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Abstract

Can our video understanding systems perceive objects when a heavy occlusion exists in a scene? To answer this question,
we collect a large-scale dataset called OVIS for occluded video instance segmentation, that is, to simultaneously detect,
segment, and track instances in occluded scenes. OVIS consists of 296k high-quality instance masks from 25 semantic
categories, where object occlusions usually occur. While our human vision systems can understand those occluded instances
by contextual reasoning and association, our experiments suggest that current video understanding systems cannot. On the
OVIS dataset, the highest AP achieved by state-of-the-art algorithms is only 16.3, which reveals that we are still at a nascent
stage for understanding objects, instances, and videos in a real-world scenario. We also present a simple plug-and-play module
that performs temporal feature calibration to complement missing object cues caused by occlusion. Built upon MaskTrack
R-CNN and SipMask, we obtain a remarkable AP improvement on the OVIS dataset. The OVIS dataset and project code are
available at http://songbai.site/ovis.

Keywords Video instance segmentation - Occlusion reasoning - Dataset - Video understanding - Benchmark
Mathematics Subject Classification 68T07 - 68T45

1 Introduction

Communicated by Chen Change Loy.

In the visual world, objects rarely occur in isolation. The
psychophysical and computational studies (Hegdé et al.,
2008; Nakayama et al., 1989) have demonstrated that human
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Fig.1 Sample video clips from OVIS. Click them to watch the anima-
tions (best viewed with Acrobat/Foxit Reader). The hairs and whiskers
of animals are all exhaustively annotated

As the major contribution of this work, we collect a large-
scale dataset called OVIS, specifically for video instance seg-
mentation in occluded scenes. While being the second video
instance segmentation dataset after YouTube-VIS (Yang et
al.,2019), OVIS consists of 296k high-quality instance masks
out of 25 commonly seen semantic categories. Some exam-
ple clips are given in Fig. 1. The most distinctive property of
OVIS dataset is that most objects are under severe occlusions.
The occlusion level of each object is also labeled (as shown
in Fig. 2) and we also present an AP (average precision)
based metric to measure performance under different occlu-
sion degrees. Therefore, OVIS is a useful testbed to evaluate
video instance segmentation models for dealing with heavy
object occlusions.

To dissect the OVIS dataset, we conduct a thorough eval-
uation of 9 state-of-the-art algorithms whose code is publicly

available, including FEELVOS (Voigtlaender et al., 2019a),
ToUTracker+ (Yang et al., 2019), MaskTrack R-CNN (Yang
et al., 2019), SipMask (Cao et al., 2020), STEm-Seg (Athar
et al., 2020), STMask (Li et al., 2021), TraDeS (Wu et al.,
2021), CrossVIS (Yang et al., 2021), and QueryVIS (Fang
et al., 2021). However, the experimental results suggest that
current video understanding systems fall behind the capabil-
ity of human beings in terms of occlusion perception. The
highest AP is only 16.3 achieved by Yang et al. (2021) and
the highest AP on the heavily occluded group is only 6.3
achieved by Li et al. (2021). In this sense, we are still far
from deploying those techniques into practical applications,
especially considering the complexity and diversity of scenes
in the real visual world.

To alleviate the occlusion issue, we also present a plug-
and-play module called temporal feature calibration. For a
given query frame in a video, we resort to a reference frame
to complement its missing object cues. Specifically, the pro-
posed module learns a calibration offset for the reference
frame with the guidance of the query frame, and then the
offset is used to adjust the feature embedding of the refer-
ence frame via deformable convolution (Dai et al., 2017).
The refined reference embedding is used in turn to assist the
object recognition of the query frame. Our module is a highly
flexible plug-in. While applied to MaskTrack R-CNN (Yang
et al., 2019) and SipMask (Cao et al., 2020) respectively, we
obtain an AP of 15.4 and 14.3, significantly outperforming
the corresponding baselines by 4.6 and 4.1 in AP respectively.

To summarize, our contributions are three-fold:

— We advance occlusion handling and video instance seg-
mentation by releasing a new benchmark dataset named
OVIS (short for Occluded Video Instance Segmentation).
OVIS is designed with the philosophy of perceiving
object occlusions in videos, which could reveal the com-
plexity and the diversity of real-world scenes.

Fig. 2 Different occlusions levels in OVIS. Unoccluded objects are colored green, slightly occluded objects are colored yellow, and severely

occluded objects are colored red (Color figure online)
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— We streamline the research over the OVIS dataset by con-
ducting a comprehensive evaluation of 9 state-of-the-art
video instance segmentation algorithms, which could be
a baseline reference for future research on OVIS.

— As a minor contribution, we present a plug-and-play
module called Temporal Feature Calibration to alleviate
the occlusion issue. Using MaskTrack R-CNN (Yang et
al., 2019) and SipMask (Cao et al., 2020) as baselines,
the proposed module obtains remarkable improvements
on both OVIS and YouTube-VIS. More importantly, its
“plug-and-play” nature makes it widely applicable to
future endeavors on OVIS.

Compared with our conference version (Qi et al., 2021)
that briefly describes the OVIS dataset and challenge held in
2021, the improvements are concluded as follows: (1) more
thorough experiments (e.g., oracle experiments, error anal-
ysis, per-class result analysis) are conducted to dissect the
OVIS dataset and the occlusion problem; (2) we comprehen-
sively evaluate the effect of leveraging temporal context and
adjusting the NMS threshold adaptively on occlusion han-
dling; (3) more baseline results (e.g., the results that training
with augmented image sequences, the results obtained with
larger backbone or larger input resolutions) are provided,
which can be a better reference for future work; (4) we fur-
ther summarize remaining difficulties and future directions
that deserve attention in OVIS.

2 Related Work
2.1 Video Instance Segmentation

Our work focuses on Video Instance Segmentation in
occluded scenes. The most relevant work to ours is Yang et al.
(2019), which formally defines the concept of video instance
segmentation and releases the first dataset called YouTube-
VIS. Built upon the large-scale video object segmentation
dataset YouTube-VOS (Xu et al., 2018), the 2019 version of
YouTube-VIS dataset contains a total of 2883 videos, 4883
instances, and 131k masks in 40 categories. Its latest 2021
version contains a total of 3859 videos, 8171 instances, and
232k masks. While YouTube-VIS is not designed to study the
occluded video understanding problem, most objects in the
OVIS dataset are under severe occlusions. Our experimental
results show that OVIS is much more challenging.

Since the release of the YouTube-VIS dataset, video
instance segmentation has attracted great attention in the
computer vision community, arising a series of algorithms
recently. MaskTrack R-CNN (Yang et al., 2019) is the first
unified model for video instance segmentation. It fulfills
video instance segmentation by adding a tracking branch
to the popular image instance segmentation method Mask
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R-CNN (He et al., 2017). Lin et al. (2020) propose a
modified variational auto-encoder architecture built on the
top of Mask R-CNN. MaskProp (Bertasius & Torresani,
2020) is also a video extension of Mask R-CNN which
adds a mask propagation branch to track instances by the
propagated masks. SipMask (Cao et al., 2020) extends single-
stage image instance segmentation to the video level by
adding a fully-convolutional branch for tracking instances.
STMask (Li et al., 2021) improves feature representation
by spatial feature calibration and temporal feature fusion.
Different from those top-down methods, STEm-Seg (Athar
et al., 2020) proposes a bottom-up method, which performs
video instance segmentation by clustering the pixels of the
same instance. Built upon Transformers, VisTR (Wang et
al., 2020) supervises and segments instances at the sequence
level as a whole. IFC (Hwang et al., 2021) further reduces
the computations of full space-time transformers by only exe-
cuting attention between memory tokens. Query VIS (Fang et
al., 2021) follows a multi-stage paradigm and leverages the
intrinsic one-to-one correspondence in queries across differ-
ent stages. Based on FCOS (Tian et al., 2019), SGNet (Liu
et al., 2021) dynamically divides instances into sub-regions
and performs segmentation on each region. CrossVIS (Yang
et al., 2021) uses the instance feature in the current frame to
localize the same instance in other frames. Different from the
tracking-by-detection paradigm, TraDeS (Wu et al., 2021)
integrates tracking cues to assist detection.

2.2 Other Related Tasks

Our work is also relevant to several other tasks, including:

Video Object Segmentation Video object segmentation (VOS)
is a popular task in video analysis. According to whether to
provide the mask for the first frame, VOS can be divided
into semi-supervised and unsupervised scenarios. Semi-
supervised VOS (Hu et al., 2018; Johnander et al., 2019;
Khoreva et al., 2017; Li & Loy, 2018; Li et al., 2020b; Oh
et al., 2018, 2019; Voigtlaender and Leibe, 2017; Wang et
al., 2021a) aims to track and segment a given object with a
mask. Many Semi-supervised VOS methods (Khoreva et al.,
2017; Li & Loy, 2018; Voigtlaender and Leibe, 2017) adopt
an online learning manner which fine-tunes the network on
the mask of the first frame during inference. Recently, some
other works (Hu et al., 2018; Johnander et al., 2019; Li et
al., 2020b; Oh et al., 2018, 2019; Wang et al., 2021a) aim to
avoid online learning for the sake of faster inference speed.
Unsupervised VOS methods (Li et al., 2018; Tokmakov et al.,
2017; Wang et al., 2019) aim to segment the primary objects
in a video without the first frame annotations.

