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Abstract

In this paper, a hardware implementation in reconfigurable logic of a single-pass connected component labelling (CCL) and
connected component analysis (CCA) module is presented. The main novelty of the design is the support of a video stream
in 2 and 4 pixel per clock format (2 and 4 ppc) and real-time processing of 4K/UHD video stream (3840 x 2160 pixels) at 60
frames per second. We discuss several approaches to the issue and present in detail the selected ones. The proposed module
was verified in an exemplary application — skin colour areas segmentation — on the ZCU 102 and ZCU 104 evaluation boards

equipped with Xilinx Zynq UltraScale+ MPSoC devices.

Keywords FPGA - Zynq UltraScale+ MPSoC - 4K - UHD - Real-time video processing -
Connected component labelling (CCA) - Connected component analysis (CCA)

1 Introduction

Connected component labelling (CCL) and connected com-
ponent analysis (CCA) are two operations often used in
computer vision systems. The first one allows to assign
an unique label to each connected group of pixels. Pixels
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belong to the same group if there is a path of adjacent
pixels between them. Usually an 8-pixel, less frequent a 4-
pixel neighbourhood is used. The second operation allows to
calculate selected parameters of the detected objects. Most
often these are: bounding box, area and centroid. Others
are: number of pixels on the perimeter, major axis length,
minor axis length and orientation (obtained using ellipse fit-
ting), and other so-called shape coefficients. However, not
all of them can be computed efficiently in a pipeline pixel
processing system.

CCL and CCA are an intermediate step between image
analysis and recognition. Their input is a binary image
obtained after thresholding (also called binarization) or
segmentation (e.g. of moving or foreground objects). The
output is a list of detected objects (i.e. groups of connected
pixels) and their features. The described approach is widely
used in advanced video surveillance systems (AVSS),
e.g. for abandoned luggage or prohibited zone violation
detection. On this basis, simple classification can be
implemented — for example, rejection of objects that are too
small or of incorrect shape. In addition, using the bounding
box to select a ROI (Region of Interest) can significantly
reduce the computational complexity of the vision system
(e.g. candidate preselection prior classification vs. a sliding
window approach).

In recent years, we observe a dynamic development
of vision sensors. Currently, the most common are three
resolutions: High Definition (HD — 1280 x 720), Full High
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Definition (FHD — 1920 x 1280) and recently Ultra High
Definition (UHD, or 4K — 3840 x 2160). There are also
8K (7680 x 4320) and 16K (15360 x 8640) solutions, but
due to the high cost they are currently not widely used. The
analysis of high resolution images or video streams allows
to improve the broadly understood performance of a vision
system. For example, a 4K sensor would allow to detect
objects further away from the camera, which is important
in the case of advanced driver assistance systems (ADAS),
advanced video surveillance systems (AVSS), as well as
autonomous vehicles (cars, drones). In this case, small
objects would be registered with more details (e.g. shape,
colour or texture) and therefore classified more accurately
(using a classical or deep convolutional neural network
approach). Moreover, they would be detected earlier, which
is essential for ADAS and self-driving cars (here also
a very important parameter is the frame rate — the higher,
the system can react more quickly assuming real-time
processing with a low latency). In the case of AVSS, the use
of high resolution cameras results in a larger field of view
of a single device, which allows to limit their number within
the considered surveillance system.

The above-mentioned benefits come at a price, as
the resolution directly affects the amount of data to be
processed or stored. An uncompressed 4K video stream
i.e. 3840 x 2160 at 60 frames per second (fps) results in
a data flow of 1424 MB/s. Its processing in real-time is quite
a challenge and requires the use of a computing platform
capable of providing the required computational power
(depending on the algorithm). The designer can choose from
the following solutions:

— general purpose processors (GPP),

— general purpose graphics processing units (GPGPU),

— application specific integrated circuits (ASICs),

— field programmable gate arrays (FPGAs),

— heterogeneous multiprocessor system on chip (MPSoC)
— which are composed of an ARM processor system,
reprogrammable logic and GPU (e.g. Zynq UltraScale+
from Xilinx).

It is worth emphasising that the energy efficiency and
the ability to update the applied algorithm are essential in
applications such as: ADAS, AVSS or autonomous vehicle
perception systems. One possible solution that can meet
all these requirements is the use of state-of-the-art FPGA
or reconfigurable heterogeneous MPSoC devices — they
allow 4K video stream processing in real-time, are relatively
energy-efficient and can be reprogrammed many times.

The presented work is a continuation and extension of
the scientific paper presented at the Applied Reconfigurable
Computing (ARC) 2019 [3]. The main contributions are:
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— discussion on the challenges of implementing the
connected component labelling (CCL) and connected
component analysis (CCA) algorithms for a pixel
stream in 2, 4 and more pixels per clock cycle (ppc)
format,

— implementation of two CCL/CCA modules working
with 2ppc and 4ppc formats and their comparison,

— verification of the proposed modules in a skin colour
segmentation vision system on a development board
with Xilinx Zynq UltraScale+ MPSoC (Multiprocessor
System on Chip) device.

According to the authors knowledge, this is the first
FPGA implementation of CCL and CCA modules capable
of processing a 4K video stream @ 60 fps in real-time
verified on a development board (except for our mentioned
previous work [3]).

The remainder of this paper is organised as follows. In
Section 2 research related to CCL and CCA algorithms
and their FPGA implementation is presented. In Section 3
the properties of a 4K video stream are discussed. Then,
in Section 4 the discussion about different possibilities of
implementing CCL/CCA for 4K video stream is presented.
Finally, the proposed implementation of the CCL and CCA
modules are described in Section 5. Their evaluation in
a skin colour detection system is presented in Section 6. The
paper ends with a conclusion and possible further research
directions.

2 Previous Work

In this section, we first discuss general approaches to
connected component labelling and analysis and later
concentrate on real-time FPGA implementations.

2.1 CCL Solutions Overview

There are two main approaches to connected component
labelling. The first one can be described as region growing
based [4]. The binary input image is analysed line by line.
When a pixel belonging to an object without a label is
encountered, a new label is assigned and a neighbourhood
search procedure is executed. Then the connected pixels are
labelled recursively. It should be noted that this solution is
not suitable for a single-pass implementation in a pipeline
vision system, where pixels are processed “one-by-one”
without frame buffering. In this scenario, there is practically
no possibility of random access to image data (only in
a small context). Moreover, the internal resources of today’s
FPGA are not sufficient to store a 4K image frame.
Therefore, a recursive solution would have to be based on
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an external RAM (usually dynamic RAM), which has a
significant latency and increases the overall complexity of
the system.

