Software Quality Journal (2024) 32:125-161
https://doi.org/10.1007/s11219-023-09634-4

RESEARCH

®

Check for
updates

Systematic analysis of automated threat modelling
techniques: Comparison of open-source tools

Daniele Granata' - Massimiliano Rak'

Accepted: 19 April 2023 / Published online: 25 May 2023
© The Author(s) 2023

Abstract

Companies face increasing pressure to protect themselves and their customers from secu-
rity threats. Security by design is a proactive approach that builds security into all aspects
of a system from the ground up, rather than adding it on as an afterthought. By taking
security into account at every stage of development, organizations can create systems that
are more resistant to attacks and better able to recover from them if they do occur. One
of the most relevant practices is threat modelling, i.e. the process of identifying and ana-
lysing the security threat to an information system, application, or network. These pro-
cesses require security experts with high skills to anticipate possible issues: therefore, it is
a costly task and requires a lot of time. To face these problems, many different automated
threat modelling methodologies are emerging. This paper first carries out a systematic
literature review (SLR) aimed at both having an overview of the automated threat mod-
elling techniques used in literature and enumerating all the tools that implement these
techniques. Then, an analysis was carried out considering four open-source tools and a
comparison with our threat modelling approach using a simple, but significant case study:
an e-commerce site developed on top of WordPress.

Keywords Security - Automated threat modelling - Security assessment - Threat modelling tools

1 Introduction

In the digital age, security has become increasingly important, as more and more infor-
mation is stored electronically and more systems are connected to the internet. The mass
adoption of these systems has led to the need of ensuring security by regulations that
impose security requirements. To address security, best practices suggest the adoption of

Massimiliano Rak contributed equally to this work.

P4 Daniele Granata
daniele.granata@unicampania.it

Massimiliano Rak
massimiliano.rak @unicampania.it

Department of Engineering, University of Campania Luigi Vanvitelli, via Roma, 29,
Aversa I-81031, CE, Italy

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-023-09634-4&domain=pdf

126 Software Quality Journal (2024) 32:125-161

Papers on threat models

Fig. 1 Paper on threat model

threat modelling and risk analysis methodologies that allow the security administrator to
obtain (in a preliminary way) information on the security problems from the early stages of
the system life cycle. The choice of using threat modelling processes is also widely shared
by the scientific community and is becoming increasingly widespread. To demonstrate the
increasing proposals of threat modelling techniques, we produced a bar graph, shown in
Fig. 1, that plots the number of papers related to threat model* from 1980 to 2022. The
digital libraries used to produce it are IEEE, Springer, Scopus, and ACM. It is worth noting
that results from Springer are filtered to the articles in Computer Science, written in Eng-
lish. It shows clearly how much the scientific literature has focused on threat modelling in
recent decades.

The overall results, described in Table 1, claim that there are many different proposals
in the literature.

In particular, this paper extended the conference work (Granata et al., 2022) and aims at
providing a systematic analysis of automated threat modelling techniques and a compari-
son of open-source tools.

The main contributions of this work are (i) a literature review on automated threat mod-
elling approaches and their supporting tools; (ii) a detailed description of the supporting
tools; and (iii) a comparison carried out on a simple, but significant case study, involving a
well-known content management system (CMS) platform: WordPress

Table 1 Results threat model* Search string IEEE Scopus Springer ACM Total

Threat model 574 2204 7159 175 10,112
Threat modelling 44 1421 7144 65 8674

@ Springer

Software Quality Journal (2024) 32:125-161 127

It is worth noticing that the new contributions compared to the previous work are (i) the
systematic analysis of the threat modelling methodologies; (ii) the selection of a lot of tools
based on the criteria found in the previous analysis; and (iii) considering this selection, a
more precise analysis was made on one tool supported by OWASP: PyTM.

The remainder of the paper is organized as follows: Sect. 3 summarizes the automated
threat modelling techniques in a systematic way and also enumerates all the supporting
tools; Section 4 describes the tools that we addressed in our analysis. Section 5 compares
the tools, using the WordPress application as a basis for the comparison. Finally, Section 6
summarizes our conclusions and future work.

