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Abstract We describe a novel probabilistic framework for
real-time tracking of multiple objects from combined depth-
colour imagery. Object shape is represented implicitly using
3D signed distance functions. Probabilistic generative mod-
els based on these functions are developed to account for the
observed RGB-D imagery, and tracking is posed as a maxi-
mum a posteriori problem. We present first a method suited
to tracking a single rigid 3D object, and then generalise this
to multiple objects by combining distance functions into a
shape union in the frame of the camera. This second model
accounts for similarity and proximity between objects, and
leads to robust real-time tracking without recourse to bolt-on
or ad-hoc collision detection.
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1 Introduction

Tracking object pose in 3D is a core task in computer vision,
and has been a focus of research for many years. For much of
that time, model-based methods were concerned with rigid
objects having simple geometrical descriptions in 3D and
projecting to a set of sparse and equally simple features in
2D. The last few years have seen fundamental changes in
every aspect, from the use of learnt, geometrically complex,
and sometimes non-rigid objects, to the use of dense and
rich representations computed from conventional image and
depth cameras.

In this paper we focus on very fast tracking of multi-
ple rigid objects, without placing arbitary constraints upon
their geometry or appearance. We first present a revision
of our earlier 3D object tracking method using RGB-D
imagery (Ren et al. 2013). Like many current 3D track-
ers, this was developed for single object tracking only.
An extension to multiple objects could be formulated by
replicating multiple independent object trackers, but such
a naïve approach would ignore two common pitfalls. The
first is similarity in appearance: multiple objects frequently
have similar colour and shape (hands come in pairs; cars
are usually followed by more cars, not by elephants; and
so on). The second is the hard physical constraint that
multiple rigid bodies may touch but may not occupy the
same 3D space. These two issues are addressed here in an
RGB-D tracker that we originally proposed in Ren et al.
(2014). This tracker can recover the 3D pose of multiple
objects with identical appearance, while preventing them
from intersecting. The present paper summarizes our pre-
vious work and places the single and multiple object trackers
in a common framework. We also extend the discussion of
related work, and present additional experimental evalua-
tions.
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The paper is structured as follows. Section2 gives an over-
view of related work. Sections3 and 4 detail the probabilistic
formulation of the single object tracker and the extensions to
the multiple object tracking problem. Section5 discusses the
implementation and performance of our method and Sect. 6
provides experimental insight into its operation. Conclusions
are drawn in Sect. 7.

2 Related Work

We begin our discussion by covering the general theme of
model-based 3D tracking, then consider more specialised
works that use distance transforms, and detail methods that
aim to impose physical constraints for multi object tracking.

Most existing research on 3D tracking, with or without
depth data, uses a model-based approach, estimating pose by
minimising an objective functionwhich captures the discrep-
ancy between the expected and observed image cues. While
limited computing power forced early authors (e.g. Harris
and Stennett 1990; Gennery 1992; Lowe 1992) to exploit
highly sparse data such as points and edges, the use of dense
data is now routine.

An algorithm commonly deployed to align dense data
is Iterative Closest Point (Besl and McKay 1992). ICP is
used by Held et al. (2012) who input RGB-D imagery from
a Kinect sensor to track hand-held rigid 3D puppets. They
achieve robust and real-time performance, though occlusion
introduced by the hand has to be carefully managed through
a colour-based pre-segmentation phase. Rather awkwardly,
a different appearance model is required to achieve this pre-
segmentationwhen trackingmultiple objects.Amore general
work is KinectFusion (Newcombe et al. 2011), where the
entire scene structure along with camera poses are estimated
simultaneously. Ray-casting is used to establish point corre-
spondences, after which estimation of alignment or pose is
achieved with ICP. However, a key requirement when track-
ing with KinectFusion is that the scene moves rigidly with
respect to the camera, a condition which is obviously vio-
lated when generalising tracking to multiple independently
moving objects.

Kim et al. (2010) perform simultaneous camera andmulti-
object pose estimation in real-time using only colour imagery
as input. First, all objects are placed statically in the scene,
and a 3D point cloud recovered and camera pose initial-
ized by triangulating matched SIFT features (Lowe 2004)
in a monocular keyframe reconstruction (Klein and Murray
2007). Second, the user delineates each object by drawing a
3D box on a keyframe, and the object model is associated
with the set of 3D points lying close to the surfaces of the 3D
boxes. Then, at each frame, the features are used for object re-
detection, and a pose estimator best fits the detected object’s
model to the SIFT features. The bottom-up nature of the

work rather limits overall robustness and extensibility. With
the planar model representation used, only cuboid-shaped
objects can be tracked.

