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Abstract
Purpose Chest radiography is the most common imaging modality for pulmonary diseases. Due to its wide usage, there
is a rich literature addressing automated detection of cardiopulmonary diseases in digital chest X-rays (CXRs). One of the
essential steps for automated analysis of CXRs is localizing the relevant region of interest, i.e., isolating lung region from other
less relevant parts, for applying decision-making algorithms there. This article provides an overview of the recent literature
on lung boundary detection in CXR images.
Methods We review the leading lung segmentation algorithms proposed in period 2006–2017. First, we present a review
of articles for posterior–anterior view CXRs. Then, we mention studies which operate on lateral views. We pay particular
attention to works that focus their efforts on deformed lungs and pediatric cases. We also highlight the radiographic measures
extracted from lung boundary and their use in automatically detecting cardiopulmonary abnormalities. Finally, we identify
challenges in dataset curation and expert delineation process, and we listed publicly available CXR datasets.
Results (1) We classified algorithms into four categories: rule-based, pixel classification-based, model-based, hybrid, and
deep learning-based algorithms. Based on the reviewed articles, hybrid methods and deep learning-based methods surpass the
algorithms in other classes and have segmentation performance as good as inter-observer performance. However, they require
long training process and pose high computational complexity. (2) We found that most of the algorithms in the literature are
evaluated on posterior–anterior view adult CXRs with a healthy lung anatomy appearance without considering challenges
in abnormal CXRs. (3) We also found that there are limited studies for pediatric CXRs. The lung appearance in pediatrics,
especially in infant cases, deviates from adult lung appearance due to the pediatric development stages. Moreover, pediatric
CXRs are noisier than adult CXRs due to interference by other objects, such as someone holding the child’s arms or the
child’s body, and irregular body pose. Therefore, lung boundary detection algorithms developed on adult CXRs may not
perform accurately in pediatric cases and need additional constraints suitable for pediatric CXR imaging characteristics. (4)
We have also stated that one of the main challenges in medical image analysis is accessing the suitable datasets. We listed
benchmark CXR datasets for developing and evaluating the lung boundary algorithms. However, the number of CXR images
with reference boundaries is limited due to the cumbersome but necessary process of expert boundary delineation.
Conclusions A reliable computer-aided diagnosis system would need to support a greater variety of lung and background
appearance. To our knowledge, algorithms in the literature are evaluated on posterior–anterior view adult CXRs with a
healthy lung anatomy appearance,without considering ambiguous lung silhouettes due to pathological deformities, anatomical
alterations due to misaligned body positioning, patient’s development stage and gross background noises such as holding
hands, jewelry, patient’s head and legs in CXR. Considering all the challenges which are not very well addressed in the
literature, developing lung boundary detection algorithms that are robust to such interference remains a challenging task.
We believe that a broad review of lung region detection algorithms would be useful for researchers working in the field of
automated detection/diagnosis algorithms for lung/heart pathologies in CXRs.
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Introduction

Chest radiography is one of the most common diagnostic
imaging techniques for cardiothoracic and pulmonary dis-
orders [1]. It is an early diagnosis tool that is commonly
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used in clinical settings to observe abnormalities in the
cardiothoracic region which includes lung and heart patholo-
gies, e.g., atelectasis, consolidation, pneumothorax, pleural
and pericardial effusion, cardiac hypertrophy and hyperin-
flation [2]. It also serves as a valuable tool for tuberculosis
(TB) screening for HIV+ population in resource-constrained
regions [3–6]. Chest radiography is widely available, afford-
able, and has lower radiation dose compared to other imaging
tools [1]. Particularly, under-resourced regions of the world
that also have to face a heavy burden of infectious diseases,
such as TB, commonly use chest X-ray (CXR) as frontline
diagnostic imaging due to lower infrastructure setup, oper-
ational costs, and portability [7,8]. Automated analysis of
CXR can assist in population screening as well as the radi-
ologist in triaging and interpretation, thereby reducing their
workload [6,9]. Further, they provide a valuable visual aid
for the frontline clinician in diagnosing the patient. Also,
automated analysis can help control inter-reader variability
across radiologists, better discriminate abnormal cases for
further expert interpretation, and even serve as a B-reader in
the diagnostic decision-making process [10].

The typical steps in a conventional CXR analysis sys-
tem include: (1) localizing the region of interest (ROI)
(e.g., lung lobes) to focus the useful area for further pro-
cessing; (2) extracting imaging features from ROI; and (3)
applying a machine learning technique to detect/diagnose
the abnormality [4,11,12]. Accurate localization of ROI
impacts the performance of subsequent steps and the over-
all system. Therefore, it is an essential pre-processing stage
in an abnormality detection/diagnostic process. With the
recent resurgence of interest in artificial intelligence (AI),
computer-aided detection/diagnosis systems have started to
be developed with deep neural networks (DNNs) [13–15].
DNNs search abnormal patterns from the raw image data
without setting explicit rules, detecting ROI, extracting fea-
tures or user-in-the-loop intervention. However, DNNs are
computationally expensive due to optimization of large
number of model parameters which increase with image
size. Therefore, restricting the processing area by removing
background noise and processing only the relevant region
becomes essential for improving the algorithm’s accuracy
and lowering computational time in DNN-based approaches.
In [16], researchers analyzed the impact of lung segmenta-
tion and bone shadow exclusion techniques in a DNN-based
lung nodule detection algorithm. Higher training and valida-
tion accuracy are observed for segmented and bone shadow
removed CXRs. Another recent DNN-based study applies
histogram equalization and ROI detection before processing
CXR images to increase the algorithm’s accuracy [17].

