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Abstract
Currently, the use of numerical models for reproducing the evolution of river systems and landscapes is part of the day-by-day 
research activities of fluvial engineers and geomorphologists. However, despite landscape evolution modelling is based on 
a rather long tradition, and scientists and practitioners are studying how to schematize the processes involved in the evolu-
tion of a landscape since decades, there is still the need for improving the knowledge of the physical mechanisms and their 
numerical coding. Updating past review papers, the present work focuses on the first aspect, discussing six main components 
of a landscape evolution model, namely continuity of mass, hillslope processes, water flow, erosion and sediment transport, 
soil properties, vegetation dynamics. The more common schematizations are discussed in a plain language, pointing out the 
current knowledge and possible open questions to be addressed in the future, towards an improvement of the reliability of 
such kind of models in describing the evolution of fluvial landscapes and river networks.
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Introduction

The present paper reviews the state of the art about model-
ling of landscape evolution, with a particular focus on the 
main components typically schematized in numerical codes 
that can be applied for modelling fluvial terrains shaped by 
the interaction of internal and external processes, such as 
precipitation, water flow and sediments, as well as vegeta-
tion and soil properties. Nowadays, often the term “model” 
refers to both the underlying theory and the computer 
programs used to calculate approximate solutions of the 
governing equations, involving possible misunderstand-
ings. Numerical models represent an indispensable tool for 
assisting geomorphologists in reproducing the origins and 
dynamics of surface landscapes, combining a quantitative 
characterization of terrain with various theories describing 
the modification of river system topography by the variety 
of processes that sculpt it (Mark 1975; Tucker and Hancock 
2010; Baas 2017).

In the last decades, the ability of engineers and geomor-
phologists to measure the topography of river beds and 
hillslopes has grown tremendously, moving from topogra-
phy maps, very imprecisely and requiring a massive work 
to be revised, towards digital elevation models and digital 
maps, generally having a higher resolution and covering the 
majority of the emerged landmasses (Gesch et al. 2006), 
and more easily updatable. In addition, the recent develop-
ment of high-resolution mapping tools like laser scanners 
and cameras, as well as satellites, assured a detailed and 
reliable description of the changes of the Earth’s surface, 
also in regions where the access could be more complicated. 
At the same time, theories and models of landscape evolu-
tion have grown, accounting for more processes and for a 
more sophisticated description of them. As recently as the 
second half of the last century, a landscape evolution model 
was intended as the sequential evolution of a landscape over 
the geological time. By the end of the century, this term 
had been associated with a more scientific meaning: a math-
ematical theory describing how the actions of a multitude 
of geomorphic processes interact during the time to shape 
the basin topography.

Aside from their physical meaning, the complexity of 
the governing equations of landscape evolution requires a 
numerical solution method to be solved in a closed form. 
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The growing complexity introduced in landscape evolution 
models, accompanied by the advances in computing tech-
niques and acquisition of topographic data, has revolution-
ized the ability of geomorphologists and fluvial engineers 
to measure and model landforms and their rate of change, as 
well as to investigate and numerically reproduce how such 
forms and dynamics arise from the physics of geomorphic 
processes (Coulthard 2001; Chen et al. 2014; Willgoose 
2018).

In geophysics, primary drivers are generally described by 
means of a system of partial differential equations, which 
originate from the classical mechanical theory (e.g. equa-
tions describing water and sediment transport, rock mechan-
ics, heat transfer, river hydraulics). The scale dependence 
of such processes complicates the analysis of feedbacks and 
interactions between them (Bracken et al. 2015). There-
fore, depending on the representation scale, models can be 
computationally intensive and thus typically limited to a 
small spatial scale of few metres if strictly adherent to the 
theory, or addressing large scales problems like the evolu-
tion of a whole river basin  (102–105 km2) with a reduced 
computational effort, but introducing simplified equations 
(Khosronejad et al. 2014; Larsen et al. 2016). For address-
ing problems acting at the landscape scale and therefore 
involving a great number of coupled state variables, a vari-
ety of approaches and methodologies is nowadays available. 
Currently, in fact, landscape evolution models can combine 
hillslope, channel, tectonic and vegetation processes by 
linking physically based equations, which represent simpli-
fications of the real world (e.g. De St. Venant equations for 
the water flow, geomorphic transport laws, erosion/deposi-
tion and sediment transport equations), with semiempirical 
approaches (e.g. organic accumulation, vegetation growth, 
the presence of external drivers like fire or wind). In addi-
tion, these models are able to couple stochastic (e.g. prob-
abilities of sediment detachment, vegetation encroachment 
and density, distribution of precipitation) and deterministic 
(e.g. water flow velocities, bank failure) dynamics (Will-
goose 2005; Fagherazzi et al. 2012).

Typically, many of the most used landscape evolution 
models are run over large domains and are therefore compu-
tationally intensive (Salles 2016). Consequently, geoscien-
tists are facing the challenge of reducing the computational 
effort to a minimal level for performing more effectively. 
As an example, Stark and Passalacqua (2014) developed a 
simplified landscape evolution model as a set of coupled 
dynamic systems, aiming to evaluate the changes of biomass 
and regolith under mass wasting and run-off erosion. An 
even more simplified approach was proposed by Franzoia 
and Nones (2017) and tested by Nones et al. (2019), who 
described the very long-term evolution of a river watershed 
by applying, at the watershed scale, a 0-D lumped hydro-
morphological model. The popular, alternative strategy of 

cellular automata modelling involves describing the phys-
ics governing fluid flow or sediment transport by means of 
discrete rules that control water, air and sediment transport 
processes on the basis of information from surrounding 
model grid cells (Willgoose et al. 1991; Liu and Coulthard 
2017). This cellular automata strategies have made it pos-
sible to reproduce shallow-water flows for hydrological pur-
poses (Adams et al. 2017; Caviedes-Voullième et al. 2018), 
but also to simulate the development of braided streams 
(Murray and Paola 2003), floodplains (Coulthard and Van 
De Wiel 2006), sand dunes (Zhang et al. 2012), wetland 
landscape pattern (Williams et al. 2016) and river deltas 
(Liang et al. 2016), for evaluating their response to global 
changes and human drivers. Aside from cellular automata, 
precipiton methods can be applied for simulating the evolu-
tion of a river landscape, given their ability in mimicking 
self‐organized emerging properties of geomorphological 
systems, from high‐resolution braided patterns to drainage 
network organization (Davy et al. 2017). Even if based on 
dissimilar approaches, these two methods have multiple sim-
ilarities, like the computational effort needed for simulating 
large domains or the complexity correlated with solving the 
hydrodynamics in detail.

