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Abstract There are two fundamental questions in 
developmental biology. How does a single fertilized cell 
give rise to a whole body? and how does this body later 
produce progeny? Synchronization of these embryonic 
and postembryonic developments ensures continuity 
of life from one generation to the next. An enormous 
amount of work has been done to unravel the molecular 
mechanisms behind these processes, but more recently, 
modern developmental biology has been expanded to 
study development in wider contexts, including regen-
eration, environment, disease, and even aging. How-
ever, we have just started to understand how the mecha-
nisms that govern development also regulate aging. 
This review discusses examples of signaling pathways 
involved in development to elucidate how their regu-
lation influences healthspan and lifespan. Therefore, a 
better knowledge of developmental signaling pathways 
stresses the possibility of using them as innovative bio-
markers and targets for aging and age-related diseases.
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Introduction

Aging is a complex, multifaceted process character-
ized by functional decline and increasing morbidity 
that eventually results in the death of an organism. 
Aging then induces many physiological changes 
accompanied by loss of homeostasis in molecular 
and cellular processes, affecting tissues and organs. 
This progressive failure during aging not only occurs 
in response to endogenous alterations, but environ-
mental conditions also induce damage accumulation 
and physiological deterioration, resulting in suscep-
tibility to various diseases. Throughout our life, we 
are exposed to several changing conditions that ulti-
mately impact the rate of aging. A sensitive stage that 
significantly impacts our lives occurs during develop-
ment. Therefore, research into developmental mecha-
nisms may reveal the origins and potential treatments 
to prevent disease later in life.

Several theories have been proposed to explain the 
aging process from the molecular, cellular, organ, and 
organismal levels [1], and some of them link develop-
mental processes with aging. One of the most widely 
cited evolutionary theories of aging, the antagonistic 
pleiotropy theory by Williams in 1957 [2] proposes 
that animals possess genes that increase fitness early 
in life but diminish it in later life. Those genes have 
multiple effects (pleiotropy); in some cases, one effect 
may be good for the animal while another is detrimen-
tal (antagonistic). These genes can then be favored by 
natural selection, even if they accelerate the aging 

C. G. Silva-García (*) 
Department of Molecular Biology, Cell Biology, 
and Biochemistry, Brown University, Providence, RI, USA
e-mail: gio@brown.edu

C. G. Silva-García 
Center on the Biology of Aging, Brown University, 
Providence, RI, USA

/ Published online: 9 May 2023

GeroScience (2023) 45:2145–2159

http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-023-00809-2&domain=pdf
http://orcid.org/0000-0002-0434-7787


GeroScience (2023) 45:2145–2159

1 3
Vol:. (1234567890)

process, because the selection is stronger early in life. 
Furthermore, multiple signaling pathways are acti-
vated in the early stages of life to regulate organismal 
growth and development. However, if these pathways 
remain inappropriately higher than the optimal activ-
ity (hyper-function), they may cause aging and the 
appearance of age-related diseases; this is the hyper-
function theory of aging proposed by Blagosklonny 
[3]. The developmental theory of aging proposed by 
Dilman suggests that mechanisms during ontogenesis 
provide relativity stability during the development 
stage but disturb homeostasis when the development 
and growth of the organism have ceased [4]. Another 
theory, the developmental origins of health and dis-
ease theory (Langley-Evans), proposes that environ-
mental exposures during early life can permanently 
influence health and vulnerability to disease [5]. 
Considering these theories, suppose development and 
aging are part of the same molecular mechanisms—
or at least very intersected. In that case, it is logical 
that adult-onset disorders, such as obesity, diabetes, 
cardiovascular disease, neurodegeneration, and can-
cer, may be linked to early life events. Therefore, life 
nutritional status, exposures to environmental chemi-
cals, drugs, infections, lifestyles, or stress in parents 
will impact the onset of these disorders in progeny, 
accelerating the aging process.

The field of geroscience seeks to uncover the fun-
damental genetic and molecular mechanisms that 
drive the aging process to identify pathways and 

develop preventative approaches for age-related dis-
eases. Therefore, studying developmental signaling 
pathways in aging (Devo-Aging approaches) will con-
tribute to understanding how basic mechanisms drive 
the aging process. Rather than focusing on theories of 
development and aging—an exciting field—the pur-
pose here is to provide insights into basic develop-
mental mechanisms that regulate aging and lifespan 
determination. Consequently, this review provides 
an overview of the major developmental signaling 
pathways, explaining their molecular basis and what 
is known about their role in aging. The majority of 
signaling pathways can be reduced to a simplistic 
route: reception, transduction, and response (Table 1). 
Transmembrane receptors or other non-membrane 
sensors detect ligands, metabolites, or nutrients that 
trigger the signal cascade. Once a receptor receives a 
signal, it usually undergoes a conformational change, 
which in turn launches a series of biochemical reac-
tions and protein–protein interactions within the cell, 
the transduction phase. In the end,  the cell responds 
in a number of ways depending on the signal 
received, including changes in metabolism and altera-
tions in cell shape or movement, but most converge in 
regulating gene expression at the transcriptional level 
[18]. This review examines how developmental sign-
aling pathways responsible for generating an entire 
organism can regulate health and lifespan. It also dis-
cusses emerging interactions of these pathways with 
the environment and epigenetic modifications that 