For pulmonary diseases, the objective ROI is the lung
region within the thorax. However, lung region detection
for posterior–anterior (PA) CXRs is a well-studied problem
(c.f. “Lung boundary detection in posterior–anterior CXR”

section). Most of these algorithms are evaluated on adult
CXR images with “normal” or unaltered lung anatomy
appearance. The pathology and anatomical alterations can
impact the intensity distribution in lung regions and result
in ambiguous lung silhouettes which introduce challenges
for automated border delineation algorithms. In addition
to the lack of lung region detection algorithms robust to
pathological deformities, the studies on pediatric CXRs (c.f.
“Pediatric chest radiography” section) are limited in the lit-
erature. The lung appearance in pediatrics, especially in
infant cases, deviates from adult lung appearance due to
the pediatric development stages [18–20]. Therefore, a lung
boundary detection algorithm developed on adult lungs may
not accurately perform in pediatric cases [20]. Moreover,
pediatric CXRs are noisier than adult CXRs due to holding
hands, patient’s head, legs positioning, and rotation (Fig. 1e),
which increases the importance of localizing the ROI and
processing within it.

Considering all these challenges that are not very well
addressed in the literature, developing lung boundary detec-
tion algorithms that are robust to pathological deformities,
drastic shape irregularities,CXRorientation,CXRprojection
(posterior–anterior (PA), anterior–posterior (AP), lateral),
and gross background noise in thoracic cavity remains a chal-
lenging task. We believe that a broad review of lung region
detection algorithms would be useful for researchers work-
ing in the field of automated detection/diagnosis algorithms
for lung/heart pathologies in CXRs. The paper is organized
as follows. First, methods developed for PA-view CXRs are
described in “Lung boundary detection in posterior–anterior
CXR” section, and studies which include lateral-view CXRs
are discussed in “Lung boundary detection in lateral view”
section. We mention lung boundary detection algorithms
for deformed lungs in “Lungs with deformed appearance”
section and pediatric studies in “Pediatric chest radiogra-
phy” section. The deviation in lung silhouette could be used
as visual signs of abnormality and can be an additional
feature for pathology detection/diagnose. In “Radiographic
measures: radiological signs for pulmonary abnormalities”
section, we survey studies which extract radiographic mea-
surements from lung boundaries and make a diagnostic
decision from these measurements. Finally, we list the main
evaluation metrics for measuring lung region detection algo-
rithms performance in “Evaluation of lung region detection
algorithms” section and publicly available CXR datasets in
“DataSets”section.

Lung boundary detection in
posterior–anterior CXR

Lung boundary detection in a CXR image can be thought
of as two types of processes: (1) rule-based edge detection,

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:563–576 565

where the edge belongs to the lung boundary; or (2) cast as a
binary classification (region detection), where the goal is to
label each pixel in the image as belonging to the lung region
or background. There are several challenges in segmenting
lung region in aCXR,which are depicted in Fig. 1, such as (1)
lung appearance variations due to age, gender, heart dimen-
sion, pathology, and genetic variations between patients; (2)
pixel intensity differencewithin the lung at hilum, apex, clav-
icle, and rib regions; (3) imaging inhomogeneities due to
various breath states; (4) patient position during scanning;
and (5) foreign objects such as implanted devices, buttons
on patient clothes. Lung boundary detection in PA CXR is
a well-studied problem. Earlier works have been reviewed
in [21];more recentmethods are compared in [11] on a public
dataset. However, these articles contain studies before 2001
and before 2006. In this study, we update an understand-
ing of the field and review the studies published in period
2006–2018. Shi et al. [22] classified the segmentation algo-
rithms into the following groups: (1) rule-based methods,
(2) pixel classification methods, (3) deformable-based meth-
ods, and (4) hybrid methods. We adopt the same classes in
this study. Although deep learning techniques can be listed
in pixel classification methods, we consider them as a sepa-
rate group due to their surpassing performance in computer
vision.

Rule-basedmethods

The algorithms in this group set sequential steps and heuris-
tic assumptions to locate the lung region. They are generally
used as initialization of more robust segmentation algo-
rithms. For example, in [23], researchers propose using
level sets which combine the global statistics, prior shape,
and edge information. The level set is initialized at a seed
mask which is computed using rule-based steps such as
thresholding, morphology, and connected component anal-
ysis. In [24], lung region is extracted using Euler number
method and refined through morphological operations. In
[25], before applying fuzzy C-means clustering algorithms,
sequential steps are applied such as Gaussian derivative fil-
tering, thresholding, border cleaning, noise removal, and
clavicle elimination. Several earlier approaches in this group
are mentioned in [11] and in [26]. The algorithms in this
group have an easier implementation. However, the output
boundaries obtained with this algorithms may not be optimal
due to sequential steps, e.g., applying morphological opera-
tions, resulting in cascaded accumulation of errors.