A number of related tracking methods—and ones which
appearmuchmore readily generalisable tomultiple objects—
use sampling to optimise pose. In each the objective function
involves rendering the model at some hypothesised pose
into the observation domain and evaluating the differences
between the generated and the observed visual cues; but in
each the cost is deemed too non-convex, or its partial deriva-
tives too expensive or awkward to compute, for gradient-
based methods to succeed. Particle SwarmOptimization was
used by Oikonomidis et al. (2011a) to track an articulated
hand, and byKyriazis and Argyros (2013) to follow the inter-
action between a hand and an object. Both achieve real-time
performance by exploiting the power of GPUs, but the level
of accuracy that can be achieved by PSO is not thoroughly
understood either empirically or theoretically. Particle filter-
ing has also been used, and with a variety visual features.
Recalling much earlier methods, Azad et al. (2011) match
2D image edges with those rendered from the model, while
Choi and Christensen (2010) add 2D landmark points to the
edges. Turning to depth data, the objective function of Ueda
(2012) compares the rendered and the observed depth map,
while Wuthrich et al. (2013) also model the per-pixel occlu-
sion and win more robust tracking in presence of occlusion.
Adding RGB to depth, Choi and Christensen (2013) fold in
photometric, 3D edge and 3D surface normal measures into
their likelihood function for each particle state. Real-time
performance is achieved usingGPUs, but nonetheless careful
limits have to be placed on the number of particles deployed.

An alternative to ICP is the use of the signed distance
function (SDF). It was first shown by Fitzgibbon (2001)
that distance transforms could be used to register 2D/3D
point sets efficiently. Prisacariu and Reid (2012) project a
3D model into the image domain to generate an SDF-like
embedding function, and the 3D pose of a rigid object is

Fig. 1 Illustration of our method tracking an arbitrary object and
enabling its use as a game controller. On the left we show the depth
image overlaid with the tracking result and on the right we visualise
a virtual sword with the corresponding 3D pose overlaid on the RGB
image
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recovered by evolving this embedding function. A faster
approach has been linked with a 3D reconstruction stage,
both without depth data by Prisacariu et al. (2012, 2013)
and with depth by Ren et al. (2013). The SDF was used by
Ren and Reid (2012) to formulate different embedding func-
tions for robust real-time 3D tracking of rigid objects using
only depth data, an approach extended by Ren et al. (2013) to
leverage RGB data in addition. A similar idea is described by
Sturm et al. (2013), who use the gradient of the SDF directly
to track camera pose. KinectFusion (Newcombe et al. 2011)
and most of its variants use a truncated SDF for shape rep-
resentation, but, as noted earlier, KinectFusion uses ICP for
camera tracking rather than directly exploiting the SDF. As
shown by Sturm et al. (2013), ICP is less effective for this
task.

Physical constraints in 3D object tracking are usually
enforced by reducing the number of degrees of freedom
(dof) in the state. An elegant example of tracking of
connected objects (or sub-parts) in this way is given by
Drummond and Cipolla (2002). However, when tracking
multiple independently moving objects, physical constraints
are introduced suddenly and intermittently by the colli-
sion of objects, and cannot be conveniently enforced by
dof reduction. Indeed, rather few works explicitly model
the physical collision between objects. Oikonomidis (2012)
tracks two interacting hands with Kinect input, intro-
ducing a penalty term measuring the inter-penetration of
fingers to invalidate impossible articulated poses. Both
Oikonomidis et al. (2011b) and Kyriazis and Argyros
(2013) track a hand and moving object simultaneously,
and invalid configurations similarly penalized. In both
cases the measure used is the minimum magnitude of 3D
translation required to eliminate intersection of the two
objects, a measure computed using the Open Dynamic
Engine library (Smith 2006). In contrast, in the method
presented here the collision constraint is more naturally
enforced through a probabilistic generative model, with-
out the need of an additional physics simulation engine
(Fig.1).

Fig. 3 a An object defined in a voxelised space. b Its signed distance
embedding function is also defined in object coordinates with the same
voxelisation

3 Single Object Tracking

Sections3.2 and 3.3 introduce the graphical model and
develop the maximum a posterior estimation underpinning
our 3D tracker; and in Sect. 3.4 we discuss the online learn-
ing of the appearance model. First though we describe the
basic geometry of the scene and image, sketched in Fig. 2,
and establish notation.

3.1 Scene and Image Geometry

Using calibrated values of the intrinsic parameters of the
depth and colour cameras, and of the extrinsics between
them, the colour image is reprojected into the depth image.
We denote the aligned RGB-D image as

Ω =
{
{Xi

1, c1}, {Xi
2, c2} . . . {Xi

NΩ
, cNΩ }

}
, (1)

where Xi = Z x = [Zu, Zv, Z ]� is the homogeneous coor-
dinate of a pixel with depth Z located at image coordinates
[u, v], and c is its RGB value. (The superscripts i, c and owill
distinguish image, camera and object frame coordinates).

Color image + Depth image

Camera
coordinates

Object coordinates

co
RGB-D image 
domain

Fig. 2 Representation of the 3D model Φ, the RGB-D image domain Ω , the foreground/background models P(c|U= f ), P(c|U = b) and the
pose Tco(p)
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As illustrated in Fig. 3, we represent an object model by a
3D signed distance function (SDF), Φ, in object space. The
space is discretised into voxels on a local grid surrounding
the object. Voxel locationswith negative signed distancemap
to the inside of the object and positive values to the outside.
The surface of the 3D shape is defined by the zero-crossing
Φ = 0 of the SDF.