Table 1  Components of understudied developmental pathways that regulate lifespan
Cascade FGF Notch TGF- Wnt Hippo Hedgehog

Reception

FGF21(M), 

[6, 7],

KIN-9(Ce)

[8]

GLP-

1(Ce), 

[9],

Notch(D) 

[10]

DAF-

1/4/7(Ce) 

[11],

Dawdle(D) 

[12]

Wnt1/3a(M) 

[13, 14], 

MOM-

2(Ce), LIN-

44(Ce) [15]

CST-

1(Ce), 

CST-

1(Ce) 

[16]

?

Transduction ? n/a ? ? ? ?

Response ? ?

DAF-

8/14(Ce), 

DAF-

3/5(Ce) 

[11], 

?

YAP-

1(Ce), 

YAP-

1(Ce) 

[17]

?

dSmad2(D) 

[12]

↑, increase, active, or overexpression; ↓, mutant or knockdown; Blue, promote longevity; Green, shorten lifespan or accelerate aging; 
M, mammals; Ce, C. elegans; D, Drosophila; n/a, not applicable
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ultimately regulate gene expression. Several com-
ponents of these developmental signal cascades are 
conserved from worms to humans. Since identifying 
conserved gene pathways involved in regulating lifes-
pan and life history is a central goal of aging research, 
studying these developmental pathways in the context 
of aging will therefore have direct implications for 
human health.

IIS and mTOR, master regulators of development 
and aging

One of the classic pathways that connect aging and 
development is the mechanistic target of rapamy-
cin (mTOR). Two functionally distinct regulatory 
complexes involving mTOR have been identified, 
mTORC1 and mTORC2 [19]. The mTOR complexes 
regulate essential cellular processes, including ribo-
some biogenesis, protein synthesis, autophagy, gene 
transcription, mRNA turnover, vesicular trafficking, 
and cytoskeletal organization [20, 21]. In early mouse 
embryos, homozygous animals for mTOR deletion 
die at around 7 days-post-coitum due to impaired cell 
proliferation and gastrulation [22]. The mTOR gene 
is also necessary for the normal growth of worms and 
flies [23–25]. However, the downregulation, mainly 
in adulthood, of mTOR complex components extends 
lifespan across different species [26–32]. Hence, it is 
exciting to understand how mTOR signaling differs 
in developmental and post-developmental periods in 
metazoans.

Inhibition of the mTORC1 pathway through 
genetic depletion of mTOR or the regulatory-asso-
ciated protein of mTOR (raptor) has been shown to 
extend lifespan in a variety of species, including 
yeast, worms, flies, and mammals [29, 31–34]. In 
addition to genetic approaches, lifespan extension 
can also be achieved by inhibiting mTOR regulators 
or mTOR targets as well as by pharmacological inter-
ventions. Since mTOR complexes modulate cellular 
signals in response to environmental changes in insu-
lin/growth factors, amino acids, energy, and oxygen, 
many mTOR upstream and downstream components 
have been described [35]. However, we know less 
about how exactly these mTOR components partici-
pate in the biology of aging. For instance, nutrients 
regulate mTORC1 by activating the Rag GTPases 
RagaA and RagaC, which recruit mTORC1 to the 

lysosomal surface, an essential step for its kinase 
activation by growth factors such as the insulin/
IGF1-PI3K-Akt signaling and the ERK1/2 MAPK 
cascade [36–41]. Although RagA is indispensable for 
embryonic development in mice [42], C. elegans with 
a null mutation raga-1 (ortholog of RagA) are long-
lived via maintaining mitochondrial fusion [43, 44]. 
Although null raga-1 worms have impaired growth 
and reproduction [43, 44], recent work shows that 
neuronal degradation of RAGA-1 does not impair 
growth, slow development, or decrease reproductive 
capacity but extends lifespan [45]. Dietary interven-
tions have been extensively studied as extenders of 
lifespan and delayers of age-associated pathologies 
[46]. Therefore, upstream regulators of the mTOR 
signaling pathway need special attention here to study 
mechanisms of nutrient sensing, which will provide 
important insights into biological aging. mTOR tar-
gets have also been associated with aging and longev-
ity. Inactivation of the ribosomal S6 kinase 1 (S6K1), 
a downstream target of mTORC1, leads to increased 
lifespan in yeast, worms, flies, and mammals [29, 
30, 43, 47]. Although the molecular mechanism that 
governs this S6K1-dependent phenotype is not well 
defined, perhaps S6K1 extends lifespan by reducing 
the production of misfolded proteins due to its role in 
translation.