The second solution assumes linear/sequential image
processing. These are so-called two-pass and single-pass
algorithms. The two-pass solution by Rosenfeld and Platz
[15] should be considered as “classic”. It consists of two
scans of the image and three stages. During the first scan,
pixels are given temporary labels and possible conflicts
(mergers), i.e. situations in which the same object has
received two or more labels, are written to the equivalence
table, which has a graph structure. For example, a conflict
occurs for a U-shaped object. Within the first scan, two
separate labels are given to the pixels and information about
the connection appears when both arms are converging
(Figure 1). Moreover, the image with temporary labels is
stored. In the second stage, the equivalence table is analysed
— the transitive closure of the graph is calculated. Next, the
final labels are determined and assigned to particular pixels
during the second image scan (temporary labels are used).
It should be noted that the direct output of this method is
a labelled colour image - every object has a different colour.

In the context of hardware implementation, the main
issue with this solution is the buffering of the pre-labelled
image. Again, due to the limited internal memory resources
of FPGA devices, it is necessary to use external DRAM
modules. These increases the complexity of the system, as
a RAM controller is required and impacts energy efficiency.

There are also single-pass algorithms, that do not require
buffering of a pre-labelled frame. Emerging conflicts are
resolved “on-line” during the first scan. The implementation
is more complex than in the two-pass case — this is shown in
detail in Section 5. It should also be noted that the result of
this operation is not an image with labels, but only a set of
parameters of the detected objects (centroid, area, bounding
box). However, in the vast majority of applications, this
information is sufficient.

Figure 1 A “U” shaped object. The place where a conflict (merger)
occurs is marked with a red cross (8-pixel neighbourhood).

2.2 CCL/CCA Implemented in FPGA

Due to the large practical significance of CCL and CCA
in computer vision systems, a number of articles about the
hardware implementation of these operations in FPGA have
been published.

A classic two-pass approach implementation was
described in the work [9] from 1995. The proposed system
used 9 Xilinx XC4010 FPGA devices and processed up to
30 images with a resolution of 512 x 512 pixels per second.

A two-pass approach was also proposed in the paper [1]
from 2010. It is distinguished by the analysis of a series of
pixels appearing in a single row (so-called runs or series).
The algorithm works in four steps:

— Conversion of pixels into series in the form (ID, EQ, s,
e, 1), where: ID - series identifier, EQ - assigned label,
s - series start in the given line, e - end of the series in
the given line, r - the number of the image line.

— The first run over series and creation of the equivalence
table.

— Solving mergers/conflicts.

— Second pass over the image — assigning appropriate
labels.

The solution has been implemented on the RC340 platform
with a Xilinx Virtex 4 device. Real-time processing of
a 640 x 480 @ 35 fps video stream was obtained.

In the case of hardware implementation in FPGAs,
however, the single-pass approach seems to be the most
attractive solution. It was first proposed by the team Ma,
Bailey and Johnston in 2008 [2]. In this approach to CCL,
only the last line of the image that has already received its
labels is required during analysis, thus reducing the amount
of buffered data (single line vs. frame). An equivalence
table is also used to correctly handle any mergers of
labels. In addition, the authors proposed a mechanism that
protects against so-called merge chains, i.e. the occurrence
of several mergers within the same object, in one line. For
this purpose, a special stack was created, in which both
labels involved in such a merger were stored. Then, during
the horizontal blanking time in each line (the period in
the video signal during which no pixels are transmitted),
the equivalence table was updated with the stored mergers.
The only disadvantage of this solution is the limitation of
the maximum number of mergers present in the chain. The
worst case requires the length of blanking time to be about
50 % of the length of the actual image line. Meanwhile, this
value usually does not exceed 30 %. In real applications,
however, the chance of the “worst case scenario” is
very low, as usually some pre-processing operations like
morphological or median filtering are applied. In addition,
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the authors proposed a mechanism for recovering labels
between successive image lines. The module has been
implemented in the Handel-C language and verified on the
RC300 board with the Xilinx Virtex II FPGA device. For
640x 480 resolution, 100 frames per second were processed.

A development of the above presented idea is described
in the work [6] from 2016. A module was added that
protects against incorrect labelling in very specific cases
when using the label reuse approach. The possibility of
implementing the module on various FPGA devices: Virtex
6, Spartan 6 and Kintex 7 for different resolutions — also
4K and 8K was analysed. However, the obtained maximum
operating frequency of the module does not allow real-
time (i.e. 60 fps) operation for such large resolutions. For
Virtex 6 and Kintex 7 real-time processing was achieved for
1920 x 1080 (pixel clock about 150 MHz).

A non-standard implementation of a CCL module was
described in the work [5] from 2016. The equivalence table
was omitted and a shift register of length equal to the
entire image line was applied. This register kept n + 1
last assigned labels, where n — width of the image. To
implement the required functionality, DRAM (Distributed
RAM) memory resources are required. As a consequence,
in the case of a merger event, all labels could be updated
in the shift register at the same time. However, the solution
has significant limitations. The maximum number of labels
is 63 or 127. The rather complicated logic results in
a small maximum clock frequency, which translates into the
number of frames that can be processed in one second. For
example, for 1920 x 1080 resolution and 127 labels: 37
fps (calculating only bounding box) or 28 fps (calculating
the bounding box and centroid) were obtained. The Altera
Cyclone IV device was used in the experiments.

Another interesting CCA hardware implementation was
presented in the work [16] from 2017. The proposed system
for extracting statistic information about objects, such as
bounding boxes, accumulated values of horizontal and
vertical coordinates, and the number of pixels in a region,
was divided into four steps:

— Pixels form the binary image are received and buffered
in order to process two (previous and current) rows
simultaneously.

— Both rows are scanned using a 2 x 2 template and
the statistical information about runs (consisting of
continuous foreground pixels) are collected.

— Information from adjacent rows are merged and exported
as completed connected regions.

— If the current row is the last row in the frame, runs are
merged and the process is finished. If not — the current
row is stored as the previous one and the above steps are
repeated.

@ Springer

The proposed design was tested in simulation for different
video stream resolutions. The greatest one was 2048 x 1536
and it resulted in a processing time about 53ms, which
translates to around 19 fps. For smaller resolution, the
authors obtained a higher fps rate.

In the paper [12] from 2018 authors extend the architec-
ture presented by [2] to store component size and position
while using internal memory. Authors reported that their
system achieves 223 fps for 640 x 480 images and 94 fps
for 1280 x 720 images with 128.07MHz clock on Virtex-5
FPGA.

In the work [11] the authors proposed a novel single-
pass CCA algorithm to overcome the need to resolve label
equivalence in the horizontal blanking period. In order to
label, resolve equivalences and extract the object features
in a single scan, the combination of linked list for repre-
senting equivalences and run-length encoding for labelling
connected components techniques were proposed. The pro-
posed system achieved impressive results in terms of mem-
ory efficiency compared to [16] and [6], while sustaining the
real-time processing for 640 x 480 images. The architecture
was implemented on Virtex II and Cyclone IV FPGAs.