2 Related work

As already mentioned in the introduction section, over the years threat modelling has
undergone many changes, and numerous approaches and tools have been developed in
some surveys and research. Despite the wealth of literature, there is a need for a systematic
and comprehensive review of the state of the art in threat modelling. A thorough evaluation
of the literature would concentrate on the benefits and weaknesses of some methodolo-
gies as well as the associated tools. This review would also provide a clear overview of
the existing gaps in the literature, allowing for a more focused and targeted approach to
addressing these disparities. By taking a systematic and comprehensive approach to the
existing literature, it will be possible to gain a better understanding of the current state of
the art in threat modelling, and to identify areas for future research and development.

Existing surveys focus on methodologies and techniques aimed at modelling a software
system and automatically deriving the threats and attacks. Some authors focused on ana-
lysing the most common techniques and the related and open-source tools. Hussain et al.
(2014) focus on several threat modelling techniques, such as STRIDE, attack-tree, and
CORAS, and related tools like Microsoft threat modelling and the CORAS tool. This work
highlights the need for using formal modelling techniques and formal methods to verify the
requirements. Even if they analysed both threat modelling techniques and the implementa-
tions, the analysis is not systematic since they focused on the most common models and
tools. A similar study is conducted by Bernsmed et al. (2021) that conducted research on
the usability of threat modelling techniques in industrial and academic contexts by focus-
ing only on the most used modelling technique (i.e. data flow diagram) and using STRIDE
classification and threat modelling automation. All the application scenarios have some dif-
ficulties in implementing threat modelling concepts in practice and suggest focusing on
attacks using some automation techniques.

Some other authors instead took threat modelling techniques into account by applying
them only in a specific context. As an example, Nweke and Wolthusen (2020) focus on
asset-centric threat modelling techniques that aim to protect system components by pro-
ducing threat models. They analyse techniques such as DREAD, Trike, and OCTAVE and
their strengths and limitations. The authors also suggest that formal methods can improve
the automation of threat modelling and security assessment processes. A specific study
that takes into account the IoT domain was conducted by Mahak and Singh (2021) that
analysed the existing threat modelling methodologies aimed at assessing all the threats an
IoT infrastructure is affected by and evaluating the related risks through some risk analysis
procedures. Omotunde and Ibrahim (2015) explain how threats are modelled in the design
phase and present research activities that use techniques such as attack-specific modelling

@ Springer

128 Software Quality Journal (2024) 32:125-161

techniques and misuse case analysis. They suggest integrating threat modelling practices
with these techniques. All the relevant surveys were applied to specific contexts, but the
most complete study was conducted by Tatam et al. (2021). Their study discusses the limi-
tations, strengths, and gaps in threat modelling processes for advanced persistent threats
(APTs). The authors present a taxonomy of threat modelling approaches, including asset-
centric, threat-centric, data-centric, and system-centric. They analyse each technique and
suggest a hybrid approach that considers both threat modelling activities and operational
models based on attack patterns. Despite the completeness of the taxonomy they propose,
the authors have not focused on the tools that implement the methodologies described.

A few different works were carried out on the most common tools related to the existing
methodologies.

Shi et al. (2021) provide an overview of threat modelling tools, dividing them into those
based on diagrams, text-based models, and others, but they focus only on the most com-
monly used.

Unlike the latter, Tan and Garg’s (Tan and Garg) research study focuses on open-source
tools that are recently committed, applicable to different domains, and have a machine-readable
model. They label each tool with features such as complexity of logic, amenability of custom
threats, operational usability, security functionality, and extensible for privacy, and assign a
score for each feature to determine the most useful tool. To the best of the authors’ knowledge,
there has been no complete threat modelling analysis carried out that provides a precise descrip-
tion of how threat modelling works are selected.

Despite the surveys in the literature regarding threat modelling techniques, as far as we
know, the literature lacks a systematic study that takes into account both the threat model-
ling techniques and the tools that implement these techniques. For this reason, the proposed
work aims to systematically produce an updated review of these techniques in different
domains and to show the applicability across the use of some tools.