A point Xo = [Xo,Y o, Zo, 1]� on an object with pose
p, composed of a rotation and translation {R, t}, is trans-
formed into the camera frame as Xc = Tco(p)Xo by the
4 × 4 Euclidean transformation Tco(p), and projected into
the image under perspective as Xi = K[I3×3|0]Xc, where K
is the depth camera’s matrix of intrinsic parameters.

We introduce a co-representation
{
Xi, c,U

}
for each

pixel, where the labelU ∈ { f, b} is set depending onwhether
the pixel is deemed to originate from the foreground object or
from the background. Two appearance models describe the
colour statistics of the scene: that for the foreground is gen-
erated by the object surface, while that for the background is
generated by voxels outside the object. The models are rep-
resented by the likelihoods P(c|U = f ) and P(c|U = b)
which are stored as normalised RGB histograms using 16
bins per colour channel. The histograms can be initialised
either fromadetectionmodule or fromauser-selected bound-
ing box on the RGB image, in which the foreground model
is built from the interior of the bounding box and the back-
ground from the immediate region outside the bounding box.

3.2 Generative Model and Tracking

The generative model motivating our approach is depicted
in Fig. 4. We assume that each pixel is independent, and
sample the observed RGB-D image Ω as a bag-of-pixels
{Xi

j , c j }1...NΩ . Each pixel depends on the shape Φ and pose
p the object, and on the per-pixel latent variableUj . Strictly,
it is the depth Z(x j ) and colour c j that are randomly drawn
for each pixel location x j , but we use Xi

j as a convenient
proxy for Z(x j ).

Fig. 4 The graphical model underpinning the single-object tracker

Omitting the index j , the joint distribution for a single
pixel is

P(Xi, c,U, Φ,p)

= P(Φ) P(p) P(Xi|U, Φ,p) P(c|U ) P(U ) (2)

and marginalising over the label U gives

P(Xi, c, Φ,p) = P(Φ)P(p)∑
u∈{ f,b}

P(Xi|U = u, Φ,p)P(c|U = u)P(U = u). (3)

Given the pose, Xo can be found immediately as the back-
projection of Xi into object coordinates

Xo = Toc(p)[(K−1Xi)� 1]� , (4)

so that P(Xi|U = u, Φ,p) ≡ P(Xo|U = u, Φ,p). This
allows us to define the per-pixel likelihoods as functions of
Φ(Xo): we use a normalised smoothed delta function and a
smoothed, shifted Heaviside function

P(Xi|U= f, Φ,p) = δon(Φ(Xo))/η f (5)

P(Xi|U=b, Φ,p) = Hout(Φ(Xo))/ηb, (6)

with η f = ∑NΦ

j=1 δon(Φ(Xo
j )), and ηb = ∑NΦ

j=1 H
out(Φ

(Xo
j )). The functions themselves, plotted in Fig. 5, are

δon(Φ) = sech2(Φ/2σ) (7)

Hout(Φ) =
{
1 − δon(Φ) if Φ ≥ 0

0 if Φ < 0.
(8)

The constant parameter σ determines the width of the basin
of attraction—a larger σ gives a wider basin of convergence
to the energy function, while a smaller σ leads to faster con-
vergence. In our experiments we use σ = 2.

The prior probabilities of observing foreground and back-
ground models P(U = f ) and P(U = b) in Eq. (3) are
assumed uniform:

P(U = f )=η f /η, P(U =b)=ηb/η, η=η f + ηb . (9)

Substituting Eqs. (5)–(9) into Eq. (3), the joint distribution
for an individual pixel becomes

P(Xi, c, Φ,p)

= P(Φ)P(p)
(
P f δon(Φ(Xo)) + PbHout(Φ(Xo))

)
,

(10)

where P f =P(c|U= f ) and Pb=P(c|U=b) are developed
in Sect. 3.4 below.
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Fig. 5 The smoothed delta δon and Heaviside Hout functions

3.3 Pose Optimisation

Tracking involves determining theMAPestimate of the poses
given their observed RGB-D images and the object shape Φ.
We consider the pose at each time step t to be independent,
and seek

argmaxpt P(pt |Φ,Ωt ) = argmaxpt
P(pt , Φ,Ωt )

P(Φ,Ωt )
. (11)

Were the pose optimisation guaranteed to find the “correct”
pose no matter what the starting state, this notion of inde-
pendence would be exact. In practice it is an approximation.
Assuming that tracking is healthy, to increase the chance of
maintaining a correct pose we start the current optimization
at the pose delivered at the previous time step, and accept
that if tracking is failing this introduces bias. We note that
the starting pose is not a prior, and we do not maintain a
motion model.