The rationale of the research

In the 1950s and 1960s, the discipline of geomorphology 
turned from a qualitative approach, widely applied at the 
beginning of the XX century, towards a more quantitative 
analysis of landscape evolution (Kamp and Owen 2013). 
Starting from the 1970s, there have been a growing num-
ber of excellent review papers covering landscape evolu-
tion models and various aspects of geomorphic modelling, 
offering a very wide vision on the field (see, among many 
others, Carson and Kirkby 1972; Kirkby 1996; Coulthard 
2001; Martin and Church 2004; Khosronejad et al. 2014) 
and proposing several open questions to be addressed in 
representing the evolution of the Earth’s surface through a 
mathematical model. As stated by Kamp and Owen (2013), 
mathematical models were and are still paramount in under-
standing the landscape processes and the feedback between 
the involved components, and the recent technological devel-
opment contributed in increasing their use worldwide.

The aim of the present paper is to discuss six main com-
ponents usually considered in modelling the evolution of 
river systems, where the major part of sediments generated 
on the hillslopes is transported through the drainage network 
by the water flow. On the one part, river basins are the fun-
damental geomorphic unit (Chorley 1969), and fluvial land-
scapes cover most of the Earth’s surface. On the other part, 
being one of the most human-impacted environments, they 
need particular attention and their future evolution should 
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be addressed with proper methodologies that also account 
for climate change. For better focusing on river basins, are 
here not considered additional erosional systems like eolian 
landscapes, karstified terrains, ocean floors and glacial land-
scapes. The application of landscape evolution models to 
river basins can provide additional insights on the physico-
chemical processes that interact to shape the surface of a flu-
vial system, transferring the mass from one area to another. 
Moreover, the opportunity to have a graphical representation 
of the basin evolution enhances the ability of scientists and 
non-experts to interpret possible changes of the surface and 
to quantify the consequences of various hypotheses about 
fluvial dynamics.

In addition, landscape evolution models can also be 
applied for evaluating the development of specific features 
like passive margins (Tucker and Slingerland 1994; Ruetenik 
et al. 2016; Braun 2018) or mountain chains (Miller and 
Slingerland 2006). Numerical models can be focused on 
the long-term evolution of landscape (Bishop 2007) and 
river systems (Coulthard and Macklin 2001; Di Silvio and 
Nones 2014; Varrani et al. 2019) or on evaluating tectonics 
(Beaumont et al. 2000) and other surface processes. Under 
an environmental point of view, landform evolution models 
can be used as a methodology for evaluating and managing 
degraded landscapes such as abandoned mines (Hancock 
et al. 2000; Hancock and Willgoose 2018) and contaminated 
sites (Evans 2000), or for projects involving landscapes 
affected by disturbance of soil and/or vegetation (Coulthard 
et al. 2002). Because these models allow to visually evalu-
ate the temporal changes of the basin in terms of elevation, 
catchment size and shape, they can also be applied to sup-
port the study of dynamic phenomena like gully network 
development and valley alluviation or river avulsion, which 
is generally not possible with fixed-terrain models based on 
the classic USLE approach (Karydas et al. 2014). In addi-
tion, the flexibility of these models permits to evaluate and 
potentially combine simulations of processes acting at dif-
ferent spatiotemporal scales, spanning from short-term soil 
loss along single hillslopes (Montgomery and Dietrich 1992; 
Hancock et al. 2008) to catchment-scale assessments over 
geologic time (Hancock et al. 2015; Varrani et al. 2019), 
eventually coupling geomorphic and tectonic models (Beau-
mont et al. 2000) or accounting for the mobility of the whole 
river network (Whipple et al. 2017).

Regarding the mathematical description of erosion and 
transport rate adopted in landscape models, in the past, 
Carson and Kirkby (1972) discussed a variety of 1-D mod-
els of hillslope evolution under different geomorphic sce-
narios, while Dietrich et al. (2003) provided an overview 
of rate laws for both hillslope and channel processes. In 
their reviews on landscape evolution modelling, Coulthard 
(2001), Chen et al. (2014) and Willgoose (2018) provided a 
perspective on their strengths and weaknesses, showing that 

several solutions for reproducing the evolution of terrestrial 
landscapes exist. Recently, a thorough review on the fun-
damental equations implied in landscape evolution models 
was provided by Chen et al. (2014), who pointed out that the 
numerical implementation is a non-trivial problem, particu-
larly in simulating water flow and sediment transport in an 
efficient and highly accurate way.

In the past, many contributions were focused on discuss-
ing general and philosophical issues relevant to geomorphic 
modelling. As an example, Carson and Kirkby (1972) firstly 
and then Kirkby (1996) pointed out the theoretical founda-
tions of the modelling approach adopted in several fluvial 
landscape evolution models, showing their role in reducing 
the gap between the theory and the experimental approach. 
Focusing not only on landscape evolution models but also 
on the numerical modelling in general, Oreskes et al. (1994) 
provided a perspective on the codes’ structure and problems 
associated with their verification and validation. Mimicking 
this approach, other works (Martin and Church 2004; Larsen 
et al. 2016) showed the limitation of adopting numerical 
models for describing the nature complexity proposing open 
questions to be addressed in the future by means of new 
methodologies.

Moving from the important review proposed by Tucker 
and Hancock (2010) and maintaining a similar structure 
because of its effectiveness in driving the message, the pre-
sent paper summarized their conclusions on the structure 
and the constitutive equations of landscape evolution mod-
els in a relatively simplified way, using a plain language 
to provide the readers with a general overview rather than 
with a complex mathematical description of the phenomena 
involved, as proposed by Chen et al. (2014). Indeed, the 
review is mostly devoted to students and young researchers 
that want to understand the basic mechanisms of landscape 
evolution models, aiming to design their own approach on 
the problem.

In addition to what was done in previous reviews, this 
work discusses the importance of soil processes and vegeta-
tion dynamics in shaping fluvial landscapes, and the need 
of a deeper understanding of the feedback between all these 
processes for adequately implementing them in a numerical 
code. The next section is divided into six subsections, and 
each component is analysed individually. In detail, being the 
basic component of a landscape evolution model, the con-
servation of mass is firstly reviewed, and then, the hillslope 
processes are addressed. Two of the main components in 
landscape evolution models are the water flow and the sedi-
ment behaviour (erosion/deposition and transport) and are 
discussed in the following two subsections. Aside from 
these four components, which are included in landscape 
modelling since the very beginning of this research field, 
for the future, a major effort should be dedicated to evaluat-
ing the effects of soil properties and vegetation dynamics in 
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changing the Earth’s surface. Final conclusions and open 
questions for researchers and scholars are summarized at the 
end of the manuscript, aiming to provide the readers with 
possible paths to follow in developing landscape evolution 
models more capable to reproduce the variety and feedback 
of mechanisms interrelating in nature.