In the article [10] the authors presented a CCL archi-
tecture suitable for implementation on a System-On-Chip,
that exploits both the Programmable Logic and the Process-
ing System with an ARM processor, as well as an external
DDR memory for image storage. The main contribution of
this paper is to overlap the label collisions resolutions and
the DMA core configuration actions performed by the ARM
processors. After processing the last pixel in the frame the
resolution of all collisions starts and, at the same time, DMA
sends an interrupt to the ARM cores with information that
the labelled image is now ready in the external memory
— by the time DMA is configured, the label collisions are
resolved. For 640 x 480 pixels resolution, a rate of 700 fps
was achieved on a Zynq AP-SOC 7045 chip.

In the paper [13] the same authors present a highly
efficient hardware-oriented approach for CCA achieving,
for 640 x 480 image resolution, a frame rate of 325.5 fps and
occupying 760 LUTs and 787 FFs, with no BRAM usage,
which exhibits high resource efficiency in comparison
to other competitive CCA hardware implementations.
The proposed solution simultaneously assigns provisional
labels, manages equivalent labels and updates features data
using auxiliary tables. The system was tested on a Xilinx
Zynq XC7Z020 FPGA SoC.

The authors continue the problem of a parallel con-
nected component labelling architecture for heterogeneous
Systems-on-Chip in [14] to design the architecture comply-
ing with the fourth generation of the advanced extensible
interface (AXI4), storing the intermediate and final outputs
within an off-chip memory. Depending on the number of
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labels, the design achieves from 411.3 (1024 labels) up to
594.2 (64 labels) fps for 640 x 480 image resolution. The
architecture was also tested with higher resolutions — for
2K x 2K image, depending on number of labels (1024
and 64), rate from 30.3 to 46.4 fps was achieved. Authors
state that the proposed CCL approach can be implemented
to work with 4K UHD resolution and sustain 60 fps rate,
however it was not tested.

Summing up the review, it should be noted that it covers
a period of 25 years (1995-2020). There was a dynamic
development of technology during that time — both in vision
sensors and FPGA devices. For example, in the work [9]
from 1995, 9 Xilinx XC4010 chips were used and the image
was processed with a resolution of 512 x 512 at 30 fps
(clock frequency 10MHz), and in the most recent work, [14]
from 2020, a single Zynq SoC was used for a stream with
a resolution of 2K x 2K and over 30 fps (clock frequency
around 100MHz). Thus, the progress, understood as the
possibility of processing a stream with higher resolution
and fps, is firstly related to the use of newer generations
of computing platforms. However, a direct analysis of this
phenomenon and an attempt to compare (reduce to the
“common denominator”) solutions in terms of the use of
different computing platforms is not simple and was not
the aim of this article. Just like the optimisation of FPGA
resource usage is not the main topic of our work.

The second factor enabling the aforementioned progress
is the use of various algorithmic solutions, which conse-
quently translate into the hardware architecture of the CCL
module. The mentioned solutions can be divided into the
following categories:

— two-pass — [9] (1995),

— two-pass with pixel "series” analysis — [1] (2010),

— single-pass — [2] (2008), [6] (2016), [13] (2019), [14]
(2020,

— single-pass with shift register — [5] (2016),

— single-pass with advanced pixel “series” analysis — [16]
(2017), [11] (2018),

— single-pass with post processing on an ARM core — [10]
(2018).

Analysing the above list, it can be noticed that most of
the works are based on the proposal from [2] and follow
the single-pass approach. In each of the above-mentioned
publications, the authors introduce some algorithmic improve-
ments, which, apart from the use of newer generation
equipment, allow to achieve better video stream processing
parameters. Two-pass methods are not used nowadays. In
addition, recently (2016-2020) authors have been looking
for algorithmic improvements through the use of e.g. shift
register and pixel series analysis. The aim of these works

is, among others, the optimisation of resource utilisation,
or the desire to eliminate calculations during horizontal and
vertical blanking.

It should be also emphasised that, according to the
authors’ knowledge, no module capable of processing a 4K
video stream with a frequency of 60 fps has been presented
and tested in hardware so far (except for our previous work
[3]). Moreover, no other work discusses the issue of 2 or 4
pixels per clock format for connected components labelling
of a video stream in real-time.

3 4K Video Stream

A video stream in RGB format with a resolution of 3840 x
2160 and 60 frames per second sent in 1 pixel (24 bits)
per clock format (the so-called pixel clock) requires a pixel
frequency of approx. 500 MHz. The so-called vertical
and horizontal blanking fields present in the video sig-
nal increase these value to 600 MHz. This is the “limit”
value for currently available reconfigurable systems (FPGA
and reconfigurable SoC). Admittedly, selected components,
such as block memories (BRAMs), hardware multipliers
(DSPs) are, according to the Xilinx manufacturer’s dec-
laration, able to work with even higher frequencies (this
depends, among others, on the version of the device — it’s
speed grade, supply voltage, type of operations). However,
in practice, for more complex logic, achieving such frequen-
cies can be very difficult, since the delay associated with the
connection resources has also to be considered.

Due to the above-described 4K signal parameters and
the limitations of the currently available reconfigurable
devices, it is not possible to use the well known 1 pixel per
clock scheme (1 ppc), which is the basis of the modules
described in Section 2 and most of the works related to the
real-time vision systems implemented in this technology.
Therefore, for a 4K signal, 2 ppc or 4 ppc format is
used. This allows to reduce the pixel clock frequency to
300 MHz and 150 MHz respectively. However, its use has
quite significant implications for the way the CCL/CCA
operation is implemented in a pipelined vision system —
this is discussed in detail in Section 5. It is also worth
mentioning that for the 2 or 4 ppc format it is necessary
to multiply the used computing resources. In addition,
contextual operations such as filtering or median require
modification of a typical context generation scheme. This
issue has been presented in our previous paper [8]. Finally,
looking ahead for a 8K 7680 x 4320 signal, two solutions
will be possible: a 4 ppc 600 MHz or 8 ppc 300 MHz format.
Thus, works on the processing of video stream in vector
format are fully justified.
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4 Concept of the Proposed CCL/CCA Modules

In this section, we first discuss the main challenges and
possible solutions in implementing a CCL/CCA module for
a 4K video stream in 2 and 4 ppc format and then propose
four approaches: simplified CCL/CCA for 2/4 ppc, CCL for
2 ppc, CCL/CCA for 4 ppc and CCL/CCA for pixel series
in 2/4 ppc.

