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Abstract
Purpose Arthroscopic surgery,with its inherent difficulties on visibility andmaneuverability inside the joint, poses significant
challenges to surgeons. Video-based surgical navigation (VBSN) has proven to have clinical benefits in arthroscopy but relies
on a time-consuming and challenging surface digitization using a touch probe to accomplish registration of intraoperative
data with preoperative anatomical models. This paper presents an off-the-shelf laser scanner for noninvasive registration that
enables an increased area of reachable region.
Methods Our solution uses a standard arthroscope and a light projector with visual markers for real-time extrinsic calibration.
Nevertheless, the shift from a touch probe to a laser scanner introduces a new challenge—the presence of a significant amount
of outliers resulting from the reconstruction of nonrigid structures. To address this issue, we propose to identify the structures
of interest prior to reconstruction using a deep learning-based semantic segmentation technique.
Results Experimental validation using knee and hip phantoms, as well as ex-vivo data, assesses the laser scanner’s effective-
ness. The integration of the segmentation model improves results in ex-vivo experiments by mitigating outliers. Specifically,
the laser scanner with the segmentation model achieves registration errors below 2.2 mm, with the intercondylar region
exhibiting errors below 1mm. In experiments with phantoms, the errors are always below 1mm.
Conclusion The results show the viability of integrating the laser scannerwithVBSNas a noninvasive and potential alternative
to traditional methods by overcoming surface digitization challenges and expanding the reachable region. Future efforts aim
to improve hardware to further optimize performance and applicability in complex procedures.

Keywords Structured light · Surgical navigation · Deep learning · Arthroscopy

Introduction

Contrary to optical tracking [8], video-based surgical nav-
igation (VBSN) [16] leverages visual markers attached to
the patient’s anatomy to guide the surgeon throughout the
medical procedure. When applied to arthroscopic proce-
dures, these markers are placed inside the joint, precluding
the need for additional external incisions. The video-based
navigation process entails the precise registration of a preop-
erative anatomical model with data acquired intraoperatively
(Fig. 1). The registration process requires the surgeon to digi-
tize the surface of interest that corresponds to the preoperative
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model. Due to challenging conditions of arthroscopic scenar-
ios, namely the limitedmanoeuverability and visibility inside
the joint, the existence of floating particles and tissue, the
illumination changes, and the distortion induced by arthro-
scopic lenses, acquiring sufficient points on the bone surface
for accurate registration can be a very time-consuming and
error-prone process.

In contrast to arthroscopic procedures involving the knee
joint, where the bone and cartilage surfaces are readily acces-
sible, femoral acetabular impingement (FAI) surgeries [1]
present unique challenges. The bone and cartilage areas in
FAI are notably more difficult to access, and their spheri-
cal geometry causes ambiguities that further complicate the
registration process. In addition to these difficulties, there is
also the concern of medical practitioners regarding the digi-
tization of the cartilage surface. This process can potentially
damage the cartilage, leading to patient discomfort and accel-
erate the onset of osteoarthritis.
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Fig. 1 The existing solution for VBSN uses information from preop-
erative imaging, such as MRI, and requires the surgeon to digitize the
surface of the bone with a touch probe, enabling the 3D reconstruction
of points on bone surface [16]. This paper proposes to replace the use of
a touch probe by an off-the-shelf laser scanner to reconstruct the points.

After 3D registration is completed, the preoperative model can be over-
laid with the anatomy using augmented reality. For better assessment
of the registration quality, the preoperative model (shown as a mesh
grid on the right) is augmented with a blue contour representing the
intercondylar arc

This paper introduces a novel system that addresses the
previously mentioned challenges. Rather than relying on the
digitizing of the articular surface using a touch probe for
generating intraoperative 3D point data, we propose the use
of a simple and affordable laser scanner (Fig. 1). An off-the-
shelf laser projector is used to project a contour onto the
anatomical surface, which is subsequently detected in the
arthroscopic video using an image processing technique. By
tracking the visual markers attached to the laser projector at
each frame-time instant, it is possible to determine the 3D
position of the identified laser contour in the reference frame
of the camera. By simultaneously tracking the visual marker
that is attached to the anatomy, the reconstructed contour can
be represented in the reference frame of the patient and sub-
sequently registered with the preoperative model. This new
approach for arthroscopic navigation, referred to as touchless
registration, offers several advantages. Touchless registration
is more efficient, eliminating the time-consuming process of
physical digitization.Moreover, it eliminates any risk of bone
or cartilage damage since there is no physical contact. Since
there is no need for physical interaction with a specialized
contact tool, it increases the accessible area for the surgeon.
By providing a larger area for reconstruction, touchless reg-
istration opens the way for FAI surgery and other procedures,
where it is difficult to access the target anatomy.