Simulating the evolution of a river system 
via a landscape evolution model

To simulate the creation and evolution of a river system, 
landscape evolution models can be applied. Based on geo-
metrical, morphometric, hydrological and additional (e.g. 
wind, vegetation, snow, ice, fire, herbivorous) inputs, a 
landscape evolution model combines such quantities for 
simulating the future changes of the Earth’s surface. These 
models are based on a system of equations that schematizes 
the mass continuity, specific geomorphic transport functions 
for describing the generation and movement of sediments 
and solutes on the basin hillslopes, as well as to reproduce 
the erosion phenomenon, the water flow and the transport of 
water–sediment mixtures along the river network (Dietrich 
et al. 2003). Depending on the modellers’ needs and the 
structure of the code, a series of numerical methods can 
be adopted for discretizing the solution in space and time, 
aiming to obtain more or less approximated solutions of the 
governing equations.

For adequately reproduce the evolution of a fluvial land-
scape, the single components should be effectively charac-
terized, as well as the feedback between them. In the fol-
lowing subsections, six main components are described, 
summarizing the results already available in the literature 
and pointing out the opportunity to focus the future research 
on some of them (i.e. vegetation dynamics, soil properties, 
sediment transport), given that classical mechanisms (i.e. 
mass continuity, hillslope properties, water flow) are studied 
since decades (Mark 1975; Tucker and Hancock 2010).

Exchange of mass

Geomorphic systems are rather basic systems, where the 
mass is conserved absolutely. However, in the case of land-
scape evolution, there are examples where the mass is not 
conserved because of sediment detachment, such as mod-
els based on stream power erosion formulas (Warren et al. 
2019). Moreover, the mass of water is not always conserved, 
because it also depends on the flow routing assumptions 
typical of each model. Therefore, in studying the evolution 
of fluvial landscapes, there are many possible frameworks 
for addressing the continuity of the mass, depending on the 
kind of process reproduced, the circumstances under study 
and the numerical scheme adopted. Given that each of these 

possible approaches has its own assumptions and limita-
tions, with their pros and cons, system modelling can be 
considered, to some degree, as a subjective research field. 
In fact, the included components, the adopted methodology 
and technology, as well as the modelling schematization, 
are arbitrarily assumed by the researcher depending on the 
case study and the research aims, as well as the modeller 
experience.

In general, the rate of change in a given control volume 
V can be derived by comparing the mass rate entering the 
volume with the one going out (Fig. 1). In other words, the 
process (rate of change) can be computed as a result of the 
nature and geometry of the idealized model (mass rate dif-
ference in–out).

One of the most common continuity expressions in geo-
morphic models assumes that the control volume can be 
schematized by means of a vertical column of rock and/
or soil. Starting from this general theory, the modeller can 
introduce multiple simplifications related to the density or 
the thickness of the considered material, as well as on its 
porosity and grain size. Several landscape evolution models 
consider that all the surface is composed by rock or by a 
combination of rock and sand. In the first case, assuming 
that the surface height is a single-valued function of the 
horizontal position involves the impossibility to describe 
vertical faces and overhangs. In addition, changes in height 
due to compaction/expansion of the underlying soil are 
generally ignored, as well as variations in the thickness of 
the soil layer. This latter hypothesis means that effects like 
the dependence of sediment transport rate on the regolith 
thickness (Carson and Kirkby 1972; Kirkby 1992; Braun 
et al. 2001; Skinner et al. 2018), the feedbacks between soil 
water storage capacity, the run-off generation and its effec-
tive rate or the weathering and sediment transport processes 
(Kirkby 1976; Saco et al. 2006; Dochez et al. 2014) are 
ignored. On the other part, assuming that a contact between 
the loose, mobile regolith and the underlying rock exists, 
provides a slightly more complete approach, but still many 

Fig. 1  Schematic representation of the mass continuity in volume V 
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simplifications are present (Ahnert 1976, 1987; Heimsath 
et al. 2001; Strudley et al. 2006).

Despite being largely adopted in landscape evolution 
modelling, the vertical-column continuity approach can 
sometimes result in being too much simplistic. In fact, there 
are several landforms that do not fit this framework, such as 
cliffs, waterfalls and gully headscarps, which have vertical or 
overhanging faces. Moreover, the 2-D continuity framework 
commonly implemented in landscape models is often very 
simple and not able to simulate vertical variations in weath-
ering rates, shallow flows and rock properties. For overcom-
ing these limitations, a fully 3-D approach is therefore nec-
essary, subdividing the column vertically and introducing 
additional equations to describe the vertical variations of 
the soil properties (Kirkby 1976; Vanwalleghem et al. 2013). 
Other approaches included the vertical exchange of mass 
flux due to the soil strain and the advection of soil layers 
towards (away from) the eroding (aggrading) land surface, 
or the consideration of additional drivers like gravitational 
compaction or changes in mineralogy and geochemistry 
(Fritsch et al. 2011).

Hillslope erosion processes

Landscape evolution models are based on geomorphic 
transport functions, which, usually, have a rather general 
formulation but adopt site-specific parameters, developed 
for a specific scope (Chen et al. 2014). Moreover, classi-
cal approaches to hillslope erosion processes such as the 
RUSLE (Renard et al. 1997; Nasir and Selvakumar 2018) 
or the WEPP (Flanagan et al 2012; Nearing et al. 2017) 
aggregate various geomorphic processes within a given 
area. (Namely, they can be considered as lumped models.) 
However, for better addressing the physics of landscape 
evolution, geomorphic process regimes like sheet flow and 
gullies should be treated separately (Momm et al. 2018). In 
the following, a brief overview of the main hillslope erosion 
processes is reported, showing the need for addressing every 
single component separately.