4.1 CCL/CCAin 4K - Challenges and Possible
Solutions

The main challenge in the implementation of connected
component labelling and analysis for a 4K stream is the
need to process 2 or 4 pixels simultaneously. Difficulties
arise from the fact that there are direct relationships between
the pixels being analysed. This is a trade-off between
clock frequency and label assignment logic complexity.
For example, assuming no foreground pixels in the context
of the 1001 vector (4ppc), it is necessary to assign two
new labels, and for 1111 to propagate the same label to 4
pixels. These dependencies differentiate the implementation
of CCL/CCA from other image processing operations, such
as contextual filtering (median, Gauss, morphological) —
where the use of the vector format: (1) increases the
computing resources and (2) results in a more complex way
of generating 2 or 4 contexts simultaneously.

Based on the analysis from Section 2, 4 single-pass
approaches were selected for further consideration:

— CCL/CCA module with 4 ppc format, with simplifica-
tions,

— CCL/CCA module with 2 ppc format,

— CCL/CCA module with 4 ppc format,

— CCL/CCA module with 2/4 ppc format, with series
analysis.

We have chosen these solutions because, in our opinion
and based on our experience with FPGA image processing,
they were the most promising in terms of real-time
implementation in FPGA, the possibility to process 2, 4 or
even more pixels in one clock cycle and scalability.

Firstly, we have focused on the 4 ppc format, because
meeting timing constraints for a 150MHz clock is easier
than for 300MHz. In addition, 4 ppc is more promising in
the context of the future 8K format.

We considered how the extended context (4 pixels
simultaneously) affects the CCL/CCA algorithm itself. It
turned out that this configuration has pixel arrangements
that were not present in the well known 1 ppc approach. This
situation is presented in Figure 2.

In the depicted situation, the algorithm should be able to
combine labels 2 and 3 with label 1. This involves the need
to write appropriate values to the equivalence table (EQT).

@ Springer

Figure 2 Exemplary situation with two merges in one clock cycle.

However, saving the value to two addresses in the memory
in one clock cycle is not possible, while it is required to
properly handle situations when a merged label (2 or 3 in
this case) reappears in the context in the next clock cycles
(in the same line). An additional challenge is to analyse the
labels for all 4 pixels simultaneously.

4.2 Simplified CCL/CCA in 4ppc

Firstly, we proposed a solution to eliminate the above-
described case (this was the main contribution of the ARC
2019 paper [3]). It is based on connecting two adjacent
(binary) pixels using the “OR” operator, which eliminates
the possibility of three mergers event. This is shown in
Figure 3. The applied approach also reduces the necessary
hardware resources required to implement the module.

It should be clearly stated that the presented solution
reduces the horizontal resolution of the image. Combining
two different pixels causes that the labelled image resolution
is 1920 x 2160 instead of 3840 x 2160. This approach also
results in joining objects that have a 1 pixel gap between
them. Taking that into consideration, the proposed labelling
algorithm does not process a “real” 4K image.

On the other hand, in a real vision system, after segmen-
tation (binarization) and before labelling, the binary mask
is usually filtered (post-processed) — using morphological
operations or median. This results in similar to the above-
mentioned merging effects of closely located pixels.!

4.3 CCL/CCA in 2ppc

Secondly, to avoid the effects described in the Section 4.2,
we considered processing only 2 pixels in each clock cycle.
This allows skipping pixel merging, but doubles the required
operating frequency (300 MHz vs. 150 MHz). Therefore,
the module should be carefully designed to avoid long
critical paths. It is also necessary to prepare a whole new
video track (pass-through, pipeline) in which all the system
components would also operate in the 2 ppc scheme.

'In the case of erosion this gap would increase.
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Figure 3 Tllustration of the proposed concept. Pixels joined by the OR
operator are marked with colours, P1-P4 - pixels to be labelled.

4.4 CCL/CCA in 4ppc

Next, we considered a method for 4K video resolution in
4 ppc format so that adjacent pixels are not combined.
The proposed concept is based on two main assumptions.
Firstly, labels must be assigned for all incoming pixels and
all mergers (conflicts) must be determined within one clock
cycle. However, the equivalence tables does not need to by
updated in one cycle.

Secondly, if there is more than one merger in one data set,
the video stream will be stopped and the next input will be
buffered in a FIFO queue. For a 4 ppc format, a maximum
of two mergers can occur in one clock cycle. Two clock
cycles are needed to write the appropriate values into the
equivalence tables — the stream has to be stopped for one
clock cycle.

Using the AXI-Stream allows the receiving module to
suspend the input stream using the fready signal. Such
“pauses” can be later “worked off” e.g. in horizontal or
vertical blanking areas, or even inside the line, if the stream
frequency is slightly higher than the native frequency of the
video stream for a given resolution.

A problem appears if the case of two merges in one clock
cycle would appear very often. Then the system will not
have enough time to process all data because of too many
“pauses”. However, it should be emphasised that the most
problematic situation of two merges occurs quite rarely,
especially if the binary image has been previously filtered
(with the median or morphological operation). Therefore,
a situation where this approach will cause synchronisation
problems across the entire pipeline is highly unlikely.

However, in contrast to the 2 ppc or simplified 4 ppc
formats, there are no easy rules on how to choose a new
label value. Therefore, it is necessary to calculate new labels
from left to right (like in the 1 ppc approach). Let’s define
the MinNZ operation as:

min(a,b) ifa20Ab#0
MinNZ(a,b) = {a ifb=0 (1)
b ifa=0

For every foreground pixel, three MinN Z operations are
performed. First, for the pixels located on the upper left and
left (A and D). Second, for the pixels located on the upper
right and above (C and B). The third one is calculated with

the results of the previous two operations. Visualisation of
the context of the currently analysed pixel P is presented in
Figure 4. In addition, the maximum value of the results of
the first two operations MinN Z is also calculated. If the
analysed pixel does not belong to the background, then the
result of the third operation MinN Z is assigned as a new
label of the considered pixel. Otherwise, 0 is assigned.

If the results of the first two operations MinNZ are
different from zeros and are not equal to each other,
then a conflict (merger) is detected. Depending on the
situation, more than one conflict can occur. If this is the first
conflict detected (the corresponding flag equals 0), the flag
indicating the occurrence of the first conflict is set and the
labels: [Lyax, Lmin] are saved — where L, is the output of
the previously calculated maximum and L,,;, is the output
of the third operation MinN Z.

If the detected conflict is not the first one, then it
is checked whether the current conflict is different from
the previous one (in certain contexts such double conflict
situations occur). If it is a different conflict, it must also be
stored.

If a conflict is detected, the result of the second MinN Z
operation is also checked. If it is greater than the result of
the first operation, the merge chain is detected and must be
remembered in the same way as conflicts, however, it is not
necessary to check if the same merger is detected a second
time. If the result of the third operation MinN Z is 0, then
the pixel is given a new label.