As the first video object segmentation dataset, DAVIS
(Caelles et al., 2019; Perazzi et al., 2016) contains 150 videos
and 376 densely annotated objects. Xu et al. (2018) further
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proposes the larger YouTube-VOS dataset with 4453 video
clips and 7755 objects based on the large-scale YouTube-
8M (Abu-El-Haija et al., 2016) dataset. Different from video
instance segmentation that needs to classify objects, both
unsupervised and semi-supervised VOS does not distinguish
semantic categories. In addition, only one or several salient
objects are annotated in these VOS datasets, while we anno-
tate all the objects belonging to the pre-defined category set.

Video Semantic Segmentation Video semantic segmenta-
tion requires semantic segmentation for each frame in a
video. The popular video semantic segmentation datasets
include Cityscapes (Cordts et al., 2016), CamVid (Bros-
tow et al., 2009), etc. There are 5000 video clips in the
Cityscapes (Cordts et al., 2016) dataset. Each clip con-
sists of 30 frames and only the 20th frame is annotated.
CamVid (Brostow et al., 2009) dataset contains 4 videos and
the authors annotate one frame every 30 frames, obtaining
800 annotated frames finally. LSTM (Fayyaz et al., 2016),
GRU (Nilsson & Sminchisescu, 2018), and optical flow (Zhu
et al., 2017) are introduced to leverage temporal contextual
information for more accurate or faster video semantic seg-
mentation. Video semantic segmentation does not require
distinguishing instances and tracking objects across frames.

Video Panoptic Segmentation Kim et al. (2020) define a video
extension of panoptic segmentation (Kirillov et al., 2019),
which requires generating consistent panoptic segmentation,
and in the meantime, associating instances across frames.
They further reformatted the VIPER dataset with 124 videos
and proposed the Cityscapes-VPS dataset which contains 500
videos.

Open-World Video Object Segmentation Different from the
aforementioned tasks, open-world video object segmenta-
tion (Wang et al., 2021b) is taxonomy-free and requires
segmenting and tracking all the objects class-agnostically.
The proposed UVO dataset (Wang et al., 2021b) contains
1200 videos and all the videos are densely annotated.

Multi-Object Tracking Multi-object tracking (MOT)
(Smeulders et al., 2013) aims to detect the bounding boxes
of objects and track them in a given video. Some popu-
lar datasets focus on the tracking of pedestrians and cars
in street scenes, such as MOT16 (Milan et al., 2016) and
KITTTI (Geiger et al., 2012). Meanwhile, UA-DETRA (Wen
et al., 2020) features vehicle tracking only.

Multi-Object Tracking and Segmentation Multi-object track-
ing and segmentation (MOTS) (Voigtlaender et al., 2019b)
extends multi-object tracking (MOT) (Smeulders etal., 2013)
from a bounding box level to a pixel level. Voigtlaender
et al. (2019b) release the KITTI MOTS and MOTSChal-
lenge datasets, and propose Track R-CNN that extends Mask
R-CNN by 3D convolutions to incorporate temporal con-
text and an extra tracking branch for object tracking. Xu et

al. (2020) release the ApolloScape dataset which provides
more crowded scenes and proposes a new track-by-points
paradigm. The task definition of MOTS is similar to video
instance segmentation, which means an algorithm needs to
simultaneously detect, segment, and track objects. While
MOTS mainly focuses on pedestrians and cars in the streets,
VIS targets more diverse scenes and more general objects in
our daily life, such as animals.

Video Object Detection Video object detection (VOD) is a
direct extension of image-level object detection. Compared
with multi-object tracking, the video object detection task
does not require tracking an object. Some commonly used
datasets include the ImageNet-VID dataset (Russakovsky et
al., 2015), which contains 3862 snippets for training, 555
snippets for validation, and 937 snippets for evaluation.

Our work is of course relevant to some image-level recog-
nition tasks, such as semantic segmentation (Chen et al.,
2017, 2018; Long et al., 2015), instance segmentation (He et
al., 2017; Huang et al., 2019; Kirillov et al., 2020), panoptic
segmentation (Kirillov et al., 2019; Li et al., 2020a; Xiong et
al., 2019), large vocabulary instance segmentation (Gupta et
al., 2019; Wu et al., 2020a), etc.

2.3 Occlusion Understanding

There are also some works focusing on occlusion under-
standing and handling. BCNet (Ke et al., 2021) adds a
new branch to infer the occluders and utilizes the obtained
occluder features to enhance the feature of occludees.
OCFusion (Lazarow et al., 2020) introduces the occlusion
head to indicate the occlusion relation between each pair
of mask proposals. Zhan et al. (2020) proposes a self-
supervised method that can recover the occlusion ordering
and complete the invisible parts of occluded objects. Dif-
ferent from the full-DNN paradigm described above, Some
methods (Kortylewski et al., 2020a, 2021, 2020b) integrate
compositional models and deep convolutional neural net-
works into a unified model which is more robust to partial
occlusions. As for pedestrian detection in crowded scenes,
Wang et al. (2018b) and Zhang et al. (2018) propose new
loss functions to enforce predicted boxes to locate compactly
to the corresponding ground-truth objects while far from
other objects. Zhou and Yuan (2018) regresses two bounding
boxes for each object to localize the full body and visible
part of a pedestrian respectively. Liu et al. (2019a) intro-
duces adaptive-NMS which adaptively increases the NMS
threshold in crowd scenes. Wu et al. (2020b) aggregates the
temporal context to enhance the feature representations. Chu
et al. (2020) predicts multiple instances in one proposal.
In Multi-Object Tracking, Chu et al. (2017) and Zhu et al.
(2018) utilize the attention module to attend to the visible
parts of objects. Liu et al. (2020) and Xu et al. (2019) exploit
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the topology between objects to track the occluded objects.
In our experiments, to test the effect of temporal aggrega-
tion on occlusion handling, a temporal feature calibration
module is presented, in which the calibrated features from
neighboring frames are fused with the current frame for rea-
soning occluded objects and improving the recognition in
each frame.

3 OVIS Dataset

Given an input video, video instance segmentation requires
detecting, segmenting, and tracking object instances simul-
taneously from a predefined set of object categories. An
algorithm is supposed to output the class label, confidence
score, and a sequence of binary masks of each instance.

The focus of this work is on collecting a large-scale bench-
mark dataset for video instance segmentation with severe
object occlusions. In this section, we mainly review the data
collection process, the annotation process, and the dataset
statistics.

3.1 Video Collection

We begin with selecting 25 semantic categories, including
Person, Bird, Cat, Dog, Horse, Sheep, Cow, Elephant, Bear,
Zebra, Giraffe, Poultry, Giant panda, Lizard, Parrot, Monkey,
Rabbit, Tiger, Fish, Turtle, Bicycle, Motorcycle, Airplane,
Boat, and Vehicle. The categories are carefully chosen mainly
for three motivations: (1) most of them are animals, with
which object occlusions extensively happen, (2) they are
commonly seen in our life, (3) these categories have a high
overlap with popular large-scale image instance segmenta-
tion datasets (Gupta et al., 2019; Lin et al., 2014) so that
models trained on those datasets are easier to be transferred.
The number of instances per category is given in Fig. 3.

As the dataset is to study the capability of our video
understanding systems to perceive occlusions, we ask the
annotation team to (1) exclude those videos, where only one
single object stands in the foreground; (2) exclude those
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Fig.3 Number of instances per category in the OVIS dataset
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videos with a clean background; (3) exclude those videos,
where the complete contour of objects is visible all the time.
Some other objective rules include (1) video length is gener-
ally between 5 and 60's, and (2) video resolution is generally
1920 x 1080.

After applying the objective rules, the annotation team
delivers 8644 video candidates and our research team only
accepts 901 challenging videos after a careful re-check. It
should be mentioned that due to the stringent standard of
video collection, the pass rate is as low as 10%.

3.2 Annotation

Given an accepted video, the annotation team is asked to
exhaustively annotate all the objects belonging to the pre-
defined category set. Each object is given an instance identity
and a class label. In addition to some common rules (e.g., no
ID switch, mask fitness < 1 pixel), the annotation team is
trained with several criteria particularly about occlusions: (1)
if an existing object disappears because of full occlusions and
then re-appears, the instance identity should keep the same;
(2) if a new instance appears in an in-between frame, a new
instance identity is needed; and (3) the case of “object re-
appears” and “new instances” should be distinguishable by
you after you watch the contextual frames therein. All the
videos are annotated every 5 frames and the final annotation
granularity of most videos is 5 or 6 fps.

To deeply analyze the influence of occlusion levels on
model performance, OVIS provides the occlusion level anno-
tation of every object in each frame. The occlusion levels are
defined as follows: no occlusion, slight occlusion, and severe
occlusion. As illustrated in Fig. 2, no occlusion means the
object is fully visible, slight occlusion means that more than
50% of the object is visible, and severe occlusion means
that more than 50% of the object area is occluded. After
the frame-level occlusion degree is annotated, we can quan-
tify the occlusion degree of each instance through the whole
video by gathering the occlusion level in all frames of the
instance. Specifically, We first map the three occlusion lev-
els mentioned before into numeric scores. The no occlusion,
slight occlusion, and server occlusion are mapped into 0,
0.25, and 0.75, respectively. Then, given an instance that
appears in multiple frames, we use the averaged occlusion
scores of top 50% frames with highest scores to represent the
occlusion degree of instances.

