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Abstract

This article studies M-type estimators for fitting robust additive models in the presence of anomalous data. The components in
the additive model are allowed to have different degrees of smoothness. We introduce a new class of wavelet-based robust M-
type estimators for performing simultaneous additive component estimation and variable selection in such inhomogeneous
additive models. Each additive component is approximated by a truncated series expansion of wavelet bases, making it
feasible to apply the method to nonequispaced data and sample sizes that are not necessarily a power of 2. Sparsity of the
additive components together with sparsity of the wavelet coefficients within each component (group), results into a bi-
level group variable selection problem. In this framework, we discuss robust estimation and variable selection. A two-stage
computational algorithm, consisting of a fast accelerated proximal gradient algorithm of coordinate descend type, and thres-
holding, is proposed. When using nonconvex redescending loss functions, and appropriate nonconvex penalty functions at the
group level, we establish optimal convergence rates of the estimates. We prove variable selection consistency under a weak
compatibility condition for sparse additive models. The theoretical results are complemented with some simulations and real
data analysis, as well as a comparison to other existing methods.
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1 Introduction
B Iréne Gijbels

irene.gijbels @kuleuven.be Additive regression models have turned out to be useful sta-

tistical tools in the analysis of high-dimensional data. The
attraction of such models is that the additive components
can be estimated with the same optimal convergence rate as
a one-dimensional nonparametric regression. However, this
optimal property holds only when all the additive compo-
nents share the same degree of “homogeneous” smoothness
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but it is not anymore true when they have different degrees
of smoothness such as, for example, the “inhomogeneous”
smoothness described by their appartenance to Besov spaces.
While several wavelet-based methods have been developed in
the recent literature for performing simultaneous parameter
estimation and variable selection in such “inhomogeneous”
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additive models, these are mainly derived as penalized regres-
sion estimators using an unbounded loss function. In practice,
however, some extreme observations may occur, and esti-
mation using an unbounded loss function suffers from a
lack of robustness, meaning that the estimated functions can
be distorted by the outliers. Both the nonparametric func-
tion estimates themselves and the choice of the penalization
parameters associated with them are affected.

To address these issues, we propose a new class of wavelet-
based robust M-type estimators for performing simultaneous
additive component estimation and variable selection in such
sparse “inhomogeneous” additive models. The additive com-
ponents are approximated by truncated series expansions of
wavelet bases. Such an approximation allows the methodol-
ogy to be applied to nonequispaced data with sample size
not necessarily a power of 2, as it is often the case in prac-
tice. With this approximation, the problem of component
estimation and selection becomes that of consistent bi-level
group variable selection with sparsity of the wavelet coef-
ficients within each group, induced by smoothness of the
corresponding components, and sparsity that may appear at
the group level by sparsity of the additive model compo-
nents. A two-stage computational procedure based on a fast
accelerated proximal gradient (APG) algorithm, of coordi-
nate descent type and followed by thresholding is proposed
and implemented for computing the estimates. It produces
robust parameter estimators if nonconvex redescending loss
functions are applied. We establish optimal convergence rates
for the estimated components and show the variable selection
consistency. Our simulation studies and the real data analy-
sis demonstrate satisfactory finite sample performance of the
proposed estimators under different irregular settings.

More precisely, consider a general regression model,
where a response variable ¥ € R is related to a vector
X=(x' ..., X”)T € R? of explanatory variables through
the following nonparametric regression model:

Y = £(X) + ope.

The error ¢ is assumed to be independent of X with a
symmetric distribution whose scale equals 1, so the scale
parameter op is identifiable. Hence, when first moments
exists, we have the usual regression representation that E(Y |
X) = f(X), and when second moments exists, we have
o = E((Y — f(X))?) for the variance. Standard estima-
tors for f can thus be derived relying on local estimates of
the conditional mean. It is easy to see that such procedures
can be seriously affected either by a small proportion of out-
liers in the response variable, or when the distribution of
Y | X has heavy tails. Note, however, that even when ¢ does
not have a finite first moment, the function f(X) can still
be interpreted as a location parameter for the distribution of
Y | X. In this case, local robust estimators can be used to
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estimate the regression function as, for example, the local
M -estimators proposed in Boente and Fraiman (1989) and
the local medians studied in Welsh (1996).

Unfortunately both robust and non-robust nonparametric
regression estimators are affected by the curse of dimension-
ality, which is caused by the fact that the expected number
of observations in local neighborhoods decreases exponen-
tially as a function of p, the number of covariates. This
results in regression estimators with a very slow convergence
rate. Stone (1985) showed that additive models can avoid
these problems and produce nonparametric multiple regres-
sion estimators with a univariate rate of convergence.

In this work, we therefore adopt a classical setup and
consider an additive model for i.i.d. responses Y; € R,

i = 1,...,n and corresponding input covariate vectors
X;i=(X},....,X")eRri =1,...,nof the form

p .
Yi=p+) fiXD+e, i=1...n M

j=1

where 1 € R is an overall mean parameter, each f; is a uni-
variate function, the error vectore = (g1, ..., en)T has mean
the zero vector and is independent of the covariates. Such a
model retains the ease of interpretation of linear regression
models, where each component f; can be thought as the
effect of the jth covariate on the center of the conditional
distribution of Y. We will have at our disposal observations
(yi,xi),i =1,...,n, from model (1). The components Xl]
are random variables drawn from the jth marginal distri-
bution of the covariate vector X. The covariate vector X is
assumed to have a compactly supported continuous distribu-
tion such that the marginal density functions fy; (possibly
different for different j) satisfy certain conditions (essen-
tially no flat parts in the density, or ‘no holes’ in the design).
Adopting the stance taken by many others, we will also
assume E(fj(X/)) = 0 and that )/, fi(x/) = 0 to
ensure unique identification (both theoretical and empirical)
of the additive components and proceed to the estimation
of ‘parameters’ of the regression model (1). We will sup-
pose that some of the additive components are zero and will
address the problem of distinguishing the nonzero compo-
nents from the zero components and estimating the nonzero
ones. We allow the possibility that p in model (1) increases
as n increases. To achieve model selection consistency under
simple assumptions that are easy to interpret, we will assume
that the number of nonzero components is fixed and indepen-
dent of n.

A comment on notation: here and throughout, when index-
ing over the n samples we use subscripts, and when indexing
over the p dimensions we use superscripts, so that, e.g., xl.j
denotes the jth component of the i th input point. (Exceptions
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will occasionally be made, but the role of the index should
be clear from the context).

When the additive model is high-dimensional, that is when
pislarge, anatural goal is to induce sparsity in the component
functions, so that only a few select dimensions of the input
space are used in the fitted additive model. The literature on
estimation in nonparametric additive models (and by now,
sparse additive models) is vast, especially when the additive
components are smooth and well approximated by splines.
For a nice review, the reader is referred to Amato et al. (2016)
and the important list of references there.

In the following, we examine a method for estimating
additive models wherein each component is fit in a way that is
locally adaptive to the underlying inhomogeneous smooth-
ness along its associated dimension of the input space. A
second task in our work will be to perform variable selec-
tion. Both estimation and variable selection are done using
appropriate robust wavelet procedures adapted to nonregular
designs. More precisely, we use wavelet decompositions but
do not impose that the sample size n is a power of two, nor
do we restrict to equidistant design.

An initial motivation for our approach are the wavelet pro-
cedures developed recently in Amato et al. (2017) to estimate
both the linear and the nonlinear components in semi-para-
metric partially additive regression models with unknown
nonparametric additive component functions, sparsely rep-
resented in the wavelet domain, and unobservable Gaussian
distributed random errors.