The rest of the algorithm, i.e. handling of mergers
and merge chains, works very similarly to the simplified
solution for 4 ppc and is discussed in detail in Section 5.
A critical element of the described solution for hardware
implementation is the time needed to calculate labels for all
four pixels, i.e. the operations described above.

Based on the above description, it is easy to tell that this
element would be a bottleneck of the entire module. For this
algorithm to work in real time, the critical path must have
a delay less than 6.66 ns, which corresponds to a frequency
equal to 150 MHz for 4K signal and 4 ppc format. It should
be also noted that the above described algorithm has been
implemented in Matlab and evaluated on several hundreds

A|lB|C
D|P

Figure 4 Context of the currently analysed pixel.
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random binary images — in all cases the labelling results
were identical to those returned by the bwlabel method.

4.5 CCL/CCA in 2/4ppc for Pixel Series data

The last considered approach is the use of pixel series
analysis. It assumes that the CCL/CCA algorithm will not
work directly on pixel values, but on the data that has been
calculated based on them. It corresponds to series (runs) of
adjacent pixels that represent a fragment of a continuous
object within one line. Therefore, to represent them, a
set of three numbers is sufficient: the label (ID), the
beginning and the end of the given series. Depending on the
implementation, it can be additionally supplemented with
the line number in which the given series is located.

In this case, the algorithm can be divided into two parts:
the first, which is responsible for the conversion of raw
data into pixel series, and the second, which based on
information about the series, will label the input image. The
described approach was used, among others in the work [1].
It is worth noting that in this case it is not necessary to
consider the effect of changing the label of one pixel on the
labelling result of its nearest neighbour in a given row —
all updates are done simultaneously on the whole group of
pixels.

At the same time, obtaining these series, especially for
the 4 ppc format, is highly problematic. Note that in one
clock cycle even two series have to be processed at the same
time. One of the possible solutions to this problem would be
the use of a special switch, which would direct data to the
appropriate processing modules based on the input vector
structure. However, this is associated with an increase in the
required hardware resources to handle all cases.

A more efficient solution to this problem is the
conversion of the input image to a pixel series, combined
with preliminary detection of mergers. This detection
checks whether the currently detected series is connected
to one of the series received in the previous line. This
approach for the 1 ppc format was presented, among others,
in papers [16] and [11]. In both cases, the authors suggest
using a 2 x 2 context, shifted every clock cycle by 1
pixel. If such context is used, a finite number of pixels’
combinations indicate the merging of two series within
consecutive lines. When attempting to implement a similar
solution for a 2/4 ppc stream, however, 2 or 4 contexts
must be processed simultaneously. Moreover, they have to
be considered in a proper order — according to the direction
of image scanning. The very idea of detecting connected
series, however, remains unchanged.

The series detected in this way and their initial mergers
must then be stored for further processing after the row
scan is completed. With a 1 ppc stream, this is done
by simply writing the necessary values to the appropriate
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RAM addresses. In the case of 2/4 ppc streams, however,
the possibility of a memory access conflict should be
considered. It appears when processing more than one series
in a clock cycle. Therefore, more sophisticated logic is
needed to support communication with RAM.

Summing up — the advantage of using pixel series when
working with a 2/4 ppc stream is that there is no problem of
propagating label changes within one series. At the same time,
however, this approach causes a number of other difficulties
that seem to effectively balance the resulting profits.

4.6 Summary

At the conceptual stage, four solutions to CCL/CCA with
2/4 ppc format used in 4K video stream were considered.
The first two, i.e. simplified 4 ppc and 2 ppc are based on
the same approach — processing two pixels in parallel. Their
hardware implementation has been described in detail in
the following section. The third approach involves parallel
processing of 4 pixels. The last solution, based on pixel
series, is not straightforward to apply to the 2/4 ppc format.
Therefore, additional research is required to explore all pros
and cons.

5 The Implemented CCL/CCA Module

In this section the CCL/CCA module implemented in two
variants is presented. One for the 4ppc format (as in [3]) and
other for the 2ppc format.

An overview of the proposed algorithm is presented in
Figure 5. First, the context is extracted from the incoming
video stream. Then, if at least one of the considered pixels
(P1-P4) belongs to an object, a label is assigned. Details
of this process are depicted in Listing 1. Moreover, object
parameters like area, bounding box or centroid are updated.
Additionally, at the end of a line, if some labels were
merged, the correspondence tables are updated, as well as
object parameters.

The scheme of the proposed connected components
labelling and analysis module for the 4K video stream is
shown in Figure 6. The used colours indicate the differences
to a typical 1 ppc single-pass approach — like in [2].

In the next subsections, each sub-module is discussed
separately. All were described in Verilog hardware descrip-
tion language. For simulation and implementation, the
Vivado 2018.2 tool was used.

5.1 Neighbourhood Analysis
The module assigns labels to subsequent pixels — two labels

in parallel. Two pixels are merged with the use of OR
operation only in case of 4 ppc format. This issue has been
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if Pl == then
Get next context if P2 == 1 then
> X|A|B|C|D|E if B == 0 and C == 0 then
X | G |P1|P2|P3|P4 set new label
else
l if B == 0 and C != 0 then
E set label C
o else
set label B
else
l - if B !=0 and D != 0 and B != D then
no label — ct. B, D
else
Label pixel according to listing 1.1 if B != 0 then
if D == 0 or D == B then
set label B
l else
set label min(B, D) — ct. B, D
if C == 0 then
Update object parameters if A '= 0 then
set label A
L NO else
i if D != 0 then
set label D
= else
NO < End of :‘n;ge line set new label
) ~~ lineno > 0 else
. 7 if A== 0 and D == 0 then
~ ' set label C
l YES else
if A != 0 then
o A if A != C then
Label merging (ncass ofcontict and set label min(A, C) — ct. A, C
update of parameters e 1 se
set label A
l else
X if D != C then
set label min(C, D) — ct. C, D
NO else
Last line of image set label C

Figure5 Overview of the implemented algorithm.

explained in Section 4.2. The information about labels in the
neighbourhood is obtained from A, B, C and D registers
(c.f. Figure 7a). If the group belongs to a new object, the
stack of labels is used (see Section 5.5). Because of the 2 or
4 ppc format, the context generation scheme is different than
e.g. in the work [2]. The value from register C is transferred
to A, whereas B and C get values from the delay line (the
values read from the delay lines are updated according the

Listing 1 Label assignment procedure — pseudocode. ct. — conflict.

equivalence table in the EQT module). Register D stores
the value that has been assigned to the pixel P2 in the

previous clock cycle and register

L the value assigned to the

pixel P1. Multiplexers in front of registers A, B and C are
used in the case of merging — the correct (merged) label is
passed directly to all registers. Their usage eliminates the
latency introduced by the equivalence tables implemented
as a BRAM memory (its update takes at least one clock
cycle). In result, the module informs about the given label

and a possible merger event.
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Multiplexers controlling the last
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Figure 6 Scheme of the proposed 4K CCL/CCA module. Colours indicate the difference to a standard 1 ppc version: orange — large, yellow —

medium, green — slight modifications.