Pioneering work shows that pharmacological inhibi-
tion of mTOR signaling by methionine sulfoximine or 
rapamycin increases yeast chronological lifespan [34]. 
After this discovery, other researchers around the world 
have shown that rapamycin also extends the lifespan in 
mice, Drosophila, and C. elegans [48–50]. Initially, it 
was demonstrated that rapamycin increases mouse lifes-
pan when administered late in life [48], but recent evi-
dence indicates that administration of rapamycin during 
development is sufficient to extend lifespan and health-
span in mice and even in other distal species such as the 
planktonic crustacean Daphnia magna and Drosophila 
[51, 52]. These data suggest that early-life rapamycin 
treatment operates through evolutionarily conserved lon-
gevity mechanisms and opens the door to exploring how 
pharmacological interventions during a specific time 
window in early life or development affect later life of 
the animal, especially susceptibility to diseases associ-
ated with age. Due to the broad potential of the mTOR, 
studying this signaling pathway in metabolism, cancer, 
and aging has been attractive to many research groups 
recently [26, 53–55]. However, mTOR signaling plays 
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an essential role during embryonic development by reg-
ulating growth and proliferation [56, 57]. Although the 
data indicate that the mTOR signaling controls aging 
through conserved evolutionary mechanisms, regulation 
of embryonic development should substantially differ 
between species. For instance, embryonic cell divisions 
occur in the complete absence of growth in C. elegans 
[58]. Therefore, understanding subtle variations of 
embryonic mTOR complexes will help to discover new 
unidentified components and regulators in the pathway, 
which could be targeted in a wide range of postembry-
onic mTOR-related disorders and aging.

Along with the mTOR pathway, insulin and insu-
lin-like growth factor (IGF) signaling (IIS) is a mas-
ter regulator of growth, metabolism, and aging. The 
IIS system is a complex network of ligands, recep-
tors, and signaling pathways. IIS activates mTOR 
via class I phosphatidylinositol 3-kinase (PI3K)/Akt, 
promoting cell growth by inducing protein, lipid, and 
nucleotide synthesis and inhibiting autophagy [54, 55, 
59]. The IIS pathway is considered to be important in 
growth and development in addition to its central role 
in metabolic homeostasis. Mice mutants in the IGF 
type 1 receptor (Igf1r) die at birth [60], and loss of 
function mutations in the inr gene in Drosophila also 
lead to embryonic lethality [61]. However, C. elegans 
mutants in the daf-2 gene (homolog of IGF-1R) pass 
the embryo stage but show a larval arrest phenotype 
[62]. These data suggest a difference in metabolic 
contribution during development in different organ-
isms. Metabolism is regulated across various spatial 
and temporal scales. Thus, parental metabolic pertur-
bations that damage several tissues, such as blood ves-
sels, nerves, muscles, and physiology in general, will 
have repercussions on the embryo’s development and 
can be responsible for future metabolic disorders, espe-
cially in those species like us with gestation. Although 
IIS is critical to maintaining homeostasis and prevent-
ing metabolic diseases in adulthood, this pathway has 
been the keystone of the aging field. The discovery 
of genetic manipulation of aging by mutations in two 
components in the IIS pathway in C. elegans, age-1 
(orthologue of PI3K) and daf-2 [63, 64], led to tre-
mendous work to test conservation in other organisms 
[60, 65–69]. However, we have just started to define its 
spatiotemporal contribution to longevity. In C. elegans, 
intestine-specific removal or end-of-life targeted degra-
dation of DAF-2 doubles the lifespan [70, 71]. These 
data indicate that when and where the IIS signaling 

pathway is regulated determines its contribution to 
aging and point out to define the spatiotemporal contri-
bution of other developmental pathways in aging.