Inspired by the penalized versions of high-dimensional
robust regression estimators with highly nonconvex loss
functions developed recently in Amato et al. (2021), we
address robust estimation, meaning that our procedures
remain valid even when there are aberrant observations of
the response variable, called vertical outliers. The key dif-
ference with Amato et al. (2017) is that here we propose
a robust wavelet-based procedure. The key difference with
Amato et al. (2021) is that we are in the context of additive
models here, with several univariate (nonlinear, unknown)
function effects to be estimated in a robust fashion, including
the selection of the sparse additive components. Note, how-
ever, that establishing robustness results, similar to those in
Avella-Medina (2017), Avella-Medina and Ronchetti (2017),
or Gijbels and Vrinssen (2019), based on a study of a theo-
retical influence function is a research subject on its own and
it is not considered here. Bianco and Boente (1998) consid-
ered robust estimators for additive models with sufficiently
smooth additive components using kernel-based regression,
which are a robust version of those defined in Baek and
Wehrly (1993). Croux et al. (2011) provide a robust fit for
generalized additive models with nuisance parameters using
penalized splines. Wong et al. (2014) consider robust fits
based on penalized splines M-type estimators. Robust esti-
mators for additive models using back-fitting were studied

by Boente et al. (2017), Boente and Martinez (2017) consid-
ered a robust method based on the marginal integration with
a robust local polynomial fitting and derived its asymptotic
properties. Outlier resistant fits for location, scale, and shape
generalized additive models with smooth components, that
extend the above to the more general setting of GAMLSS has
been considered recently in Aeberhard et al. (2020), but no
theoretical support is provided for their method. Most of the
above papers do not address the variable selection problem
when the models are sparse.

The remainder of our paper is organized as follows. We
describe our estimation procedures in Sect. 2 and present
the asymptotic properties of our estimators in Sect. 3. The
numerical implementation is described in Sect. 4. Simulation
results and an applications in Sect. 5 illustrate finite sample
performance of our estimation and variable selection proce-
dures. Section 6 includes concluding remarks.

The R codes and their description implementing the
methods in the paper together with the driver scripts for sim-
ulations, plots, and the analysis of real examples are made
available in a compressed archive as supplementary material.

2 Robust M-type group estimation and
variable selection in nonparametric
additive models

More recent work on additive models has focused on high-
dimensional, robust or not, nonparametric estimation, where
the natural goal is to induce sparsity in the component func-
tions, so that only a few select dimensions of the input space
are used in the fitted additive model. Most contributions are
primarily based on fitting splines for component functions
and aim in achieving sparsity through a group lasso type
penalty. The problem of variable selection and estimation in
such models becomes that of selecting and estimating a set
of grouped variables in a high-dimensional linear model.

Approximating the component functions by their trun-
cated expansions in spline bases and using appropriate
penalties is arguably the most common formulation for fitting
additive models by P-splines or B-splines (see e.g., Eilers
and Marx (1996), Antoniadis et al. (2012a), Antoniadis et al.
(2012b), Antoniadis et al. (2014)), and it is the standard in
several R statistical packages. The beauty of P-splines or B-
splines lies in their simplicity. However, with this simplicity
comes serious limitations, in terms of their ability to adapt
to varying local levels of smoothness.

This is the reason, hereafter, to consider a robust M-type
penalized group estimation and variable selection method-
ology based on a wavelet representation of each component
in additive models with component functions that display
locally heterogeneous degrees of smoothness.

@ Springer
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Let us consider a nonparametric additive model repre-
sented by (1) with additive components that present a wide
range of irregular effects. Suppose, without any loss of gen-
erality, that each marginal component X/, j = 1,..., p, of
the covariate vector X takes values in [0, 1]. To capture key
characteristics of variations and of inhomogeneity in each f;,
j=1,..., p,andto exploit their sparse wavelet coefficients
representations, we will assume that f; belong to the (inho-
mogeneous) Besov space on the unit interval Bf(’w([O, 1])
witht + 1/k — 1/2 > 0 (this condition ensures in particular
that evaluation of f; at a given point makes sense). The space
Bf(, »([0, 1]) consists of functions that have a specific degree
of smoothness in their derivatives. The parameter « can be
viewed as a degree of function’s inhomogeneity while ¢ is a
measure of its smoothness. Roughly speaking, the (not neces-
sarily integer) parameter ¢ indicates the number of function’s
(fractional) derivatives, where their existence is required in
an L“-sense; the additional parameter w is secondary in its
role, allowing for additional fine tuning of the definition of
the space (e.g., see Donoho and Johnstone (1998)).

In analogy with splines basis expansions of smooth
functions defined on [0, 1], we will approximate the nonpara-
metric additive components using wavelet bases (Antoniadis
and Fan 2001). More precisely, for each f;, we may use its

truncated expansion on wavelet basis functions { Wéj )}4:

K
f0~>ywP o,

=1

where K; is an appropriate truncation index allowed to
increase to infinity with n. A function f; within some Besov
ball can be well approximated by the above expansion and its
estimation is equivalent to estimation of the wavelet coeffi-
cient vector y /) = (yl(j ), yl(('i_))T. Similarly to the spline
case, as alluded to in Antoniadis and Fan (2001) we can
also define the regression design matrices containing wavelet
basis functions evaluated at the samples of the corresponding

predictors as in Amato et al. (2017):
wiPxi ... W,((-’_/?(X-l’)
w) — . :

Wi o wxd

Given the constraints imposed by identifiability restriction
E(fj(Xj)) =0,1 < j < p, we may also center the wavelet
basis functions by

S T N
Wl =wloxh = 3wl o,
(=1
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fori=1,...,n,j=1,...,pandk =1, ..., K;. Without
causing any confusion, to simplify notation, we still denote
by W) the centered matrices W(‘I) in the sequel, so the
rows of the matrices W) consists now of values of the cen-
tered wavelet basis functions at the ith observation of the
jth covariate. Adopting a vector-matrix form of the irreg-
ular additive model (1), and since the covariate vector is
assumed to be independent of the errors, conditionally on
the Xj,i =1, ..., n, we get the following approximation of
the additive model:

P
Y ~ By + Zw(J)y(]) +e,
j=1

where Y = (Yq,..., Y7, B the n-dimensional constant
vector with components p and € = (€1, ..., e To sim-
plify notation we will suppose that for all j = 1, ..., p the
truncation index is the same,ie. K1 = Kp = --- = K, = K
for the univariate approximations of the irregular additive
components.

LetW = [W® ... W] be the n x (K p) matrix obtained
by stacking block-wise the matrices W, j=1,...,pand
lety = (y(l)T, ce y(”)T)T be the long (K p)-dimensional
column vector of centered wavelet coefficients. With such
notation, the corresponding high-dimensional linear model
becomes

Y~ B+ Wy +e, 2)

and the estimation and variable selection task of the various
components in the “irregular” AM is totally similar to the one
developed for the group Lasso based on a spline representa-
tion of each component in additive models. With the above
notation, the sparsity assumption on the additive model (1)
translates to the following group sparsity condition of the
model: there exists § € {1, ---, p}, independent of n, such
that y/) = 0 forall j ¢ S.

In the traditional variable selection setting with all K; =
1, a considerable amount of research has been done. Popular
methods are the least absolute shrinkage and selection oper-
ator (Lasso; Tibshirani 1996), least angle regression (LARS;
Efron et al. 2004), and the nonnegative garrote (Breiman
1995). All three methods have been adjusted by Yuan and
Lin (2006) and Zou (2006) to handle grouped variables.
Breheny and Huang (2009) follow a different philosophy
and introduced a penalized regression framework for bi-level
variable selection with grouped variables, i.e., their method
first selects the important groups of variables and then the
important variables within those groups. Amato et al. (2017)
investigated a general penalized estimators framework using
convex loss functions and concave £;-norm penalties for the
partially linear model with grouped covariates. Neverthe-
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less, none of these contributions consider the problem of
outlying data points. To tackle the estimation and variable
selection problem for heavy-tailed or contaminated random
errors in the high-dimensional linear model (2), few robust
penalized approaches have been recently studied. Chen et al.
(2010) apply a more robust version of the groupwise lasso
based on a convex combination of L' and L? loss func-
tions. Alfons et al. (2016) consider an extension of LARS
to grouped variables and propose a robustification of their
groupwise LARS procedure that aims to reduce the influ-
ence of outliers. However, the above robust methods all
require the loss function to be convex. It is well known that
the convex loss functions do not downweight the very large
residuals due to their convexity. Amato et al. (2021) showed
that redescending M-estimators with nonconvex loss func-
tion possess certain optimal robustness properties. Inspired
by their approach, we now propose a novel high-dimensional
bi-level variable selection method through a two-stage penal-
ized M-estimator framework: penalized M-estimation with a
redescending loss function and a concave £>-norm penalty
achieving the consistent group selection at the first stage,
and a post-hard-thresholding operator to achieve the within-
group sparsity at the second stage. Our perspective at the
first stage is different from Amato et al. (2021) since we
allow the loss function to be nonconvex and thus it is more
general. In addition, our proposed two-stage framework is
able to separate the groups selection and the individual vari-
ables selection efficiently, since the post-hard-thresholding
operator at the second stage nearly poses no additional com-
putational burden to the first stage.

