclude
that the trajectory of the error system (3) converges to the
sliding surface s(t) = 0 in a finite time T and remains in it
thereafter. �

Remark 3. In Theorem 1, we apply the initial condition
z(0) to design the controller (20), the technique is adopted
by [6].

4 Numerical example

In this section, a simulation of a nonlinear system is pro-
vided to verify the effectiveness of the method proposed in
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this paper. System model is described by

⎧
⎪⎨

⎪⎩

ẋ1 = x2

ẋ2 = α1x1 + α2x
2
2 + [α1 + α2(1 + x2

2)](u + w(t))

y(t) = x1(t)

(25)

where f1(x) = x1, f2(x) = x2
2, g1(x) = 1, g2(x) = 1 +

x2
2, w(t) = 0.2 sint and α1 + α2 = 1, α1, α2 � 0.
We choose c1 = 10 such that the eigenvalue of the matrix

A is ξ = −10. The initial value x(0) = [1 − 1]T and the
reference function is r(t) = sin(t). The sliding surface is
designed as s(t) = 10x1(t)+x2(t)−10 sin(t)−cos(t)−8e−t.
The parameters in the controller (20) are chosen as μ = ε =
1, λ = 2, k = 8, α = 0.5.

Figs. 1 and 2 show the trajectories of the output state
y(t) and the reference function sin(t) with the different pa-
rameters α1, α2. From Figs. 3 and 4, we can conclude that
the method proposed in this paper reduces the chattering
phenomenon. So the robustness and stability of system are
improved.

Fig. 1 Output y(t) and the reference function r(t) (α1 = α2 =

0.5)

Fig. 2 Output y(t) and the reference function r(t) (α1 =

0.9, α2 = 0.1)

Fig. 3 Control input u(t) (α1 = 0.9, α2 = 0.1)

Fig. 4 Traditional sliding mode control input u(t) adopted by

[7–10] (α1 = 0.9, α2 = 0.1)

5 Conclusion

The tracking control for a class of differential inclusion
systems has been investigated. Using global sliding mode
control, a novel controller is designed to make the output
of differential inclusion systems track the desired trajectory
asymptotically. Finally, an example illustrates the validity
of the proposed method.
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