3 Systematic literature review

Automated threat modelling approaches have become widespread. In order to have a com-
plete literature overview of the automated approaches used to model the systems and obtain
all the possible threats it is affected by, we applied for a systematic literature review (SLR).
The technique used, explained in Subsection 3.1, aims to answer some research questions
synthetically, as many works have been carried out on this line of research in very different
ways.

3.1 Methodology

The systematic literature review has been conducted using the method proposed by Kitchenham
et al. (2009). According to the authors, the review process is divided into three parts: Planning,
Conducting, and Reporting (as shown in Fig. 2).

The Planning phase consists of developing a protocol used for searching articles from
the sources, including and excluding papers from the overall results to answer some
research questions. In the Conducting phase, we apply the rules developed in the protocol
to obtain the list of the accepted papers suitable for answering research questions previ-
ously developed. The Reporting phase involves writing up the results of the review and cir-
culating the results to potentially interested parties. The aim of conducting an SLR is both

@ Springer

Software Quality Journal (2024) 32:125-161 129

Planning |:> Conducting |:> Reporting

Fig.2 Three-step SLR methodology

having a complete overview of the automated threat modelling approaches and enumerat-
ing the tools used to support the processes. We used the tool StArt, developed by LaPES
(Fabbri et al. 2016), in order to support the systematic literature review. The tool was used
only for supporting us to obtain the data of the paper, avoid duplicated papers that may be
included in different digital libraries and collect data in order to produce charts. In the next
subsections, we will show in detail the protocol used to perform the SLR and the results
from the execution phase.

3.2 Planning

The first step of each SLR is the individuation of the need for the review. The aim of the
article is to understand how widespread are automation techniques and which methodolo-
gies and tools are used. In order to have an exhaustive overview of these techniques, we
formulate two different research questions:

RQ1: Which methodologies are used to produce a threat model automatically?
RQ2: Which open-source tools are used to support the automated threat modelling
methodologies?

To answer these questions, we used a keyword-based approach to select the papers from
which to obtain the data. The review keywords we choose are Systematic threat model*,
Automated threat model*, Tool for threat model*, and tool supporting threat model*.
The sources we choose as search engines are the most common ones: IEEE, Scopus,
Springer, and ACM. Before searching papers from the sources, we applied a preliminary
analysis in order to choose the right query and avoid not-relevant results.

We firstly present three different search approaches, shown in Table 2. Each search query
has been performed on each source considering the abstract, the title, and the related key-
words. It is important to take into account that all the results are from 2012 until now and, as
for Table 1, Springer results are only articles in Computer Science written in English.

As shown by the high numbers, the first search approach is too generic since it can
contain some non-relevant articles. The second approach instead contains some strict
constraints on the query string (e.g. if it contains an “Automated Threat Model”), and we
obtained few results; therefore, we discarded it. The third approach gives a reasonable
number of papers that could be relevant to answer our research questions. For this reason,
we used the third query as input to conduct the SLR. Chosen the search query, we also
needed eligibility criteria to select the relevant works. The inclusion and exclusion criteria
choice depends on the aim of the systematic literature review: having an overview of the
automated threat modelling approaches used in literature and the existing supporting tools.
For this reason, we accepted all the papers that:

e Describes a fully or partially automated threat modelling methodology;
e Presents a supporting tool aimed at automating threat modelling approaches.