The two-step M-estimation approach for bi-level variable
selection. To perform an efficient bi-level variable selec-
tion with potential robustness for the existence of possible
data contamination or heavy-tailed error distribution in
model (2), we propose the following two-stage penalized
M-estimator framework. In the first step, we perform penal-
ized M-estimation with a group concave penalty achieving
the between-group sparsity, an appropriate reduction of the
dimension in the model and an initial estimator of the retained
nonparametric components:

P
y €  argmin Lo+ Pxﬁ(llym 2) - 3)
yeRPE Jlylli<R j=1

where £, is an empirical loss function, to be defined more
precisely later on, which encourages a robust solution and
g 1s a suitable penalty function with a tuning parameter § =
A+/K , which encourages the group sparsity in the solution.
In the second step, we apply a multivariate hard-thresholding
operator O(-, v) on p:

Op.v)=y-I(yl=v) “)

where “” and “>" in (4) are applied componentwise and v
is a thresholding parameter.

Inspired by the theory on high-dimensional robust esti-
mators developed recently by Amato et al. (2021), we give
some sufficient conditions under which optima of regularized
robust M -estimators with separable penalties are statistically
consistent, even in the presence of heavy-tailed errors and
outlier contamination. The conditions involve a bound on the
derivatives of the robust loss functions, as well as restricted
strong convexity of it in a neighborhood of constant radius
about the true parameter vector y*, and the conclusions are
given in terms of the tails of the error distribution. The ambi-
ent dimension p will be allowed to tend to infinity when the
number of observations n tends to infinity, but the true spar-
sity index k* := |S| remains fixed. We will assume that n
and p, are such that n > ¢qlog p,, for a sufficiently large
constant c¢g. By known information-theoretic results of Loh
and Wainwright (2015), this type of lower bound is required
for any method to recover the support of a k*-sparse signal,
hence is not a restriction.

We include the side condition ||y ||} < R in the group
penalization step in order to guarantee the existence of
local/global optima, for the case where the loss or regular-
izer may be nonconvex. In real applications, we can choose
R to be a sufficiently large number such that the vector y* of
wavelet coefficients approximating the true sum of additive
components satisfies ||y *||; < R and is therefore feasible for
the optimization. Note also that we have dropped B in the
argument of £,, because if the response Y is not centered,
the intercept may be efficiently estimated by the empirical
median or mean of the observations with ./n-consistency.
So, given the identifying restriction of the additive compo-
nents, there is not any loss of generality to assume that the
additive regression model has zero intercept.

Denote by w! = W/ the ith row of the wavelet design
matrix and let £ : R — R™ denote a (robust) loss function,
defined on each observation pair (w;, y;). The correspond-
ilng empirical loss function £, in (3) is then given by

- "l — wiTy) and equation (3) rewrites as

n

A . 1
Yy € argmin = Zﬁ(yi - wiTy)
yeReK Jyli<k |15

P
+> Pyl ¢ - ©)

j=1

To address cases where both loss function and penalty are
nonconvex, we will rely on Amato et al. (2021) results when
necessary. The loss functions that we will adopt in this paper
include Tukey’s biweight and Welsh loss (see also Appendix
1 of Amato et al. (2021)) of which we recall the definitions:

@ Springer
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— Tukey’s biweight loss

1= (1= /M2 iflul <M

l =
m () 1 if jul > M

’

with a M = 4.685.
— Welsh Loss

u. .o
l =1- —
m(u) eXP((M) )
witha M =2.11.

The above-mentioned values of the tuning parameter M yield
95% efficiency under strictly parametric linear regression
models.

The above loss functions are indexed by the so-called
robustness tuning constant M which regulates the trade-off
between, on the one hand, the loss of estimation efficiency in
the ideal case that the data exactly come from the assumed
model with normally distributed errors, and, on the other
hand, the maximum bias induced by some contamination
whenever the data do not come from the assumed model.
The choice of M is typically made before fitting the model
to data by targeting a certain loss of estimation efficiency of
the robust estimator relative to the maximum likelihood esti-
mator at the assumed model. As, correctly noted by a referee,
for Gaussian errors, such estimation efficiency is thought in
terms of unpenalized parametric fits, comparing asymptotic
covariances of regression coefficients and is meaningful if
robust fits achieve the same degree of smoothness for all
components. This is discussed in Aeberhard et al. (2020)
where the authors propose an alternative way to assess the
“efficiency vs. robustness” trade-off with penalized nonpara-
metric fits. Their approach starts by considering a grid of
plausible M values. For each grid value of M, a robust model
is fitted based on the data sample. This fitted model is used to
generate bootstrap samples, and subsequently for evaluating
the bootstrap-based likelihood, from which then the sum of
robustness weights is obtained. The tuning parameter M is
then selected targeting a median downweighting proportion,
e.g.,0.95. For more details, the interested reader is referred to
Aeberhard et al. (2020). Let us mention that some experimen-
tal runs on one of our simulated examples with the procedure
advocated by Aeberhard et al. (2020) led in choosing an opti-
mal constant M = 5.1 for Tukey’s biweight loss, but with no
significantly better fits than those obtained when using the
value M = 4.685. Since the resulting gain in MSE was not
significant in these runs, and since, under our setting, such
a tuning parameter selection procedure is computationally
expensive, we therefore will follow Croux et al. (2011) and
Wong et al. (2014) and resort to somewhat default values
for M taken from strictly parametric cases, considering this
parameter simply as a downweighting threshold.

@ Springer

Although third derivatives do not always exist for the
above loss functions, a unifying property is that the deriva-
tive £ is bounded and odd in each case, so they can mitigate
the effect of larger residuals which turns out to be an impor-
tant property for robustness of the resulting estimators. Note
in particular (see Amato et al. (2021)) that Tukey’s biweight
loss produces redescending M -estimators while Welsh’s loss
produce weakly redescending M -estimators.

Adopting the above losses, the loss function £, in (5)
satisfies

E[VL.(y")] =0, (6)

where V& denotes the gradient or subgradient of a function
h. The condition (6) ensures that y* is a stationary point.
Indeed, when the design is deterministic, we have

1
E[VL.(y")] =E [4’(61); > wi]
1
=E[¢(en] =) wi =0,

since the errors in (1) are mean zeroi.i.d random variables and
the influence function £’ is odd. When the design is random
then

E[VL0M] =E[e Wy = vow]
=E[(e)W:] =E[¢/(e)] -E[W;] =0,

since €; and W; are stochastically independent and ¢; are zero
mean i.i.d. Therefore, the condition (6) is always satisfied.

The performance of group regularized M-estimators in
expression (5) not only depends on the robust loss ¢ used
but also on the penalty p;, and the corresponding regulariza-
tion parameter A. To select a good penalty function, that is
able to generate sparse solutions between groups, we require
the penalty function p;, in (5) to satisfy amenable properties
listed and discussed in Amato et al. (2021), whose properties
are recalled below.

Assumption 1 (Amenable penalties) p; : R — R is a scalar
function that satisfies the following conditions:

(i) For any fixed r € RT, the function A > p; (¢) is non-
decreasing on RY.

(ii) There exists a scalar function g : R* — R* such that
for any r € [1, 00), ’;}T—((tt)) < g(r)forallt, » e RT.

In addition:

(iii)) The function ¢ + p, () is symmetric around zero and
p(0) =0, given any fixed A € RT.
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(iv) Thefunctiont > py (¢)isnondecreasingonR™, given
any fixed A € RT.
(v) The functiont pr(t) is nonincreasing on R™, given
any fixed » € R,
(vi) The function ¢t — p, (¢) is differentiable for r # 0,
given any fixed A € RT.
(vii) lim,_ o+ p} (1) = A, given any fixed A € R*.
(viii) There exists u > 0 such that the function ¢ + p; (¢) +
£12 is convex, given any fixed A € RT.
(ix) There exists & € (0, co) such that p;(t) = 0 for all
t > &M, given any fixed A € RT.