Each video is handled by one annotator to get the initial
annotation, and the initial annotation is then passed to another
annotator to check and correct if necessary. The final anno-
tations will be examined by our research team and sent back
for revision if deemed below the required quality.

While being designed for video instance segmentation,
it should be noted that OVIS is also suitable for evaluat-
ing video object segmentation in either a semi-supervised
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Table 1 Comparing OVIS with YouTube-VIS in terms of statistics

Dataset YTVIS 19 YTVIS 21 OVIS
Masks 131k 232k 296k
Instances 4883 8171 5223
Categories 40 40 25
Videos 2883 3859 901
Video duration* 4.61s 5.03s 12.77s
Instance duration 4.47s 4.73s 10.05s
mBOR* 0.07 0.06 0.22
Objects/frame* 1.57 1.95 4.72
Instances/video* 1.69 2.10 5.80

See Eq. (1) for the definition of mBOR. *Means the value of YouTube-
VIS is estimated from the training set

or unsupervised fashion, and object tracking since the
bounding-box annotation is also provided. The relevant
experimental settings will be explored as part of our future
work.

3.3 Dataset Statistics

As YouTube-VIS (Yang et al., 2019) is the only dataset
that is specifically designed for video instance segmenta-
tion nowadays, we analyze the data statistics of OVIS with
YouTube-VIS as a reference in Table 1. We compare OVIS
with two versions of YouTube-VIS: YouTube-VIS 2019 and
YouTube-VIS 2021. Note that some statistics, marked with
*, of YouTube-VIS are only calculated from the training set
because only the annotation of the training set is publicly

== =0.17
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Fig.5 Visualization of occlusions with different BOR values

available. Nevertheless, considering the training set occupies
78% of the whole dataset, those statistics could still reflect
the properties of YouTube-VIS roughly.

In terms of basic and high-level statistics, OVIS con-
tains 296k masks and 5223 instances. The number of masks
in OVIS is larger than YouTube-VIS 2019 and YouTube-
VIS 2021 that have 131k and 232k masks, respectively. The
number of instances in OVIS is larger than YouTube-VIS
2019 that has 4883 instances, and less than YouTube-VIS
2021 that has 8171 instances. Note that there are fewer cate-
gories in OVIS, so the mean instances count per category is
larger than YouTube-VIS 2021. Nonetheless, OVIS has fewer
videos than YouTube-VIS as our design philosophy favors
long videos and instances so as to preserve enough motion
and occlusion scenarios.

As is shown, the average video duration and the average
instance duration of OVIS are 12.77s and 10.05s respec-
tively. Fig. 4a presents the distribution of instance duration,
which shows that all instances in YouTube-VIS last less than
10s. Long videos and instances increase the difficulty of
tracking and the ability of long-term tracking is required.
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As for occlusion levels, the proportions of objects with no
occlusion, slight occlusion, and severe occlusion in OVIS are
18.2%, 55.5%, and 26.3% respectively. 80.2% of instances
are severely occluded in at least one frame, and only 2% of
the instances are not occluded in any frame. It supports the
focus of our work, that is, to explore the ability of video
instance segmentation models in handling occlusion scenes.

In order to compare the occlusion degree with other
datasets, we define a metric named Bounding-box Occlusion
Rate (BOR) to approximate the degree of occlusion. Given
a video frame with N objects denoted by bounding boxes
{B1, By, ..., By}, we compute the BOR for this frame as

| U1§i<j§N B; ﬂBﬂ

BOR = )
|U1§i5NBi|

ey

where the numerator means the area sum of the intersection
between any two or more bounding boxes. The denominator
means the area of the union of all the bounding boxes. An
illustration is given in Fig. 5, which shows the larger the BOR
value is, the heavier the occlusion is.

Then we utilize mBOR, the average value of BORs of
all the frames in a dataset (frames that do not contain any
objects are ignored), to characterize the dataset in terms of
the occlusion. As shown in Table 1, the mBOR of OVIS
is 0.22, much higher than that of YouTube-VIS 2019 and
YouTube-VIS 2021 (0.07 and 0.06, respectively). The BOR
distribution is further compared in Fig. 4b. As can be seen,
most frames in YouTube-VIS are located in the region where
BOR < 0.1. In comparison, the BOR of about half frames
in OVIS is no less than 0.2. This supports that there are more
severe occlusions in OVIS than YouTube-VIS. However, it
should be mentioned here that BOR can only roughly reflect
the occlusion between objects. Therefore, mBOR could serve
as an effective indicator for occlusion degrees, but only reflect
the occlusion degree in a partial or rough way.

In addition to long videos&instances and severe occlu-
sions, OVIS features crowded scenes, which is a natural result
caused by heavy occlusions. OVIS has 5.80 instances per
video and 4.72 objects per frame, while those two values
are 2.10 and 1.95 respectively in YouTube-VIS 2021. The
comparison of the two distributions is further depicted in
Fig. 4c, d.

3.4 Evaluation Metrics

Following previous methods (Yang et al., 2019), we use aver-
age precision (AP) at different intersection-over-union (IoU)
thresholds and average recall (AR) as the evaluation metrics.
The mean value of APs is also employed.

In addition, thanks to the occlusion level annotations in
OVIS, we are able to analyze the performance under different
occlusion levels. We divide all instances into three groups
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called slightly occluded, moderately occluded, and heavily
occluded, in which the occlusion scores of instances are in
the range of [0, 0.25], [0.25, 0.5], [0.5, 0.75] respectively.
The proportions of the three groups are 23%, 44%, and 49%
respectively. Then, we can get the AP of each group (denoted
by APso, AP0, and APpo respectively) by ignoring the
instances of other groups.

4 Experiments

In this section, we comprehensively study the newly collected
OVIS dataset by conducting experiments on 9 existing video
instance segmentation algorithms and propose our new base-
line method.

4.1 Implementation Details

Datasets On the newly collected OVIS dataset, the whole
dataset is divided into 607 training videos, 140 validation
videos, and 154 test videos. The split proportions of differ-
ent categories are approximately the same, and there are at
least 4 videos per category in the validation and test set. This
split will be fixed as an official split. If not specified, the
experiments are conducted on the validation set of OVIS.

A Temporal Feature Calibration Plug-in One of the keys to
tackling occlusion is to complement the missing object cues.
In a video that has a temporal dimension, a mild assumption
is that usually, the missing object cues in the current frame
may have appeared in adjacent frames. Hence, it is natural
to leverage adjacent frames to alleviate occlusions. How-
ever, caused by motions, the features of different frames are
not aligned in the spatial dimension. Things get much worse
because of the existence of severe occlusions. To solve this
issue, following (Bertasius et al., 2018; Dosovitskiy et al.,
2015), we present an easy plug-in called temporal feature
calibration as illustrated in Fig. 6.

Denote by Fq € RAXWXC gnd F, € RHXWXC the
feature tensor of the query frame (called target or current
frame in some literature) and a reference frame, respectively.
The feature calibration first computes the spatial correla-
tion (Dosovitskiy et al., 2015) between Fq and Fy. Given
a location Xq in Fg and x; in F, we compute

c(Xq, Xr) = Z

oe[—k,k]x[—k,k]

Fy(Xq + 0)Fr(xr +0)T. )

The above operation will transverse the d x d area centered
on Xq, then outputs a d?-dimensional vector.

After enumerating all the positions in Fg, we obtain C

2 .. . .
RH*Wxd™ and forward it into multiple stacked convolution

layers to get the spatial calibration offset D € R *Wx18 we
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Fig. 6 The pipeline of temporal feature calibration, which can be
inserted into different video instance segmentation models by changing
the following prediction head

then obtain a calibrated version of Fy by applying deformable
convolutions with D as the spatial calibration offset, which is
denoted as Fy. At last, we fuse the calibrated reference feature
F, with the query feature Fq by element-wise addition for the
localization, classification, and segmentation of the current
frame afterward.

During training, for each query frame Fq, we randomly
sample a reference frame F; from the same video. As com-
pared with the short videos in YouTube-VIS (the longest
video in YouTube-VIS contains only 36 frames), the first
frame and the last frame of a long video in OVIS (the longest
video in OVIS contains 500 frames) may be totally different.
In order to ensure that the reference frame has a strong spatial
correspondence with the query frame, the sampling is only
done locally within eyqain = S frames. Since the temporal fea-
ture calibration is differentiable, it can be trained end-to-end
by the original detection and segmentation loss. When infer-
ence, all frames adjacent to the query frame within the range
etest = J are taken as reference frames. We linearly fuse the
classification confidences, regression bounding box coordi-
nates, and segmentation masks obtained from each reference
frame and output the final results for the query frame.

Table 2 Overall results of state-of-the-art methods on the OVIS dataset

In the experiments, we denote the new methods as CMask-
Track R-CNN and CSipMask, when Calibrating MaskTrack
R-CNN (Yang et al., 2019) models and Calibrating Sip-
Mask (Cao et al., 2020) models, respectively.

Experimental Setup For all our experiments, we adopt
ResNet-50-FPN (He et al., 2016) as the backbone. The mod-
els are initialized by Mask R-CNN which is pre-trained
on MS-COCO (Lin et al., 2014). All frames are resized to
640 x 360 during both training and inference for fair com-
parisons with previous works (Yang et al., 2019; Cao et al.,
2020; Atharetal., 2020). For our new baselines (CMaskTrack
R-CNN and CSipMask), we use three convolution layers of
kernel size 3 x 3 in the module for temporal feature calibra-
tion. The training epoch is set to 12, and the initial learning
rate is set to 0.005 and decays with a factor of 10 at epoch 8
and 11.