Pixel classification-basedmethods

In these algorithms, each pixel is labeled as a lung or a non-
lung pixel using a classifier (e.g., support vector machines,
neural networks) that is trained with example CXRs and

their corresponding lung masks. For example in [11], the
proposed method employs multiscale filter bank of Gaus-
sian derivatives and k-nearest neighbor (k-NN) classifier. The
limitation of the conventional classification approaches is the
lack ofmodel constraint to keep the boundary in the expected
lung shape. The classifier might fail at segmenting lung with
lesions or other pathology without a reference model due to
the difference in imaging characteristics in these areas.

Model-basedmethods

The algorithms in this group use both low level appearance
and shape priors. The earliest model-based algorithms are
Active Shape Model (ASM) [27] and Active Appearance
Model (AAM) [28] in which the shape is modeled with the
distribution of landmark points on training images and is fit-
ted to the test image by adjusting the distribution parameters.
They are applied to lung region detection in [11,29]. Despite
their broad applicability due to shape flexibility, ASM and
AAM do not perform well at widely varying shapes, require
proper initialization for a successful convergence, and out-
put boundary strongly rely on tuning the parameters. For lung
region segmentation, the algorithm can get trapped at local
minima due to strong rib cage and clavicle bone edges.

Several studies have been proposed as an extension of
ASM and AAM to cope with their disadvantages by incor-
porating prior shape statistics in objective functions [30–33].
For example, in [22] the lung boundary is characterized by
a scale-invariant feature transform, and ASM is constrained
by statistics collected from previous CXRs of same and other
patient’s CXRs. In [34], a shape particle filtering approach is
used to prevent getting trapped at a local minimum. In [35],
global edge and region forces are added as additional terms
to the objective function to reach the global minimum.

Hybridmethods

In these methods, the best parts of the schemes are combined
to produce a better approach to overcome the challenges of
lung boundary detection. For instance, in [11], deformable
models and pixel classification approach are combined with
majority voting, and a better boundary detection performance
is reported. In [36], an atlas-based approach is used in which
the model atlases are registered to the patient CXR using
the SIFT-flow algorithm [37] and combined with graph cut
boundary detection.

Deep learningmethods

With advances in GPU technology, computer vision systems
designed with deep neural networks trained on a massive
amount of data have been shown to produce more accurate
results than conventional approaches. In deep neural net-
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Fig. 1 a A healthy lung. b–f
Challenges for segmenting lung
regions: b large variance of
pixel values at apex due to
pathology (bilateral tuberculosis
with multiple cavitations), c a
cardiac pacemaker, right pleural
thickening, and strong breast
tissue on the clavicle region of
left lung, d variation of the lung
appearance due to varying heart
dimension, cardiac pacemaker
on the left, and strong breast
tissue on the clavicle regions, e
image noise in pediatric CXR
such as hands and patient’s
head; small lung area, f an
under-penetrated radiograph

works, input data is processed through deep convolutional
layers, which learn feature representation hierarchically,
starting from low-level to more abstract representations.
In particular, convolutional neural networks (CNNs) have
received considerable attention in image analysis problems,
since they preserve the spatial relationship between the image
pixels.

Despite the popularity of deep learning algorithms inmed-
ical imaging, only a few studies have been reported in the
literature for lung boundary detection in CXRs. A recent
study uses semantic segmentation approach [38] in which
the input is a CXR image and output is a map indicating
lung region probability of each pixel. In [39], researchers
proposed using fully convolutional networks (FCN) [40]
for segmenting lung, clavicle and heart regions. FCN is
an encoder-decoder architecture. The encoder models the
semantic information in the image; the decoder recovers the
location information which is lost during the pooling pro-
cess and produces a map contains lung region probability
of each pixel. FCN produces rough map due to its basic
decoder architecture. Therefore, researchers [39] applied
architectural modifications by adding a drop out layer after
every convolutional layer, by re-ordering the feature maps
and by replacing pooling layers with convolutional layers.
In [41] SegNet [42], performance is investigated for lung
region detection inCXRs. SegNet is a semantic segmentation
approach which has similar encoder-decoder architecture as
in FCN. However, each deconvolutional layer in the decoder
stage corresponds to a convolutional layer at the same level;
upsampling is performed based on the pooling indices in the

corresponding encoder stage which provides more accurate
segmentation map compared to FCN. In [43], researchers
proposed using generative adversarial network (GAN) [44]
for lung boundary detection in CXRs. GANs consist of two
networks: a generator and a discriminator. For segmentation
problem, the generator produces artificial lung masks using
manually delineated lung regions; the discriminator produces
probability if the mask is synthetic or it is from ground-truth
mask set. Based on the probability, the discriminator guides
the generator to generate masks more similar to the ground-
truth masks.