The properties above are related to the penalty functions
studied in Loh and Wainwright (2015) and Amato et al.
(2021). If p, satisfies conditions (i)-(viii) of Assumption 1,
we say that p, is u-amenable. If p, also satisfies condi-
tion (ix), we say that p, is (u, &)-amenable (see Loh and
Wainwright (2015)). In particular, if p, is w-amenable, then
g, (1) := Alt| — p,.(¢) is everywhere differentiable. Defining
the vector version g;(y) := Zle . (lyY2) accord-
ingly, it is easy to see that there exists u > 0 such that
% ly ||% —q,.(p) is convex. This property is important for both
computational implementation and theoretical investigation
of the group selection properties. Examples of amenable reg-
ularizers are the smoothly clipped absolute deviation (SCAD)
penalty (see Antoniadis and Fan (2001)), the minimax con-
cave penalty (MCP) (see Zhang (2010)) and the standard
£1-penalty. The SCAD penalty with fixed parameter a > 2
is (1, £)-amenable, with u = ﬁ and & = a. The MCP
regularizer is (u, £)-amenable, with © = % and & = y. The
£1-penalty p, (t) = A|t]is an example of a regularizer that is
0-amenable, but not (0, £)-amenable, for any £ < oo.

3 Main statistical results

This section presents our results on the asymptotic properties
for the proposed two-step penalized M-estimators defined in
steps 1 and 2 of Sect. 2. On the one hand, we show a gen-
eral non-asymptotic bound of the estimation error for the
difference between the coefficients y* in the true wavelet
approximation of the nonparametric additive components
and their estimation y with an optimal rate of convergence
under certain mild conditions. On the other hand, we show
that the estimator p selects with high probability the correct
group support and thus displays good group-level properties.
We also show that those nice statistical properties of y can be
carried over during the hard-thresholding stage. Appropriate
conditions on the distribution of the covariate vector X and
the conditional wavelet-based design matrix lead to asymp-
totically consistent estimators of the nonparametric additive
components.

Following the theory on high-dimensional penalized
robust estimators studied recently by Amato et al. (2021),
we give some sufficient conditions under which optima
of regularized robust M-estimators with group separable
penalties are statistically consistent, even in the presence of
heavy-tailed errors and outlier contamination. The conditions
involve abound on the derivatives of the robust loss functions,
as well as restricted strong convexity of it in a neighborhood
of constant radius about the true parameter vector y*, and
the conclusions are given in terms of the tails of the error
distribution.

The restricted strong convexity (RSC) requirement of the
loss functions is an important requirement. Denote A=
Y,, — v* the difference between an optimal solution y;
and the true parameter, and consider the loss difference
Ly (i’\)“n) — L, (y*). In the classical setting, under fairly mild
conditions, one expects that the loss difference should con-
verge to zero as the sample size n increases. It is important to
note, however, that such convergence on its own is not suffi-
cient to guarantee that ; and y* are close or, equivalently,
that A, is small. Rather, the closeness depends on the curva-
ture of the loss function. The standard way to ensure that a
function is “not too flat” is via the notion of strong convexity.
However restricted strong convexity traditionally involves a
global condition on the behavior of the loss function. Due to
the highly nonconvex behavior of the robust regression func-
tions that we are using (Tukey’s biweight or Welsh losses),
we will assume only a local condition of restricted strong
convexity.

Assumption 2 (Local RSC condition) There exist o, T > 0
and a radius r > 0 such that the loss function £, in (3)
satisfies

(VL (1) = VL(y2), V1 —V2)

log(Kp)
n

2 2
>ally;—vallz—1 ly:—vali,

forall y,, y, € RXP such that ly; —py*la <rforj=1,2.

Note that the RSC assumption is only imposed on L,
inside a ball of radius r centered at p*. Thus the loss functions
used for robust regression can be wildly nonconvex while
away from the origin. The ball of radius  essentially specifies
a local region around p *, say the local RSC region, in which
stationary points of program (3) are well-behaved.

Remark 1 Recall that p is a stationary point of the optimiza-
tion in (3) if

(VL,(?)+Vpr(¥),y =) =0,

for all feasible y in a neighbor of y, where p;(y) =
Zle p/\\/f(lly(j)nz). Note that stationary points include
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both the interior local maxima as well as all local and global
minima. It is easy to see that the estimation consistency
result also holds for the stationary points in the optimiza-
tion problem (5). Hence Theorem 1 stated below guarantees
that all stationary points within the ball of radius r centered
at y* have local statistical consistency at an optimal rate. To
simplify the notation, y denotes the stationary points of the
optimization problem (5).

We will use some extra notation. Denote the index set
of coefficients in group j by I; < {1,2,---, pK}. Then
Is = U jes I includes all indexes of coefficients in the
important groups. Let s = |Ig|. We can now state the
following Theorem of Amato et al. (2021) (see also Loh
(2017)) which guarantees that stationary points within the
local region where the loss function satisfies restricted strong
convexity are statistically consistent.

Theorem 1 Suppose L,, satisfies the local RSC assumption 2
with y, = y* and the penalty p, is p-amenable, with %u <
. Suppose n > Cr? - slog(K p) for some constant C > 0
and a radius r > 0, that ||y *||1 < R and let

A > max {4||VEn(}'*)I|oo, 8TR (N

log(K'p)

. .
A stationary point y of the objective function in (3) such that
ly — ¥*ll2 < r exists and satisfies the bounds

2405 9615

Iy —»*l2 < and |y —y*lh =

Note that the statement of Theorem 1 is entirely determin-
istic and the distributional properties of the covariates, the
wavelet basis and the error terms come into play when veri-
fying that the assumptions hold with high probability under
a prescribed sample size scaling. In particular, in Theorem
1, when r is chosen to be a constant and w = o(1)
as is the case in the robust regression settings that we are

interested in, one can choose A = O (,/ log(#) such

A~ 1 A~
that [y — y*ll2 = O, (w”ﬂip)) and ||y —y*lh =

O, (s,/ W) Hence, all stationary points within the

constant-radius region are actually guaranteed to fall within a
shrinking ball of radius O <, / Slognﬂ) centered around p*.

When the design is deterministic or more generally con-
ditionally on the covariates vector X, using sufficiently
regular compactly supported wavelets bases, Proposition 7.1
of Chesneau et al. (2015) implies that ln~! S willo <
D+/log (K p)n—! for some constant D which depends on the
wavelet basis used for regression and the bounds of the com-
pactly supported density of X. Moreover, as stated before, the

@ Springer
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residual function £ for the robust loss functions adopted here,
has a bounded derivative and is such that [£”(u)| < B for
some constant B > 0, and for all # € R where £”(u) exists.
Therefore, the influence function ¢’ is Lipschitz. Given the
above, it is then easy to see that one may find a sufficiently
large constant k] > 0 such that the loss function £, satisfies
the bound

1 K
IV La )l so sfq,/y.

We have already seen that under our assumptions condi-
tion (6) is always satisfied. Therefore, the gradient bound (7)
is established under fairly mild assumptions. When the
errors ¢; are drawn from a sub-Gaussian distribution with
an appropriate bound on its variance, or when the errors
have a contaminated mean-zero finite variance distribution
with an appropriate bound on the fraction of outliers the
local RSC condition for the loss functions holds as soon as
n > C log(Kp).

Regarding the consistency properties of the group penal-
ized M-estimators considered, suppose that /g is given in
advance, and define the group-level local oracle estimator as

pOCle _ amin {£,()). ®
YeRS:|ly—y*|2<R
Let § oracle . =Py 0 1¢)- The next theorem, a restatement

of Theorem 2 and Corollary 1 of Loh (2017), shows that
when a penalty p;, is (u, £)-amenable (such as SCAD or
MCP, for example) and conditions in Theorem 1 are satisfied,
the stationary point from (5) within the local neighborhood
of y* agrees with the group oracle estimator in (8). For its
proof, we refer the reader to the arguments provided in that
paper. Denote by y;- G the minimum group strength of y*,

ie. yis = minjcg 77 1l2. We have:

Theorem 2 Suppose a penalty p; is (u,§)-amenable and

conditions in Theorem 1 hold. Suppose in addition ||y*|| <
gfor some R > f:l_(g‘;, y:‘n?n > C Sl"% +é&rn >

Cos log(Kp) and s*logs = O(log(Kp)). Let p be a sta-
tionary point of program (5) in the local RSC region. Then y

satisfies supp(y) C Is (where supp(p) denotes the index set

supporting y) and y |, = f/,?mde

Letlp={m:y; #0,1 <m < pK}andthus Iy C Is.
Define yfnli% = mingyey, |y,;| as the minimum individual
signal strength on py*. We are now ready to establish statisti-
cal properties of the multivariate hard-thresholding estimator
e) (7/ v) at the second step of our proposed estimation frame-
work. The following theorem ensures that when the condition
of minimum individual signal strength is satisfied and since
the additive components have sparse wavelet basis expan-
sions there exist some thresholds v that are able to filter out
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those nonimportant coefficients within the selected important
groups, and thus the thresholding stage will indeed perform
bi-level variable selection consistently.