In addition to mTOR, the IIS pathway is highly 
linked to the growth hormone (GH) signaling pathway 
in mammals, promoting postnatal longitudinal growth. 
GH stimulates IGF-1 production, and the GH pathway 
regulates lipid, carbohydrate, nitrogen, and mineral 
metabolism. It increases lipolysis in adipocytes, decreas-
ing body fat; it increases amino acid uptake and nitro-
gen retention in muscles and maintains muscle mass and 
strength; it also impacts multiple systems such as car-
diovascular, immune, and central nervous systems [72]. 
Consequently, abnormal GH secretion has the potential 
to impact multiple tissues and organs. Decreased GH-
IGF-1 signaling has been shown to extend longevity in 
mice [73]. Dwarf mice are GH-deficient animals, and 
three dwarf mice lines (Ames, Snell, and Laron) have an 
extended lifespan with reduced weight and reduced lev-
els of IGF-1, insulin, and glucose [74]. With a dramatic 
lifespan extension of around 60% [75], the Ames dwarf 
mice have been subjected to different studies to unravel 
the mechanisms that favor this phenotype. But more 
recently, Sun et al. show that an early-life GH treatment 
(a week old) in Ames dwarf mice can have a long-lasting 
effect on the animals’ lifespan [76]. These Ames dwarf 
animals subject to early-life GH treatment grew longer 
and heavier and with a significantly shorter lifespan by 
activation of proinflammatory pathways (including JNK 
and NF-kB) and suppression of xenobiotic signals in the 
liver [76]. These data exemplify how events early in life 
have a lasting effect on aging and lifespan. Therefore, 
identifying specific developmental windows is critical to 
understand how these early life events affect the risk of 
developing age-related diseases.

Developmental pathways understudied in aging

FGF

Fibroblast growth factors (FGF) and their recep-
tors (FGFR) serve many functions in both develop-
ing and adult organisms. FGFs are broad-spectrum 
mitogens and are expressed in nearly all tissues. They 
regulate organogenesis in the earliest stages of embry-
onic development, and in the adult, they function 
as homeostatic factors that are important for tissue 
maintenance, repair, regeneration, and metabolism. 
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Dysregulation of FGF signaling is associated with a 
variety of human diseases, including congenital crani-
osynostosis, dwarfism syndromes, chronic kidney dis-
ease, obesity, insulin resistance, and cancer [77]. Mice 
and humans have twenty-two FGF ligands and four 
FGFRs, while in invertebrates these numbers go down 
to three FGF ligands and two FGFRs in Drosophila, 
and two FGF ligands and a single FGFR in C. elegans 
[77–81]. Although these differences in the number 
of ligands and receptors between species show how 
this pathway has changed during evolution, the basic 
mechanism of activation is conserved. The binding of 
FGFs to the inactive monomeric FGFRs triggers con-
formational changes in FGFRs, resulting activation of 
downstream signaling molecules. The classical FGF/
FGFR downstream signals include Ras/Raf-MEK-
MAPKs (mitogen-activated protein kinases), PI3K/
AKT, PLCγ, and signal transducer and activator of 
transcription (STAT) [82]. During embryonic devel-
opment, FGF/FGFR signaling regulates organogen-
esis, cell migration, morphogenesis, and neuronal 
induction and patterning [83]. More recent studies 
are focusing on the role of this pathway in age-related 
metabolic diseases and aging [84]. In particular, FGF 
21 whose increase favors oxidation of free fatty acids 
and inhibits lipogenesis in the liver to supply energy 
when glucose levels are low or caloric restricted 
[84]. FGF21 is induced by fasting, and transgenic 
overexpression of FGF21 markedly extends lifespan 
in mice [6, 7]. Supporting the conserved role of the 
FGF/FGFR signaling in aging, the silkworm Bombyx 
mori growth with an FGF21 replenishment showed a 
significant increase in lifespan [85]. In addition, the 
absence of the C. elegans FGFR4 homolog KIN-9 
promotes longevity [8]. These recent data highlight 
a novel role of FGF/FGFR signaling in aging. How-
ever, the molecular mechanism by which this signal-
ing induces longevity is not yet defined. Since FGF/
FGFR signals are activated during a low energy state 
like caloric restriction, one possibility is that this 
pathway promotes longevity through modulation of 
energetic metabolism.