Based on long-lasting research, Nearing et al. (2017) 
defined the critical zone as the region between the top of 
the forest canopy and the base of the weathering horizon. 
Processes acting in such zone weaken the rock via mecha-
nisms like mechanical wedging, fracturing, chemical alter-
ation, biological disruption, etc. Although the weathering 
processes are well studied under a qualitative point of view, 
their mathematical representation is a rather new field of 
research, which is mainly focused on predicting rates of 
change and patterns of rock disintegration induced by spe-
cific chemical and physical processes (Cohen et al. 2009; 
Murphy et al. 2016). Moving from the original intuition 
proposed by Gilbert (1877), later revised and analytically 
expressed by Ahnert (1976), one can observe that, assuming 

a constant rate of regolith production from bare bedrock and 
a fixed characteristic decay length scale, under quasi-steady 
conditions (i.e. the regolith thickness varies very slowly 
with respect to the surface erosion), an inverse relationship 
between thickness and erosion rate exists. This relation-
ship has been verified against several field data, resulting 
in being consistent in different environments, ranging from 
semi-arid and coastal environments to high alpine terrains 
(Ahnert 1987; McKean et al. 1993). The mathematical for-
mulation of this process can imply several assumptions, but, 
generally, the obtained decay curve has an exponential trend 
(Anderson 2002; Saco et al. 2006; Strudley et al. 2006). In 
the last century, Kirkby (1985) proposed an alternative to 
the exponential decay models: instead of assuming a sharp 
contact between bedrock and regolith, he described the tran-
sition from rock to regolith as a gradational process having 
the deficit of soil as a state variable. Such a deficit can be 
represented by the fraction of unweathered rock remaining 
at a certain level in the soil profile. He demonstrated that 
this schematization can be more appropriated in effectively 
describing a wide interface region between unaltered mate-
rial and fully weathered soil. Indeed, even if successfully 
verified in several case studies, the exponential decay rules 
cannot be considered as a definitive solution for describ-
ing the observed regolith thickness patterns, but rather just 
a relatively simple and appealing method to be used until 
better approaches will be available. In this sense, further 
research on the physical mechanics and chemistry of weath-
ering processes is needed for obtaining a better mathematical 
relationship to correlate rock disintegration rates to factors 
like subsurface temperature, stresses and mineral alteration 
(Anderson 1998; Fletcher et al. 2006).

As described in detail in the past (Carson and Kirkby 
1972; Tucker and Hancock 2010), to reproduce the long-
term phenomenon of soil creep on low-gradient basins, a 
linear slope-dependent transport function can be adopted 
(Fernandes and Dietrich 1997), accounting for the convex-
upward hillslope profiles. Even if widely and successfully 
applied in many studies since decades, including fault scarps 
and fluvial systems, as well as marine and lake-shore terraces 
(Avouac 1993; Arrowsmith and Rhodes 1994; Pelletier et al. 
2006), and calibrated against field data derived from cosmo-
genic nuclide mass-balance measurements (McKean et al. 
1993; Heimsath and Ehlers 2005), the calibration constant is 
still the main source of uncertainty. In fact, an estimate of its 
magnitude can be obtained from a variety of approaches and 
for specific processes (Kirkby 1971; Black and Montgomery 
1991; Anderson 2002), but, under a general point of view, 
it should be treated as an empirical parameter. Although a 
linear relationship, with a constant parameter, provides reli-
able results, physical considerations suggest that the regolith 
thickness can influence the soil creep equation. Therefore, 
many depth-dependent creep functions have been suggested 
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in the literature (Ahnert 1976, 1987; Strudley et al. 2006), 
spanning from very simplified (Rosenbloom and Anderson 
1994) to more sophisticated (Braun et al. 2001; Anderson 
2002) approaches. However, despite the rising of specific 
studies, it is evident that more research is needed, especially 
considering landscapes having steeper gradients, close to the 
angle of repose for natural soils (Heimsath et al. 2001). A 
few nonlinear relationships were proposed (Ferdowsi et al. 
2018), but, generally, being developed on specific datasets, 
such formulas result too site-related and therefore not appli-
cable in different contexts. For the future, additional studies 
should be performed, also involving new technologies like 
radiometry, laser scanning and micromorphology (Pawlik 
and Šamonil 2018).

Aside from fluvial processes, transport functions adopted 
for describing mass movements like shallow, rapid land-
sliding are more problematic. In fact, there are two general 
approaches that can be adopted for describing these phe-
nomena: flux-based and event-based models. The first type 
approximates a series of events in terms of the long-term 
average rate of mass transfer by means of a transport func-
tion (Kirkby 1987). These models are capable to describe the 
time-averaged sediment transport at a time-scale relevant to 
landform evolution, but only at the very local spatial scale: 
the flux in a specific point is represented as a function of 
the local variables, neglecting the effects of the surround-
ings and the significance of long-distance transport events 
on steep slopes (Howard 1994). In the last decades, multi-
ple attempts were made for incorporating the long-distance 
transport effects into landscape evolution models by account-
ing for the expected flow paths. However, many uncertainties 
are still evident, mainly because of the probabilistic behav-
iour of the sediments and the influence of the soil properties. 
Indeed, the evident connection between transport statistics, 
topography and morphological evolution suggests the use 
of event-based models, but, even if they are more physically 
rooted being grounded on the current knowledge of landslide 
triggering and motion (Tucker and Bradley 2010), at the 
same time, they are computationally not really efficient and 
therefore not widely applied and tested.

Run‑off processes

As well known, the transport of sediment by the flowing 
water is a fundamental feature of the Earth’s processes 
(Lorang and Hauer 2017). Indeed, geomorphic works in 
a drainage basin are mostly correlated with surface water, 
and, therefore, knowing how the water flow is handled in 
landscape evolution modelling represents a central issue. 
Despite the possible spatial discretization methods that can 
be adopted, a common feature between the various models 
is the need to combine short-time scales (minutes to sea-
sons) associated with hydrologic processes with much longer 

timescales (years to centuries) that are related to sediment 
transport and landform evolution.

Typically, in a 2-D model, the flow field is described by 
means of the De St. Venant (shallow-water) equations, which 
represent the vertically integrated form of the Navier–Stokes 
equations for incompressible, free surface flow. They contain 
a description of the continuity of mass and momentum in the 
two horizontal dimensions and a friction function to describe 
the relationship between flow velocity and bed resistance, 
accounting for four main forces: inertia, gravity, fluid pres-
sure and boundary friction. Being these equations highly 
complex and generally not analytically solvable, simplified 
numerical solutions should be applied, accounting for sev-
eral limitations, as pointed out in the following.

Typically, because channelized flows accelerate only 
slowly in space (considering a reach-wise averaged veloc-
ity), the gradually varied flow approximation is introduced, 
assuming that the inertial terms in the momentum equation 
can be neglected. In addition, dropping the time derivative 
yields the diffusion wave approximation, which is valid in 
the case of flows mainly driven by pressure and gravity gra-
dients. In the case of small changes of the flow depth in the 
stream-wise direction with respect to the bed morphology, 
the gravity represents the main driver of the flow, and the 
pressure-gradient term can be neglected for obtaining the 
kinematic-wave equations. In this case, the water gravity-
related acceleration is everywhere balanced by the friction. 
For gravity-driven (kinematic) flows, the local bed shear 
stress can be represented as a function of the fluid density 
(water and sediment mixture), the local water/sediment dis-
charge and the bed slope and friction. In a 2-D schematiza-
tion, this approximation means that the flow lines follow the 
surface topography.