The label assignment pseudocode is depicted in Listing 1.
It is worth to emphasise the separation of operations into
two cases — when P1 belongs to the background or to the
object. In the first one, a separate sub-case is additionally
handled when P2 also belongs to the background. Then
a specific situation may occur, in which, despite the fact that
both considered elements are equal to 0, a merger operation
should be performed.

The listed cases are shown in Figure 7. The sub-image
in Fig. 7a contains a reminder of the used symbols, and
each next corresponds to the cases in Listing 1. White
boxes are the background, blacks are the analysed groups of
objects, labels are marked with orange and blue colours.
In case when two values of one register are possible, the
respective colours are placed in two halves of a given
block — as it can be seen in Fig. 7d. The C register may
have the same value as the B register or it may belong
to the background and it will not change the result of the
analysis. In addition, pixels coloured in grey are not taken
into account in the analysis or are not yet known at this stage
of the processing.

5.2 Delay Lines

Dual-port block memory resources (BRAM) were used to
implement delay lines, as in the work [8]. The use of two

@ Springer

module instances results from the processing of two ele-
ments in parallel.

5.3 Equivalence Tables

To allow the reuse of previously merged labels, it was
decided to assign two equivalence tables for each group
of two pixels. The applied solution is based on the work
[2]. The first table contains equivalences of labels that have
occurred at least once during the scan of the previous image
line. Those are used for resolving the correct value of labels
coming from delay lines. On the other hand, all assigned
(new and already existing) labels during the analysis are
stored in the second table. This information is required
to reuse the merged labels that were not present in the
previous line. At the end of each image row, the roles of the
mentioned tables are swapped.

The first table is updated only in case of a merger event
and when the label with a smaller value is on the left
side of the considered pixel. The update of the second
table is more complicated. It is executed in the case of:
a merge, where the label with a smaller value is on the
right site, in case of merger chain, new label and “continued
label”. The last two cases are handled by a temporary
stack, where the labels are stored prior equivalence table
update.
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Figure 7 All the possible cases
from Listing 1.

P2

In a 1ppc approach, these labels are stored in the equiva-
lence table when the current pixel belongs to the background.
When 2 pixels (after the OR operation) are processed in par-
allel, a different approach is necessary, as one pixel could
belong to the background and the second to another object.
Therefore, the equivalence tables are updated when all con-
sidered pixels belong to the background. Two cases are
possible. If in the previous context foreground pixels were
present, the new label is stored. On the other hand, if the
context was empty and some data was present on the stack,
it is stored in the table. This concept is presented in Figure 8.

5.4 Merger Chain Control

The merger chain is a situation in which several mergers
occur in one line for the same object — an example is
illustrated in Figure 10. In the software version of the
algorithm, the correct handling of this event is guaranteed
by the used graph structure. In a pipelined hardware version,
where the new label must be determined during one clock
cycle, it is necessary to use an additional mechanism. This
module uses a solution derived from the work [2].

Its basis is a stack storing the merged and given labels
(only in case when the label with greater value is located to
the left of the analysed group of pixels). Then, during the
horizontal blanking period, three operations are performed:
(1) retrieving from the stack, (2) reading the equivalent
of the given label from the corresponding equivalence
table, (3) writing this value into the equivalence table
at the address of the merged label. In addition, in the
second step, it is necessary to check whether the currently
considered label is equal to the merged one from the
previous stage (which protects against access conflict to
the BRAM memory). Finally, it is worth noting that
the use of an appropriate preprocessing (morphological
operation, median filtering) allows to significantly reduce
the probability of the occurrence of this type of pixel
configurations.

5.5 Label Stack
In the described module, a mechanism for recovering unused

(i.e. merged) labels was applied — a stack-based approach was
used. The value of a new label (that is available) is present on
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Figure 8 Operations performed
when four consecutive
background pixels are detected.

the top of the stack. Labels “recovered” during merging are
placed on the stack at the end of the image line.

An important stage of the module’s operation is restoring
the stack to its initial state between consecutive frames. It
is filled with successive numbers in the opposite order (the
maximum number of labels is a parameter of the module).
Due to the specificity of the 4K signal and the data transfer
in the AXI Stream format (bus used on the ZCU 104
hardware platform), it was not possible to reset the entire
stack (BRAM memory) during the vertical blanking period,
as it was too short.> We therefore decided to implement
a stack restoring mechanism that starts operation during the
blanking period and when necessary, also continues to work
in parallel with the processing of the next frame.

The concept is presented in Figure 9. The blue colour
corresponds to an address, from where a new label will be
read, while red corresponds to an address, where the stack
is being reset. The first two reset steps are executed during
the end of the previous frame. The reset is continued during
the new frame, however it is stopped when a new label is
required (step 4).

5.6 Calculation of Parameters

The single-pass connected components labelling module
would be practically useless, if it was not integrated with the
functionality allowing to compute object parameters. The
calculation of bounding box coordinates, area (mg) and the

%It should be noted that the blanking periods in the native format
are usually much longer and the conversion to AXI Stream format
“shortens” them. This is a result of the assumption that in AXI Stream
only valid data is transferred.
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first order moments (mgp, m19) was implemented. Based on
the last two, the objects’ centroids can be calculated.

The implementation uses a double buffering mechanism.
In one data structure, the parameters of the objects from
the previous frame are stored and available for further
processing. In the second one, the current calculations are
carried out. The switch is performed at the beginning of
a new frame.

The key element of the module is merger handling. In
the case of a 1 ppc stream, the single-pixel gap between two
objects is used. It allows, after merger, to read the feature
vector of the second object and save the integrated results to
the data structure.

For the 2/4 ppc format, the application of the above
described approach would require a gap of at least 2/4 pixels
(cf. Subsection 5.3). Therefore, a solution based on a FIFO
queue is used, where the values of merged labels are stored.

— ) — )

Figure 10 Sample merger chain: first labels 3 and 2, followed by 2
and 1.
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Figure 9 Label stack during
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The data integration itself occurs during the horizontal
blanking period. In involves the following steps:

— data read from the FIFO (assigned and merged label),
— parameter read using the assigned label,

— parameter read using the merged label,

— fusing the parameters,

—  resetting to zero the parameter memory at merged address,
— writing the fused parameters at the assigned address.