Theorem 3 Suppose conditions of Theorem 1 hold and in
+v

slogs
n

addition that the individual strength yfnli?l > C
and v > C “0% for some constant C > 0. There

exists a constant C such that the hard-thresholding estimator
N3 . A3 ) slogs
Oy, v) satisfies |O(y,v) —y*ll2 = C/ = =.
Proof By the condition that y*0 > ¢ Slo# + v, we have

in — 7

oracle

19,01 = | — 1p,0mcle —y
o] s oracle  _,
> ymin - ”J/IS - V[S”OO (9)
> (C sl(r)lgs +0)-C sl(r)lgs

=V,

forall j € Iy, where the third inequality follows from Theo-
rem 1 and the properties of p ;. in Theorem 2. For j € Is—Io,

A . 1 slogs
19,271 < 19 21—yl < € === < v (10)

where the second inequality follows from Theorem 1 and
the properties of p ;. in Theorem 2 and the last inequality
oracle _

follows from the condition in Theorem 3. Recall y
(y I(S)racle’ 0,¢). By Theorem 2 we have yp=y oracle
(9) and (10) and the definition of the thresholding operator
with threshold v, the result follows. O

Regarding now the estimation of the nonzero additive
components of the sparse additive model (1), and given the
realizations x;’ of the components of the sample of the covari-
ate vectors X;, i = 1,...,n, we will use the following
notation. For j =1, ..., p,let f ;’ be the true centered com-
ponents defined by

1 & ;
fi@) = £ = =3 fi)
i=1

and £¢ = ( f;?(x{ ), f;(xg Yoo, f;(x,{ )T the corresponding
vector of conditional values. Denote by f:j the truncated
wavelet expansion of f;’ onto the centered wavelet basis

K}l
0 =3 v "W ),
=1

and £, = (f5(x]), f5(09), o, [T = WDy
using our matrix notation, with the adopted convention that

W is indeed W, Finally, let
Ky ) )

P =39 "W ),
=1

and £, = (S0, foj (D), -0,y = WD),
The following assumptions, summarize several conditions
already stated in previous sections.

Assumption 3 (Components and design) Regarding the
covariates each marginal component X J, j=1,...,p,of
the covariate vector X has a continuous density with a com-
pact support strictly included in [0, 1]. Regarding the additive
components, we assume

— (i) For each j = 1,..., p, the additive components f;
belong to the (inhomogeneous) Besov space on the unit
interval B,’(’w([O, 1) witht + 1/k — 1/2 > 0.

— (ii) The mother wavelet 1, defining the wavelet approxi-
mation has g null moments and g continuous derivatives
where ¢ > max(1, w).

We may now state the following result, regarding the
asymptotic properties of the estimators of the nonzero addi-
tive components.

Theorem 4 Suppose conditions of Theorem 3 hold together
with the conditions in Assumption 3. Then, for sufficiently
large K,, such that K,, > c(@)l/m“),forj € S, we have

1 A log n\ 2/Q1+D
E(—nf;—fn,-n%)so{( s ) ,
n n

so that, for the nonzero components in the sparse additive
model, £, inherits the asymptotic mean squared error prop-
erties of the hard-thresholded estimator in Theorem 3.

Proof Note first that by the triangle inequality we have

1 ¢ 2 2 2 2 ¢ 2
7 =13 < S0 - 6134 ey —f3. an

Regarding the approximation part % ||f/”. — f:j ||%, asitis tradi-

tional in the wavelet estimation literature, using the assertion
(i) in Assumption 3 and the regularity stated in assertion
(i1) for the mother wavelet i used in the wavelet expan-
sion, one may use for example the approximation part in
Theorem 5.1 of Chesneau et al. (2015), to see that, for
K, = O(IL)I/(Z"H) we have

ogn

1
] = £513 < 0K (12)
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By the adopted notation, the error part %Hf:j — £, 113 in (11)
may be also written as %HWU)(}f*(/) - A(-/))||2. By argu-
ments similar to Proposition 10.3 of Hirdle et al. (1998),
the largest eigenvalue of each semi-positive definite wavelet
matrix %W(j)TW(f), Jj € S, is bounded above. Since k* =
|S] is finite and fixed, and since the conditions of Theo-
rem 3 hold, by the mean squared error properties of the
hard-thresholded estimator in Theorem 3 we have

12
E (l”W(j)(y*(j) _ ?(,-))“2) - (10% Kn)
n - n

2t/Q2141)
<0 { (logn) } .
n

Combining the above upper bound with the one stated in (12)
leads to the desired result. O

4 Algorithms for numerical implementation

We describe here a two-step algorithm for computing the
proposed two-stage M -estimator, which, for fixed A, is guar-
anteed to converge to a stationary point in problem (5) within
the local region where the RSC condition holds, even when
the M -estimator is nonconvex, since we allow both loss func-
tion £, and penalty p; to be nonconvex. We also discuss the
tuning parameters selection for both A and v.

To obtain the corresponding stationary point, we use the com-
posite gradient descend algorithm (Nesterov 2007). Recall
that g2(») = 27_, VKAY Pl =30, by, Uy Dll2)
and using L,(¥) = L, (y) — ¢5.(y), we can rewrite the opti-
mization problem as

p
y € argmin { L, (y) + VKX Z ||y(f)||2

lyllhi<R j=1

Then the composite gradient iterates are given by

_ . 2
[i] VL, (y!)
y—\v - T

2

li+1] ¢ argmin { =

Iyl =R

Y

VKL & ,
+TZ||W>||2 , (13)
j=1

where 7 is the step-size parameter for the update and can be
determined by the backtracking line search method described
in Nesterov (2007).

@ Springer

Defining the group soft-thresholding operator denoted by
Sk as

)
Ss(z) = (1 - —) z,
lzll2 /),

a simple calculation shows that the iterates (13) take the form

: 1 VLi.(B)
[i+1] _ [l n
‘We then adopt the following two-step procedure discussed
in Amato et al. (2021) to guarantee the convergence to a
stationary point for the nonconvex optimization problem in

(5).

Step 1 Run the composite gradient descent using a Huber
loss function with convex group Lasso penalty to get an
initial estimator.

Step 2 Run the composite gradient descent on the pro-
gram (5) at the Group Penalization Stage using the initial
estimator from Step 1.

As to the tuning parameters selection, the optimal values
of tuning parameters A and v by optimization of the empirical
robust-loss-based prediction error on a two-dimensional grid
whose sides range is motivated by the conditions of Theorem
2 and Theorem 3.

Remark 2 The numerical algorithms described in this section
could also be supplemented by a numerical implementation
of the empirical estimate of the influence function (sensi-
tivity curves) for the estimators of the paper, following the
approach described in Boente et al. (2017). However, a fun-
damental issue is the computational time to evaluate the
sensitivity surfaces. For example, to get the four estimates
from a single simulation run with 400 data points and 5
covariables requires about 100 seconds. Estimating the influ-
ence function requires estimating solutions of all methods on
a grid of dimension p+ 1, with p being the number of compo-
nents. Itis obvious that the computational time required is too
high. Summarizing, empirical estimation is technically fea-
sible, provided that a small number of additive components
is considered, a coarse evaluation grid is used and each run
is executed on a machine with a high number of processors.