The denominator in Eq. (11) is independent of p and can
be ignored. (We drop the index t to avoid clutter). Because the
image Ω is sampled as a bag of pixels, we exploit pixel-wise
independence and write the numerator as

P(p, Φ,Ω) =
NΩ∏
j=1

P(Xi
j , c j , Φ,p) . (12)

Substituting P(Xi
j , c j , Φ,p) from Eq. (10), and noting that

P(Φ) is independent of p, and P(p) will be uniform in the
absence of prior information about likely poses,

P(p|Φ,Ω)

∼
NΩ∏
j=1

{
P f
j δon(Φ(Xo

j )) + Pb
j H

out(Φ(Xo
j ))

}
. (13)

The negative logarithm of Eq. (13) provides the cost

E = −
NΩ∑
j=1

log
{
P f
j δon(Φ(Xo

j )) + Pb
j H

out(Φ(Xo
j ))

}
(14)

to be minimised using Levenberg–Marquardt. In the minimi-
sation, pose p is always set in a local coordinate frame, and
the cost is therefore parametrised in the change in pose, p∗.
The derivatives required are

∂E

∂p∗ =
NΩ∑
j=1

⎧⎨
⎩

⎡
⎣ P f

j
∂δon

∂Φ
+ Pb

j
∂Hout

∂Φ

P(Xi
j , c j |Φ,p)

∂Φ

∂Xo
j

⎤
⎦ ∂Xo

j

∂p∗

⎫⎬
⎭ (15)

where Xo is treated as a 3-vector. The derivatives involving
δon and Hout are

∂δon

∂Φ
= − 1

σ
tanh(Φ/2σ)sech2(Φ/2σ) (16)

and

∂Hout

∂Φ
=

{
− ∂δon

∂Φ
if Φ ≥ 0

0 if Φ < 0.
(17)

The derivatives (∂Φ/∂Xo) of the SDF are computed using
finite central differences.We use modified Rodrigues param-
eters for the pose p (c.f. Shuster (1993)). Using the local
frame, the derivatives of Xo with respect to the pose update

p∗ =
[
t∗x , t∗y , t∗z , r∗

1 , r∗
2 , r∗

3

]�
are always evaluated at identity

so that

∂Xo

∂ t∗x
=

⎡
⎣
1
0
0

⎤
⎦ ∂Xo

∂ t∗y
=

⎡
⎣
0
1
0

⎤
⎦ ∂Xo

∂ t∗z
=

⎡
⎣
0
0
1

⎤
⎦

∂Xo

∂ r∗
1

=
⎡
⎣

0
−4Zo

4Y o

⎤
⎦ ∂Xo

∂ r∗
2

=
⎡
⎣

4Zo

0
−4Xo

⎤
⎦ ∂Xo

∂ r∗
3

=
⎡
⎣

−4Y o

4Xo

0

⎤
⎦ .

(18)

The pose change is found from the Levenberg–Marquardt
update as

p∗ =
{
−

[
J�J + λdiag

[
J�J

]]−1 ∂E

∂p∗

}
, (19)

where J is the Jacobian matrix of the cost function, and λ is
the non-negative damping factor adjusted at each iteration.
Interpreting the solution vector p∗ as an element in SE(3),
and re-expressing as a 4×4matrix, we apply the incremental
transformation at iteration n + 1 onto the estimated trans-
formation at the previous iteration n as Tn+1 ← T(p∗)Tn .
The estimated object pose Toc results from composing the
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Fig. 6 Typical process of convergence for one frame. The top row
shows the back-projected points and the SDF in the object coordinates.
The bottom row visualises the object outline on depth image with cor-
responding poses

final incremental transformation TN onto the previous pose
as Toct+1 ← TNToct .

Figure6 illustrates outputs from the tracking process dur-
ing minimization. At each iteration the gradients of the cost
function guide the back-projected points with P f > Pb

towards the zero-level of the SDF and also force points with
P f < Pb to move outside the object. At convergence, the
points with P f > Pb will lie on the surface of the object.

The initial pose for the optimisation is specified manually
or, in the case of live tracking, by placing the object in a
prespecified position. An automatic technique, for example
one based on regressing pose, could readily be incorporated
to bootstrap the tracker.

3.4 Online Learning of the Appearance Model

The foreground/background appearance model P(c|U ) is
important for the robustness of the tracking, and we adapt
the appearance model online after tracking is completed on
each frame. We use the pixels that have |Φ(Xo)| ≤ 3 (that
is, points that best fit the surface of the object) to com-
pute the foreground appearance model and the pixels in
the immediate surrounding region of the objects to compute
the background model. The online update of the appearance
model is achieved using a linear opinion pool

Pt (c|U = u) = (1 − ρu)Pt−1(c|U ) + ρu Pt (c|U ) (20)

where ρu with u ∈ { f, b} are the learning rates, set to ρ f =
0.05 and ρb = 0.3. The background appearance model has
a higher learning rate because we assume that the object is
moving in an uncontrolled environment, where the change
of appearance of the background is much faster than that of
the foreground.

4 Generalisation for Multiple Object Tracking

One straightforward approach to tracking multiple objects
would be to replicate several single object trackers. However,
as argued in the introduction and as shown below, a more
careful approach is warranted. In Sect. 4.2 we will find a
probabilisticway of resolving ambiguities in case of identical
appearance models. Then in Sect. 4.3 we show how physical
constraints such as collision avoidance can be incorporated
in the formulation. First though we extend our notation and
graphical model.