@ Springer

Software Quality Journal (2024) 32:125-161

130

(+[9PON ANV 1eaIY[,

99% vl 601 69¢ YL (Suntoddns) ANV [00L) YO («[PPOIA 1LY L, ANV INEWISAS) YO (+[9POIA 1BSIYL ANV Porewoiny) €
(x[9POJA J8RIY T, 10J [00])

LT 4 € 81 ¥ MO (x[9poA a1y L, Suntoddns [001) YO («x[PPOIAl 1eIYL, ONEWISAS) YO ([POIN Je1Y], PIeWOINY) 4
(+I9POIN ANV 1821y L

LLOOT 9 €809 1+8¢C 6801 ANV [00L) O (+[PPOIN ANV JeaIy [, ANY d1ewalsAS) YO (x[OPON ANV 1B, ANV Parewoiny) I

e WDV Jurxdg sndod§ AAAL yoroadde yoaeag ‘wny

sayoeordde yoreas JUAIYIJ T 3|qel

pringer

Qs

Software Quality Journal (2024) 32:125-161 131

The inclusion criteria are built considering both RQ1 and RQ2. We consider as automated
threat modelling a process that does not require human effort to evaluate the system secu-
rity (previously modelled). A methodology can also be partially automated when a few
tasks are performed manually, but the effort is still minimum compared to the whole pro-
cess. The exclusion criteria instead are the following:

The paper is not about a new threat modelling methodology;
Threat modelling is performed to a specific field;

The process is carried out manually;

The paper is not downloadable;

The language is not English.

Once the papers have been selected using the inclusion/exclusion criteria, some data can
be extracted to answer the research questions. According to our protocol, we collected dif-
ferent data from each paper: (i) the technique used to model the architecture, (ii) the threat
classification method used, (iii) the way their methodology and supporting tool select the
threats from the model, and (iv) the supporting tool they provide. Using all these extraction
fields defined in the protocol, we expect to have a complete overview of automated threat
modelling and the related tool.

3.3 Conducting

The second phase of a systematic literature review is the identification and selection of rel-
evant papers (i.e. the ones that meet the criteria described in the protocol) and the extraction
of the relevant data (i.e. according to the data extraction fields provided in the protocol). We
performed the third query described in Table 2 in all the selected sources. From the search,
we obtained 465 papers as a result. As shown from the pie chart in Fig. 3, the most selected
papers are from Scopus library (58%, 269 papers), followed by Springer (23%, 109 papers),
IEEE (16%, 73 papers), and ACM with only 3% (14 papers).

The first step to being carried out when conducting an SLR is to apply the eligibility cri-
teria by reading only the abstracts. Our approach relies on the easy to use of StArt tool that
automatically takes the Bibtex files (automatically downloaded from each source engine)
as input and then lists all the papers in an interactive view to obtain easily all the informa-
tion needed (abstract, keywords, journal, etc.). Applying the inclusion and exclusion cri-
teria to the abstracts, we reduced the number of papers from 465 to 115. StArt tool was
useful to automatically remove the 103 duplicated papers coming from different sources, as
shown in Fig. 4.

Once the number of papers has been reduced by the reading of the abstracts, a deeper
analysis has to be performed by carefully reading the accepted papers. Considering the
same criteria used in the previous phase, but applied to the overall paper, only 55 papers
met the inclusion criteria and have been used to extract the data. On the other hand, 9
papers have been classified as Duplicated (StArt was not able to recognize them) and 51
have been rejected as out of the SLR scope. Analysing the inclusion criteria from Fig. Sa, it
is worth noting that most of them presented a new threat modelling methodology, but not a
supporting tool.

Similarly, a bar chart has been produced by the StArt tool for all the rejected papers in
Fig. 5b. Most papers did not present threat modelling techniques but were still about security

@ Springer

132 Software Quality Journal (2024) 32:125-161

Fig.3 Sources chart SO U RC ES

ACM

3%
Springer ’ IEEE
23%

Scopus
58%

assessment procedures. Other works were not generically applicable but concerned a spe-
cific area. Few works instead were not available to download'.

3.4 Results

Data have been extracted from the paper performing the SLR. We divided all the data into
4 groups taking into account the data field described in the SLR protocol: (I) modelling
data, (ii) threat classification data, (iii) threat selection approaches, and (iv) tools. As high-
lighted from Table 3, most of the approaches used to automate threat modelling rely on
data flow diagram (DFD) modelling technique.