Based on this approach, many landscape evolution mod-
els use a cellular routing algorithm, imposing that the water 
flows from a cell to the adjacent one, following the steepest 
descent. As one can easily figure out, cellular routing algo-
rithms are closely correlated with the spatial discretization 
of the domain. Indeed, in a numerical model, the continu-
ous landscape surface is typically represented by discrete 
elements, which can be square cells, leading to pretty sim-
ple finite-difference solutions. However, in some cases, 
such square cells are not flexible enough for representing 
the computation domains in a proper manner. Therefore, 
to account for more complex domains, triangular elements 
associated with a finite-element solution (Maniatis et al. 
2009) or triangular irregular (unstructured) cells having the 
nodes connected using a Delaunay triangulation and the sur-
face nodes area described via Voronoi or Thiessen polygons 
can be adopted, such as made in common landscape models 
like the CASCADE and CHILD codes (Forte et al. 2016). 
Despite Caviedes-Voullième et al. (2012) demonstrated the 
utility of using triangular unstructured meshes for keeping 
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a low computational cost while ensuring accuracy, only a 
few models allow for using such a structure (Costabile et al. 
2017). The advantages of a cell-routing approach are the 
simplicity and the speed, but many drawbacks are also pre-
sent. Firstly, it is hard to handle diverging flows, which is 
typical of complex river systems. Moreover, the kinematic 
convergence of the flow depends on the width, which can be 
supposed equal to the width of the cells, leading to a grid-
size dependence of water depth and current velocity (Will-
goose et al. 1991). Alternatively, the flow can be assumed 
as confined to sub-grid cell features, which should have a 
predetermined (empirical) width (Howard 1994; Tucker and 
Slingerland 1994). A few landscape models have a less strict 
approach, relaxing the single-flow-direction assumption by 
introducing explicit numerical solutions of the steady 2-D 
kinematic-wave equations (Morgan 1980) or using multi-
ple directions algorithms, which assume that the flow going 
out from a cell is split among the downslope neighbours, 
weighted according to the gradient in each direction. Given 
that this latter type of algorithms provides a better descrip-
tion of shallow overland flow (sheet flow as described by 
Morgan in 1980) on convex hillslopes and fans (Pelletier 
2004), its use is fast spreading. In fact, common and well-
known codes like CAESAR (Van De Wiel et al. 2007) or 
recent examples such as the Landlab (Hobley et al. 2017) 
use multiple flow-direction algorithms, accounting for all 
the possible directions of flow propagation. These models 
provide an effective way to approximate time-varying, 2-D 
flow fields without the computational effort required by the 
traditional solution of the shallow-water equations, which 
could be very high especially for large domains (Garcia-
Navarro 2016; Shustikova et al. 2019). Commonly, cell-
based or kinematic-wave water routing is associated with a 
steady flow. As an example, the SIBERIA and the DELIM 
models compute the water discharge as a power function of 
the watershed area, assuming the local equilibrium between 
rainfall and run-off (Willgoose et al. 1991; Howard 1994). 
However, as Sólyom and Tucker (2004) demonstrated, the 
local geomorphology can highly affect the hydrological 
behaviour. Moreover, many studies pointed out the impor-
tance of the spatial variability of run-off generation, finding 
out that the run-off excess (saturation) tends to enhance both 
the hillslope convexity and the hillslope–channel transitions 
in equilibrium landscapes (Ijjász‐Vásquez et al. 1992).

The kinematic-wave theory represents a reliable approxi-
mation for channelized flows, but some problems arise in 
describing the 2-D evolution of landscapes. Indeed, errors 
can be hindered behind a series of questionable assumptions 
that lead to the right solutions (Izumi and Parker 2000). On 
the one part, the problem of flow convergence along valley 
axes can represent an obstacle to properly capture the tran-
sition from distributed to channelized flow, which can be 
somehow handled only posing major attention on the spatial 

resolution of the model (Kirkby 1994; Perron et al. 2008). 
In fact, to overcome such problems, fine-detailed models 
using the diffusive wave theory can be developed, but there 
is still the need of employing more powerful computers for 
evaluating the long-term evolution of large areas, which can 
hinder their application to real-time forecasts.

Obviously, there are differences in terms of timescale in 
simulating the run-off which could be observed during a 
storm event or the long-term evolution of a river watershed. 
The majority of landscape evolution models deal with this 
aspect imposing a geomorphically effective run-off event 
to describe the basin erosion. Namely, such codes assume a 
single, steady run-off coefficient is equivalent, in terms of 
geomorphic effectiveness, to a series of run-off events. There 
are many examples dealing with this approach, spanning 
from imposing a relationship between a time-averaged sedi-
ment transport discharge and the average water flow peak 
discharge to more complex approaches (Willgoose et al. 
1989). However, all these methods assume that the event 
is somehow stable, while many researchers pointed out the 
need to consider the role of the discharge variability in time 
(Lague et al. 2005; Huang and Niemann 2006; Molnar et al. 
2006). Regardless of the detail of each method, they com-
monly agreed that erosion and transport rates increase with 
the temporal increment in discharge fluctuations, because 
they depend more than linearly on the water discharge. 
While there are several examples for which such effective 
event assumption is reasonable, recent studies proved that 
the time variability in hydrologic forcing can have a great 
impact on the landscape dynamics and, therefore, should be 
incorporated in the landscape evolution modelling, possibly 
through a stochastic description of both the rainfall and the 
run-off events (Tucker and Bras 2000; Whipple and Tucker 
2002; Armitage et al. 2018).

In the future, many challenges related to modelling the 
feedback effects between a changing climate, hydrology 
and landscape evolution in a coupled way should be faced, 
aiming to account for different spatiotemporal scales and 
overcome the simplifications generally applied in practice 
(Sólyom and Tucker 2004; Huang and Niemann 2006; 
Anders et al. 2008). Moreover, the randomness in the tempo-
ral dynamics of run-off processes requires the development 
of new high-flow statistics for better describing the evolu-
tion of landscapes like river floodplains, which are more 
impacted by extreme flows.