All proposed DNN-based approaches perform as good as
inter-observer performance for lung regions detection. The
advantages and disadvantages of algorithms (as in groups)
are summarized in Table 1. Quantitative comparisons of lung
boundary detection algorithms are given in Table 2.

Lung boundary detection in lateral view

15% of the lung is not clearly visible in PA view because of
the cardiovascular structure and the diaphragm [1]. There-
fore, radiologists include lateral chest radiograph, when
relevant, in their decision-making process [54]. Although
they are routinely used in clinical decision-making, few auto-
mated schemes are reported in the literature that include
lung region detection in lateral-view CXRs. One of the ear-
lier algorithms which uses both frontal and lateral views
is in [55,56] for automatically assessing the costophrenic
angle blunting. CXRs are segmented with iterative global
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Table 1 Summary of
advantages and disadvantages of
the approaches for lung
boundary detection algorithms
in CXR images

Algorithm Advantages Disadvantages

Rule-Based Methods Easy to implement Produce rough solutions

[23–25] Sets sequential steps Generally used as initialization of
robust approaches

Lower computational complexity Poor generalization capability

Pixel classification Based on low-level features

[11] Lack of shape constraints

Deformable Models Provides shape flexibility Do not perform well at widely
varying shapes

[30–33] Combines both low-level features
and general shape of the lung

Require proper initialization for a
successful converge

[22,34,35] The possibility of trapping at local
minimum due to bone intensity

Hybrid Methods Best part of the schemes are
combined

Might require long training process

[11,36,45] Similar accuracy as in
inter-observer accuracy

Deep Learning Methods Similar accuracy as in
inter-observer performance

Long training process

[39,41,43] Needs large set of annotated data

Higher computational complexity

Table 2 Quantitative comparison of lung boundary detection algorithms

Authors, citation Methology Dataset Ω DSC ACD

Ginneken et al. [11] Human observer JSRT 0.946± 0.018 NA 1.64± 0.69

Saad et al. [24] Rule-based CXR 0.809 NA NA

Annangi et al. [23] Deformable CXR 0.880± 0.07 NA NA

Shi et al. [22] Deformable JSRT 0.920± 0.031 NA 1.78± 0.78

Coppini et al. [45] Classification JRST 0.927± 0.033 0.95± 0.037 1.730± 0.870

Seghers et al. [46]1 Deformable JRST 0.939± 0.031 NA 1.49± 0.63

Candemir et al. [36] Hybrid JSRT 0.954± 0.015 0.967± 0.008 1.321± 0.316

Candemir et al. [36] Hybrid NLM 0.941± 0.034 0.960± 0.018 1.599± 0.742

Dawoud [30] Deformable JRST 0.940± 0.053 NA 2.460± 2.060

Novikov et al. [39] Deep learning JRST 0.950 0.974 NA

Shao et al. [26] Hybrid JRST 0.946± 0.019 0.972± 0.010 1.699± 0.762

Kaur et al. [47] Deep Learning JSRT 0.934 NA NA

Kalinovsky et al. [41] Deep Learning JSRT NA 0.962± 0.008 NA

Li et al. [48] Deformable JSRT 0.931± 0.018 0.964± 0.010 NA

Lee et al. [49] Deformable JSRT2 0.854± 0.049 NA NA

Wu et al. [50] Deformable JSRT2 0.952± 0.019 NA NA

Ibragimov et al. [51] Classification JSRT 0.953± 0.02 NA 1.43± 0.85

Yang et al. [52] Classification JSRT 0.952± 0.018 0.975± 0.01 1.37± 0.67

Hwang et al. [53] Deep learning JSRT 0.961± 0.015 0.980± 0.008 1.237± 0.702

1Right lung scores, 2Subset of JSRT
Ω Jaccard similarity coefficient, DSC dice similarity coefficient, ACD average contour distance, (See “Evaluation of lung region detection algo-
rithms” section for metric descriptions), CXR non-public dataset. NA the respective metric is not reported in the publication

and local thresholding followed by polynomial curve fitting
for boundary smoothing. In [57], researchers developed an
automated computer-basedmethod for the calculationof total

lung capacity by determining the pulmonary contours from
PA and lateral CXRs. The lung borders are computed using
lung shape profiles and thresholding. The edges are then com-
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pleted using curve fitting techniques. A recent effort [45]
was aimed at the automated computation of emphysema uti-
lizing the shape of lung fields in both frontal and lateral
chest radiographs. The lung boundary is modeled as a closed
fuzzy curve and estimated by self-organizing networks [58]
(Fig. 2).