5 Simulation study and analysis of real data
This section reports the results from a simulation study and

real data analysis that are designed to assess the practical
performance of our two-stage M -estimation method.
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5.1 Simulation study

Throughout this subsection we will assume without any loss
of generality that our model does not contain an intercept
and we assess the performance of robust estimators by con-
sidering different types of loss functions, namely Tukey’s
biweight and Welsh’s, and the MCP penalty function, since
SCAD is a particular case of MCP, through our simulation
examples. The data are generated from the following model

p
vi=Y fih+e. 1<i<n (14)
j=1

Since we are interested on the robustness in presence of
vertical outliers, nonequispaced design sample points xi] ,
i = 1,...,n, are generated once for all from p indepen-
dent uniform distributions on [0, 1], i.e., the design matrix
is fixed over all simulations. Without any loss of general-
ity the additive components fj, j = 1, ..., p, evaluated at
their respective design points are centered and have empirical
norm | fj||, = 1.In the simulations, p = 5 and the number
of nonzero components |S] is equal to 3. The chosen additive
components are displayed in Fig. 1. The number of covariates
p = 5 is reasonable and allows to explore eventual compu-
tational or conceptual weaknesses of certain estimators in
higher dimensions. The wavelets used in our simulations are
the least asymmetric Daubechies wavelets with 5 vanishing
moments, and the number of bases K chosen to approximate
each component is K = [log,(n) — 2], leading to wavelet
design matrices of size n x (Kp). We note that, as long as
K p remains less than n (a condition due to the fact that most
of the methods used in our paper require an initial (standard)
robust regression estimator, which when Kp > n becomes
impossible), our results are not sensitive to these choices. A
more important issue is the automatic selection of the tuning
parameters.

Several combinations of the loss functions (Tukey’s
biweight or Welsh’s), of the penalty functions (SCAD or
MCP), of the errors distribution (Gaussian mixture with a
given proportion of outliers or Gaussian) for a sample sizes
n = 400 are considered. Without causing any confusion, let
f ' be any estimator of f;. Its performance on both param-
eter estimation and variable selection are evaluated by the
following indicators:

— Root Mean Square Error (RMSE ), aimed at evaluating a
component-wise accuracy. It is computed for each com-
ponent as

._lnA.j_.J'z-_
RMSE; = | =3 (i) = ;{02 j=1,....p,

i=1
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0.

!

!

20 -15 <10 -5 0

T T T T T T T T T T T
00 02 04 06 08 1.0

x1 x2 x3

Component 4
Component 5
!

T

T T T T T
00 02 04 06 08 10

T
00 02 04 06 08 10

x4 x5

Fig.1 Additive components used in the simulations

at the nonequispaced design points xlt/ ;

— Number of selected variables (NS). It is aimed at evalu-
ating capability of the methods in preserving sparsity of
the models:

NS:= (8], §={j: f; #0}

— False-positive rates (FPR) for additive components selec-
tion, the percent of selected components which are
actually unimportant, defined as

FPR := [8P/|S¢| x 100%, 8P :={j: f; #0and f; = 0}

— False-negative rates (FNR) for additive components
selection, the percent of non-selected components which
are actually important, defined as

FNR := |§"|/|S| x 100%, §" :={j: f; = 0and f; # 0}

For each of the above experimental factor combinations,
100 simulated data sets Y? € R*, h = 1, ..., 100 are gen-
erated according to model (14), where ¢;’s are i.i.d. noise
variables. We set o2 in the generation of the responses so
that the signal-to-noise ratio (SNR) was || fi Hi Jo? = 4,
j = 1,..., p. We considered two possible distributions
for the errors ¢; : a mean zero normal distribution with
standard deviation o and a mixture distribution of Gaus-
sians, (1 — «)N(0, o) + aN (0, 60), with @ = 0.1 where
o denotes the mixture parameter. The first possibility, sce-
nario 1, corresponds to the classical scenario of normal errors
without outliers and is used to illustrate the loss of effi-
ciency incurred by using a robust estimator when it may
not be needed. The second possibility, scenario 2, consid-
ers a model whose observations can be contaminated by
light-tail vertical outliers. As suggested by a referee, we
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Table 1 Four scenarios and comparisons with competitive methods

Scenario Model elements Methods included in the study
R = robust method, W = wavelet-based method
1 Error distribution: N'(0, o) GPREG (W), GLARS (R),
No vertical outliers Proposed method
Sample size n = 400, no power of 2 BIWEIGHT (R & W) and WELSH (R &W)
Nonequispaced design
2 Error distribution: 0.90 (0, ') + 0.1 AV (0, 60) GPREG (W), GLARS (R),
Vertical outliers Proposed method
Sample size n = 400, no power of 2 BIWEIGHT and WELSH (R & W)
Nonequispaced design
3 Error distribution: (0, o) GPREG (W), GLARS (R),
Sample size n = 512, a power of 2 RAMlet (R & W),
Equispaced design Proposed method
BIWEIGHT and WELSH (R & W)
4 Error distribution: 0.90 N'(0, o) + 0.1 MV (0, o) GPREG (W), GLARS (R),

Sample size n = 512, a power of 2

Equispaced design

RAMlet (R & W),
Proposed method:
BIWEIGHT and WELSH (R & W)

complemented the simulations with two similar scenarios
but with an equidistant deterministic design of size a power
of 2 (homogeneous setup) allowing us to also consider the
robust RAM1 et nonlinear back-fitting wavelet-based estima-
tor of additive models developed in Sardy and Tseng (2004),
in addition to the alternatives used in scenarios 1 and 2. Table
1 collects the different elements in the simulation models and
the different settings.

In each scenario, the additive model has p = 5 com-
ponents, of which 3 are nonzero components. See Fig. 1.
Furthermore, in each simulation model the average SNR is
4, and we report on results for 100 simulations.

For each simulated data set Y, we have applied each of
the methods considered in this paper. For estimation by the
group penalized regression bi-level variable selection pro-
cedure GRPREG of Breheny and Huang (2009), the tuning
parameter is chosen by performing a fivefold cross-validation
over a grid of values for the regularization parameter lambda
and the optimal one is determined using a Bayesian infor-
mation criterion (BIC). Concerning the robust group-wise
LARS procedure of Alfons et al. (2016) the final models
are obtained by fitting MM-regression along the respective
sequence of predictor groups, and choosing the respective
optimal model via BIC using a residual scale estimate from
the initial S-estimator. Furthermore, note that the loss func-
tion p for MM-regression in GLARS is chosen to be Tukey’s
bisquare function tuned towards 95% efficiency, and recall
this is tailored to the strict parametric, normal case. We
noticed that the estimates produced by the GLARS proce-
dure were quite wiggly, so we slightly smoothed them with
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Fig.2 Scenario 1. Example of simulated noisy data

P-splines with a relatively large number of knots, in order to
introduce some extra bias. For our BIWEIGHT and WELSH
procedures, a sequence of MM-regression model fits are eval-
uated along a supplied grid of lambda values and the optimal
parameter is chosen via optimization of a robust BIC ver-
sion. By default, the second step thresholding parameter v
is chosen by a minimax threshold rule. For the determin-
istic equidistant design case, the smoothing parameter of
the RAMlet wavelet-based estimator is based on a practical
automatic rule for choosing the smoothing parameters auto-
matically, namely the sparsity information criterion SLIC
developed in Sardy (2009).
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Table 2 Scenario 1. Average

RMSE of each additive Compl

Comp2 Comp3 Comp4 Comp5

component estimate for each

> GRPREG 0.183 (0.036)

procedure, with standard
deviations between brackets GLARS 0.183 (0.069)
BIWEIGHT 0.125 (0.029)
WELSH 0.151 (0.036)

0.186 (0.029) 0.013 (0.015) 0.164 (0.026) 0.017 (0.018)

0.170 (0.052) 0(0) 0.172 (0.058) 0(0)
0.162 (0.018) 0(0) 0.141 (0.020) 0(0)
0.182 (0.027) 0(0) 0.153 (0.022) 0 (0)

Table 3 Scenario 1: Number of selected variables (NS), false-positive
rates FPR (%), and false-negative rates FNR (%) for the simulations

NS FPR FNR
GRPREG 4314 (0.718) 65.710 (2.125) 0(0)
GLARS 3(0) 0 (0) 0(0)
BIWEIGHT 3(0) 0(0) 0(0)
WELSH 3(0) 0 (0) 0(0)

Average values and standard deviations of the indicators over the 100
simulations are reported

Root mean squared errors for robust additive fit

o

000

0.8 —

0.6 —

T
GRPREG

T T
GLARS BIWEIGHT WELSH

Fig.3 Scenario 1. Boxplots of the RMSE for each of the estimates

Simulation scenario 1

Figure 2 displays a typical simulation data set in scenario 1.
The display allows to realize the amount of noise added in
each of the additive components.
Tables 2 and 3 summarize the results of the simulations.
Finally, boxplots of the fitted simulated additive model
RMSE:s for each estimate obtained by the four methods for
scenario 1 are presented in Fig. 3.
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Fig.4 Scenario 2. Example of simulated noisy data

Simulation scenario 2

A typical simulated data set in scenario 2 is depicted in Fig. 4.
Note the presence of several outliers when comparing the
display with the one in Fig. 2.