4.2 Main Results

On the OVIS dataset, we first produce the performance
of several state-of-the-art algorithms whose code is pub-
licly available, including mask propagation methods (e.g.,
FEELVOS Voigtlaender et al. 2019a), track-by-detect meth-
ods (e.g., loUTracker+ Yang et al. 2019), and recently pro-
posed end-to-end methods (e.g., MaskTrack R-CNN Yang
et al. 2019, SipMask Cao et al. 2020, STEm-Seg Athar et
al. 2020, STMask Li et al. 2021, TraDeS Wu et al. 2021,
CrossVIS Yang et al. 2021, and QueryVIS Fang et al. 2021).
The standard deviation of the reported results below is about
0.5.

As presented in Table 2, although most of these methods
can obtain more than 30 AP on the YouTube-VIS dataset, all
of them encounter a great performance degradation of at least
50% on OVIS compared with that on YouTube-VIS. Espe-
cially in the heavily occluded instance group, all methods

Methods OVIS validation set OVIS test set
AP APsp AP7;5 AR; ARj9 APso APyo APpo AP APsy AP75 AR; ARjy APso APyo APpo

FEELVOS (Voigtlaender et al., 2019a) 9.6 22.0 7.3 74 148 173 115 1.7 10.8 234 8.7 9.0 162 189 122 20
ToUTracker+ (Yang et al., 2019) 7.0 16.9 53 57 143 115 7.9 1.8 8.0 18.4 7.5 59 157 128 9.1 2.1
MaskTrack R-CNN (Yang et al., 2019) 10.8 25.3 8.5 79 149 230 128 2.7 11.8 254 104 79 160 227 150 35
SipMask (Cao et al., 2020) 10.2 247 7.8 79 158 199 105 22 11.7 237 105 81 16.6 219 139 32
STEm-Seg (Athar et al., 2020) 13.8 32.1 119 9.1 200 222 16.1 39 144 300 13.0 10.1 206 225 168 42
TraDeS (Wu et al., 2021) 114 265 9.4 7.0 13.8 230 128 3.0 12.0 264 10.8 7.8 146 216 14.1 3.6
QueryVIS (Fang et al., 2021) 147 347 11.6 9.0 212 273 172 4.1 16.0 33.7 147 9.6 21.7 263 177 45
STMask (Li et al., 2021) 154 338 125 89 213 240 187 51 15.6 325 138 9.1 218 254 17.1 6.3
CrossVIS* (Yang et al., 2021) 149 327 12,1 103 19.8 284 169 4.1 16.3 315 154 10.6 21.1 273 185 56

Bold values indicate best performance

APso, APyo, and APpo respectively denote the AP of “slightly occluded”, “moderately occluded”, and “heavily occluded”.
*Means the baseline model is additionally pre-trained with the YouTube-VIS dataset (Yang et al., 2019)
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Table 3 Quantitative comparison between the new methods and their corresponding baselines on the OVIS dataset and the YouTube-VIS dataset

Methods OVIS validation set YouTube-VIS 2019 validation set
AP  APsy AP7;5 AR; ARy9g APso APyo APgo AP  APsyg AP;s AR; ARy
SipMask (Cao et al., 2020) 102 247 78 79 158 199 105 22 325 53.0 333 335 389
CSipMask 143 299 125 96 193 27.1 166 32 351 556 381 358 417
MaskTrack R-CNN (Yang et al., 2019) 10.8 25.3 85 79 149 230 128 27 30.3 51.1 326 31.0 355
CMaskTrack R-CNN 154 339 131 93 200 286 187 41 32.1 528 349 332 379

Bold values indicate best performance

suffer from a significant performance drop of more than 80%.
For example, SipMask (Cao et al., 2020), which achieves an
AP of 32.5 on YouTube-VIS, only obtains an AP of 2.2 in
the heavily occluded group of OVIS validation set. It firmly
suggests that severe occlusion will greatly improve the dif-
ficulty of video instance segmentation, and further attention
should be paid to video instance segmentation in the real
world where occlusions extensively happen. Benefiting from
the feature calibration and temporal fusion, STMask (Li et
al., 2021) obtains an APgp of 5.1 on the validation set and
6.3 on the test set, surpassing all other methods in the heavily
occluded group.

It is worth noting that, as the only bottom-up video
instance segmentation method, STEm-Seg achieves similar
APgso with MaskTrack R-CNN and TraDeS, but much higher
APpo (3.9 vs. 2.7 vs. 3.0). It demonstrates that the bottom-up
paradigm like STEm-Seg may perform better than the general
top-down paradigm on occlusion handling. Our interpreta-
tion is that the bottom-up architecture avoids the detection
process which is difficult in occluded scenes.

In addition, as shown in Table 3, by leveraging the feature
calibration module, the performance on OVIS is significantly
improved. CMaskTrack R-CNN leads to an AP improve-
ment of 4.6 over MaskTrack R-CNN (10.8 vs. 15.4), and
CSipMask leads to an AP improvement of 4.1 over SipMask
(10.2 vs. 14.3). Besides, the experiments also show that TFC
can boost the performance of all occlusion levels, and the
improvement of heavy occlusion and moderate occlusion is
more significant (see Fig. 11 for more details). We also evalu-
ate the proposed CMaskTrack R-CNN and CSipMask on the
YouTube-VIS dataset. As shown in Table 3, CMaskTrack R-
CNN and CSipMask surpass the corresponding baselines by
1.8 and 2.6 in terms of AP, respectively, which demonstrates
the flexibility and the generalization power of the proposed
feature calibration module.

To present the qualitative evaluation results of methods
on OVIS, some evaluation examples of CMaskTrack R-CNN
are given in Fig. 7, including 5 successful cases (a)—(e) and 3
failure cases (f) and (h). In (a), the car in the yellow mask first
blocks the car in the red mask entirely in the 2nd frame, then
is entirely blocked by the car in the purple mask in the 4th
frame. It is surprising that even in this extreme case, all the
cars are well tracked. In (b), CMaskTrack R-CNN success-
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fully tracks the bear in the yellow mask, which is partially
occluded by another object, i.e., the bear in the purple mask,
and the background, i.e., the tree. In (d), we present a crowded
scene where almost all the ducks are correctly detected and
tracked. In (f), two persons and two bicycles heavily over-
lap with each other. CMaskTrack R-CNN fails to track the
person and segment the bicycle. In (g), when two cars are
intersecting, severe occlusion leads to failure of detection and
tracking. In (h), although humans could sense that there are
two persons with hats at the bottom, CMaskTrack R-CNN
cannot detect and track them because the appeared visual
cues are inadequate.

4.3 Discussions

Oracle Results We conduct the image oracle and identity
oracle experiments to explore the impact of image-level pre-
diction and cross-frame association on the performance of
the OVIS dataset. In order to compare with the YouTube-
VIS dataset (Yang et al., 2019), we use MaskTrack-RCNN
for experiments. Following (Yang et al., 2019), in the
image oracle experiments, we use ground-truth bounding
boxes, masks, and category labels to replace the predictions
by MaskTrack R-CNN, and then track those ground-truth
bounding boxes by the tracking branch. In the identity oracle
experiment, we first assign each per-frame prediction to the
closest ground-truth bounding box, and then aggregate the
bounding boxes with the same identity through the video.
The results are shown in Table 4. On the OVIS dataset,
the image oracle experiments and identity oracle experiments
obtain 58.4 and 25.5 AP, respectively. This demonstrates that
the image level prediction is more critical for the perfor-
mance of occluded video instance segmentation, which is
mainly associated to object segmentation and classification
in frames. It can be expected that more advanced image-based
techniques could be explored further so as to approach this
upper limit. Interestingly, both oracle experiments achieve
lower performance on the OVIS dataset than that on the
YouTube- VIS dataset, which shows that whether for image-
level prediction or cross-frame association, the OVIS dataset
is more challenging than the YouTube-VIS dataset. More-
over, in identity experiments, the AP on YouTube-VIS
achieves almost no gain (only 4% improvement over the
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Fig. 7 Evaluation examples on OVIS. Each row presents the results of 5 frames in a video sequence. a—e are successful cases and f, h are failure

cases

Table 4 Oracle results on OVIS

and YouTube-VIS Dataset OVIS YouTube-VIS (Yang et al., 2019)
Image Oracle AP 58.4 (11441%) 78.7 (1160%)
AR 66.1 (1460%) 83.7 (1136%)
Identity Oracle AP 23.9 (1121%) 31.5 (14%)
ARy 28.2 (1139%) 34.6 (1 —2%)

The number in the brackets means the performance improvement ratio over the corresponding baseline

result of MaskTrack R-CNN baseline), while the AP on OVIS
is greatly improved (121% improvement over MaskTrack R-
CNN), which demonstrates that the tracking task on OVIS is
much more difficult than that on YouTube-VIS.

Effect of Leveraging Image Datasets Caused by the high
cost of exhaustively annotating high-quality video segmen-
tation masks, video inadequacy is a common problem among
existing video segmentation datasets. The lack of diversity
in video scenes may affect the generalization capability of

models trained on those datasets. To this end, we further
train several models with both the video data in OVIS and
additional augmented image sequences/pairs synthesized
from other large-scale image instance segmentation datasets.
In our experiments, the proportions of video data and aug-
mented image data are 65% and 35% respectively. These
pseudo image sequences are generated from the COCO (Lin
et al., 2014) dataset by on-the-fly random perspective and
affine transformation. The evaluation results are shown in
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Table 5. We can see that by leveraging the augmented image
sequences, all these three baseline methods can achieve
remarkable AP improvements, which can serve as a refer-
ence for future research.