Sediment transport from the hillslopes to the river 
system

In shaping a river channel, the water flow erodes the bed with 
a rate limited by the detachment of particles (supply-limited 
systems) or by the capacity of the flow to transport sedi-
ment particles (capacity-limited systems), with a multitude 
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of intermediate behaviours (Carson and Kirkby 1972; Hajig-
holizadeh et al. 2018; Shobe et al. 2018). Thus, each system 
needs a different schematization, and the complexity varies 
depending also on the erosion rate: supply-limited systems 
result in being the simplest in terms of numerical modelling. 
In fact, in such systems, the sediment particles disappear 
as soon as they are eroded (Bagnold 1966; Howard 1994). 
Therefore, in this case, the erosion rate is assumed as a func-
tion of the bed shear stress, which, in its turn, depends on the 
local slope and discharge, giving rise to the so-called stream 
power erosion law (Bagnold 1966; Howard and Kerby 1983; 
Warren et al. 2019). A key property of these systems is the 
wave-like nature: there is a tendency to form erosional fronts 
that propagate upstream (Tucker and Whipple 2002). In the 
case of capacity-limited river systems, the erosion rate is a 
function of the unbalance between sediments entering and 
going out from the system, assuming a local morphological 
equilibrium, where the transport rate is everywhere equal to 
the local carrying capacity. The capacity-based approach is 
most applicable for describing bedload transport in gravel-
bed rivers, given that coarser particles have shorter travel 
distances, so the assumption of immediate adaptation of 
the transport rate to changes of water discharge or slope is 
quite reasonable (Einstein 1950). On the other part, in the 
case of systems mostly driven by the suspended load like 
sandy rivers, this approach tends to fail because it essentially 
ignores the time required for sediment grains to settle in the 
water column in response to transient hydrology. Indeed, 
the mechanism requires to define an equation representing 
the mass continuity for sediments in the water column, as 
well as detachment and settling functions, which are gen-
erally correlated with the local shear stress and grain size 
(Bracken et al. 2015). There are many formulas that can be 
adopted to describe the erosion and sediment transport phe-
nomena in a river system, but, despite this, they perform in a 
very similar manner if looking at the long-term longitudinal 
river-profile evolution under steady conditions (Whipple and 
Tucker 2002; Varrani et al. 2019). However, many differ-
ences arise in applying the models in transient conditions 
(Attal et al. 2008; Franzoia and Nones 2017), suggesting the 
need for using natural experiments to test landscape models 
(Tucker 2009).

For effectively describing the natural environment and 
the formation of a river system, a landscape evolution 
model must correctly reproduce the transition dynam-
ics from the hillslopes to the channel, and the degree to 
which the surface changes as a function of factors like 
relief elevation, local climate and river basin lithology 
(Kirkby 1987; Di Silvio and Nones 2014). The distinction 
between channels and hillslopes can be explicitly treated, 
but introducing hardly describable parameters (Willgoose 
et al. 1991), or representing the channels as sub-grid-scale 
features where the flow width is prescribed in an empirical 

way (Howard et al. 1994; Tucker and Slingerland 1994). 
Depending on the problem under study, models can be 
built for representing large-scale mechanisms without 
requiring a very fine detail (Kooi and Beaumont 1994; 
Lindim et al. 2016) or to reproduce the evolution of small-
scale landforms, implying a grid resolution that can be 
smaller than the channel width (Perron et al. 2008). For 
having the order of magnitude of the scales involved, one 
can consider a regime equation in its original form, cor-
relating the river width with a power of the bankfull dis-
charge (Leopold et al. 1964). One can easily notice that 
channels are typically some orders of magnitude smaller 
than the whole basin, meaning that they can be effectively 
handled as sub-grid features in landscape evolution mod-
els. The channel geometry is paramount in defining the 
volume of sediments available: the narrower is the chan-
nel, the more confined is the flow. Assuming that other 
parameters like the bed slope are constant, a narrow chan-
nel means an increase in the bed shear stress and the unit 
stream power, which translates in a bigger rate of sediment 
detachment and transported by the current (Lague 2014; 
Armitage et al. 2018).

The complexity of fluvial morphodynamics needs to 
be simplified for speeding up the computation, especially 
in the case of large river basins. However, in doing that, 
some models lose their physical meaning, imposing that 
the erosion can be directly computed from the total dis-
charge rather than from the specific one (Willgoose et al. 
1989; Kooi and Beaumont 1994) or assuming empirical 
regime equations (Howard 1994; Tucker and Whipple 
2002) hardly verifiable. On the one part, the use of empiri-
cal scaling laws has the advantage to explicitly calculate 
the cross-sectional averaged shear stress and stream power 
and to permit the application of physically based erosion 
and transport functions that depend on such quantities. On 
the other part, relying on simple scaling laws for describ-
ing the channel geometry has some drawbacks like the 
application of an equilibrium assumption to describe non-
equilibrium dynamics (Nones and Di Silvio 2016) or the 
impossibility to describe rivers affected by external forc-
ing factors like tectonics or lithological discontinuities 
(Nones et al. 2019). In the last years, many models have 
been developed for reproducing bedrock channel evolu-
tion (Stark 2006; Wobus et al. 2008; Langston and Tucker 
2018) and changes in channel width (Attal et al. 2008; 
Nones and Di Silvio 2016), as well as debris and granular 
flows (Howard 1998; Stock and Dietrich 2006), but there 
is ample room for improving them towards a more reliable 
estimate of landscape evolution, accounting for physically 
based laws, as well as spatially and temporally variable 
functions, for better incorporating the geological and cli-
matological variability.
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Soil properties

For terrestrial life, the soil represents one of the most 
important substances, supporting both the life (Lin 2011) 
and being a medium for transport and storage of water and 
gases (Strahler and Strahler 2006). Indeed, hydrological and 
morphological processes are a function of the soil charac-
teristics (Bryan 2000), but also depend on the ratio between 
soil and rock coverage (Poesen and Lavee 1994). Therefore, 
the understanding of the formation, global distribution and 
functional properties of the soil is paramount in catching the 
mechanisms driving the landscape dynamics.

Aiming to link the small scale of soil characteristics to the 
large scale of landscape evolution, in the past years, many 
statistical methods have been developed for determining and 
mapping different soil properties depending on other soil 
characteristics and the basin geomorphology (Behrens and 
Scholten 2006). However, one of the shortcomings of such 
an approach is the need of having a very large and detailed 
dataset of soil attributes, such as the particle size distribution 
or the amount of organic matter, which is needed for predict-
ing hardly measurable soil properties like the water content. 
In fact, even if applicable at the small scale, analyses at large 
(basin-wide) scale require distributed samples, which can 
be prohibitively expensive and definitely time-consuming 
(Scull et al. 2003).