The whole process lasts four clock cycles, however pipelin-
ing can be introduced. The total latency of the module is
given as:

2
0, form =0 @

I— {2+2-m,f0rm >0
where: L — latency, m number of mergers in a single line.

It should be noted that in the considered system, the
blanking period lasts about 60 clock cycles. For this value,
the maximum number of “handled” mergers is 30 (this
can be derived from Eq. 2). During analysis of the test
sequences, we established that there are usually no more
than 10 such events in a single line, which justifies the
use of the described solution. However, if this would not
be sufficient, the previously described image processing
pipeline suspension could be applied.

6 Evaluation and Analysis

In this section, the proposed module is compared with
the software “golden standard”, the sample skin colour
detection application is presented, the scalability of the
solution is discussed, and finally a comparison with state-
of—of-the art is provided.

6.1 Comparison with Software CCL/CCA
It should be clearly stated that the module described in

Section 5 works in two modes: 2 ppc and 4 ppc. In the
first one, it provides exactly the same results as a software

CCL/CCA implementation. This was verified by comparing
the output with the bwlabel function available in MATLAB.
So in this case, due to the 2 ppc format, the algorithm was
adapted to the FPGA architecture, but the operation itself
was not modified.

In the 4 ppc mode, the module uses an additional OR
operation, which is a modification to the standard CCL
algorithm (more details in Section 4.2). To evaluate the
impact of the introduced simplification we conducted a
series of experiments. We compared the proposed pixel
merging approach with ground truth data, as well as pop-
ular morphological operations with a 3 x 3 mask: erosion,
dilation, opening, and closing, as their use also elimi-
nates the possibility of triple merging (the main reason for
using the OR approach). We used images from the PETS
2006 dataset (http://www.cvg.reading.ac.uk/
PETS2006/data.html). Experiments showed that all
simplifications/filtrations affect three key objects parame-
ters: area, bounding box and centroid. The biggest changes
were observed for small objects, but these are usually dis-
carded from further analysis. The use of the proposed
method for medium and large objects results in an area
change of 4% and 2%, respectively. However, the error for
the bounding box and centroid was in the range of 1 pixel.
Such deterioration is fully acceptable in almost all vision
systems.

6.2 Sample Application

One of the applications of the created CCL/CCA module is
the segmentation of areas with a given colour, e.g. skin. It
is a component of face detection and recognition systems
that enables preselection of candidates and speeds up further
image analysis.

The vision system consists of the so-called video pass-
through, colour space conversions and segmentation module,
CCL/CCA and visualisation of its results. All the compo-
nents of the system were implemented in both 2 and 4 ppc
formats. The source of the image is a computer graphics
card or a 4K camera with HDMI output. Image processing
is performed on the Xilinx ZCU 102 or ZCU 104 evaluation

@ Springer


http://www.cvg.reading.ac.uk/PETS2006/data.html
http://www.cvg.reading.ac.uk/PETS2006/data.html

494

J Sign Process Syst (2021) 93:481-498

Figure 11 Working system.
Right screen — input image. Left
screen — CCL/CCA result.

boards with the Xilinx Zynq UltraScale+ MPSoC device.
The results are displayed on a 4K monitor.

Data to the CCL module is sent with the use of AXI4-
Stream bus. The modules receiving data from the HDMI
input (HDMI 1.4/2.0 Receiver Subsystem and Video PHY
Controller provided by Xilinx) are capable of transmitting
data in 2 or 4 pixels in one clock cycle format. The AXI4-
Stream bus consists of 5 signals:

— tdata — pixels’ values,

— tlast — end of line (last pixel),

— tready — module ready to receive data,
—  tuser —new frame,

—  tvalid — module is ready to send data.

It should be also noted that for 4K video with 60 fps HDMI
2.0 input is required.

The input image in RGB format is subjected to a series
of operations, which result in segmentation of skin colour
areas — finally a binary image is obtained. To minimise the
impact of variable lighting, different skin colour, occlusion
and shadows, the frame is analysed in three colour spaces:
RGB, YCbCr and HSV. Thus, the necessary conversions are
carried out first.

Then, based on the algorithm described in the paper [7],
the image is binarized by thresholding channels R, G, B, Y,
Cb, Cr, H. The next step is the CCL/CCA described in the
Section 5. Its result is a description of the detected objects
in the form of bounding box coordinates and geometric
moments mqg, mo; and m g

In the final stage visualisation is carried out. First, it
is checked whether the object has an area larger than
a predefined threshold. If so, its parameters are saved to one
of the K registers (K = 10 — it is also the maximum number
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of objects that can be displayed). Then, for each pixel in
the video stream, it is checked whether it belongs to one
of the predesignated bounding boxes. This is performed in
K modules in parallel. In the last step, the OR operation is
applied to the outputs from the modules — if a pixel belongs
to at least one bounding box, its colour is changed (to red).

The working system is shown in Figure 11. The same
output without any noticeable differences was achieved
for both 2 and 4 ppc versions. The use of hardware
resources is summarised in Tables 1 and 2. In Table 3 power
consumption estimation obtained with the Xilinx XPower
Analyzer tool for both solutions is compared. For the 4 ppc
architecture a 150MHz frequency clock is used, while for
2ppc a 300MHz one. It should be noted that the proposed
CCL/CCA module does not use many logic resources.
Significant is only the BRAM utilisation (11 modules), as
they are used for context generation and at different steps
of the algorithm. Therefore, the module could be also used
on a lower grade FPGA device. The only limiting factor is
the possibility to receive a 4K video stream, which requires
high-speed serial differential transceivers.

Table 1 Resource utilisation — 4 ppc format

Resource Video pass-through  CCL/CCA System

LUT 37397 (16.23%) 1712 (0.74%) 55040 (23.89%)
LUTRAM 3233 (3.18%) 21 (0.02%) 3983 (3.91%)
FF 43369 (9.41%) 796 (0.17%) 68998 (14.97%)
BRAM 6 (1.92%) 11 (3.53%) 17 (5.45%)
DSP 3(0.17%) 0 (0.00%) 3(0.17%)
BUFG 26 (4.78%) 1 (0.18%) 26 (4.78%)
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Table 2 Resource utilisation —

2 ppc format Resource Video pass-through CCL/CCA System
LUT 30706 (13.33%) 1703 (0.74%) 40414 (17.54%)
LUTRAM 2950 (2.90%) 19 (0.02%) 3344 (3.29%)
FF 38183 (8.29%) 794 (0.17%) 51515 (11.18%)
BRAM 3(0.96%) 11 (3.53%) 14 (4.49%)
DSP 3(0.17%) 0 (0.00%) 3(0.17%)
BUFG 25 (4.60%) 1 (0.18%) 24 (4.41%)

Analysing Tables 2 and 1 it can be noticed, that there is
a significant difference in the resource usage for the whole
system in the 4 and 2 ppc format. However, according to
what was predicted, the resource utilisation for both CCL
methods is roughly the same. Table 3 shows that in all
cases the estimated power consumed by the Processing
System (PS — i.e. ARM processors) is almost the same.
This is not surprising, as the PS is only used to handle the
parameters of the video passthorough and start its operation.
The application is the same in every case. Furthermore, it is
not unexpected, that the power consumption required to run
the 4 ppc algorithm is about 21% lower than than for the
2 ppc version (taking into account only the dynamic power
of Programmable Logic). Although less resources are used
in the complete system (about 25% LUT and FF and 17%
BRAMs), they need to work with double frequency.