4.1 Multi-Object Generative Model

The scene geometry and additional notation for simultane-
ous tracking of M objects is illustrated in Fig. 7(a), and the
graphical generative model for the RGB-D image is shown
in Fig. 7 (b). When tracking multiple objects in the scene,
Ω is conditionally dependent on the set of 3D object shapes
{Φ1 . . . ΦM } and their corresponding poses {p1 . . . pM }.

Given the shapes and poses at any particular time, we
transform the shapes into the camera frame and fuse them into
a single ‘shape union’ Φc. Then, for each pixel location, the
depth is drawn from the foreground/backgroundmodelU and
the shape unionΦc, following the same structure as in Sect. 3.
The colour is drawn from the appearance model P(c|U ), as
before. We stress that although each object has a separate
shapemodel in the set, two ormoremight be identical both in
shape and appearance. This is the case later in the experiment
of Fig. 14.Wealso note thatwhen the number of objects drops

Camera
coordinates

RGB-D image 
domain

c c c

co

co

Object coordinates

(b)(a)

Fig. 7 a Illustration of the fusion ofmultiple object SDFs in the shape union in the camera frame. SDFs are first transformed into camera coordinates
then fused together by aminimum function. The observed RGB-D image domain is generated by projecting the fused SDF. b The extended graphical
model
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toM=1 the generativemodel deflates gracefully to the single
object case.

From the graphical model, the joint probability is

P(Φ1 . . . ΦM ,p1 . . . pM ,Φc,Xi,U, c)

= P(Φ1 . . . ΦM )P(Φc|Φ1 . . . ΦM ,p1 . . . pM )

P(Xi,U, c|Φc)P(p1 . . . pM |Φ1 . . . ΦM ) (21)

where

P(Xi,U, c|Φc) = P(Xi|U,Φc)P(c|U )P(U ) . (22)

Because the shape union is completely determined given
the sets of shapes and poses, P(Φc|Φ1 . . . ΦM ,p1 . . . pM )

is unity. As in the single object case, the posterior distribu-
tion of the set of poses given all object shapes can be obtained
by marginalising over the latent variable U

P(p1 . . . pM |Xi, c, Φ1 . . . ΦM ) ∼
P(Xi, c|Φc)P(p1 . . . pM |Φ1 . . . ΦM ) , (23)

where

P(Xi, c|Φc)

=
∑

u∈{ f,b}
P(Xi|U = u,Φc)P(c|U = u)P(U = u). (24)

The first term in Eq. (23), P(Xi, c|Φc), describes how likely
a pixel is to be generated by the current shape union, in terms
of both the colour value and the 3D location, and is referred to
as the data term. The second term, P(p1 . . . pM |Φ1 . . . ΦM ),
puts a prior on the set of poses given the set of shapes and
provides a physical constraint term.

4.2 The Data Term

Echoing Sect. 3, the per-pixel likelihoods P(Xi|U = u,Φc)

are defined by smoothed delta and Heaviside functions

P(Xi|U = f,Φc) = δon(Φc(Xc))/ηcf (25)

P(Xi|U = b,Φc) = Hout(Φc(Xc))/ηcb (26)

where ηcf =∑NΩ

j=1 δon(Φc(Xc
j )), η

c
b =∑NΩ

j=1 H
out(Φc(Xc

j )),

andwhereXc is the back-projectionXi into the camera frame
(note, not the object frame). The per-pixel labellings again
follow uniform distributions

P(U = f )= ηcf

ηc
, P(U = b)= ηcb

ηc
, ηc = ηcf +ηcb. (27)

Substituting Eqs. (25–27) into Eq. (24) we obtain the likeli-
hood of the shape union for a single pixel

P(Xi, c|Φc) = P f δon(Φc(Xc)) + PbHout(Φc(Xc)), (28)

where P f and Pb are the appearance models of Sect. 3.
To form the shape union Φc we transform each object

shape Φm into camera coordinates as Φc
m using Tco(pm),

and fuse them into a single SDF with the minimum function
approximated by an analytical relaxation

Φc = min
(
Φc

1 , . . . , Φ
c
M

) ≈ − 1

α
log

M∑
m=1

exp{−αΦc
m}

(29)

in which α controls the smoothness of the approximation.
Larger α gives a better approximation of the minimum func-
tion, but we find empirically that choosing a smaller α gives
a wider basin of convergence for the tracker. We use α=2 in
this work. The per-voxel values of Φc

m are calculated using

Φc
m(Xc) = Φm(Xo

m) (30)

whereXo
m = Toc(pm)Xc is the transformation ofXc into the

m-th object’s frame. The likelihood for a pixel then becomes

P(Xi, c|Φc)

= P f δon

(
− 1

α
log

M∑
m=1

exp{−αΦm(Xo
m)}

)

+ PbHout

(
− 1

α
log

M∑
m=1

exp{−αΦm(Xo
m)}

)
. (31)