Analysis of NMS Threshold Non-Maximum Suppression
(NMS) is a necessary post-processing for most detection
methods.

To test the impact of NMS threshold on occlusion han-
dling, inspired by Liu et al. (2019a), we design the adaptive
NMS oracle experiment. Specifically, for each ground-truth
bounding box, we calculate the maximum IoU d between it
and all other ground-truth boxes. Then, the NMS threshold of
all the predicted boxes that correspond to this ground-truth
box will be assigned as max(d, 0.5). In this way, a larger
NMS threshold will be applied to the predictions in dense
scenes, which can prevent NMS from removing the true pos-
itives that are close to other ground-truth boxes.

As presented in Table 6, based on MaskTrack R-CNN,
the adaptive NMS oracle experiment improves APy;o and
APpgo by 0.2, which proves that using a higher NMS thresh-
old adaptively improves the performance in occluded scenes.
However, even though we exactly know the real density (Liu
et al., 2019a) of boxes in the adaptive NMS oracle exper-
iment, APsp decreases from 23.0 to 22.8. The overall AP
only improves from 10.8 to 11.2, which shows that the NMS
threshold adjusting is not a bottleneck on OVIS.

One interpretation is that adjusting the NMS threshold is
more important for tasks that require detecting the amodal
bounding boxes (additionally containing the occluded invis-
ible parts), such as the full-body bounding boxes in crowded
pedestrian detection datasets (Shao et al., 2018; Zhang et al.,
2017). For two occluded objects, the IoU of amodal bound-

ing boxes will be much higher than the IoU of the bounding
boxes of only the visible parts (like the boxes in OVIS). In
addition, some learnable NMS methods (Hosang et al., 2017,
Liu et al., 2019a) have also been proposed, and many new
methods (Carion et al., 2020; Fang et al., 2021) based on
set prediction even do not need NMS post-processing. These
new methods require further exploration in OVIS.

Error Analysis To explore the detailed influence of occlusion
levels on video instance segmentation, in this subsection,
we analyze the frame-level error rates of classification, seg-
mentation, and tracking under different occlusion levels. A
segmentation error refers to that the IoU between the pre-
dicted mask of an object and its ground-truth less than 0.5
and the tracking error is reflected by ID switch rate.

Formally, we denote the predicted masks and labels in all
framesas M = {my,mo, ..., muy}andY = {y1, y2, ..., ¥n},
respectively, where n is the number of predictions. The cor-
responding matched ground-truth masks and labels as M* =
{m{,m5,...,m;}and Y* = {y{, y5, ..., yi}, respectively.

Regarding classification error rates, we consider the pre-
dicted object whose IoU with its matched ground-truth is
greater than 0.5, then count the proportion of classification
errors among them, as

|{mj|IoU(mj,mjf) >05Ay; # y;-‘}|

Ecs = . 3
o [{m;[ToU(m;, m?) > 0.5}] @

For segmentation error rates, following Bolyaet al. (2020),
we consider masks whose IoU with its matched ground-truth
is greater than 0.1. A mask m; will be counted as a segmenta-
tion error if its IoU with the corresponding ground-truth m?*
is less than 0.5. Then the segmentation error rate is calculated

Table 5 The results of training with and without augmented image sequences

Methods w/image data AP APsq AP75 AR, ARy APso AP0 APpo
MaskTrack R-CNN (Yang et al., 2019) 10.8 253 8.5 7.9 14.9 23.0 12.8 2.7

v 12.0 28.5 8.9 7.8 16.3 247 142 32
SipMask (Cao et al., 2020) 10.2 24.7 7.8 7.9 15.8 19.9 10.5 22

v 118 27.5 9.0 83 17.7 232 134 23
STEm-Seg (Athar et al., 2020) 13.8 32.1 11.9 9.1 20.0 222 16.1 39

v 15.2 347 12.5 10.7 23.7 255 17.4 41
Bold values indicate best performance
“w/image data” means training with both video data and the synthesized clips
Table 6 Adaptive NMS oracle results of MaskTrack R-CNN on OVIS
Methods AP AP50 AP75 AR1 AR 10 APSO APMO APHO
MaskTrack R-CNN 10.8 253 8.5 7.9 14.9 23.0 12.8 2.7
+ Adaptive NMS (Liu et al., 2019a) Oracle 11.2 26.5 8.6 8.3 15.6 22.8 13.0 29

Bold values indicate best performance
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Table 7 Error analysis under different occlusion levels

Error type Methods No occlusion (%) Slight occlusion (%) Severe occlusion (%) All (%)

Cls. error rate MaskTrack R-CNN 41.3 41.0 50.1 42.5
MaskTrack R-CNN+LSS + DCN 30.2 (—11.1) 329 (-8.1) 45.8 (—4.3) 34.5 (—8.0)
CMaskTrack R-CNN (ours) 27.5(-2.7) 29.0 (—-3.9) 39.2 (—6.6) 30.2 (—4.3)

Seg. error rate MaskTrack R-CNN 121 25.6 34.1 28.3
MaskTrack R-CNN+LSS + DCN 13.2 (+0.9) 25.1 (—0.5) 33.2(-0.9) 28.0 (—0.3)
CMaskTrack R-CNN (ours) 13.0 (—0.2) 22.2(-2.9) 29.5(-3.7) 253 (-2.7)

ID switch rate MaskTrack R-CNN 18.6 22.5 32.6 22.9
MaskTrack R-CNN+LSS +DCN 12.5 (—6.1) 16.1 (—6.4) 26.1 (—6.5) 16.8 (—6.1)
CMaskTrack R-CNN (ours) 11.2(—1.3) 14.0 (—2.1) 21.6 (—4.5) 144 (—2.4)

LSS denotes the local sampling strategy and DCN means applying a deformable convolutional layer on the query frame itself. For a certain row,
the number in the brackets means the decrease of error rates over the row above

Bold values indicate best performance

as

|{m;10.1 < IoU(m;, m*) < 0.5}]

Eseo = . 4
e [{m; [ToU(m;, m¥) > 0.1}] @

The ID switch rate refers to the ratio of ID switches in the
tracking sequence of all instances. Following Voigtlaender
et al. (2019b), the predicted ID of a ground-truth instance in
a frame is defined as the tracking ID of the closest predicted
mask. If the ID of a ground-truth instance is not equal to that
of its latest tracked predecessor, it will be considered as an
ID switch.

Based on the error rates defined above, we further evaluate
MaskTrack and CMaskTrack. In addition, we define a base-
line named “MaskTrack R-CNN + LSS + DCN” by applying
the local sampling strategy and applying one deformable
convolution layer to the query frame. As a result, by compar-
ing “MaskTrack R-CNN+LSS + DCN” and our method, we
could obtain the performance gain purely brought by tempo-
ral feature calibration.

Asshownin Table 7, the three types of error rates all signif-
icantly increase when the occlusion level increases. Among
them, the segmentation error rate increases the most, from
12.1 to 34.1% for MaskTrack R-CNN, which demonstrates
that severe occlusion will greatly increase the difficulty of
the segmentation task. In this sense, accurately localizing
the object is helpful for mitigating the impact of occlu-
sions. Meanwhile, among the three error types, the error rate
of classification is much higher than that of segmentation
and tracking. So a better classification result is important to
improving the overall performance.

One could also observe that (1) no matter in terms
of classification error rate, segmentation error rate, or ID
switch rate, the gain of our method over “MaskTrack
R-CNN+LSS+DCN” increases when the occlusion level
increases (e.g., CMaskTrack R-CNN decreases the classi-
fication error rate by 2.7%, 3.9%, and 6.6% respectively);

(2) in terms of segmentation error rate and ID switch
rate, the gain of “MaskTrack R-CNN+LSS+DCN” over
the baseline “MaskTrack R-CNN” does not change too
much when the occlusion level increases (e.g., “Mask-
Track R-CNN+LSS+DCN” decreases the segmentation
error rate by 6.1%, 6.4%, and 6.5% respectively); (3) in
terms of classification error rate, the gain of “MaskTrack R-
CNN +LSS + DCN” over the baseline “MaskTrack R-CNN”
even decreases when the occlusion level increases (No occlu-
sion: 11.1%, Slight occlusion: 8.1%, and Severe occlusion:
4.3%).

By comparing Observation (1), (2), and (3), one could
conclude that the TFC module improves more in occluded
scenes compared with using other training strategies (e.g.,
the local sampling strategy) and model structure (e.g., apply-
ing deformable convolution to the query frame). The same
conclusion is also drawn if we compare the relative error
decreasing rate.

Effect of Better Feature Representations To test the effect
of better feature representations on occlusion, we further
try Swin-T (Liu et al., 2019b) and ResNeXt-101 (Xie et
al., 2017) backbone on MaskTrack R-CNN and QueryVIS.
As can be seen in Table 8, both Swin-T and ResNeXt-101
achieve great improvement (about4 AP) on OVIS. And these
larger backbones can also achieve obvious AP improvement
at all occlusion levels.