6.3 Scalability of the Solution

The presented approach can be applied to any lower resolu-
tion video stream processing. In this case, using a parallel
pixel mode (2 or 4 ppc) would result in a lower clock fre-
quency of the vision system (including the CCL/CCA mod-
ule). On the other hand, it would be problematic to apply
the presented solution to higher resolution video streams, at
least with the currently available programmable logic tech-
nology. Doubling the resolution, e.g. from Full HD to 4K,
and 4K to 8K, results in quadrupling the number of pixels.
Thus, in the case of an 8K video stream processing 8 pixels
in 1 clock cycle at the clock frequency of 300 MHz would
be required (8 ppc). 16K would require 32 pixels in one

cycle at the same frequency. The presented algorithm would
not be suitable for such formats (8 or 16 ppc), as the critical
path for assigning labels would be too long. For even higher
resolutions other solutions should be researched. One possi-
bility is the approach with conversion to pixel series (runs)
— although this solution for more pixels in one clock cycle
is also not straightforward.

6.4 Comparison with Other Solutions

In Table 4 the modules discussed in Section 2, as well as
the proposed one are summarised. The used “pixel merging”
and other algorithmic advances allowed to obtain real-time
processing for 4K @ 60 fps video stream in 4 ppc format.
The system is also able to work with a 2ppc format (300
MHz clock). It should be emphasised that this performance
is not a simple derivative of using a rather new device. To
process this type of video stream, the well known modules
had to be significantly redesigned. Moreover, the module
could also be implemented in e.g. Virtex 7 series — here the
main limitation is HDMI 2.0 format support (high-frequency
differential input and output (for visualisation)). We did not
compare the used logic resources for two main reasons.
First, not all papers provide this information ([9], [2], [1]).
Second, in all other cases the utilisation is rather low (one
exception [5]). In our opinion, the main issue with real-
time implementation of CCL/CCA modules is the design of
a rather complicated control logic (label assignment, label
merging, label re-use and parameter computation) and not
resource optimisation (like for example in advanced image
filtering — Vector Median Filter or Non-Local Means filter).

Table 3 Comparison of power

Passthrough — 2 ppc System — 4 ppc System — 2ppc

consumption estimation Resource Passthrough — 4 ppc
(Xilinx XPower Analyzer)

Total 4.623 W

PL Dynamic 0.606 W

PS Dynamic 2.698 W

PL Static 0.664 W

PS Static 0.100 W

4761 W 5.043 W 5370 W
0.691 W 1.022 W 1.295 W
2.698 W 2.698 W 2.698 W
0.665 W 0.667 W 0.669 W
0.100 W 0.100 W 0.101 W
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Table 4 Comparison of the proposed solution with state of the art

Paper Alg. Features Device / CIk. freq. Real-time
processing

[9] (1995) 2-pass — 9 x Xilinx XC4010 512 x 512
10 MHz @ 30 fps

[2] (2008) 1-pass label re-use Xilinx Virtex II Pro 640 x 480
— @ 100 fps

[1] (2010) 2-pass pixel runs analysis Xilinx Virtex 4 640 x 480
65 Mhz @ 35 fps

[6] (2016) 1-pass label re-use Xilinx Virtex 6, Kintex 7 1920 x 1080
180 MHz, 150 MHz @ 60 fps

[5]1 (2016) 1-pass shift register Altera Cyclone IV 1920 x 1080
58 - 90 MHz @ 37 fps

[16] (2017) 1-pass 2x2 template for consecutive rows simulation 2048 x 1536
100 MHz (synthesis) @ 19 fps

[12] (2018) 1-pass additional CCA statistics, internal memory Xilinx Vertex-5 1280 x 720
128.07 MHz @ 94 fps

[11] (2018) 1-pass linked list, run-length encoding Xilinx Virtex II 640 x 480
97.07 MHz @ 30 fps

[10] (2018) 1-pass SoC implementation, overlapping operations Xilinx Zynq 7045 640 x 480
225 MHz @ 700 fps

[13](2019) 1-pass auxiliary tables Xilinx Zynq XC7Z020 640 x 480
140 MHz @ 325.5 fps

[14] (2020) 1-pass AXI4 Xilinx Zynq XC7Z020 2k x 2k
97.3 MHz @ 46.4 fps

Proposed (2020) 1-pass 2 and 4ppc support Xilinx Zynq UltraScale+ 3840 x 2160
150 MHz and 300 MHz @ 60 fps

7 Summa ry processed the “full” 4K stream, however, used 21% more

Implementing connected component labelling and analysis
for 4K @ 60 fps video stream in real-time is a challenging
task. Four possible approaches were discussed. Two of
them were implemented and verified on the ZCU 102
and ZCU 104 development boards with a Xilinx Zynq
UltraScale+ device, as a component of a skin-colour area
segmentation application. The first one, working in the
4 ppc scheme, used the combining of two neighbouring
pixels, which greatly simplified the required control logic.
At the same time, the conducted experiments showed that
this modification does not have a significant impact on
the determined object parameters (bounding box, centroid,
area). The second one, working in the 2 ppc scheme,

@ Springer

power. On the other hand, the resource utilisation was 25%
and 17% lower for LUT/FF and BRAMSs respectively.

The next step of this research is the implementation
and verification in hardware of the concept described in
Section 4.4. Also a more in-depth analysis of the series
processing approach presented in 4.5 should be considered.
An interesting option would be also a combination of both
approaches. Ultimately, real-time processing of 8K video
stream should be considered. This should be considered
as rather challenging with the current technology, as it
would require running the mentioned 4 ppc module at 600
MHz. The other possibility — 8 ppc — seems even more
difficult, due to the complex label assignment logic and
4 possible mergers in one clock cycle. In addition, it was
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considered to describe the presented algorithm in C/C++,
use a HLS (High Level Synthesis) tool like Vivado HLS to
generate the module, and then compare the results with the
implementation in Verilog hardware description language.

Open Access This article is licensed under a Creative Commons
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adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
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