A data flow diagram is a model, introduced by DeMarco (1979), that describes a system
as a set of specific components, and the data flows from/to its components. Each compo-
nent of the system can be modelled as a generic function, a database and external agents,
while a data flow is represented as an arch. Because of its simplicity, some authors (Haitao
et al., 2022; Frydman et al., 2014; Mani & Venkat, 2017; Von Der Assen et al., 2022; Sion
et al., 2021; Martins et al., 2015) have extended the model with further component types
useful to obtain security features. As a result of the SLR, the most widespread models are
based on graphs (e.g. DFD). Several works used their own graph-based model to describe

! All the papers have been downloaded using Universita della Campania Luigi Vanvitelli Institutional Sign In.

@ Springer

Software Quality Journal (2024) 32:125-161 133

Fig.4 Selection result chart Stat u S

B Accepted M Rejected ™ Duplicated

the components (i.e. nodes) and the relationships between them (i.e. arcs). A recurring
model resulting from the SLR is the MACM (multi-purpose application composition
model), described in detail by the authors (Salzillo et al., 2020; Rak et al., 2019; Casola
et al., 2019; Rak et al., 2020; Granata et al., 2021; Ficco et al., 2021; Rak et al., 2022).
While graph-based models are highly expressive and very intuitive, some authors prefer to
use the unified modelling language (UML) standard (Rumbaugh et al., 2004) to describe
the system. The authors extended some UML diagrams to describe security requirements
and automatically derive security issues. Anyway, the modelling phase is the first step of
a security assessment process and depends on its scope. For this reason, some authors rely
on specific own models to describe the software system (Messe et al., 2020; Chen, 2018;
Schaad & Borozdin, 2012; Dominic et al., 2016; Ding et al., 2017; Monteuuis et al., 2018),
while some of them are only interested in their assets (i.e. valuable items owned by
the company) (Althar et al., 2022; Valenza et al., 2022; Schlegel et al., 2015; Hasan &
Hasan, 2021; Haji et al., 2019; Ansari et al., 2019; Ivanova & Ivanenko, 2022). Once the
model of a system is provided, an automated (or semi-automated) threat modelling tech-
nique can derive threats from it without much additional effort. Most of the threat model-
ling techniques in the literature are based on a specific threat classification. As shown in
Table 4, the most common threat classification technique is STRIDE (Ansari et al., 2019).
Since the threats are very heterogeneous, a complete threat model is difficult to generate.

@ Springer

134 Software Quality Journal (2024) 32:125-161

Accepted papers per criteria Rejected papers per criteria

Frequency
w
&
Frequency

10
H
0

W Proposes an automatic/semi-automatic threat modelling approach

W Proposes a tool supporting the threat modelling approach

d ly
Itis not generic, but for a specific domain

(a) Accepted Papers (b) Rejected Papers

Fig.5 Inclusion and exclusion criteria

To face this problem, all the threats can be described in classes: Spoofing, Tampering, Rep-
utation, Information Disclosure, Denial of Services, and Elevation of Privileges.

In literature, there are several extensions (Chen, 2018; Monteuuis et al., 2018;
Chen, 2019; Vallant et al., 2021) of STRIDE classification (e.g. considering Privacy
and a different threat class). Similar threat classification is provided from the LIND-
DUN methodology (LINDDUN, LINDDUN). According to the LINDDUN knowledge
base, there are 7 threat categories encapsulated in the LINDDUN acronym: Linkability,
Identifiability, Non-repudiation, Detectability, Disclosure of information, Unawareness,
Non-compliance. Some authors (Wuyts, 2020; Sion et al., 2018; Wuyts et al., 2018)
associated their own threats to LINDDUN classes and used the LINDDUN knowledge
base as input to the threat modelling process. STRIDE and LINDDUN are related to
the malicious behaviours the threat can implement, another approach is to consider
the security requirements the threat can compromise in terms of CIA: Confidential-
ity, Integrity, and Availability. Similarly, considering Privacy as a compromise-able
requirement, some extensions considering CIAP have been considered. STRIDE and
LUNDDUN classify each threat expressed by a high-level malicious behaviours. Few
works instead use Attack patterns classification to perform threat modelling. According
to CAPEC, Attack Patterns are descriptions of the common attributes and approaches
employed by adversaries to exploit known weaknesses in cyber-enabled capabilities..
These approaches (Messe et al., 2020; Alwaheidi & Islam, 2022) rely on CAPEC knowl-
edge base and their attack-pattern classification, therefore they are more attack-specific
compared with STRIDE and LINDDUN. As a result of classifications in the literature,
some more elaborate techniques make use of first-order logic (Althar et al., 2022) (i.e.
Prolog rules), or data structures such as threat-trees (Moreira et al., 2016; Radoglou-
Grammatikis et al., 2022), threat paths (Ramazanzadeh et al., 2022), and threat matrix
(Ivanova & Ivanenko, 2022).