Assuming pixel-wise independence, the negative log like-
lihood across the RGB-D image provides a data term

Edata = − log P(Ω|Φc) = −
NΩ∑
j=1

log P(Xi
j , c|Φc) (32)

in the overall energy function.
Wewill require the derivatives of this termw.r.t. the change

of the set of pose parametersΘ∗={p∗
1 . . . p∗

M }. Dropping the
pixel index j , we write

∂Edata
∂Θ∗ = −

∑

Xi∈Ω

⎧⎨
⎩
P f ∂δon

∂Φc + Pb ∂Hout

∂Φc

P(Xi, c|Φc)

∂Φc(Xc)

∂Θ∗

⎫⎬
⎭ (33)

where

∂Φc(Xc)

∂Θ∗ = − 1

α

M∑
m=1

wm
∂Φm

∂Xo
m

∂Xo
m

∂Θ∗ , (34)

wm = exp{−αΦm(Xo
m)}∑M

k=1 exp{−αΦk(Xo
k )}

, (35)
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and

∂Xo
m

∂Θ∗ =
[
∂Xo

m

∂p∗
1

. . .
∂Xo

m

∂p∗
M

]
. (36)

The remaining pose and SDF derivatives (∂Xo
m/∂p∗

k and
∂Φm/∂Xo

m) are as in Sect. 3.
Note that instead of assigning a pixel Xi in the RGB-D

image domain deterministically to one object, we back-
project Xi (i.e. Xc in camera coordinates) into all objects’
frames with the current set of poses. Theweightswm are then
computed according to Eq. (35), giving a smoothly varying
pixel to object association weight. This can also be inter-
preted as the probability that a pixel is projected from the
m-th object. If the back-projectionXo

m ofXc is close to them-
th object’s surface (Φ(Xo

m) ≈ 0) and other back-projections
Xo
k are further away from the surfaces (Φ(Xo

k ) � 0), then
we will find wm → 1 and the other wk → 0.

4.3 Physical Constraint Term

Consider P(p1 . . . pM |Φ1 . . . ΦM ) in Eq. (24). We decom-
pose the joint probability of all object poses given all 3D
object shapes into a product of per-pose probabilities:

P(p1 . . . pM |Φ1 . . . ΦM )

= P(p1|Φ1 . . . ΦM )

M∏
m=2

P(pm |{p}−m, Φ1 . . . ΦM ) (37)

where {p}−m = {p1 . . . pM }\{pm} is the set of poses exclud-
ingpm .We do not place any pose priors on any single objects,
so we can ignore the factor P(p1|Φ1 . . . ΦM ). The remaining
factors can be used to enforce pose-related constraints.

Here we use them to avoid object collisions by discour-
aging objects from penetrating each other. The probability
P(pm |{p}−m, Φ1 . . . ΦM ) is defined such that a surface point
on one object should not move inside any other object. For
each object m we uniformly and sparsely sample a set of K
“collision points” Cm = {Co

m,1 . . .Co
m,K } from its surface in

object coordinates. K needs to be high enough to account for
the complexity of the tracked shape, and not undersample
parts of the model. We found throughout our experiments
that K = 1000 insures sufficient coverage of the object to
produce an effective collision constraint.

At each timestep the collision points are transformed into
the camera frame as {Cc

m,1 . . .Cc
m,K } using the current pose

pm . Denoting the partial union of SDFs {Φc
1 . . . Φc

M } \ {Φc
m}

by Φc−m we write

P(pm |{p}−m, Φ1 . . . ΦM ) ∼ 1

K

K∑
k=1

Hout (Φc−m(Cc
m,k)

)

(38)

where Hout is the offset smoothedHeaviside function already
defined. If all the collision points on object m lie outside the
shape union of objects excluding m this quantity asymptot-
ically approaches 1. If progressively more of the collision
points lie inside the partial shape union, the quantity asymp-
totically approaches 0.

The negative log-likelihood of Eq. (38) gives us the second
part of the overall cost

Ecoll = −
M∑

m=1

log

(
1

K

K∑
k=1

Hout(Φc
m−(Cc

m,k)
)
)

. (39)

The derivatives of this energy are computed analogously to
those used for the data term (Eqs. 33 and34), butwithΦc(Xc)

replaced by Φc
m−(Cc

m,k).

4.4 Optimisation

The overall cost is the sum of the data term and the collision
constraint term

E = Edata + Ecoll. (40)

To optimise the set of poses {p1 . . . pM }, we use the
same Levenberg-Marquardt iterations and local frame pose
updates as given in Sect. 3.