While the spatial mapping of soil properties is impor-
tant, understanding the evolution of these properties and 
processes at the required scale is also fundamental. For 
quantifying such processes and predicting the time evolu-
tion of the soil characteristics, modellers can apply process-
based models (Hoosbeek and Bryant 1992; Minasny et al. 
2008; Schoorl and Veldkamp 2016). On the other hand, the 
most tested but out-of-date process-based models cannot 
be applied to large domains due to an excessive need of 
computational resources; therefore, new methods based on 
state-space matrix methodology were recently introduced 
(Cohen et al. 2009), also accounting for multiple soil layers 
(Welivitiya et al. 2016). These models are able to adequately 
predict the soil properties of an individual pixel, but failed 
in modelling the spatial interconnectivity between the vari-
ous parts of the soil catena that result from transport-limited 
erosion and deposition. To correctly predict the temporal 
changes of the spatially distributed soil properties, since 
the end of the last century, many researchers tried to cou-
ple the soil profile evolution with the landform evolution. 
As an example, Minasny and McBratney (2001) modelled 
the influence of soil and weathering processes on landform 
evolution using a single layer of soil, while Vanwalleghem 
et al. (2013) developed the MILESD code, which accounts 
for four layers (the bottommost bedrock layer and three 
soil layers above it) for reproducing the evolution of land-
forms, with a particular focus on Australia. Recently, the soil 

evolution module adopted in MILESD has been modified 
adding additional layers (Temme and Vanwalleghem 2016). 
Indeed, limiting the description of the topsoil to only three 
layers can hinder the importance of soil characteristics like 
the particle size distribution, which can be an index of vari-
ous soil attributes such as the soil moisture content (Schaap 
et al. 2001; Minasny et al. 2015). As a matter of fact, future 
landscape evolution models should consider soil charac-
teristics like depth and water holding capacity explicitly, 
preferably via a physically based approach, because they 
constrain the grading and amount of material eroded across 
the river basin.

Vegetation dynamics

Both the soil formation and the establishment of vegeta-
tion are paramount in changing the hydrological fluxes by 
accommodating soil moisture and facilitating the formation 
of sub-surface flow paths, affecting the form and the mag-
nitude of erosion, sediment transport (Ebel et al. 2007) and 
deposition (Molina et al. 2009). Therefore, numerical mod-
els devoted to predicting the evolution of landscape features 
are highly dependent on vegetation properties (Casadei et al. 
2003; Collins et al. 2004; Istanbulluoglu and Bras 2005; 
Yetemen et al. 2010). In addition, plants convert solar energy 
into geomorphic forces with very significant impacts from 
the regional to the global scales (Phillips 2009). Amundson 
et al. (2015) summarized the importance of vegetation in 
landscape evolution in a few points: (1) if water is available, 
a world without plants would likely have little or no soil on 
hillslopes; (2) plants may control the soil thickness; (3) soil 
production rates may be very high with respect to outcrop 
erosion rates (around one order of magnitude); (4) given 
that the soil residence times are constrained within a broad 
window of nutrient sufficiency/optimization, environments 
characterized by high weathering and low denudation rates 
can suffer from a deficit of rock-derived elements; (5) local 
feedbacks between plants, nutrients and soil thickness are 
possible; (6) at the very long-term (millennia), the vegeta-
tion evolution can impact (and be impacted by) geomorphic 
conditions.

As for the soil, the inclusion of vegetation dynamics in 
landscape evolution models is related to the spatial scale. 
Indeed, for adequately simulating how soils and biota inter-
act with climate and bedrock (Corenblit and Steiger 2009), 
and, consequently, for modulating the geomorphic response 
at the catchment scale, it is necessary to collect detailed data 
spatially distributed across the basin. To reduce the compu-
tational effort in creating such a dataset, generally spatial 
analyses of remotely sensed images and digital maps of ele-
vation, geology, soils and vegetation in relation to the local 
climate and sediment yield are developed (Newton et al. 
2009). Aside from creating new databases, the attention of 
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geomorphologists and soil scientists is now focused on qual-
itatively and quantitatively understand the effects of vegeta-
tion on the landscape physical processes, aiming to provide 
a more reliable schematization of them to be included in 
numerical codes. In this sense, the present major challenge 
is how to explicitly and quantitatively account for the role 
of biota in the production of soil from bedrock and its trans-
port downslope, investigating the combined evolution and 
feedback of soil, plants, hydrology and climate.

Conclusions and open questions

Using a plain language, the present review proposes a short 
summary about landscape evolution modelling and the main 
components of such codes, showing that, even if character-
ized by a quite long history, this research field is still very 
active and several improvements are forecasted for the future 
for answering to a series of open questions towards a more 
reliable representation of the Earth’s surface (Willgoose 
2018). In fact, the understanding of landscape dynamics 
requires a deeper knowledge of the recursive, multi-scale 
interactions among abiotic and biotic states and processes 
(Phillips and Van Dyke 2017).

As for the geomorphic transport functions, in the future, 
additional research should be performed towards a better 
evaluation of the dynamics associated with sediment char-
acteristics such as a varying grain size distributions, the 
role of the basin lithology and the horizontal movement of 
geomorphic features due to processes like scarp retreat and 
tectonic displacement.

Most importantly, for obtaining a consistent schematiza-
tion of the natural landscape, the dynamics of soils must be 
incorporated in new numerical models, overcoming limita-
tions shown by past codes. In fact, the soil represents one 
of the most important substances found on the Earth, given 
that, covering its uppermost layer, it provides the support 
for all the terrestrial organisms and guarantees the terrestrial 
life (Lin 2011). In the last decade, many tentative were made 
for incorporating the soil behaviour into landscape evolution 
models, as well as in combining soilscape and landscape 
modelling (Ebel et al. 2007; Welivitiya et al. 2019). Indeed, 
on the one part, the soil controls the interaction between 
vegetation and water, as well as the atmosphere in terms 
of carbon and nutrient cycling. On the other part, in com-
bination with the vegetation, the soil determines the rate 
of erosion and deposition and therefore cannot be ignored 
in adequately simulating the long-term dynamics of fluvial 
landscapes (Wilkes et al. 2019).