Based on well-defined models and threat classification, there are much different threat
modelling techniques that enable enumerating all the threats the system is affected by. A
full report of all threat selection approaches is shown in Table 5. It is worth noting that
some articles can use a combination of the selection approaches taking into account differ-
ent points of view.

As in evidence, most approaches (especially the ones based on graph models) select all the
threats from their threat catalogue using some labels. Labels are some words that describe the

@ Springer

135

Software Quality Journal (2024) 32:125-161

(2207) ‘T 12 yopezueZERWERY sanbruyod)

S “(0202) 19SI9H pue Z1Ip ‘(6107) T8 10 dweyyees ‘(6107) ‘T 10 JopueaT ‘(7z02) "Ik 12 Spnewweln-no[sopey Jourw Jayjo/passardxa A[fewio) JoN

4 (1202) T8 32 1wel ‘(6107) uesey pue anboy Suruosurerq srodofeasq

€ (8107) seSeeN “(810C) IABPEH PUE I[EUIZ (910T) '[E 12 BIRION Paseq-TINN
(2T07) oxuaueA] pue eAOUBAL “(610T)

L Te1 uesuy {(610¢) Te 10 feH ‘(170¢) ueseH pue ueseH ‘(S10T) Te 10 [982YdS “(ZT0T) ‘Te 10 BZUR[EA “(TTOT) T8 10 ey sjesse/sjuauoduiod Jo 1sT]
(8102)

9 Te30 smnAuoN (L10T) 'Te 3@ Sur “(9107) e 30 duruo((Z10g) upzoiog pue peeyds “(8107) UdYD “(070T) T& 12 3SSIN [9pOW SIMONIYOIE UMO

14 (1207) "Te 30 oyuayoesoy ‘(6107) Aduo3| pue souedn(ays “(£107) T& 32 PUBIA “(9107) SIIIM PUe JLIeqnuiy poseq-yders umQ
(2T207) "Te 10 vrRURID (TTOT) T8 10 ey

8 “(1207) "Te 32 0991 “(170T) 'T& 12 BIeueID “(0Z0T) Te 12 ey “(6107) Te 12 e[oseD “(6107) T8 32 ey ‘(020T) T8 12 o[[iZ[eS IWOVIN
(S100) 'Te 10 suney

9 “(1207) Te 32 UOTS “(ZTTOT) T8 19 USSSY 19T UOA “(LT0T) JBYUSA Pue A (+107) T 1 UewpAL] “(7Z0T) ‘e 10 oeleH papuaIxe 04
(2T00) T8 10 umoig “(¢z0T) We[s] pue IpLyem[y
‘(T20T) 'Te 32 poowyeIAl ‘(1Z0T) ‘e 32 UE.[[BA “(6107) USyD “(8107) T& 12 SIAnM “(170T) ‘Te 10 ISV “(1207) ‘T 30 e[ose)

#1“(0T0T) '[e 12 SIRIUR(“(810T) T8 0 UOTS “(TTOT) ‘& 19 IPAALIDA “(0TOT) SIANM “(LT0T) Te 30 ueyy| “(Zz0T) '[& 10 elowgnqy (@AQ) weiserp moy ere(