5 Implementation

We have coded separate CPU and GPU versions of our gen-
eralised multi-object tracker. Figure8 shows the processing
time per frame for the CPU implementation executing on
an Intel Core i7 3.5GHz processor with OpenMP support
as the number of objects tracked is increased. As expected,
the time rises linearly with the number of objects. With two
objects the CPU version runs at around 60Hz, but above five
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object tracker implemented on the CPU rises linearly with the the
number of objects tracked
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Fig. 9 Aquantitative comparisonof camera poseoutput obtainedusing
the present method on a single object and from using KinectFusion on
the entire scene. a Frames from the two approaches. Top row the tracked

object using our method. Bottom row camera track from KinectFusion.
b The 6 degrees of freedom in pose compared. Translation is measured
in mm and rotation is measured in degrees.

objects the process is at risk of falling below frame rate. The
accelerated version, running on an Nvidia GTX Titan Black
GPU and same CPU, typically yields a 30% speed-up in the
experiments reported below. The rate is not greatly increased
because the GPU only applies full leverage to image pix-
els that backproject into the 3D voxelised volumes around
objects. In the experiments here, the tracked objects typically
occupy a very small fraction (i.e. just a few%) of the RGB-D
image, involving only a few thousands of pixels, insufficient
to exploit massive parallelism.

6 Experiments

We have performed a variety of experimental evaluations,
both qualitative and quantitative. Qualitative examples of our
algorithm tracking different types of objects in real-time and
under significant occlusion and missing data can be found
in the video at https://youtu.be/BSkUee3UdJY. (NB: to be
replaced by an official archival site).

6.1 Quantitative Experiments

We ran three sets of experiments to benchmark the tracking
accuracy of our algorithms. First we compare the camera tra-
jectory obtained by our algorithm tracking a single stationary
object against that obtained by the KinectFusion algorithm
of Newcombe et al. (2011) tracking the entire world map.
Several frames from the sequence used are shown in Fig. 9a
and the degrees of freedom in translation and rotation are
compared in Fig. 9b. Despite using only the depth pixels
corresponding to the object (an area of the depth image con-
siderably smaller than that employed by KinectFusion) our
algorithm obtains comparable accuracy. It should be noted
that this is not a measure of ground truth accuracy: the trajec-
tory obtained by the KinectFusion is itself just an estimate.

In our second experiment, we follow a standard bench-
marking strategy from the markerless tracking literature and
evaluate our tracking results on synthetic data to provide
ground truth. We move two objects of known shape in front
of a virtual camera and generate RGB-D frames. The objects
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Fig. 10 A comparison of pose estimation error between our gen-
eralised multi-object tracker and two instances of our single object
method. a Four examples of the synthetic RGB-D frameswith the frame

number corresponding to the marks on the pose graphs in b. b As the
objects are periodically brought closer, so the pose error (red) of the
two independent trackers increases (Color figure online)
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Fig. 11 Comparison of the difference in relative pose estimation between our multi-object tracker and two instances of our single-object tracker
using real data. a Sample frames b Pose recovery compared: the multiobject tracker (blue) is stable (Color figure online)

periodically move further apart then closer to each other.
Realistic levels of Gaussian noise are added to both the ren-
dered colour and the depth images. Four sample frames from
the test sequence are shown in Fig. 10a. Using this sequence
we compare the tracking accuracy of our generalised multi-
object tracker with two instances of our single object tracker.
To evaluate translation accuracy we use the Euclidean dis-
tance between the estimated and ground truth poses. To
measure rotation accuracy, we rotate the unit vectors to the
three axis directions ex ,ey ,ez using the ground truth Rg and
we estimate the rotation matrix Re. The error value is aver-
aged over the three including angles of the resulting vectors:

rerr = 1

3

∑
i∈x,y,z

cos−1
(
(Reei )�Rgei )

)
(41)

In the graphical results of Fig. 10b the green line shows the
relative distance between the two objects. Note that this value
has been scaled and offset for visualisation. It can be seen
that when the two objects with similar appearance model are

neither overlapping nor close (e.g. frame 94), both two sin-
gle object trackers and multi-object tracker provide accurate
results. However, once the two objects move close together,
the two separate single object trackers produce large errors.
The single object tracker fails to model the pixel member-
ship, leading to an incorrect pixel association when the two
objects are close together. Our soft pixel membership solves
this problem.

The third quantitative experiment (Fig. 11)makes a similar
comparison, but with real imagery. As before, it is diffi-
cult to obtain the absolute ground truth pose of the objects,
and instead we measure the consistency of the relative pose
between two static objects by moving the camera around
while looking towards the two objects. Example frames are
shown in Fig. 11a. If the two recovered poses are accurate
we would expect consistent relative translation and rotation
through thewhole sequence. As shown in Fig. 11b, ourmulti-
object tracker is able to recovermuchmore consistent relative
translation and rotation than two independent instances of our
single object tracker.
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Fig. 12 Film strips showing our algorithm tracking accurately known
object models: a two pieces of formed sponge, and b a ball and a cup.
In each, Rows 1&2 show the colour and the depth image inputs. Row 3
is per-pixel foreground probability P f . Row 4 is the per-pixel member-

ship weight wi , magenta and cyan olour correspond to the two objects,
the blue coloured pixels are with ambiguous membership. Row 5 shows
the tracking result (Color figure online)
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Fig. 13 Film strip showing our algorithm tracking two cases where the models are inaccurate: a two hands and b two feet. The rows are as in
Fig. 12
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Fig. 14 A film strip showing a very challenging sequence where 5
pieces of toy bricks with identical colour are tracked. The top sequence
shows the tracking result rendered on the colour image and the sequence

below shows the original colour images. Our multi-object tracker man-
ages to track through the whole sequence without tracking failure

6.2 Qualitative Experiments

Weuse five challenging real sequences to illustrate the robust
performance of our multi-object tracker.