While touchless registration effectively addresses the
issues discussed previously, it introduces a new challenge.
Unlike manual digitization where the surgeon only focuses
on the target surfaces contained in the preoperative model,
the proposed structured light (SL) system projects a contour
independently of the surface of interest. Consequently, this
approach will reconstruct 3D points on surfaces that are not
contained in the preoperative 3D model, resulting in a per-

centage of outliers prohibitively large for existing registration
algorithms to work. To overcome this, the proposed system
includes a deep learning-basedmodel that automatically seg-
ments the arthroscopic images and identifies the regions of
interest in which points will be reconstructed.

In summary, the paper presents the following key con-
tributions: (1) A proof of concept of a low-cost SL system,
comprising a calibrated laser projector and a standard arthro-
scope, that enables the detection of the projected light contour
for inferring 3D point data intraoperatively and accom-
plishing the registration; (2) a deep learning-based model
designed for automatic segmentation of the arthroscopic
video that identifies the regions of the arthroscopic images
that correspond to structures in the preoperative anatomical
model, enhancing precision and efficiency in the registra-
tion process; and (3) a novel data augmentation technique
that improves the performance of the automatic arthroscopic
image segmentation model by synthesizing the laser projec-
tion in the arthroscopic images.

The experimental results validate the effectiveness of our
approach in both phantom and real arthroscopic data, rein-
forcing its practical utility and potential impact in the field
of surgical navigation for arthroscopy.

Related work

SL is a method for 3D surface reconstruction based on
triangulation. SL has been used in laparoscopic and knee
arthroscopic surgery, mapping textureless organ surfaces.
Hayashibe et al. [7] developed a two-endoscope system to
perform 3D measurements and visualization. The two endo-
scopes were inserted into the abdominal cavity and an optical
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galvano scanner controlled a laser beam strip. Reiter et
al. [17] also used a two-endoscope system, which included
a projector and a dichroic beam splitter, enabling the projec-
tion of an invisible pattern to the surgeon. Schmalz et al. [19]
developed a SL system based on a single-shot approach.
Despite the endoscope’s small 3.6 mm diameter, the cam-
era has a blind spot, resulting in the loss of information.
Furthermore, the contrast of the color rings is relatively low,
and the system has never been tested underwater. Long and
Nagamune [10] introduced a system for arthroscopic knee
procedures, comprising an arthroscope, an optical fiber for
laser beam projection, and a prism. The common aspect to all
these approaches is that they require the camera to be rigidly
attached to the light projector, which may lead to issues
associated with small baselines, such as increased errors in
surface reconstruction.

Edgcumbe et al. [4] developed the Pico Lantern, a com-
pact laser projector device designed for laparoscopic surgery.
The Pico Lantern system comprises a projector and a fixed
checkerboard for tracking purposes, allowing it to move
freely relative to the laparoscope within the abdominal cav-
ity. The downside is that the Pico Lantern device measures
approximately 17mm, being about 3× the size of a standard
arthroscopic portal. Clancy et al. [3] presented a nonrigid SL
system with a 1.7 mm diameter probe. Later, Lin et al. [9]
proposed further developments in on-the-fly self-calibration
to estimate the relative positions, enabling free-hand manip-
ulation during surgery. However, the variations in tissue
properties, scattering, and other factors introduced ambigui-
ties in pattern decoding, and the resulting density of 3Dpoints
was very low [3, 9].

The proposed off-the-shelf laser scanner system differ-
entiates itself from existing literature by offering a cost-
effective arthroscopy solution. The proposed SL system has
real-time extrinsic calibration, eliminating the need for rigid
camera-projector attachment.Additionally, our system incor-
porates a simple line pattern, eliminating ambiguities in
pattern decoding, simplifying the system design, and facili-
tating image projection detection and calibration.

Methods

The SL system consists of a line-structured light projector
and an arthroscope. The design is illustrated in Fig. 2. The
laser projector is instrumented with a visual marker to enable
tracking at every frame-time instant by the arthroscopic cam-
era. Since this provides the extrinsic calibration between both
SL system components, the arthroscope can go through one
portal and the laser beam through the other, and both can
move independently, beingmore versatile than existingmeth-
ods.