Effect of Larger Input Resolutions We try to replace the 640 x
360 input resolution with 1280 x 720 which is similar to the
commonly used input resolution for COCO (Lin et al., 2014).
As shown in Table 9, when the input resolution increases,
the performance improves slightly (0.5 AP for MaskTrack
R-CNN Yang et al. 2019 and 0.3 AP for SipMask Cao et al.
2020).

Methods Specifically Designed for Occlusion We also
migrate three image-level detection methods to the CMask-
Track R-CNN model, including (1) the repulsion loss (Wang
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Table 8 Effect of larger backbones

Methods Backbone AP AP5() AP75 AR1 AR10 APSO APMO APHO

MaskTrack R-CNN (Yang et al., 2019) ResNet-50 10.8 253 8.5 7.9 14.9 23.0 12.8 2.7
Swin-T 14.0 30.5 11.5 9.2 19.2 26.9 16.0 3.7
ResNeXt-101 14.6 335 12.0 9.6 194 271 16.7 38

QueryVIS (Fang et al., 2021) ResNet-50 12.8 28.8 11.0 8.6 19.2 252 15.1 2.6
Swin-T 16.5 36.2 14.5 10.2 22.6 31.2 19.4 42
ResNeXt-101 16.9 36.5 14.7 10.6 235 31.8 19.2 4.6

For a fair comparison, the results shown here are all trained only 12 epochs for both pre-training on COCO and training on OVIS

Bold values indicate best performance

Table 9 Effect of larger input resolutions

Methods Input size AP AP50 AP75 AR1 AR10 APSO APMO APHO

MaskTrack R-CNN (Yang et al., 2019) 640 x 360 10.8 253 8.5 7.9 14.9 23.0 12.8 2.7
1280 x 720 11.3 25.8 9.3 7.9 15.7 239 12.9 2.6

SipMask (Cao et al., 2020) 640 x 360 10.2 24.7 7.8 7.9 15.8 19.9 10.5 2.2
1280 x 720 10.5 24.3 8.4 7.1 15.7 19.9 11.8 2.0

Bold values indicate best performance

etal., 2018b) which requires the predicted boxes to keep away
from other ground-truth boxes; (2) the compact loss (Zhang
et al., 2018) which enforces proposals to be close and
locate compactly to the corresponding ground-truth; (3)
the occluder branch (Ke et al., 2021) (without any extra
designs like the Non-local (Wang et al., 2018a) operation and
boundary prediction) which additionally learns the feature
of occluders with a new branch and then fuses the feature of
occluders and occludees. In particular, the repulsion loss and
compact loss are specifically designed for crowded pedes-
trian detection, and the occluder branch is designed for the
occlusion problem of common objects.

As shown in Table 10, the compact loss and occluder
branch improve APy by 0.4 and 0.3 respectively, while
their overall AP improvements are marginal. We believe more
gains can be achieved by developing more delicate occlusion
handling algorithms and leveraging occluded data (see Sect. 5
for future work discussion).
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Fig.8 Per-class AP of CMaskTrack R-CNN on OVIS
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Per-class Results The per-class AP scores of CMaskTrack R-
CNN are shown in Fig. 8. It shows that the Top-5 challenging
categories are Bicycle, Turtle, Motorcycle, Giraffe, and Bird.
The confusion matrix is also given in Fig. 9. As it shows, most
categories can be correctly classified except for some visually
similar category pairs (e.g., Poultry and Bird, Bicycle and
Motorcycle).

Table 10 Effect of three existing occlusion handling methods that are specifically designed for image-level detection tasks

Methods AP AP5() AP75 AR1 AR 10 APSO APMO APHO
CMaskTrack R-CNN 15.4 33.9 13.1 9.3 20.0 28.6 18.7 4.1
+ Repulsion loss (Wang et al., 2018b) 14.7 320 13.8 9.2 19.3 26.9 17.7 4.0
+ Compact loss (Zhang et al., 2018) 15.4 34.1 12.7 9.4 19.4 27.9 18.3 4.5
+ Occluder branch (Ke et al., 2021) (w/o extra designs) 15.6 34.3 13.5 9.7 20.1 28.3 17.9 4.4

“w/o extra designs” means that we remove the Non-local operation (Wang et al., 2018a) and boundary prediction in the occluder branch for a fair

comparison with other methods
Bold values indicate best performance
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Fig.9 Confusion matrix for classification

Ablation Study of the TFC Module. To verify the rational-
ity of the TFC module, we firstly test the effect of the local
sampling strategy of reference frames during training. As
shown in Table 11, by only sampling the reference frames
locally within &y, = 5 frames instead of sampling in the

Table 11 Effect of the local sampling strategy on the OVIS validation set

whole video, MaskTrack R-CNN, SipMask, and QueryVIS
all obtain significant AP improvements of 2.7, 2.6, and 1.7
respectively, which demonstrates that the local sampling
strategy of reference frames during training is necessary and
beneficial to learn how to track objects in the long videos of
OVIS.

We further study the temporal feature calibration module
with a few alternatives. The first option is a naive combina-
tion, which sums up the feature of the query frame and the
reference frame without any feature alignment. The second
option is to replace the correlation operation in our module
by calculating the element-wise difference between feature
maps, which is similar to the operation used in Bertasius and
Torresani (2020). We denote the three options as “+ Uncal-
ibrated Addition” and “+ Calibrationg;s” respectively and
our module as “+ Calibratione;” in Table 12.

As we can see, with the enhanced MaskTrack R-CNN
(with local sampling strategy of reference frames during
training) as the base model, the naive “4 Uncalibrated Addi-
tion” combination even degrades the final AP. This is because
the direct addition of the uncalibrated features from other
frames may bring noises to the object localization process. In
contrast, after applying feature calibration, the performance
is improved. “+ Calibration.o,” achieves an AP of 15.4, an
improvement of 1.9 over the baseline method without fea-
ture fusion and 1.0 over “+ Calibrationg;”. We argue that

Methods Local sampling AP AP50 AP75 AR1 AR10 APSO APM() APHO
MaskTrack R-CNN (Yang et al., 2019) 10.8 25.3 8.5 7.9 14.9 23.0 12.8 2.7

v 135 299 11.3 85 18.7 254 16.7 33
SipMask (Cao et al., 2020) 10.2 24.7 7.8 7.9 15.8 19.9 10.5 22

v 12.8 29.8 9.6 8.7 17.9 255 14.7 25
Query VIS (Fang et al., 2021) 14.7 34.7 11.6 9.0 212 27.3 17.2 4.1

v 16.4 378 124 9.9 229 312 19.0 43
Bold values indicate best performance
Table 12 Effect of the local sampling strategy and the comparison of different feature fusion methods
Methods Local sampling AP APso AP75 AR ARy APso APy0 APyo
MaskTrack R-CNN (Yang et al., 2019) 10.8 25.3 8.5 7.9 14.9 23.0 12.8 2.7
MaskTrack R-CNN (Yang et al., 2019) v 13.5 29.9 11.3 8.5 18.7 254 16.7 33
Yang et al. (2019) + DCN v 14.0 31.2 11.2 8.8 18.5 26.2 16.2 32
Yang et al. (2019) + Uncalibrated Addition v 12.9 294 11.5 8.2 16.6 25.6 15.3 3.1
Yang et al. (2019) + Calibrationgifr v 14.4 32.6 12.3 8.6 18.9 25.3 17.6 3.8
Yang et al. (2019) + Calibrationcor v 154 339 13.1 9.3 20.0 28.6 18.7 4.1

“Local sampling” means only sample the reference frames locally within &¢,i, = 5 frames during training. “+ DCN” means applying a deformable
convolutional layer on the query frame itself. “+ Uncalibrated Addition” means adding feature maps directly without calibration. “+4 Calibrationgifs”
means generating the calibration offset based on the element-wise difference between feature maps, similar to Bertasius and Torresani (2020) did.

“+ Calibrationgy,” is the presented method in Sect. 4.1
Bold values indicate best performance
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Fig. 10 Results of different reference frame range &;.5; on the OVIS
validation set. Notably, &,;; = 0 indicates applying the deformable
convolutional layer to the query frame itself, without leveraging adja-
cent frames

the correlation operation is able to provide a richer context
for feature calibration because it calculates the similarity
between the query position and its neighboring positions.
Testing on P-100 GPU, the speed of CMaskTrack R-CNN
when using Calibrationg;s and Calibrationcor are 16 and 7 fps
respectively.

We also conduct experiments to analyze the influence of
the reference frames range &;45¢. £105; = 0 means applying the
deformable convolutional layer to the query frame itself. As
can be seen in Fig. 10, the AP increases when &, increases,
and reaching the highest value at .5, = 5. Even if &;05y =
1, the performance exceeds the setting of &5, = 0, which
demonstrates that calibrating features from adjacent frames
is beneficial to video instance segmentation.

To further compare the improvement of TFC on differ-
ent occlusion levels, we evaluate the relative gain of AP on
different occlusion levels for a fair comparison. As shown in
Fig. 11, wereport the relative gain by varying &;,,. The larger
the &/¢¢ 18, the more temporal context will be aggregated. As
can be seen, the relative gain of APpo is much higher than
that of APys0. The relative gain of APgg is smallest once the
temporal context is considered (&;05; > 0). The result demon-
strates the effectiveness of temporal feature aggregation on
occlusion handling.