Notch

Notch signaling is an evolutionarily conserved cell 
signaling that displays pleiotropic functions in almost 
every tissue. It involves several developmental cell-
fate decisions, including neuronal development, 

angiogenesis, vasculogenesis, cardiac development, 
and maintenance of neural stem cells [86–92]. Due 
to its importance in development and tissue function, 
disruption of the Notch signaling leads to several dis-
eases, including cardiac and skeletal disorders, and 
it is associated with syndromes such as Alagille and 
Hajdu-Cheney [93, 94]. The Notch pathway has a sim-
ple linear signaling axis, and unlike other signaling 
pathways that are amplified via kinase cascades, this 
pathway does not contain any intermediate that ampli-
fies the signal. This signal is activated by the interac-
tion between five Notch ligands encoded by JAG1, 
JAG2, DLL1, DLL3, and DLL4, and four transmem-
brane receptors encoded by Notch genes, NOTCH1-4 
[95]. When the cell-surface receptor Notch interacts 
with a ligand, its Notch intracellular domain (NICD) is 
cleaved and then translocates to the nucleus to regulate 
transcriptional complexes containing the DNA-binding 
protein CBF1/RBPjk/Su(H)/Lag1 (CSL) [96]. CSL is 
a DNA-binding adaptor, and canonically, CSL binds 
NICD in the nucleus. This interaction recruits several 
proteins to activate transcription, including Master-
mind-like (MAML) adaptor protein, histone acetyl-
transferases such as p300, and other transcriptional 
components [95]. This complex then drives the expres-
sion of downstream target genes required for proper 
development [97, 98]. Originally, this pathway was 
discovered in Drosophila and C. elegans, which have 
one and two Notch receptors, respectively [95]. Like 
most developmental pathways, disruption of the Notch 
signaling leads to lethal effects. However, manipula-
tion of specific steps in the cascade contributes to a 
lifespan benefit. A classic example is the C. elegans 
glp-1 mutant [9]. The longevity in glp-1 mutants has 
been attributed to the absence of the germline and not a 
specific function of the glp-1 gene [9]. However, other 
germline-less mutants (i.e., glp-4) do not show a lifes-
pan extension [99]. Although other conditions, such 
as germline ablation, increase lifespan in C. elegans 
[100], the mechanism that modulates GLP-1-depend-
ent longevity should be related to the regulation of 
Notch signals. Supporting this notion, an active form 
of Notch, specifically in intestinal stem cells in Dros-
ophila, shortens lifespan [10]. In addition, a growing 
number of recent studies highlight the contribution of 
Notch signaling in various pathological processes asso-
ciated with age, including cancer, cardiovascular and 
metabolic diseases, and Alzheimer’s [101–103]. There-
fore, studies focusing on the temporal regulation of 
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components in the Notch pathway, particularly in adult 
life, where it is essential in maintaining tissue-specific 
homeostasis, will elucidate new mechanisms that mod-
ulate aging and the onset of age-related disorders.

TGF-β

The transforming growth factor-β (TGF-β) is a super-
family of evolutionarily conserved cytokines that 
regulates diverse cellular activities, such as growth, 
adhesion, migration, and differentiation in embryonic 
development. In mammals, this family has over thirty 
members, including TGF-βs, activins, bone morpho-
genetic proteins (BMPs), and growth differentiation 
factors (GDFs) [104, 105], and many orthologs are 
known in Drosophila and C. elegans [106, 107]. Due 
to the notable role of TGF-β signaling in cell prolifer-
ation and survival, this signaling pathway is involved 
in multiple aspects of cancer biology [108], providing 
important possibilities as an effective therapeutic tar-
get. The family is divided into two general branches: 
the BMP/GDF and TGFβ/activin/nodal. Signaling is 
initiated with ligand binding to two related serine-
threonine kinase transmembrane receptors (type I 
and II). This activated ligand/receptor complex then 
recruits and phosphorylates the intracellular media-
tors (Smads), which form complexes with each other 
and other proteins to modulate transcription of target 
genes in the nucleus [109]. There, the activated Smad 
complex associates with two classes of proteins: 
DNA-binding cofactors that help select target genes 
and coactivators or corepressors that determine the 
transcriptional rate. Dysregulation of this cascade is 
associated with several age-related disorders. Upregu-
lation of TGF-β signaling is detected in the brain of 
aged individuals and during degenerative conditions 
such as osteoarthritis [110, 111]. Therefore, similar 
to the mTOR pathway, the TGF-β pathway is criti-
cal in keeping healthy tissues during development 
and in young individuals; however, this pathway 
starts to promote damage as we age. Although no evi-
dence directly links TGF-β signaling with regulation 
of lifespan in mammals, it has been shown that this 
family regulates longevity in C. elegans when ani-
mals skip developmental defects. C. elegans TGF-β 
mutants show an egg-laying defect, in which delayed 
egg-laying results in shortened life span because 
embryos hatch inside the mother leading to matricide. 
When animals are exposed to the DNA synthesis 

inhibitor FUdR, which blocks embryonic develop-
ment, they show a longevity phenotype [11]. Interest-
ingly, in Drosophila, reduced activity of the activin 
ligand Dawdle or its downstream Smad, dSmad2, 
also leads to an increased lifespan [12]. Studying the 
age-related molecular mechanisms of developmental 
pathways in model organisms will elucidate insights 
into human aging. For instance, several potential anti-
TGF-β inhibitors [112, 113] can be tested in these 
model systems to assess their role and life-long health 
consequences.