‘wnN s1adeg PPOIN

QInjeIoN] ur pasn anbruyoad) SUI[OPOIN € 3|qel

pringer

As

Software Quality Journal (2024) 32:125-161

136

€ (1202) "Te 30 oxuaydesoy] “(+107) Te 19 uewpA1 (S107) Te 10 [959[Y0S QUON
14 (£107) 'Te 30 PUBIOIA “(810T) IABPEH pUE I[eutay ‘([Z0T) ‘Te 32 UOIS (910T) SIIIA Pue ureqnuiy o3en3ue] umQ
1 ANNONV OYUSUBAT pue BAOUBAT X1jew jealyJ,
1 ANNONV .ﬁ.m. i) LDHENCNNNE&M mnu.mm umuhﬂrﬁ
(4 (2207) 'Te 10 sDNeuueIn-no[Sopey (9107) 'Te 19 BIRION Qa1 Jeary [,
I (TT00) 'Te 10 TRy sa[nI-30[01d
T (2T07) wesy pue proyem[y ‘(070g) ‘e 19 9sso DddVD
€ (8107) 'Te 30 s1AnM “(8107) “[B 12 UOIS “(0TOT) SIAnm NNAAaNIT
(610T) Asuoy] pue Aouednfays ‘(6107)
uesey pue anboH ‘(0Z07) [9SIH PUE ZMIM “(0T0T) 'Te 30 SIRIUR(“(1207) Te 39 BloseD (2z0T) ‘T8 1 WV (2z07) T8 10
€1 ey ‘(1207) 'Te 10 09914 “(120T) ‘Te 10 ereurtn (0z0T) ‘Te 32 ey (6107) ‘Te 12 B[oseD “(610T) 'Te 12 ey “(0T0T) '[e 19 O[[iZ[eS UOISURIXA pue Y[
14 (1202) 'Te 30 JUE[[eA “(610T) YD “(8107) 'T& 30 SINIUOIA “(8107) UaYyD AAIYLS PopuaIxy
(2202) "Te 10 umolg “(zz0z) ‘Te 12 poowyel ‘(6107) ' 12 Lesuy
‘(6102) Te 30 HeH “(8107) SeSeeN ‘(L107) JeUSA pUe BN “(9T07) 'T& 30 drurwo((S10g) ZSnuef pue IYOUI0Y “(Z107)
urpzolog pue peeyds ‘(170¢) UeseHq pue ueseH ‘(6107) e 12 Jopuea ‘(170¢) ‘Te 12 ISV “(1202) & 19 B[ose) (070¢)
Te 3 stpIuR (6107) Te 10 dwespees “($107) T8 10 SUNIRIA “(T207) T8 19 IPASIIOA “(2707) ‘T8 10 udssy 10 UOA (L107)
“Te 30 ueyy] “(7z07) ‘Te 10 erewdgnqy (107) Te 2 [rwer ‘(zz0g) Te 3o owreH (610¢) ueseH pue anboH (zz07) Te 10 ey
0¢ “(1702T) "Te 32 0991 “(1707) 'Te 30 ejeueID “(070T) T8 10 By “(6107) T8 10 e[oseD ‘(6107) 'Te 32 ey ‘(0T0T) ‘Te 32 o[[iZ[es HATYLS
‘wnN s1adeg UOTN)BIIJISSB[D JedIY [,