5 Future Directions

In the future, there are still many interesting issues that can
be studied and many remaining difficulties to be addressed
with OVIS, such as:

Occlusion-aware Models Effectively handling occlusions is
one of the most straightforward ways to improve the per-
formance in OVIS. In terms of occlusion-aware models,
there are a few directions that can be exploited in our future
work. For example, compositional models (Kortylewski et

@ Springer

al., 2020a,b, 2021) might be a good choice as they are
robust to partial occlusions. It is also interesting to test if
completing the invisible parts of occluded objects (a.k.a. de-
occlusion Zhan et al. 2020) is useful in this scenario.

Occluded Data Generation Due to the high cost of anno-
tation, the scale of video instance segmentation datasets is
relatively smaller than image datasets. Some works (DeVries
& Taylor, 2017; Yun et al., 2019; Dwibedi et al., 2017; Ghiasi
etal., 2021) have proposed augmenting the common datasets
(e.g., COCO Lin et al. 2014) with partial occlusions, and
some works (Nikolenko, 2019; Kar et al., 2019; Devaranjan
et al., 2020) synthesize structured amodal data in occluded
scenes using simulators. It can be anticipated that utilizing
those data with proper training paradigms will improve the
performance in VIS.

Learning from Occlusion Annotations In OVIS, a coarse
annotation of occlusion levels (no occlusion, slight occlusion,
and server occlusion) is given per object. As a prior knowl-
edge that can be accessed during training, learning paradigms
that can abstract such information deserve special attention.

Large Scale Model Pre-Training According to our experi-
ments, it improves the performance to conduct joint training
with image datasets. With the development of self-supervised
learning (He et al., 2021), exploiting the unlimited amounts
of unlabeled data for model pre-training, then transferring
the pre-trained model into OVIS will largely enhance the
discriminative power of frame embeddings.

Dataset Versatility At last, we are also interested in for-
malizing the experimental track of OVIS for video object
segmentation, either in an unsupervised, semi-supervised,
or interactive setting. It is also of paramount importance to
extend OVIS to video panoptic segmentation (Kim et al.,
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< 25
2
w 20
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Fig. 11 Relative gain of different occlusion levels with increasing ref-
erence frame range &,o
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2020). We believe the OVIS dataset will trigger more research
in understanding videos in complex and diverse scenes.

6 Conclusions

In this work, we target video instance segmentation in
occluded scenes and accordingly contribute a large-scale
dataset called OVIS. OVIS consists of 296k high-quality
instance masks of 5223 heavily occluded instances. While
being the second benchmark dataset after YouTube-VIS,
OVIS is designed to examine the ability of current video
understanding systems in terms of handling object occlu-
sions. A general conclusion is that the baseline performance
on OVIS is far below that on YouTube-VIS, which suggests
that more effort should be devoted in the future to tackling
object occlusions or de-occluding objects (Zhan et al., 2020).
We also explore ways about leveraging temporal context cues
to alleviate the occlusion matter and conduct a comprehen-
sive analysis of occlusion handling on OVIS.

Acknowledgements This work is supported by Turing Al Fellowship
EP/W002981/1.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadara-
jan, B., & Vijayanarasimhan, S. (2006). Youtube-8m: A large-scale
video classification benchmark. arXiv preprint arXiv:1609.08675

Athar, A., Mahadevan, S., Osep, A., Leal-Taixé, L., & Leibe, B. (2020).
Stem-seg: Spatio-temporal embeddings for instance segmentation
in videos. In ECCV.

Bertasius, G., & Torresani, L. (2020). Classifying, segmenting, and
tracking object instances in video with mask propagation. In CVPR

Bertasius, G., Torresani, L., & Shi, J. (2018). Object detection in video
with spatiotemporal sampling networks. In ECCV (pp. 331-346).

Bolya, D., Foley, S., Hays, J., & Hoffman, J. (2020). Tide: A general
toolbox for identifying object detection errors. In ECCV

Brostow, G. J., Fauqueur, J., & Cipolla, R. (2009). Semantic object
classes in video: A high-definition ground truth database. Pattern
Recognition Letters, 30(2), 88-97.

Caelles, S., Pont-Tuset, J., Perazzi, F., Montes, A., Maninis, K. K., &
Van Gool, L. (2019). The 2019 davis challenge on vos: Unsuper-
vised multi-object segmentation. arXiv

Cao, J., Anwer, R. M., Cholakkal, H., Khan, F. S., Pang, Y., & Shao, L.
(2020). Sipmask: Spatial information preservation for fast image
and video instance segmentation. In ECCV.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., &
Zagoruyko, S. (2020). End-to-end object detection with transform-
ers. In: ECCV (pp. 213-229). Springer.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L.
(2017). Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. IEEE
TPAMI, 40(4), 834-848.

Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018).
Encoder-decoder with atrous separable convolution for semantic
image segmentation. In ECCV.

Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online
multi-object tracking using cnn-based single object tracker with
spatial-temporal attention mechanism. In ICCV (pp. 4836-4845).

Chu, X., Zheng, A., Zhang, X., & Sun, J. (2020). Detection in crowded
scenes: One proposal, multiple predictions. In CVPR.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes
dataset for semantic urban scene understanding. In: Proceedings of
the IEEE conference on computer vision and pattern recognition.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., & Wei, Y. (2017).
Deformable convolutional networks. In /CCV.

Devaranjan, J., Kar, A., & Fidler, S. (2020). Meta-sim2: Unsupervised
learning of scene structure for synthetic data generation. In ECCV
(pp. 715-733). Springer.

DeVries, T., & Taylor, G. W. (2017). Improved regularization
of convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552

Dosovitskiy, A., Fischer, P, Ilg, E., Hausser, P., Hazirbas, C., Golkov,
V., Van Der Smagt, P., Cremers, D., & Brox, T. (2015). Flownet:
Learning optical flow with convolutional networks. In CVPR.

Dwibedi, D., Misra, 1., & Hebert, M. (2017). Cut, paste and learn:
Surprisingly easy synthesis for instance detection. In /CCV (pp.
1301-1310)

Fang, Y., Yang, S., Wang, X., Li, Y., Fang, C., Shan, Y., Feng, B., &
Liu, W. (2021). Instances as queries. In ICCV.

Fayyaz, M., Saffar, M.H., Sabokrou, M., Fathy, M., Klette, R., & Huang,
F.(2016). STFCN: spatio-temporal fcn for semantic video segmen-
tation. In ACCV.

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR.

Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T. Y., Cubuk, E. D.,
Le, Q. V., & Zoph, B. (2021). Simple copy-paste is a strong data
augmentation method for instance segmentation. In CVPR (pp.
2918-2928).

Gupta, A., Dollar, P., & Girshick, R. (2019). LVIS: A dataset for large
vocabulary instance segmentation. In CVPR.

He, K., Chen, X., Xie, S., Li, Y., Dollér, P, & Girshick, R. (2021).
Masked autoencoders are scalable vision learners. arXiv preprint
arXiv:2111.06377

He, K., Gkioxari, G., Doll4r, P., & Girshick, R. (2017). Mask R-CNN.
In CVPR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR.

Hegdé, J., Fang, F., Murray, S. O., & Kersten, D. (2008). Preferential
responses to occluded objects in the human visual cortex. JOV,
8(4), 16-16.

Hosang, J., Benenson, R., & Schiele, B. (2017). Learning non-
maximum suppression. In CVPR (pp. 4507-4515).

Hu, Y. T.,Huang, J. B., & Schwing, A. G. (2018). Videomatch: Matching
based video object segmentation. In ECCV.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/2111.06377

2038

International Journal of Computer Vision (2022) 130:2022-2039

Huang, Z., Huang, L., Gong, Y., Huang, C., & Wang, X. (2019). Mask
scoring R-CNN. In CVPR.

Hwang, S., Heo, M., Oh, S. W., & Kim, S. J. (2021). Video instance seg-
mentation using inter-frame communication transformers. arXiv
preprint arXiv:2106.03299

Johnander, J., Danelljan, M., Brissman, E., Khan, F. S., & Felsberg,
M. (2019). A generative appearance model for end-to-end video
object segmentation. In CVPR.

Kar, A., Prakash, A., Liu, M. Y., Cameracci, E., Yuan, J., Rusiniak, M.,
Acuna, D., Torralba, A., & Fidler, S. (2019). Meta-sim: Learning
to generate synthetic datasets. In ICCV (pp. 4551-4560).

Ke, L., Tai, Y. W., & Tang, C. K. (2021). Deep occlusion-aware instance
segmentation with overlapping bilayers. In CVPR.

Khoreva, A., Perazzi, F., Benenson, R., Schiele, B., & Sorkine-Hornung,
A.(2017). Learning video object segmentation from static images.
In CVPR.

Kim, D., Woo, S., Lee, J. Y., & Kweon, I. S. (2020). Video panoptic
segmentation. In CVPR.

Kirillov, A., He, K., Girshick, R., Rother, C., & Dollar, P. (2019). Panop-
tic segmentation. In CVPR.

Kirillov, A., Wu, Y., He, K., & Girshick, R. (2020). Pointrend: Image
segmentation as rendering. In CVPR.

Kortylewski, A., He, J., Liu, Q., & Yuille, A. L. (2020a). Compositional
convolutional neural networks: A deep architecture with innate
robustness to partial occlusion. In CVPR (pp. 8940-8949).

Kortylewski, A., Liu, Q., Wang, A., Sun, Y., & Yuille, A. (2021).
Compositional convolutional neural networks: A robust and inter-
pretable model for object recognition under occlusion. IJCV,
129(3), 736-760.