Lungs with deformed appearance

The lung boundary detection in PA chest radiograph is a
well-explored problem. However, most of the algorithms
in the literature are evaluated on CXRs with “normal”
lung anatomy appearance, i.e., without structural deformi-
ties. A reliable computer-aided diagnosis (CAD) system
would need to support a greater variety of lung shapes,
deformed/occluded due to disease, accidents, or postsurgical
alterations, e.g., pneumonectomy or lobectomy. Pathology
and anatomical alterations impact the intensity distribution
in the lung region, deform the lung anatomy shape, or result
in an ambiguous lung silhouette. In addition to textural and
shape deformations in lung appearance, the regions outside
the lungmight appear like part of the lung (e.g., stomach gas).
As in Fig. 3, the algorithm’s decision [36] for lung boundary
(red contour) is significantly different from the expected lung
anatomy (green contour delineated by an expert). The miss-
ing parts may contain important clues about the abnormality
and could be useful for algorithm’s decision [5]. Therefore,
automated lung boundary detection algorithms that are robust
to cardiopulmonary deformities in thoracic cavity remains a
challenging task.

Most of the algorithms in the literature were developed
and evaluated on the Japanese Society of Radiological Tech-
nology (JSRT) dataset [60] (c.f. “Publicly available CXR
datasets” section) since the dataset and its reference bound-
aries [11] were the only well-known publicly available set
until 2015. However, JSRT dataset is curated for develop-
ing lung nodule detection algorithms; the radiographs do not
contain abnormalities which cause lung shape and texture
deformation. Recently, a new CXR dataset [59] and their
lung boundaries [36] were made publicly available by the
U.S. National Library of Medicine (NLM). This set contains
deformed lung appearance (both shape and tissue) due to
the manifestations of tuberculosis (c.f. “DataSets” section).
There are only a few studies that have evaluated the lung
boundary detection algorithms on deformed lungs. In [36],
a model-based algorithm is tested on NLM’s Montgomery
dataset. However, the performance of this approach relies
on the patient CXR being well-modeled by the training lung
masks. Therefore, the algorithm might fail at large deformed
lung shapes, if a similar mask is not present in the train-
ing set. In [33], researchers proposed an ASM-based method
in which the shape prior is incorporated with a selective

thresholding algorithm. The algorithm is initialized at salient
points (spinal cord and ribcage) which are robust to pul-
monary abnormalities. The method’s accuracy is evaluated
on portable chest radiographs with deformed lung appear-
ance.

External objects

In addition to intra-thoracic pathology, lungs appearance
is often distorted by external objects that may be present
due to poor quality assurance, e.g., jewelry, buttons [61,62],
body piercings, or external elements due to patient age,
e.g., cardiac pacemaker, tubes [61]. Examples of some of
these distortions are shown in Fig. 1c–e. Such a distorted
appearance can distract the algorithm and lead to inaccu-
rate segmentation. Although there are articles recognize the
importance of such distortions [61,63,64], to our knowledge,
there is not any methodical inclusion of these challenges into
a lung segmentation algorithm that is robust to such real-
world image artifacts.

Subject positioning

A significant problem in developing robust lung segmen-
tation algorithms is patient positioning. Most algorithms
found in the literature assume that the patient is upright
with appropriately inflated lungs and properly positioned
without rotation. However, real-world CXR images, partic-
ularly those from hospital settings or of physically disabled
subjects, have these problems. Subject positioning lead to
deformed lung appearance, thus adversely impact the lung
segmentation stage and subsequent decision-support algo-
rithms. Some articles in the literature [25,63,64] attempt to
correct planar rotation, which is important for image analy-
sis, but we do not find articles that detect patient rotation to
aid in improved imaging quality assurance.

Pediatric chest radiography

According to the 2015 RAD-AID Conference on Inter-
national Radiology for Developing Countries report [7],
approximately 3 to 4 billion people in the world do not
have easy access to radiology services; among them, approxi-
mately 500million to 1 billion are children. Therefore, RAD-
AID and International Day of Radiology [65], an annual
event supported by the European Society of Radiology,
the American College of Radiology, and the Radiological
Society of North America, have started to emphasize the
importance of pediatric radiology [7]. Chest radiography is
a valuable diagnostic tool in the pediatric population, and it
is a key diagnostic tool in TB detection for pediatric patients
in low-burden countries, due to the lower sensitivity of TB
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Fig. 2 Example lateral-view
CXRs

Fig. 3 Example deformed lungs from NLM-Montgomery dataset [59].
Green contour is expected lung anatomydelineated by a radiologist [36].
Red contour is the algorithm’s decision as lung boundary. a, bThe algo-
rithm could not detect the lung boundary correctly due to opacity caused

by fluid in the lung space. c The left diaphragm is elevated, and there
is a large air-distended colon loop below the lung which is incorrectly
combinedwith the lobe into a single region by the algorithm. dDetected
lung boundary includes the air cavity below left lung

culture test (current gold standard for active TB detection)
in pediatrics [66]. To our knowledge, only a few computer-
ized methods have been developed for pediatric CXRs. In
[19,67], researchers propose a CAD system for pulmonary
pathology in pediatric CXRs and use ASM [27] to seg-
ment the lung regions. ASM requires proper initialization
for a successful convergence (c.f. “Model-based methods”
section). Therefore, researchers initialize the algorithm by
manually marking the distinct anatomical locations in each
lung field. In [20], researchers characterized the shape differ-
ences between agegroups and enhanced their fully automated
model-based approach [36] toward pediatric lung boundary
detection by building age-based lung training models. One
of the recent efforts utilized a deep learning approach to esti-
mate the statistical shape model parameters and applied the
algorithm for lung region detection in pediatric CXRs [68].