Wnt

The Wnt signaling pathway is an ancient and evo-
lutionary conserved pathway that regulates a wide 
range of cellular functions during development and 
adulthood. In development, the Wnt pathway regu-
lates embryonic patterning and morphogenesis by 
modulating cell proliferation, cell fate determina-
tion, apoptosis, cell migration, and cell polarity. As a 
result, mutations in the Wnt pathway are often linked 
to human congenital disabilities, cancer, and other 
diseases in adults [114]. The canonical Wnt path-
way is activated by binding extracellular Wnt ligands 
(including Wnt3a, Wnt1, and Wnt5a) to membrane 
receptors (Frizzled and LRP5/6) by autocrine/par-
acrine signals. Once activated, the Wnt pathway 
induces the stability of β-catenin, which then trans-
locates to the nucleus, serving as a coactivator for 
TCF to active Wnt-responsive genes. Without Wnt 
ligands, cytoplasmic β-catenin forms a complex with 
Axin, APC, GSK3, and CK1 and is phosphorylated 
by CK1 and GSK3. This phosphorylation targets 
β-catenin to proteasome degradation via the E3 ubiq-
uitin ligase β-Trcp [115, 116]. Although regulation 
of Wnt signaling is critical for many developmental 
cellular functions, its role in aging is contradictory 
in different organisms. Activating Wnt signaling in 
mammals inhibits amyloid-β production and tau pro-
tein hyperphosphorylation in the Alzheimer’s disease 
(AD) brain [117]. Furthermore, loss of Wnt signaling 
induces AD-like pathology in an AD mouse model 
[118]. In contrast, other works suggest that Wnt 
signaling accelerates the onset of aging. Circulating 
Wnt ligands Wnt3a and Wnt1 in the bloodstream of 
older mice promotes muscle fibroblasts and acceler-
ated cellular senescence [13, 14]. The Wnt pathway 
also has dual roles in C. elegans aging. Of the five 
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genes that encode Wnt ligands in worms, the knock-
down of three (egl-20, cwn-1, and cwn-2) does not 
affect longevity, while mom-2 increases lifespan, and 
lin-44 shortens lifespan [15]. These results imply that, 
like in mammals, in C. elegans the Wnt signaling 
plays different roles in aging. Therefore, more work 
is needed to dissect its components in aging by deter-
mining their levels and site of endogenous expres-
sions throughout the entire lifespan.

Hippo

The Hippo pathway activity controls the dynamic 
localization of the transcriptional regulators YAP and 
TAZ between nucleus and cytoplasm. When the Hippo 
pathway is off, YAP/TAZ are dephosphorylated and 
accumulate in the nucleus, where they can bind various 
transcription factors, most notably the TEAD family. 
When the Hippo pathway is on, YAP and TAZ activ-
ity is regulated by the LATS1 and LATS2 kinases, 
which phosphorylate YAP/TAZ on conserved residues, 
resulting in their binding to 14–3–3 proteins and cyto-
plasmic retention as well as proteasome degradation. 
Various upstream effectors of the LATS1 and LATS2 
kinases have been identified, including the MST, 
MAP4K, and TAOK families of kinases, which phos-
phorylate and activate LATS1/2 [119, 120]. The Hippo 
pathway is an evolutionarily conserved signaling path-
way with essential roles in organ development, stem 
cell homeostasis, tissue regeneration, wound healing, 
and immune modulation. Although dysregulated YAP/
TAZ-TEAD activity is associated with various diseases 
in mammals, most notably cancer [121], the evidence 
of its role in aging comes from another model organ-
ism. C. elegans mutants in the yap-1/YAP gene exhibit 
enhanced lifespan, while exogenous YAP-1 expression 
causes a short lifespan [17]. In contrast, overexpression 
CST-1 (ortholog of MST in worms) extends lifespan 
in a DAF-16/FOXO-dependent manner, and its inacti-
vation shortens lifespan [16]. In support of the Hippo 
pathway role in age-related mechanisms, work in mice 
shows that impaired liver regeneration in aged ani-
mals can be rescued by silencing Hippo kinases MST1 
and MST2 [122]. These data suggest different roles 
of the Hippo pathway in aging. Therefore, more work 
on this pathway in model organisms is needed to dis-
cover its potential in preventing or treating age-related 
diseases. The Hippo pathway has also been linked to 
other longevity regulators [123]. For example, the 

AMP-activated protein kinase (AMPK), which is an 
ancestral energy sensor and key to signaling the pro-
motion of healthy aging and longevity [124, 125], 
phosphorylates YAP on multiple sites and inhibits its 
transcriptional activity [126, 127]. But it is undeter-
mined whether YAP/TAZ-TEAD activity downstream 
of AMPK is required to promote AMPK-dependent 
longevity. The Hippo pathway has been associated 
with other longevity pathways, such as sirtuins and 
autophagy [123], though these longevity mechanisms 
are not defined.