In the current implementation of VBSN, the surgeon
rigidly attaches amarker to bone (WorldMarker,WM)whose
pose in camera coordinates can be determined at each time
instant by tracking the visual markers [16]. This enables 3D
points reconstructed in different frames to be represented in
the same WM coordinate system that does not move with
respect to the anatomy. As depicted in Fig. 1, the final step
of registration aligns the 3D points reconstructed intraop-
eratively with a 3D model obtained preoperatively. Refer
to Fig. 1 in the supplementary material for a schematic
representation of the different coordinate systems and their
relationships. Our pipeline for generating the 3D model con-
sists of segmenting bone and cartilage structures from an
MRI of the patient’s joint, applying the marching cubes algo-
rithm [11], and smoothing the resulting 3D model.

This section provides a comprehensive overview of our
laser scanner and presents an automatic segmentation model
for identifying the regions of interest within arthroscopic
images (femur bone and cartilage) such that 3D points
reconstructed in other anatomical structures are not consid-
ered during registration. Lastly, the registration algorithm
employed in this work is described.

Laser scanner

The proposed SL system involves three main steps: detection
of the laser contour in the arthroscopic image, calibration of
the plane of light of the laser projector and 3D point recon-
struction through triangulation. These steps are described
below.

Detection of the laser contour

Fig. 3 depicts the main steps of the pipeline for detect-
ing the laser projection. Firstly, the distortion of the input
image is removed both for retrieving the green channel and
the grayscale image. By subtracting these two images and
binarizing the result, the obtained binary image provides the
segmentation of the laser projection. Since the laser projec-
tion exhibits significant dispersion, it appears as blobs in the
binary image. Blob detection is then performed and a PCA-
based approach fits a contour to the blob by (i) extracting
the direction of maximum variance, (ii) sampling the blob
along that direction, and (iii) for each sample determining
the midpoint of the line segment contained in the blob with
perpendicular direction. The resulting contour is depicted in
red in the final step of Fig. 3.

Projector calibration

Preoperatively, the laser projector must be calibrated, i.e.,
the equation of the plane of light in laser coordinates must
be estimated. To accomplish this, a setup consisting of a
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Fig. 2 Proposed SL system
setup with a standard
arthroscope and laser projector
instrumented with a fiducial.
The relative pose between the
arthroscope and the laser
projector is known at every
frame-time instant by tracking
the laser fiducial

Fig. 3 Laser detection pipeline: for every input frame, distortion is
removed and the resulting undistorted image is both converted to
grayscale and used for retrieving the green channel. The subtraction

of these two images is binarized and blob detection is performed. The
central line of laser projection is detected using a PCA-based approach,
yielding the detection of the laser line

planar target instrumented with visual fiducials is consid-
ered. By pointing the laser into the target, a line is projected
and a calibration image showing the planar target, the laser
projection and the laser marker simultaneously is acquired.
Both the camera and the laser projector are moved to enable
the acquisition of a calibration set with distinct poses. For
each calibration image, the laser line projection is detected as
described previously and 3D points are reconstructed in cam-
era coordinates by intersecting backprojection rays with the
planar target. These points are then transformed to laser coor-
dinates using its tracked pose. After all calibration images
are processed, a set of 3D lines is obtained, which is given as
input to a RANSAC-based [5] plane fitting algorithm. Fig-
ure 2 in the supplementary material illustrates the calibration
setup.

3D point reconstruction

The basic principle of a SL system involves projecting a
light pattern onto the scene and detecting it by a camera.
The intersection of the light plane transformed to the camera
coordinate system with the camera ray yields the 3D coordi-
nates of the point (refer to Fig. 3 in supplementary material
for a schematic representation). Performing this process for
all points within the detected laser contour, we obtain a 3D
contour in camera coordinates. Then, we can transform these
points to the reference frame of theWMattached to the bone.
By repeating this process for a set of frames, we achieve

the reconstruction of a denser point cloud representing the
anatomical structures. In Sect. 5.2, registration tests with data
obtained by the proposed algorithm are performed.