The results of the simulations are summarized in Tables 4
and 5.

Boxplots of the fitted simulated additive model RMSEs
of each estimate obtained by the four methods for scenario 2
are presented in Fig. 5.

Simulation scenario 3

Figure 6 displays a typical simulation data set in scenario 3.
The display allows to realize the amount of noise added in
each of the additive components.

Tables 6 and 7 summarize the results of the simulations.

Table 4 Scenario 2: Average

RMSE of each additive Compl

Comp2 Comp3 Comp4 Comp5

component estimate for each

> GRPREG 0.373 (0.073)

procedure, with standard
deviations between brackets GLARS 0.192 (0.043)
BIWEIGHT 0.157 (0.037)
WELSH 0.172 (0.035)

0.346 (0.074)  0.021 (0.031)  0.324 (0.074)  0.021 (0.025)

0.193 (0.052) 0 (0) 0.184 (0.047) 0 (0)
0.177 (0.020) 0 (0) 0.158 (0.024) 0 (0)
0.188 (0.022) 0 (0) 0.164 (0.024) 0 (0)
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Table 5 Scenario 2: Number of selected variables (NS), false-positive
rates FPR (%), and false-negative rates FNR (%) for the simulations

Table 7 Scenario 3: Number of selected variables (NS), false-positive
rates FPR (%) and false-negative rates FNR (%) for the simulations

NS FPR FNR NS FPR FNR
GRPREG 4.150 (0.802) 57.500 (2.537) 0 (0) GRPREG 4.120 (0.802) 56.020 (3.655) 0 (0)
GLARS 3(0) 0 (0) 0 (0) GLARS 3.024 (0.154) 1.200 (0.702) 0 (0)
BIWEIGHT 3(0) 0 (0) 0 (0) BIWEIGHT 3(0) 0 (0) 0 (0)
WELSH 3(0) 0 (0) 0 (0) WELSH 3(0) 0 (0) 0 (0)
Average values and standard deviations of the indicators over the 100 RAMIet 5(0) 100 (0) 0(0)

simulations are reported

Root mean squared errors for robust additive fit
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Fig.5 Scenario 2. Boxplots of the RMSE for each of the estimates

Component 3
L

Component 1
Component 2

-15 -10 -05 00 05 10 15

T T T T
00 02 04 06 08 10

x1 x2 x3

Component 4

-15 -10 -05 00 05 10 15

T T T T
00 02 04 06 08 10

x4 x5
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Average values and standard deviations of the indicators over the 100
simulations are reported
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Fig.7 Scenario 3. Boxplots of the RMSE for each of the estimates

Finally, Fig. 7 shows the boxplots of the fitted simulated
additive model RMSEs for each estimate obtained by the five
methods, for scenario 3.

Simulation scenario 4

Figure 8 displays a typical simulation data set in scenario 4.
The display allows to realize the amount of noise added in
each of the additive components.
Tables 8 and 9 summarize the results of the simulations.
Finally, boxplots of the fitted simulated additive model
RMSEs for each estimate obtained by the five methods for
scenario 4 are presented in Fig. 9.

Table 6 Scenario 3: Average

RMSE of each additive Compl

Comp2 Comp3 Comp4 Comp5

component estimate for each

> GRPREG 0.183 (0.027)

procedure, with standard
deviations between brackets GLARS 0.210 (0.039)
BIWEIGHT 0.146 (0.022)
WELSH 0.162 (0.023)
RAMlet 0.169 (0.014)

0.185 (0.024)  0.008 (0.011)  0.173 (0.026)  0.008 (0.011)

0.172 (0.046) 0 (0) 0.173 (0.046)  0.006 (0.038)
0.150 (0.021) 0 (0) 0.130 (0.017) 0 (0)
0.164 (0.020) 0 (0) 0.137 (0.021) 0 (0)

0.127 (0.015)  0.043 (0.024)  0.120 (0.012)  0.044 (0.024)
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Fig.9 Scenario 4. Boxplots of the RMSE for each of the estimates

Results

We now discuss the simulation results of various robust
model selection criteria in terms of both model selection and
prediction accuracy for each simulation scenario. Tables 2,
3, 4 and 5 show the accuracy measures RMSE; for the addi-
tive components and the performance indicators NS, FPR
and FNR for the simulation examples with a random design
of Sect. 5, while Tables 6, 7, 8 and 9 show similar measures
for the simulation examples with a deterministic equidis-
tant design of Sect. 5. Reported values are the averages over
the 100 different realizations; standard deviation is shown

in parentheses in all tables. Figures 3, 5, 7 and 9 display
boxplots of the global RMSE for the fitted additive model by
each method.

In scenario 1, from the perspective of variable selection,
when considering the performance indicators NS, FPR and
FNR, all methods tend to identify the three significant com-
ponents correctly. Note however that the bi-level GRPREG
procedure selects sometimes one or more noise variables
compared to the other methods which never select insignifi-
cant components. From the prediction point of view, as shown
in Table 2 or the boxplots (Fig. 3), all methods maintain
satisfactory RMSE. Confirming the results in Alfons et al.
(2016), GLARS performs very well and successfully selects
relevant components. Note that in the standard normal case
both two-step robust procedures display a comparable (better
for BIWEIGHT) global RMSE, even if they are essentially
designed to handle vertical outliers.

In the case of vertically contaminated data, the non-
robust procedures GRPREG has an almost doubled RMSE
when compared to the averages in scenario 1 while GLARS,
BIWEIGHT and WELSH lead to RMSE averages slightly
larger to those in scenario 1. Among the robust procedures,
Tukey’s BIWEIGHT is slightly better than GLARS and
WESLH, but the three methods remain competitive. Regard-
ing the variable selection properties GLARS, BIWEIGHT,
and WELSH select the significant variables correctly while
GRPREG sometimes selects some noise variables.

Regarding the homogeneous scenarios 3 and 4, the above
conclusions drawn from simulation scenarios 1 and 2 remain
mainly true for the methods applied there. In the non-
contaminated case, the RAMlet procedure presents a predic-
tive performance that it is slightly worse than BIWEIGHT
and WELSH due probably to the fact that it is not designed
to perform variable selection (few wavelet coefficients for
the noise components are not thresholded). One may also
note the several outlying predictions for GLARS in scenario
3, with also rarely selecting some noisy variables, indicating
probably that the number of maximum iterations required for
convergence of this method should be set to a larger value
than the actual one used for realizing the simulation fits, but
at a cost of even a larger CPU time. Quite surprisingly, the
robust procedures BIWEIGHT, WELSH and RAMlet seem
to be quite efficient even in the non-contaminated case. For

Table 8 Scenario 4: Average

RMSE of each additive Compl

Comp2 Comp3 Comp4 Comp5

component estimate for each

> GRPREG 0.356 (0.064)

procedure, with standard
deviations between brackets GLARS 0.236 (0.048)
BIWEIGHT 0.162 (0.028)
WELSH 0.176 (0.025)
RAMlet 0.194 (0.022)

0.352 (0.070)  0.018 (0.035)  0.362 (0.087)  0.021 (0.027)

0.208 (0.056) 0 (0) 0.203 (0.051) 0 (0)
0.162 (0.025) 0 (0) 0.142 (0.025) 0 (0)
0.171 (0.021) 0 (0) 0.148 (0.025) 0 (0)

0.156 (0.021) 0.063 (0.033) 0.138 (0.018) 0.060 (0.030)
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Table 9 Scenario 4: Number of selected variables (NS), false-positive
rates FPR (%) and false-negative rates FNR (%) for the simulations

NS FPR FNR
GRPREG 4.109 (0.737) 55.450 (2.733) 0(0)
GLARS 3(0) 0(0) 0(0)
BIWEIGHT 3(0) 0(0) 0(0)
WELSH 3(0) 0(0) 0(0)
RAMIet 5(0) 100 (0) 0(0)

Average values and standard deviations of the indicators over the 100
simulations are reported

vertical contaminated data (scenario 4) GLARS and RAM-
let robust procedures display a comparable RMSE, but again
BIWEIGHT AND WELSH display a better global RMSE.