Aiming to draw a more complete picture of the evolu-
tion of a natural landscape, research should be directed 
also in including the role of biota, the dynamics of stream-
channel adjustment, the erosion and transport of sediments 

and material by means of woody and debris flows or other 
mass movements and the formation and evolution of the 
critical zone (Anderson et al. 2008). In summary, there is 
an evident need for a better understanding of mechanics and 
feedback of the physical, chemical and biological controls 
that can have a role in shaping the landscape forms. Even if 
the importance of the sediment dynamics is well recognized 
(Schumm and Lichty 1965; Robinson and Slingerland 1998), 
a major focus should be posed towards the study of the soil 
properties, improving the understanding on the influence of 
grain size, transport and sorting in shaping river systems, 
given that such aspects received some attention only recently 
(Gasparini et al. 2004; Di Silvio and Nones 2014; Sklar et al. 
2017). Moreover, further research shall be devoted in better 
interpreting and modelling the links between local climate, 
relief and grain size delivery to sedimentary basins, aiming 
to obtain a most reliable estimate of the processes acting at 
the watershed scale. In fact, fluvial transport capacity and 
competence are highly sensitive to grain size composition, 
and, consequently, phenomena like abrasion, weathering and 
armouring can have a significant impact on the transport 
mechanisms (Gasparini et al. 2004; Attal and Lave 2006), 
pinpointing the opportunity to account for them in landscape 
models at the small scale (Willgoose and Sharmeen 2006; 
Román-Sánchez et al. 2019) or to justify their absence in the 
case of basin-wide simplified approaches (Nones et al. 2019; 
Varrani et al. 2019).

The geometry of river represents another challenge for 
landscape evolution modelling given that size and shape of 
a channel controls (and is indirectly controlled by) the dis-
tribution of friction and energy dissipation across its wet-
ted perimeter. There are an increasing number of numerical 
and experimental studies focused on evaluating how the 
channel geometry follows the changes of base-level con-
trols, tectonic tilting and water and sediment supply (Stark 
2006; Finnegan et al. 2007; Wobus et al. 2008; Davy et al. 
2017; O’Hara et al. 2019), but these relationships are far 
to be fully understood. Even if landscape evolution models 
that couple surface changes with vegetation dynamics have 
begun to appear in the last decades and now are becoming 
a major research field (Murray and Paola 2003; Nones and 
Di Silvio 2016), the scientific community has just started to 
find a consensus on the quantitative relationships between 
hydrological, biological and geomorphic processes. In addi-
tion, challenges posed by modelling such mechanisms are 
related also to their spatiotemporal scales, which could be 
significantly different.

Aside from the theoretical and physical understanding 
of the mechanisms involved, as well as their mathematical 
schematization and the associated computing challenges, 
one of the greatest limitations in widely applying landscape 
evolution models is the evident lack of data and methods 
to test them. As stated by Mark (1975), the reliability of a 
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landscape model can be assessed through four ways, depend-
ing on the process under evaluation. First, in the case of rapid 
landform development measurable in timescales of months 
or years, such as in the case of gully formation and post-
mining landscape (Hancock 2006; Hancock et al. 2017), the 
model predictions can be tested against direct observations. 
However, because of uncertainties in understanding delayed 
effects of processes like vegetation encroachment and weath-
ering, problems can arise in extrapolating information from 
such newly created landscapes to the long term (Moliere 
et al. 2002). Second, there are situations where real-time 
measurements of sediment and solute fluxes can provide a 
useful basis for evaluating the model performance, even in 
the case of a slow rate of landform variation (Montgomery 
and Dietrich 1992). Third, the development of landscapes 
can be evaluated by means of scaled experiments, where 
the involved process can be adequately measured in a con-
trolled environment. Since decades, laboratory experiments 
are very helpful in addressing specific issues focusing on a 
few geomorphic features (Hasbargen and Paola 2000; Pel-
letier 2008), but, generally, they perform well only under a 
qualitative point of view. The recent boom in high-speed 
computing resources and digital photogrammetry permits 
to overcome the operative limitations present in the past 
towards a more quantitative estimation of the landscape evo-
lution at the laboratory scale, which could ultimately sup-
port numerical models. Indeed, because of many limitations 
correlated with laboratory tests and parameters uncertainty 
(Skinner et al. 2018), physical experiments and numerical 
model should be combined to adequately reproduce complex 
landscape changes. Fourth, landscape models can be tested 
by comparison with natural experiments, which are case 
studies having sufficiently constraints to allow for a quanti-
tative comparison between field observations and numeri-
cal outputs (Montgomery and Dietrich 1992; Tucker 2009). 
While, since years, there is a great potential in combining 
natural experiments and modelling runs (Hancock and Will-
goose 2001), the need to develop probabilistic frameworks 
and robust statistical measures for discriminating between 
dissimilar natural landscapes and scales remains (Schumer 
et al. 2017).

As visible from the present review, landscape evolution 
models can be extremely complicated, depending on the pro-
cesses considered. In fact, the basin surface is not simply 
shaped by the interaction between water and sediment, but 
also many other factors can play a major role. As an exam-
ple, in different parts of the world, the landscape is shaped 
by wind (Okin and Gillette 2001), snow (Liston and Elder 
2006), ice (Ugelvig et al. 2016) or the fire (Scott 2018) since 
millennia. However, the description of such phenomena is 
outside the scope of the present work and is therefore not 
addressed here.

Human-induced alterations of river channels and basins 
as well as the climate change are actually having a major 
role in reshaping geomorphic systems, altering the natural 
relationship between the components and posing additional 
challenges to river modellers. As suggested by recent stud-
ies, topography and climate are generally coupled, and 
precipitation increases because of orographic effects dur-
ing the uplift of a high mountain till an elevation of about 
1000–2000 m (Bookhagen and Burbank 2006). Therefore, 
altered climatic conditions can drive to a change in precipi-
tation patterns, with consequences on the watershed topog-
raphy. However, the landscape sensitivity to the timescale 
of climatic variations is not yet completely understood and 
represents a hot research topic for the future (Moussirou 
and Bonnet 2018). In addition to the large-scale effects of 
climate change, local changes on the landscape can be also 
caused by the presence of animals like herbivorous. Nowa-
days, the correlation between animals and landscape evolu-
tion is generally studied only at the local level (Butler et al. 
2007), and a general framework is still missing because of 
the high complexity of considering the presence of human 
beings and animals.

The present review showed that substantial progress has 
been made in quantitative modelling the evolution of the 
Earth’s surface in terms of water–sediment–vegetation inter-
actions, but much still remains to be accomplished and there 
are many open questions that can be addressed in the future. 
On the one part, there is the need for refining and testing 
landscape evolution models in a larger variety of cases to 
cover a multitude of spatial and temporal scales, by means of 
new and improved computing techniques. On the other part, 
one of the major challenges lies in developing experimental 
and field-based datasets for testing and validating numeri-
cal models across a wide range of spatiotemporal scales and 
covering different geomorphic environments (Rixhon et al. 
2017).
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