Pediatric chest radiography has distinct challenges com-
pared to adult chest radiography. The lung appearance
between age groups has visible differences due to pediatric
development stages [18,19] (Fig. 4). In an infant, lungs are
smaller, have a triangular shape, and the cardiac silhouette
is relatively larger such that the horizontal diameter of the
heartmay approach60%of thoracic horizontal diameter [18].
Besides, pediatric CXRs have distinct background noise such
that high frequencyofmother’s holdinghands, patient’s head,

and legs (Figs. 1e, 4a). Due to the visible appearance differ-
ence between adult and pediatric CXRs alongwith additional
challenges in pediatric chest radiography, lung boundary
detection algorithms developed on adult lungs may not per-
form well on pediatric cases [20].

Radiographic measures: radiological signs
for pulmonary abnormalities

Some lung pathologies such as consolidation, atelectasis,
and pleural effusion are clearly visible on CXRs due to
appearance deformation within the lung region. The devi-
ation in lung silhouette could be used as visual signs of
abnormality and can be an additional feature for pathology
detection/diagnosis. In this section, we survey studies which
make a diagnostic decision from the radiographic measures
extracted from lung boundaries.

One of the structural information extracted from lung
boundary is CXR shape profiles which is the intensity value
distribution in horizontal and vertical directions, obtained
by summing up pixel intensities in each column and row.
Fig. 5 illustrates the horizontal lung shape profiles of example
CXRs. Despite their simplicity, lung shape profiles pro-
vide strong shape features. For example, pleural effusion,
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Fig. 4 Example pediatric CXRs
and visible differences between
lung appearance due to pediatric
development stages

which is associated with congestive heart failure and TB, is a
whitening area on lung caused by radiological opacity due to
accumulated fluid in the pleural cavity [2]. Figure 5b, c shows
example CXRs with pleural effusion and their correspond-
ing lung shape profiles. Note the histogram’s dissimilarity
between healthy and non-healthy lungs. Besides, lung shape
profiles are used as a rough lung region detection scheme
as in [57,69] with peak analysis of profile histograms and
additional feature for frontal/lateral CXR classification [70].

Several other shape features that can be extracted from
lung boundaries such as size, orientation, eccentricity, extent,
and centroid coordinates. In [5], researchers extract low-level
shape features and combine them with texture features to
increase the TB detection performance. The area under the
curve (ROC) in detecting TB increased by 2.4% with shape
features addition. In [71], the method computed lung region
symmetry features in addition to low-level shape features;
and measured their contribution to the TB detection.

One of the structural abnormalities that can be observed in
CXRs is emphysema, which is the hyperinflation of the alve-
oli, affects the lung silhouette appearance [45]. In [45,72,73],
researchers utilized geometrical features extracted from lung
boundaries to automatically detect emphysema. The other
structural abnormality is cardiomegaly which is a medi-
cal condition caused by high blood pressure or coronary
artery disease. The literature has several studieswhich extract
radiographic indexes from lung boundary and use them for
early detection of heart diseases [11,22,31,74]. The clini-
cally used measurement is cardiothoracic ratio (CTR) which
is defined as the ratio between the maximum transverse car-
diac diameter and the maximum thoracic diameter measured
between the inner margins of the ribs [75] (Fig. 6a). The
other radiographic indexes suggested as an alternative to
CTR are 2D-CTR [76] and CTAR [69]. 2D-CTR is the ratio
between the pixel counts of the cardiac outline and whole
thorax (Fig. 6b), and CTAR [69] is the ratio of the area of
heart region to the area of lung region (Fig. 6c). Accurate
lung and heart boundary information are critically important
in computing radiographic indexes. In studies [11,22,31],
CTR computation is proposed as a clinical application of
anatomical boundary detection methods. The cardiomegaly

detection performance of radiographic indexes in the liter-
ature are compared in [74] on a publicly available dataset.
In [77], performance of radiographic indexes are compared
with data-driven approaches on the same public dataset.

Evaluation of lung region detection
algorithms

There are several metrics to evaluate the performance of lung
boundary detection algorithms. Roughly, metrics are divided
into two classes: (1) overlap-based metrics and (2) distance-
based metrics [78].

Overlap metrics quantify the overlapping area between
the algorithm’s segmentation and reference boundaries. The
most widely used one is Jaccard similarity coefficient,

Ω = |TP|
|FP| + |TP| + |FN| (1)

where TP (true positives) represents correctly classified pix-
els, FP (false positives) represents background pixels that are
classified as lung, and FN (false negatives) represents lung
pixels that are classified as background. The other overlap-
ping measure is Dice similarity coefficient [79] formulated
as follows,

DSC = 2|TP|
2|TP| + |FN| + |FP| . (2)

Both measures have a value between 0 and 1; 1 indicates
fully overlapped segmentation.