Arthroscopic video segmentation

As previously discussed, the objective of the proposed
pipeline is to register a preoperative femur bone and cartilage
model with intraoperative data. However, due to the presence
of other anatomical structures such as proximal tibia, the
anterior and posterior cruciate ligaments and the meniscus,
it is impossible to capture arthroscopic footage containing
solely the structures of interest. These additional structures
are not contained in the preoperative model, and, hence,
should be removed from the reconstructed point set obtained
with the structured light system. Therefore, we propose an
automatic segmentation model designed for arthroscopic
videos. The considered architecture is a standard U-Net [18]
and is depicted in the supplementary material (Fig. 4). The
loss function used is 1 − DICE(T , P), where DICE(T , P)
is the DICE score [20] defined as

DICE(T , P) = 2
∑N

i Ti Pi
∑N

i Ti + ∑N
i Pi

(1)

where T is the ground-truth segmentation, P is the inferred
segmentation, i is a pixel, and N is the number of pixels.
The DICE score is one when the inferred and ground-truth
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segmentations overlap perfectly, and zero when there is no
overlap.

All input images are normalized using the contrast lim-
ited adaptive histogram equalization, as outlined in [14],
to enhance image contrast. Furthermore, standard data aug-
mentation, including image rotation, translation, scaling, and
flipping, is applied. This step is important because the dataset
is limited in size and data augmentation is an effective
strategy for artificially increasing the amount of training sam-
ples [13].

Two segmentation models, the no laser augmentation
(NLA) model and the laser augmentation (LA) model, were
trained following identical procedures except for the training
datasets. TheNLAmodelwas trained solely using the dataset
described in Sect. 4.1.1, while the LA model was trained by
also considering images with synthetic laser projection. This
novel data augmentation technique will be described below.

Data augmentation using synthetic laser projection

For each image in the training dataset, a new image con-
taining synthetic laser projection is generated as follows.
Considering the corresponding ground-truth binary mask, a
randompixel within the region of interest is initially selected.
Using the registration and the camera pose relative to the
image, the forward projection ray that goes through the pixel
is intersected with the 3Dmodel, yielding a 3D point. Then, a
random 3D vector is chosen, that, together with the 3D point,
define a 3D plane. This 3D plane corresponds to the synthetic
laser plane of light and is afterward intersected with the 3D
model, yielding a 3D contour. By backprojecting this con-
tour onto the image, a synthetic laser projection is generated.
Finally, the laser light dispersion is simulated by applying a
Gaussian intensity distribution centered at the backprojected
2D contour. Figure 4 depicts different synthetic laser projec-
tions obtained with the described approach.

Registration

Following the acquisition of arthroscopic footage with laser
projection using the pipeline detailed in Sect. 3.1, and filter-
ing outlier 3D points with one of the segmentation models
fromSect. 3.2, we obtain a dense point cloud representing the
anatomical structures. The next step involves accomplishing
registration using the method presented in [15] for curve-
surface registration. It is a method for global registration that
automatically finds pairs of matching points in the curve and
in the surface, along with their tangents and normals, for
estimating the rigid transformation between the preoperative
model and the patient’s anatomy. For each pair of points from
the curve with associated tangents, the algorithm finds all
matching pairs of points and associated normals on the sur-
face using a set of conditions that depend on the differential

information (tangents and normals). Then, an hypothesize-
and-test framework finds the rigid transformation that best
aligns the reconstructed curve with the preoperative surface.
A final standard ICP step [2] is performed for refining the
solution.

Experiments

This section details the datasets, experimental setups, and
evaluation metrics used to assess the performance of the seg-
mentation models (mentioned in Sect. 3.2) and registration
algorithm (described in Sect. 3.3) using our laser scanner.

Arthroscopic video segmentation

Dataset description

The dataset employed in the development and evaluation
of the deep learning model comprises arthroscopic images
obtained from five distinct cadaver specimens, of which two
contain sequences showing laser projections. In order to use
these two specimens solely for testing and following common
practice in deep learning, where it is advisable to have dis-
tinct training and testing subjects, the data from the remaining
three cadavers was exclusively allocated for training. The
dataset images were selected by (i) sampling each arthro-
scopic video at a frame rate of 0.3 frames per second, (ii)
since the camera pose at each frame is known, clustering
poses using a threshold of 1.5 mm and 20◦, and (iii) ran-
domly selecting one image from each cluster. This selection
scheme resulted in a total of 260 training images approxi-
mately evenly distributed among the cadavers and 58 testing
images divided into 35 images without laser projection and
23 images with laser projection. The ground-truth binary
masks (labels corresponding to the region of interest and
background) for each image were obtained through manual
annotation by experienced engineers.

It is important to emphasize that the arthroscopic images
of the training dataset do not contain any structured light
projection. In order to generalize the model to handle images
with structured light projections, we use the novel data aug-
mentation strategy for generating synthetic laser projections
described in Sect. 3.2.1.