5.2 Real data examples
Air quality data

We analyze a real data set available in R, namely the
airquality data set, which has also been analyzed with
a robust backfitting procedure in Boente et al. (2017). As
noted by the referees, the effects of the covariates are essen-
tially smooth and could be treated with splines, but we retain
the example since we can compare our results with those of
Boente et al. (2017). We have fitted data with each of the
four procedures already used in the simulations, the robust
backfitting of Boente et al. (2017) as implemented in the
R-package RBF and a classical fit using the gam function
of the R-package mgcv. The data set contains 153 daily
air quality measurements in the New York region between
May and September 1973. The interest is in explaining mean
Ozone concentration (“O3”,measured in ppb) as a function of
three potential explanatory variables: temperature (“Temp”,
in degrees Fahrenheit), wind speed (“Wind”, in mph) and
solar radiance measured in the frequency band 4000 — 7700
(“Solar.R” in Langleys). Mimicking Boente et al. (2017) in
our analysis, we only consider the 111 cases that do not
contain missing observations. Simple visual exploration of
the data (see Fig. 10) indicates that the relationship between
ozone and the other variables does not appear to be linear, so
we consider fitting an additive model of the form

O3 =+ fi(Temp ) + fo( Wind ) + f3( SolarR ) + oe,

where the errors & are assumed to be independent,
homoscedastic and with location parameter O.

The tuning parameters for each of the methods were cho-
sen in the same way as in our simulations. Figure 11 shows the
estimated regression components for each explanatory vari-
able, for the estimators. Although the shape of the estimated
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Fig. 10 Airquality data. Scatter plots of the observed variables
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Fig.11 Airquality data. Estimates of the additive components using the
procedures described above. Points outlined in red are potential outliers

additive components are similar, some important differences
in their pattern can be highlighted. Note first that the shape of
the effect of the temperature, justifies the use of wavelets at
least for this function. On the other hand, the gam and the RBF
estimators appear to magnify the effect of the covariates on
the additive components Wind and Temp of the regression
function. The BIWEIGHT robust estimator suggests covari-
ate effects that are more moderate.

We can use the residuals obtained with Tukey’s biweight
two-step estimator to explore the presence of potential out-
liers in the data. A rough comparison of the residuals from
a classical fit with a robust one, indicates 5 clear outliers
(observations 23, 34, 53, 68 and 77).

Blue sharks data

In a second real example, we compare the performance of
the robust fitting and variable selection procedures described
in our paper with a nonparametric nonnegative garrote vari-
able selection method proposed in Cantoni et al. (2011) on a
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real data set from the U.S. National Marine Fisheries Service
Pelagic Observer Program.! There are six covariates in this
example, and the particular interest here is to see how the pro-
posed and existing methods perform with respect to variable
selection, and how this is possibly impacted by outliers. The
authors of the above cited paper have been utilizing these data
to analyze catches of the most commonly caught shark, the
blue shark (Prionace glauca), in the main areas where they
are caught in the northwest Atlantic, using a nonparametric
additive model for the blue shark counts. The blue shark data
set corresponds to 91 observed blue shark counts and the
interest is in explaining the bluesharks counts as a function
of six potentially explanatory variables using a model

log(BLUESHARKS + 1)
= a + fi(DOFY) + f>(NLIGHTST) + f3(SOAKTIME )
+ f1(AVGHKDEP ) + f5(OCEAND) + f5(TEMP)
+ log(TOTHOOKS) + €

where the covariates considered are day of the year (DOFY),
number of light stick used (NLIGHTST), soak duration
(amount of time from the midpoint of the gear setting to the
midpoint of the gear hauling, SOAKTIME), hook depth as
measured by the average of the minimum and the maximum
of the hook depth (AVGHKDEP), ocean depth (OCEAND),
surface water temperature (TEMP) and the total number of
hooks (TOTHOOKS) and the errors terms are assumed to
be independent of the covariates, homoscedastic and with
location parameter 0. Note that the total number of hooks
measures the effort and is introduced as an offset to standard-
ize the catch data as it is usual in fisheries science. Cantoni
et al. (2011), using their nonnegative garrotte spline-based
nonparametric procedure, identify the variables that can be
removed from the final model: SOAKTIME and NLIGHTST
with an importance of AVGHKDEP that is borderline. The
other variates TEMP, OCEAND and DOFY are found to have
a nonzero effect. In particular, the day of the year has a com-
plicated functional form, the ocean depth is likely a linear
effect and the surface water temperature could be well be
approximated by a cubic term. The nonparametric nonnega-
tive garrote model fitted to these data is referred as a GAM
model in the plots in Fig. 12.

We have also fitted these data with some of the procedures
already used in our simulations. GLARS and BIWEIGHT are
based on the least asymmetric Daubechies wavelets with nine
vanishing moments,with a number of bases K = 7, leading
to wavelet design matrices of size 91 x 42. The tuning param-
eters for each of the methods were chosen in the same way
as in our simulations. RBF has been applied using optimal
bandwidths for the kernel windows.

The top panel in Fig. 12 displays the estimated regression
components for each explanatory variable. As it may be seen,
NLIGHTST, SOAKTIME, and AVGHKDEP are not selected

! http://www.sefsc.noaa.gov/pop.jsp.
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by most of the methods agreeing with the findings in Can-
toni et al. (2011). NLIGHTST is selected as active by the
GRPREG procedure, and is borderline with RBF. The shape
of the estimated additive components are quite similar with
some extra curvature for OCEAND regarding BIWEIGHT
and GRPREG. The nonparametric methodologies considered
in the above analysis is therefore a welcome alternative to the
nonnegative garrote spline-based analysis performed in Can-
toni et al. (2011).

We believe, that the dataset does not contain any vertical
outliers affecting the results. To appreciate the behavior of
the above procedures in presence of vertical outliers, we arti-
ficially replaced some observations by ten vertical outlying
observations, and applied again the previous procedures to
this new dataset. The results are displayed in the bottom panel
of Fig. 12. The outliers are indicated by red circles in the plots.
Most of the methods seem to be robust to vertical outliers,
with the exception of GRPREG (which is not designed to
be robust). Note, however, the tendency of GLARS to elim-
inate the variable DOFY and to produce an estimate for the
variable OCEAND that is very oscillatory.

6 Conclusions

This paper introduces a wavelet-based method for nonpara-
metric estimation and variable selection of nonlinear additive
regression models observed on nonequispaced designs with
samples that are not power of 2, and with underlying additive
components that are of possibly inhomogeneous smooth-
ness. The estimators are based on a orthonormal periodic
wavelet basis expansions of the components and are obtained
using a two-stage penalized M-estimation framework for
high-dimensional bi-level variable selection: penalized M-
estimation with a concave £>-norm penalty achieving the
consistent variable selection at the first stage, and a post-
hard-thresholding operator to achieve the wavelet basis
coefficients sparsity at the second stage.

We provide convergence rates and optimal choices for the
tuning parameters for the algorithm implementation. The
proposed estimators offer automatic variable selection, and
are completely data driven with only a few parameters of
choice by the user (i.e. penalty A,, threshold v,, multi-
resolution index K (n) and wavelet filter). Our framework is
computationally efficient, relatively easy to implement and
is able to find a well-behaved local stationary point when a
consistent initialization such as group MCP is used. A sim-
ulation study shows satisfactory finite sample performances
of the estimators under different design settings, which is
consistent with our theoretical findings.

In terms of some of the drawbacks, we can mention that
in those design regions were the number of observed sam-
ples is small it is possible to obtain abnormally large wavelet

@ Springer

regression coefficients (estimation bias); also as a result of
the use of periodic wavelets, some problems may arise at the
boundaries of the support for each additive component func-
tion. Nonetheless, we believe that these drawbacks could be
partially avoided using the boundary correction procedures
advocated in the univariate case by Amato et al. (2020).

Supplementary Information  The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-021-10065-
z.
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