Overlapping metrics are based on correctly or incorrectly
classified pixels. The classification value of each pixel has the
same impact to the computation regardless of their distance
to the reference border [78]. Therefore, overlapping met-
rics alone are not sufficient to evaluate the region detection
algorithm’s performance. Researchers use distance-based
measures such as average contour distance (ACD) which
quantifies how far apart the reference lung boundary and
algorithm’s estimated boundary are from each other. Let ai

and b j are the points on the algorithm’s detected boundary S
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Fig. 5 Illustration of lung shape profiles computed by summing up pixels in each column. a A healthy lung. b Pleural effusion on the right lung
due to tuberculosis. c Pleural effusion on the left lung. Note: Circled area in chest X-rays and histogram alteration in pathological regions

Fig. 6 Illustration of
radiographic index computation
using lung and heart boundaries
on CXR

and reference boundary R, respectively. The minimum dis-
tance of point ai on S to the reference boundary R is defined
as follows,

d(ai , R) = min j ||b j − ai ||. (3)

ACD measures the minimum distance of each point on the
boundary S to the contour R. The distances are averaged
over all points of boundary S. To make the similarity mea-
sure symmetric, the computation is repeated from reference
contour to the algorithm’s estimated contour. ACD is formu-
lated as follows,

ACD = 1

2

(∑
i d(ai , R)

|{ai }| +
∑

j d(b j , S)

|{b j }|

)
(4)

where | · | is the cardinality of the set.

DataSets

Curating datasets

One of the main challenges in medical image analysis is
access to suitable datasets. It is usually difficult to avail of
appropriately sized de-identified data that can be used for
algorithm development. Further, curated datasets are gener-
ally clean and may not reflect normal variations in image
acquisition characteristics (e.g., device, subject positioning,
exposure, resolution), appropriate distribution of diseases
that reflect their prevalence, adequate distribution among var-
ious age groups, or reflect the gender diversity. Further, the
images are modified such that they are windowed or leveled
for human visual analysis. They are rarely accompanied with
full clinical reports or at least pertinent sections of the reports
such as the radiologists’ impressions and readings. Finally,
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image datasets are often not in the original DICOM format
as acquired at the clinical sites. It is desirable that datasets
be available that address the above and include expert delin-
eation of important organs and zonal markup data indicating
the location of disease. All of these characteristics are par-
tially addressed in the datasets identified below, but each
lacks some key element that could hamper advances in the
field.

Expert delineation of reference boundaries

In order to train and evaluate the system performance of auto-
mated lung boundary detection algorithms, reference lung
boundaries are needed. However, expert delineation which
is a task that is unnatural for domain experts, i.e., radiolo-
gists, is cumbersome, slow, and prone-to-error. User-friendly
interactive annotation toolboxes such as Firefly [80,81] or
LabelMe [82] may ease the delineation and speed up the
process. For instance, in [36], reference lung boundaries are
manually delineated by an expert by clicking points along
the lung border (by considering the lung anatomy) through
Firefly which is web-based interactive labeling tool [80,81].

Although reference boundaries are used for training and
evaluation, expert delineation introduces high inter- and
intra-observer variabilities because of the subjective nature
of the delineation process [78]. For instance, in study [5],
two radiologists delineate the lung boundaries on the same
CXRs. The inter-observer agreement is measured from the
delineations. For normal lungs, inter-observer agreement is
(μ, σ ) = (86%, 13.6). However, for deformed lungs, the
inter-observer agreement is (μ, σ ) = (73%, 18.1), slightly
lower than lung agreement for normal cases, mainly because
of the invisible border occurred due to pathology. With the
standardization of annotation guidelines and with the help
of the interactive tools, the subjectivity of the delineation
process may decrease.

Publicly available CXR datasets

To our knowledge, there are few publicly available CXR
datasets along with expert annotated lung boundaries and
other characteristics identified above. Following are the list
of these datasets.

JSRT dataset [60] is compiled by the Japanese Society of
Radiological Technology (JSRT) which contains 247 CXRs
(154 CXRs with lung nodules and 93 CXRs without lung
nodules). All CXRs have a size of 2048 × 2048 pixels, the
spatial resolution of 0.175 mm/pixel and 12-bit grayscale
color depth. The CXRs are publicly available at [83]. In
addition, patient age, gender, diagnosis, and the location of
the anomalies are provided as text files. The reference lung
boundaries (along with heart and clavicle boundaries) are
available at [11,84]. This dataset is collected for developing

lung nodule detection algorithms. Therefore the only abnor-
mality in this set is lung nodules which do not cause any
shape and texture deformations on the lungs.

NLM Sets [59]: The U.S. National Library of Medicine
has made two CXR datasets available: the Montgomery and
Shenzhen datasets. The Montgomery set contains 138 frontal
CXRs from Montgomery County’s Tuberculosis screening
program. Eighty of the X-rays are normal, and 58 of X-rays
have manifestations of TB. The size of the X-rays is either
4020 × 4892 or 4892 × 4020 with 12 bit grayscale color
depth. The reference lung regions of CXRs are manually
delineated by an expert radiologist [36]. The Shenzhen set is
collected in collaboration with Shenzhen No.3 People’s Hos-
pital, Guangdong Medical College, Shenzhen, China. The
set contains 662 CXRs. Three hundred twenty-six of X-rays
belong to normal cases, and 336 cases have manifestations
of TB. CXR sizes vary but approximately 3K × 3K. The
datasets are publicly available at [85].