Training details

The models were trained on four NVIDIA GeForce GTX
1080 Ti 12GB, resulting in a training time of approximately
in 2-3h. Regarding the training hyper-parameters, a learn-
ing rate of 1e-4 and batch size of 16 were employed. The
optimization process utilized the AdamW optimizer [12].
Furthermore, the learning rate was reduced when the valida-
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Fig. 4 Example images of the
synthetic laser projections. We
propose a method that takes as
input arthroscopic images
without any laser projection and
outputs the same image with a
realistic projection of the laser.
These generated images are
used to train the semantic
segmentation model

tion loss reached a plateau, and an early stopping mechanism
was implemented with a patience of 50 epochs to minimize
training time.

Evaluation metric

Themetric used to evaluate the performance of the automatic
segmentation models in the test set is the DICE score (Eq. 1).

Registration

Dataset description

Considering the anatomies of interest of this work, we pre-
pared a hip and a knee phantom (refer to Fig. 5 and 6 in
the supplementary material) for testing. We acquired 6 laser
scanning sequences of the bone surface for about 30 s and
then performed registration. A video provided in the supple-
mentary material illustrates this process for the case of the
hipmodel. Furthermore, an experiment using an ex-vivo knee
was conducted by following a similar strategy as the one in
dry model in terms of data acquisition. Registration was then
performed both by considering all the reconstructed points
and by previously segmenting the arthroscopic images using
the models described in Sect. 3.2, i.e., the NLA model and
the LA model.

Experimental setup

All experiments were performed in a PC that is connected
in-between camera tower and display. The PC is equipped
with a frame grabber Datapath Limited DGC167 in an Intel
Core i7 4790 and aGPUNVIDIAGeForceGTX950 that was
able to run the pipeline in HD format at 60fps with latency
of 3 frames.

Evaluation metric

We follow the evaluation protocol used in [16] and consider
a set of 4 control points (refer to Fig. 7) for measuring the
quality of registration with the proposed laser scanner. For
all registration solutions, the control points are represented
in WM coordinates and a centroid corresponding to each
control point is determined. The RMS value of the distance

between each transformed point and the corresponding cen-
troid provides a metric for the precision of registration.

Results and discussion

This section reports and discusses the results obtained in the
experiments described in Sect. 4. Additionally, registration
results obtainedwith the proposedmethod are comparedwith
the existing touch probe approach.

Arthroscopic video segmentation

Fig. 5 shows quantitative results of both automatic segmen-
tation models using the DICE score (Eq.1). For a qualitative
evaluation, refer to Fig. 7 in the supplementary material. As
previously mentioned, the test set comprises two cadavers,
each featuring images with and without laser projection. For
arthroscopic images without laser projection, the automatic
segmentation models demonstrate good and comparable per-
formance, achieving a DICE score of 0.86± 0.20. However,
in cases with laser projection, the NLA model in Fig. 5 does
not perform well, having a DICE score of 0.42 ± 0.32.
This is expected because this model does not have target
domain images in its training dataset. The LA model (blue
in Fig. 5), which incorporates the novel data augmentation
technique described in Sect. 3.2.1, outperforms the NLA
model for images with laser projection. The resulting per-
formance metric indicates a DICE score of 0.80 ± 0.13.
Figure 6 demonstrates the good performance of the LA
model in a real arthroscopic image with laser projection. It
is worth emphasizing that our training and testing datasets
are notably smaller compared to standard computer vision
datasets, e.g., [6]. Nevertheless, they were enough to show
that the automatic segmentation of the structures of interest is
accurate even when presented with images containing laser
projections that were not part of the training dataset.

Registration

This section reports experiments that assess the performance
of the registration of a preoperative model with the patient’s
anatomy. Tests in laboratory and using ex-vivo data are per-
formed. The supplementary material includes two videos
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Fig. 5 Performance of the segmentationmodels trained with (blue) and
without (yellow) laser augmentation (LA) on the test set images. Both
models perform comparably when testing on images without laser pro-
jection. For images containing laser projection, only the model trained
with LA performs well

Fig. 6 (left) Arthroscopic frame with laser projection. (right) Segmen-
tation result where only bone and cartilage structures are considered.
Pixels with laser projection corresponding to nonrigid structures (e.g.,
ligaments inside the intercondylar region) are removed

showcasing the registration process and its outcomes using
the hip phantom and the ex-vivo specimen.