Kortylewski, A., Liu, Q., Wang, H., Zhang, Z., & Yuille, A. (2020b).
Combining compositional models and deep networks for robust
object classification under occlusion. In WACV (pp. 1333-1341).

Lazarow, J., Lee, K., Shi, K., & Tu, Z. (2020). Learning instance occlu-
sion for panoptic segmentation. In CVPR (pp. 10720-10729).

Li, M., Li, S, Li, L., & Zhang, L. (2021). Spatial feature calibration and
temporal fusion for effective one-stage video instance segmenta-
tion. In CVPR.

Li, Q., Qi, X., & Torr, P. H. (2020). Unitying training and inference for
panoptic segmentation. In CVPR.

Li, S., Seybold, B., Vorobyov, A., Fathi, A., & Kuo, C. C. J. (2018).
Instance embedding transfer to unsupervised video object segmen-
tation. In CVPR.

Li, X., & Loy, C. C. (2018). Video object segmentation with joint re-
identification and attention-aware mask propagation. In ECCV.

Li, Y., Xu, N., Peng, J., See, J., & Lin, W. (2020). Delving into the
cyclic mechanism in semi-supervised video object segmentation.
NeurlPS, 33.

Lin, C. C,, Hung, Y., Feris, R., & He, L. (2020). Video instance seg-
mentation tracking with a modified vae architecture. In CVPR.

Lin, T. Y., Maire, M., Belongie, S. J., Hays, J., Perona, P., Ramanan,
D., Dollar, P., & Zitnick, C. L. (2014). Microsoft coco: Common
objects in context. In ECCV.

Liu, D., Cui, Y., Tan, W., & Chen, Y. (2021). SG-Net: Spatial granularity
network for one-stage video instance segmentation. In CVPR.

Liu, Q., Chu, Q., Liu, B., & Yu, N. (2020). GSM: Graph similarity
model for multi-object tracking. In ZJCAI (pp. 530-536).

Liu, S., Huang, D., & Wang, Y. (2019). Adaptive NMS: Refining pedes-
trian detection in a crowd. In CVPR.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B.
(2021). Swin transformer: Hierarchical vision transformer using
shifted windows. In /CCV (pp. 10012-10022).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. In CVPR.

Milan, A., Leal-Taixé, L., Reid, 1., Roth, S., & Schindler, K. (2016).
Motl16: A benchmark for multi-object tracking. arXiv preprint
arXiv:1603.00831

@ Springer

Nakayama, K., Shimojo, S., & Silverman, G. H. (1989). Stereoscopic
depth: its relation to image segmentation, grouping, and the recog-
nition of occluded objects. Perception, 18(1), 55-68.

Nikolenko, S. I. (2019). Synthetic data for deep learning. arXiv

Nilsson, D., & Sminchisescu, C. (2018). Semantic video segmentation
by gated recurrent flow propagation. In CVPR.

Oh, S. W, Lee, J. Y., Sunkavalli, K., & Kim, S. J. (2018). Fast video
object segmentation by reference-guided mask propagation. In
CVPR.

Oh, S. W, Lee, J. Y., Xu, N., & Kim, S. J. (2019). Video object seg-
mentation using space-time memory networks. In /CCV.

Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., &
Sorkine-Hornung, A. (2016). A benchmark dataset and evaluation
methodology for video object segmentation. In CVPR.

Qi,J.,Gao, Y.,Hu, Y., Wang, X., Liu, X., Bai, X., Belongie, S., Yuille, A.,
Torr, P., & Bai, S. (2021). Occluded video instance segmentation:
Dataset and ICCV 2021 challenge. In Thirty-fifth conference on
neural information processing systems datasets and benchmarks
track.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015).
Imagenet large scale visual recognition challenge. IJCV, 115(3),
211-252.

Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X., & Sun, J. (2018).
Crowdhuman: A benchmark for detecting human in a crowd. arXiv
preprint arXiv:1805.00123

Smeulders, A. W., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan,
A., & Shah, M. (2013). Visual tracking: An experimental survey.
IEEE TPAMI, 36(7), 1442-1468.

Tian,Z., Shen, C.,Chen, H., & He, T. (2019). FCOS: Fully convolutional
one-stage object detection. In ICCV (pp. 9627-9636).

Tokmakov, P., Alahari, K., & Schmid, C. (2017). Learning motion pat-
terns in videos. In CVPR.

Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., & Chen,
L. C. (2019). FEELVOS: Fast end-to-end embedding learning for
video object segmentation. In CVPR.

Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G.,
Geiger, A., & Leibe, B. (2019). MOTS: Multi-object tracking and
segmentation. In CVPR.

Voigtlaender, P., & Leibe, B. (2017). Online adaptation of convolutional
neural networks for video object segmentation. In BMVC.

Wang, H., Jiang, X., Ren, H., Hu, Y., & Bai, S. (2021). Swiftnet: Real-
time video object segmentation. In CVPR.

Wang, W., Feiszli, M., Wang, H., & Tran, D. (2021). Unidentified video
objects: A benchmark for dense, open-world segmentation. arXiv
preprint arXiv:2104.04691

Wang, W., Song, H., Zhao, S., Shen, J., & Ling, H. (2019). Learning
unsupervised video object segmentation through visual attention.
In CVPR

Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural
networks. In CVPR (pp. 7794-7803).

Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., & Shen, C. (2018).
Repulsion loss: Detecting pedestrians in a crowd. In CVPR.
Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., & Xia, H.
(2020). End-to-end video instance segmentation with transform-

ers. arXiv preprint arXiv:2011.14503

Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M. C., Qi, H., Lim, J., Yang,
M. H., & Lyu, S. (2020). UA-DETRAC: A new benchmark and
protocol for multi-object detection and tracking. Computer Vision
and Image Understanding, 193, 102907.

Wu, J.,, Cao, J.,, Song, L., Wang, Y., Yang, M., & Yuan, J. (2021). Track
to detect and segment: An online multi-object tracker. In CVPR.

Wu, J., Song, L., Wang, T., Zhang, Q., & Yuan, J. (2020). Forest R-
CNN: Large-vocabulary long-tailed object detection and instance
segmentation. In ACM Multimedia.


http://arxiv.org/abs/2106.03299
http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1805.00123
http://arxiv.org/abs/2104.04691
http://arxiv.org/abs/2011.14503

International Journal of Computer Vision (2022) 130:2022-2039

2039

Wu, J., Zhou, C., Yang, M., Zhang, Q., Li, Y., & Yuan, J. (2020).
Temporal-context enhanced detection of heavily occluded pedes-
trians. In CVPR.

Xie, S., Girshick, R., Dollar, P, Tu, Z., & He, K. (2017). Aggregated
residual transformations for deep neural networks. In CVPR.
Xiong, Y., Liao, R., Zhao, H., Hu, R., Bai, M., Yumer, E., & Urtasun,
R. (2019). Upsnet: A unified panoptic segmentation network. In

CVPR.

Xu, J., Cao, Y., Zhang, Z., & Hu, H. (2019). Spatial-temporal relation
networks for multi-object tracking. In /CCV (pp. 3988-3998).

Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen,
S., & Huang, T. (2018). Youtube-vos: Sequence-to-sequence video
object segmentation. In ECCV.

Xu, Z., Zhang, W., Tan, X., Yang, W., Huang, H., Wen, S., Ding, E.,
& Huang, L. (2020). Segment as points for efficient online multi-
object tracking and segmentation. In ECCV.

Yang, L., Fan, Y., & Xu, N. (2019). Video instance segmentation. In
ICCV.

Yang, S., Fang, Y., Wang, X., Li, Y., Fang, C., Shan, Y., Feng, B., &
Liu, W. (2021). Crossover learning for fast online video instance
segmentation. In /CCV.

Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., & Yoo, Y. (2019). Cutmix:
Regularization strategy to train strong classifiers with localizable
features. In ICCV (pp. 6023-6032).

Zhan, X., Pan, X., Dai, B., Liu, Z., Lin, D., & Loy, C. C. (2020). Self-
supervised scene de-occlusion. In CVPR.

Zhang, S., Benenson, R., & Schiele, B. (2017). Citypersons: A diverse
dataset for pedestrian detection. In CVPR (pp. 3213-3221).
Zhang, S., Wen, L., Bian, X, Lei, Z., & Li, S. Z. (2018). Occlusion-
aware R-CNN: Detecting pedestrians in a crowd. In ECCV.
Zhou, C., & Yuan, J. (2018). Bi-box regression for pedestrian detection

and occlusion estimation. In ECCV (pp. 135-151).

Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., & Yang, M. H. (2018).
Online multi-object tracking with dual matching attention net-
works. In ECCV (pp. 366-382)

Zhu, X., Xiong, Y., Dai, J., Yuan, L., & Wei, Y. (2017). Deep feature
flow for video recognition. In CVPR.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer



	Occluded Video Instance Segmentation: A Benchmark
	Abstract
	1 Introduction
	2 Related Work
	2.1 Video Instance Segmentation
	2.2 Other Related Tasks
	2.3 Occlusion Understanding

	3 OVIS Dataset
	3.1 Video Collection
	3.2 Annotation
	3.3 Dataset Statistics
	3.4 Evaluation Metrics

	4 Experiments
	4.1 Implementation Details
	4.2 Main Results
	4.3 Discussions

	5 Future Directions
	6 Conclusions
	Acknowledgements
	References