Hedgehog

The Hedgehog (Hh) family of secreted proteins is used 
during embryonic development for intercellular com-
munication. Hh is essential for growth, patterning, and 
morphogenesis in invertebrates and mammals. Since 
the discovery of the Hh gene in Drosophila, hh [128], 
much progress has been made in revealing its molecu-
lar cascade and role in development and disease [129]. 
Hh is a morphogen secreted by one cell and then sensed 
by a different cell. This will activate a cascade signaling 
that ends in the activation of gene expression. There are 
three mammalian Hh proteins, Shh, Indian-Hedgehog 
(Ihh), and Desert-Hedgehog (Dhh) [130]. The activa-
tion of this pathway occurs when Hh binds the 12-trans-
membrane protein Patched (Ptch1). In response to this 
binding, Ptch no longer inhibits Smo, which initiates 
the downstream signaling pathway cascade by activat-
ing the transcription factors Gli [131]. Not surprisingly, 
malfunction of Hh signaling contributes to numerous 
human disorders, including birth defects, such as Gorlin 
syndrome and Greg cephalopolysyndactyly syndrome 
[132]. Although Hh signaling is an active pathway dur-
ing embryogenesis, it seems to be silenced in adults 
[133]. Conversely, the downregulation of Hh pathway 
is associated with age-related diseases such as type 2 
diabetes, neurodegeneration, atherosclerosis, osteoporo-
sis, and cancer [134, 135]. This association with age-
related disorders suggests that activation of Hh in adults 
can potentially enhance lifespan. However, there is no 
evidence demonstrating this hypothesis. One possibility 
by which the Hh signaling could regulate lifespan is by 
maintaining healthy cellular communication. Hh path-
way communicates cells during development; therefore, 
a basic understanding of mechanisms of cellular com-
munication will open the door to elucidating how cells 
and tissues lose communication with age.
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Emerging interactions: environment 
and epigenetics

It is not questionable that environmental exposures 
during pregnancy profoundly impact the develop-
ing embryo. Remarkable efforts have been made to 
identify chemicals that impair human fetal growth. 
Several epidemiologic studies link environmental 
pollutants to perturbations in fetal growth and devel-
opment [136–138]. Maternal stress also impacts the 
developing embryo. For example, elevated levels of 
the stress hormone cortisol in the mother negatively 
affect offspring cognition, health, and educational 
attainment [139]. Social stress during pregnancy 
results in offspring with low birth weight, a risk factor 
for multiple adulthood diseases [140]. In addition to 
maternal contributions, early-life nutrition can have a 
long-term effect on the onset of diseases in humans, 
rodents, and other model organisms [141–143]. For 
instance, dietary yeast restriction during Drosophila 
development induces long-term changes in adult tri-
glyceride storage, xenobiotic resistance, and lifespan 
[144]. Although the effects of environmental hazards 
and other conditions on the developing human embryo 
are very well documented, we know much less about 
the consequences for the forthcoming adult and future 
generations, as well as the molecular mechanisms that 
govern these processes. Therefore, studies in model 
organisms will help to understand how gene expres-
sion is modulated due to environmental conditions and 
provides the basis for developing future therapies.

Epigenetics serves as a link between the envi-
ronment and gene expression. Recent studies have 
shown that epigenetic modifications are responsible 
for changes in energy metabolism, behavioral state, 
and longevity when animals are exposed to different 
environmental conditions. Furthermore, subsequent 
generations can inherit these changes [145–151]. 
On the other hand, most—if not all—developmen-
tal signaling pathways ultimately regulate gene 
expression by modulating transcription. Then, their 
interaction and regulation of chromatin modifi-
ers are crucial in maintaining homeostasis during 
development. Therefore, modifications in develop-
mental signals will impact the epigenetic landscape, 
potentially determining health and lifespan in the 
future adult. Recent works highlight the connection 
between developmental pathways and epigenome. 
Work in C. elegans indicates that developmental 

signaling plays a role in epigenetic inheritance. The 
TGF-β ligand DAF-1 promotes avoidance of patho-
genic bacteria, and it is required for transmission 
of the learned behavior [149, 152]. In mammals, 
R-SMAD, a central transcription factor of TGF-β 
signaling, can recruit various epigenetic regula-
tors (including SWI/SNF complex and histone de/
acetyltransferases) to shape the transcriptome [153]. 
Additionally, studies in Drosophila and mammals 
have shown a role for TGF-β in neuronal plasticity 
that governs learning and memory processes [154]. 
However, whether these interactions are required to 
inherit non-genetic animal traits in these two spe-
cies is unknown.