Experiments on dry model

Considering the control points depicted in Fig. 7, the obtained
registration errors are shown in Table 1 and demonstrate that
high precision was achieved. In particular, errors in control
point (CP) C, which corresponds to the region of acquisition
of the laser scans, are below 0.5mm. Also, for the remaining
control points, all errors are below 1mm, even in regions that
are more than 5cm away from the reconstructed area.

Ex-vivo experiments

Results shown inTable 1 evince the need for the segmentation
model. Without segmentation (No Segm), the reconstruction
is highly outlier-contaminated, precluding the registration
algorithm from performing well.When segmentation is done
by the NLAmodel, results are poor due to oversegmentation
of the arthroscopic images, which cause not only outliers but
also model regions to be removed, resulting in a very sparse
reconstruction. Results obtained with the LAmodel are com-
parable with the ones reported in [16], with errors below 2.2

Fig. 7 Control points (CP) for
registration assessment on hip
(top) and knee (bottom)

Table 1 Registration precision (mm) in phantom and ex-vivo. For
the ex-vivo case, the reconstructed points are fed to the registration
algorithm in three different manners: (i) without considering the seg-
mentation model (No Segm) and by segmenting the arthroscopic video
with (ii) the model with no laser augmentation (NLA), and (iii) the
model with laser augmentation (LA). Errors obtained by feeding points
reconstructed with a probe are given in the rightmost column

Phantom Ex-vivo Knee

CP Hip Knee No Segm NLA LA Probe

A 0.67 0.54 19.40 28.81 2.12 1.52

B 0.92 0.71 29.39 24.17 1.95 1.29

C 0.44 0.36 11.77 9.76 0.76 0.89

D 0.42 0.88 46.22 29.76 1.86 1.19

mm for all control points and, in particular, below 1mm in
CP C, which corresponds to the acquisition region (inter-
condylar region). For this particular knee, registration with a
touch probe was performed 7 times and the results provided
in Table 1 show that the error in CP C is identical to the one
obtained with LA. Overall, only a slight improvement in per-
formance is observed (on average, an error 0.45 mm lower),
demonstrating that both methods are comparable in terms of
accuracy. Figure 8 shows the mesh of the preoperative model
overlaid in the anatomy using augmented reality for both the
registration obtained with a touch probe [16] (left) and with
our laser scanner (right). It can be seen that, although the
registration solutions are not identical, they are similar and
it is difficult to decide which one is the most accurate. This
further confirms that our approach is capable of performing
intraoperative registration with satisfactory quality.

Conclusion

We presented a proof-of-concept SL system designed for
arthroscopy, combining the arthroscopic camera with a
low-cost laser projector. The prototype’s design is com-
pact enough to fit inside the arthroscopic portals, allowing
for real-time computation of 3D point data during surgi-
cal procedures. To increase the system robustness, a deep
learning-based model was introduced to segmenting areas
within the arthroscopic video that belong to surfaces in the
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Fig. 8 Qualitative assessment of the registration accuracy using aug-
mented reality: the preoperative model (mesh grid) augmented with
blue contours representing the intercondylar arc and Blumensaat’s line
is overlaid with the arthroscopic images using the registration solutions

obtained with the existing touch probe method and the proposed laser
scanner approach. Both methods performed well, as can be seen by the
good alignment of the model with the anatomy in two distinct arthro-
scopic views

preoperative 3D model. By reconstructing the laser projec-
tion within these regions, it is possible to recover a 3D point
set that can be registered with the preoperative model. The
experimental section shows promising results, proving that
it is possible to register the intraoperative arthroscopic envi-
ronment with a preoperative model accurately without the
need for physical digitization of anatomical surfaces. Never-
theless, the presented system still has some limitations, with
the major one being the large diameter of the laser projec-
tor that (i) is greater than the size of standard arthroscopic
portals (6mm) and (ii) hinders the simultaneous visualiza-
tion of the WM, the laser fiducial and the laser projection by
the arthroscopic camera. Additionally, the laser beam would
benefit from better collimation. As future work, we intend
to decrease the diameter of the projector to a maximum of
6mm and plan to improve collimation with better hardware.
This innovative concept paves the way for touchless registra-
tion in arthroscopic procedures, offering potential solutions
for complex scenarios such as those encountered in proce-
dures like FAI or shoulder surgeries, where minimal invasive
vision-based navigation systems are not yet available.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03180-
5.
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