Belarus Set [86] is collected for a drug resistance study
initiated by the National Institute of Allergy and Infectious
Diseases, the United Institute of Informatics Problems of the
National Academy of Sciences of Belarus, and the Repub-
lican Research and Practical Center for Pulmonology and
Tuberculosis, Ministry of Health, Republic of Belarus.Much
of the data collected for this study is publicly available [86].
The set contains both CXRs and CTs of 169 patients. Chest
radiographs were taken using the Kodak Point-of-Care 260
system with 2248×2248 pixel resolution. Reference bound-
aries of the lung regions are available for each CXR.

The literature has several other publicly available CXR
databases such asNIH-CXRdataset [87], NLMIndianaCXR
collection [88], and New Delhi dataset [89]. However, there
are no reference lung boundaries for the CXRs in these sets.

Future challenges

With improved imaging using CT or MRI, the question is
often raised if CXRs remain relevant today for diagnosis?
CXR analysis has been known to be a less desirable diagnos-
tic imaging technique whether it is by radiologists or by a
machine [90] due to its poor diagnostic sensitivity and speci-
ficity. Yet, it remains the most common diagnostic imaging
technique for cardiothoracic and pulmonary disorders [1].
That is mainly because of lower infrastructure setup, opera-
tional costs, and radiation dose compared to other imaging
techniques [1,7]. The use ofCXRs continues unabated partic-
ularly in lower resource settings which often face challenges
of highly infectious diseases. Low-resource settings face
not only shortages in imaging capability but also radiolog-
ical expertise. For example, the World Health Organization
observes that in Malawi in sub-Saharan Africa, a country
heavily burdened byHIVandTB, there is limited radiologists
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in public service [91]. In such settings, machine learning-
based screening and diagnostic tools on CXRs have the
potential of making a significant public health impact. Fur-
ther, CXR remains a commonmodality for pediatric imaging
with referrals forCTs only ifwarranted and if available. In the
light of these observations, we can assume that future work
will continue to include automatedCXRanalysis thoughwith
increasing interest in high quality 3D CT data.

Conclusions

Detecting lung lobes is a critical processing stage in the auto-
mated analysis of CXRs for pulmonary disorders. Accurate
localization of the lung region and processing only the region
of interest positively impacts the overall performance of the
diagnosis/detection systems, augment its accuracy and effi-
ciency. In this study, we provided an overview of the recent
literature on lung boundary detection. We believe that such
a broad review of lung region detection algorithms would
be useful for researchers working in the field of automated
detection/diagnosis algorithms for lung/heart pathologies in
CXRs. Following are our conclusions:

– We first summarized lung boundary detection algorithms
developed for posterior–anterior view CXRs. Due to the
rich literature, we classified algorithms as rule-based,
pixel classification-based,model-based, hybrid, and deep
learning-based algorithms. Advantages and disadvan-
tages of each class are listed in Table 1. We conclude
that hybrid methods and deep learning-based methods
(1) surpass the algorithms in other categories, (2) have
segmentation performance as good as inter-observer seg-
mentation performance, however, and (3) have long
training process and high computational complexity.

– Based on the reviewed articles, we can assert that
most of the algorithms in the literature are evaluated
on posterior–anterior view adult CXRs with “normal”
lung anatomy appearance, without considering ambigu-
ous lung silhouette, pathological deformities, anatomical
alterations, patient’s development stage, and gross back-
ground noises such as holding hands, patient’s head, and
legs in CXR. However, a reliable CAD system would
need to support a greater variety of lung shapes, deformed
due to disease or postsurgical alterations.We can suggest
researchers should focus on developing algorithms that
are robust to pathological deformities, shape irregulari-
ties, CXR orientation, CXR projection view, and gross
background noise in the thoracic cavity.

– The other challenging area that researchers could focus
on is pediatric CXRs. The lung appearance in pedi-
atrics, especially in infant cases, deviates from adult
lung appearance due to the pediatric development stage.

Therefore, a lung boundary detection algorithms devel-
oped on adult lungs may not accurately perform on
pediatric cases. Moreover, pediatric CXRs are noisier
than adult CXRs due to holding hands, patient’s head
and legs, and rotation, which increases the importance
of localizing the ROI and operating within it. We can
conclude that algorithms which are developed/tested on
adult lungs should incorporate additional constraints in
their algorithms suitable to pediatric CXRs characteris-
tics.

– Finally, we identify challenges in dataset curation and
expert delineation process, and we listed publicly avail-
able CXR datasets. We can state that one of the main
challenges in medical image analysis is accessing suit-
able datasets. We have listed benchmark CXR datasets to
develop and compare lung boundary algorithms. How-
ever, due to the necessity of expert delineation and its
cumbersome process, the number of CXR images with
reference (radiologist delineated) boundaries are limited.
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