Other developmental signaling pathways are linked 
to chromatin modifications, although they are still 
understudied. For example, recent work shows that 
Wnt signaling preserves mouse embryonic stem cells 
(mESCs) identity and genome stability by regulating 
DNA methylation levels [155]. Notch activation causes 
a loss of H3 trimethylation (H3K27me3), a repressive 
chromatin mark [156]. This pathway also interacts 
with the histone demethylases KDM5A and KDMI/
LSDI, which regulate H3K4me3 [157, 158]. These 
discoveries strengthen the link connecting the Notch 
signaling to histone modifications. But other chroma-
tin-modifying proteins are also identified as interac-
tors  of Notch, including the nucleosome remodeling 
complex SWI/SNF [159]. Another developmental 
pathway that interacts with the SWI/SNF complex is 
the Hippo signaling. The Hippo-SWI/SNF interaction, 
along with the chromatin protein GAGA factor, regu-
lates linage specification in mammals and cell prolif-
eration in Drosophila [160]. Components of the Hippo 
cascade are associated with other chromatin changes. 
In Drosophila, the single YAP/TAZ homolog, Yorkie 
(Yki), interacts with Ncoa6, a subunit of the Trithorax-
related H3K4 methyltransferase complex. Ncoa6 func-
tions as a positive regulator of the Hippo pathway by 
regulating H3K4 methylation at Hippo targets genes 
for normal tissue growth [161]. These findings not 
only reveal the importance of histone modifications in 
controlling tissue growth but the role of developmental 
signals in these epigenetic processes. Although the role 
of developmental signaling pathways in the epigenetic 
regulation of gene expression is growing, more work 
is needed to understand how environmental conditions 
influence these pathways and chromatin changes, as 
well as the repercussions for lifespan.
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The relationship between epigenetic modifica-
tions and developmental pathways is not exclusively 
related to the activation of gene expression. Develop-
mental pathways also silence genes through chroma-
tin remodeling. Brg, a chromatin remodeling factor, is 
required to repress Hh (Hedgehog)-dependent target 
genes by interacting with the Hh transducer transcrip-
tion factor Gli3 in neuronal progenitors and fibro-
blasts [162]. Hh signaling also induces an epigenetic 
switch to activate gene expression. Stimulation of 
Hh signals recruits the demethylase Jmjd3 to remove 
the repressive mark H3K27me3 at genes required for 
proper animal development [163]. These data under-
line the dual functions of developmental pathways in 
chromatin modifications, and since these pathways 
are critical for gene expression during the embryo-
genesis of all animals, it is reasonable that they play 
an essential role in the establishment of epigenetic 
changes, which in turn could impact healthy aging.

Concluding Remarks

Proper regulation of developmental processes is 
critical for the formation of tissues and organs in 
the embryo, and their dysregulation is fatal for the 
developing fetus. Developmental pathways also play 
a role in post-developmental processes, and pertur-
bation in these signals is associated with age-related 
diseases, such as cancer, metabolic disorders, and 
neurodegenerations. Therefore, the mechanisms that 
modulate developmental pathways have the poten-
tial to have a causal role in healthy aging. Indeed, 
this review summarizes the work done to analyze the 
effects of modulating these developmental pathways 
in aging and longevity. Since these developmental 
pathways are broadly required for embryo survival, 
it is important to define precisely when and where 
during development (or post-development) each of 
these pathways acts to modulate aging. However, we 
should remember that these pathways are not iso-
lated (as anything in the cell), and they crosstalk dur-
ing development and disease [164–166]. Thus, some 
positive or negative effects on aging could be masked 
by interactions with other developmental pathways 
or other fundamental cellular processes required for 
proper development and healthspan, like autophagy 
[167, 168]. As a consequence, not all components in 

a specific pathway will have the same outcomes for 
lifespan (Table 1). Finally, we have a vast knowledge 
of molecular mechanisms during development [169], 
but the era of molecular aging is just beginning. We 
should then take advantage of this knowledge and 
use a multifaceted Devo-Aging approach to explore 
and identify new mechanisms that drive the aging 
process.
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