In Fig. 12 we use accurate, hand crafted models for track-
ing. Figure12a shows the tracking of two pieces of sponge
with identical shape and appearance models. Rows 1 and 2
of the figure show the colour and the depth image inputs, and
Row3 shows the per-pixel foreground probability P f . Row4
shows the per-pixelmembershipweightwm . The twoobjects,
one with w1 � 0.5, w2 
 0.5 and the other with w2 � 0.5,
w1 
 0.5, are highlighted in magenta and cyan respectively.
The blue highlighted pixels have ambiguous membership
(w1 ≈ w2 ≈ 0.5). The darkened pixels are background,
as obvious from Row 3. The final tracking result is shown as
Row 5.

The tracker is able to track through heavy occlusions and
handle challenging motions. This is a result of the region
based nature of our approach, which makes it robust to miss-
ing or occluded parts of the tracked target, as long as these do
not introduce extra ambiguity in the shape to pose mapping.

In Fig. 12b we simultaneously track a white cup and a
white ball to demonstrate the effectiveness of the physical
collision constraint. Even though there is no depth observa-
tion from the ball owing to significant occlusion from the
cup, our algorithm can still estimate the location of the ball.
This happens because (i) the physical constraint prevents the
ball from intersecting with the cup and (ii) the table is a
different colour from the ball, which prevents the ball from
overlapping with the table.

As a contrast, Fig. 13 illustrates our tracker using pre-
viously reconstructed and hence somewhat inaccurate 3D
shapes. First in Fig. 13a we track two interacting hands (fixed
hand articulation pose). Even though the hand models do
not fit the observation perfectly—indeed they are models of
hands from a different person obtained using the algorithm

(Ren et al. 2013)—the tracker still recovers the poses of both
by finding the local minimum that best explains the colour
and depth observations.

In Fig. 13b we track two interacting feet with a pair of
approximate shoe models. Throughout most of the sequence
our tracker successfully recovers the two poses. However,
we do also encounter two failure cases here. The first one is
shown in column 4 of Fig. 13b, where the shoe is incorrectly
rotated. This happens because the 3D model is somewhat
rotationally ambiguous around its long axis. The second fail-
ure case can be seen in Column 6. Here, the ground pixels
(i.e. the black shadow) have very high foreground probabil-
ity, as can be clearly seen in Row 3. With most of one foot
occluded, the tracker incorrectly tries to fit the model to the
pixels with high foreground probability, leading to failure.
We note that the tracker does automatically recover fromboth
failure cases. As soon as the feet move out of the ambiguous
position, the multi-object tracker uses the previous incorrect
pose as initialization and converges to the correct pose at the
current frame.

In Fig. 14 we show a challenging sequence where five toy
bricks are tracked, illustrating that the proposed tracker is
able to handle larger number of objects. All the objects in the
toy set have the same colour and some also have identical
shapes. The top sequence shows the tracking result and the
bottom sequence shows the original colour input. In spite
of the heavy self-occlusion and the occlusion introduced
by hands, the multi-object tracker is able to track robustly.
Importantly, there is no bleeding of one object into another
when blocks are placed together then separated.

7 Conclusions

In this paper we presented a novel framework for tracking
single and multiple 3D objects from a sequence of RGB-D
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images. Our method is particularly well suited to tracking
several objects with similar or identical appearance, which is
a common case inmany applications, such as tracking cars or
pairs of hands or feet. Our method is grounded in a rigorous
probabilistic framework, yielding weights that indicate the
probability of individual image observations being generated
by each of the tracked objects, thus implicitly solving the data
association problem. Furthermore, in the multi-object case,
the formulation leads to a natural imposition of a physical
constraint term, allowing us to specify prior knowledge about
theworld.We have used this term to indicate that it is unlikely
that several objects occupy the same locations in 3D space. In
addition to collision avoidance, the formulation would allow
for generic interaction forces between objects to bemodelled.

We validate our claims with several experiments, showing
both robustness and accuracy. For this evaluation we used an
implementation that can easily track multiple objects in real-
time without the use of any GPU acceleration.

Since the tracker is region-based and currently uses sim-
ple histograms as appearance models, it is particularly well
suited to objects where the texture is uninformative. A possi-
ble direction of research is to transfer our tracking framework
to different appearance models, such as texture-based mod-
els. In line with other model-based 3D trackers our approach
currently also requires 3D models of the tracked objects to
be known and given to the algorithm. While we do explic-
itly show good performance even with crude and inaccurate
models, this might be considered another shortcoming to
be resolved in future work. In particular, dynamic objects
such as hands could be an interesting area to explore fur-
ther, as tracking individual fingers might greatly benefit
from amethod that can handle near-identical appearance and
imposes collision constraints.
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