QINJBIS)I] UT PAsn UOTIEOYISSE[O JBAIY], { d|qel

pringer

Qs

137

Software Quality Journal (2024) 32:125-161

(8107) 1ABPEH pUE I[EUIZ “(6107) '[& 10 durexyjees

9 “(610¢) uesey pue onboH ‘(zg07) ‘[10 shnewueIn-nojsopey ‘(S10g) ‘e 12 [989[YdS (9107) SIIIAM Pue Yureqnuiy pauyap-jou 10 A[[enuejy
14 (2T07) welsy pue proyemly (7z07) Te 19 yapezuezewey (gz0g) Te 19 ovleH (TZOT) T8 19 UISSY I UOA sonbruyoa) Joutw 10410
4 (6102) I8 12 1IBsuy “(9107) ‘Te 32 oo s1ojowered orrouag Sursn
4 (6100) T8 2 feH “(8107) Te 10 s1Anp ongo[eIed 9om Jeary],
e (8102) 'T& 1@ S1Anp\ “(Z107) urpzolog pue peeyos sa1reuuonsanb Jursn
e (0207) 19S1oH pue Z1IA “(9107) T8 19 BIIQIOIA sjuowaInbar [apow uo paseg
S (2T07) "Te 30 ezUATEA “(0TOT) T8 32 SN “(+107) ‘e 30 UewpAL] “(3107) TABPEH pue I[eutay ‘(1Z07) e 30 uolg poseq-oqny/surened yeary[,
14 (2T0?) T8 32 JBY “(TTOT) OYUSUBA] PUE BAOUBAT ‘(+10T) 'T& 30 PUBIRIA (TTOT) ‘T8 12 IpAa1Iop so[nr uonegedorq
(2207 "Te 30 poowryeN ‘(7g0T) 'Te 12 eyeueIn (zg0e) ‘T8 32 ey (170T) 'Te 12 Jue[[eA (6107) Aeuoy pue souednfoys
1T “(L100) Te 10 Sui((810T) IABPEH PUE I[EUIdZ ‘(170T) ‘T8 12 JISV (0T0T) ‘e 10 SIPIUR((8107) UayD (8107) ‘[10 uols paseq-sdiysuone[oy
€ (6107) UaYD “(810T) 'T& 32 SINAUOI “(0Z0T) SIANM (810T) '[€ 32 UOTS add-o-NNAANIT/adrdLs
(8107) seSeeN ‘(L10T) 1euaA pue
L ey ‘(1¢0g) uesey pue ueseq ‘(6107) Te 12 1opued] “(0g0g) T I° statued “(L107) T8 32 ueyy] (Zz0g) ‘e 19 elowgnqy Poseq-AAIALS
(2T0?) T8 10 ereueIn “(L107) Te 12 Suld ‘(+107)
T2 30 PUB[O “(S10T) ZShUB[PUB DYOAUIOY “($107) Te 10 uewpA1q ‘(Z10T) Urpzoiog pue peeyds ‘(1Z0T) ¢ 10 B[ose)
(8102) U_YD “(STOT) T8 19 SUBIRI “(ZTOT) ‘Te 30 eIy “(L107) Te 30 ueyy] (1707) T 30 [Twef ((7z07) Te 12 ey
61 “(1207) 'Te 12 09914 “(120T) ‘Te 10 ereuel) (0z0T) Te 32 ey (6107) T8 12 B[oseD “(6107) Te 12 Y&y “(0T0T) T8 1@ O[[1Z[es poseq-[oqe]
‘wnN s1aded uord33s JedIY |,

QINJEISN] U Pasn sanbruyod) UoTo[as 1eaIy], § d|qel

pringer

As

138 Software Quality Journal (2024) 32:125-161

behaviours of a component. Each component can be associated with one or more labels. Lev-
eraging this relationship, the literature approaches automatically lists all the threat for each
component. A common and simple approach consists of using STRIDE classes. The model
is decomposed and the STRIDE threats are analysed component-per-component. The over-
all threat model is a report for each STRIDE class. Despite the simplicity of this approach,
some authors prefer a more detailed approach. Some techniques still rely on STRIDE (or
LINDDUN), but they mapped each class to the component typology described in the model
(e.g. DFD element type). This is useful to automatically derive STRIDE threat for each
component. The used approach is fully automated, but is not detailed (e.g. threats belong-
ing to the same class can be several). Microsoft proposes a methodology implemented by
their tool (Microsoft, 2018) that automatically derives threats from the relationships between
the components. They take into account the relationship type between two components and
also their typology (e.g. a threat can be due to the communication between a web applica-
tion and a database). Several works (Sion et al., 2018; Chen, 2018; Danielis et al., 2020; Asif
et al, 2021; Zeinali & Hadavi, 2018; Ding et al., 2017; Shelupanov & Konev, 2019; Vallant
et al., 2021; Mahmood et al., 2022) based their approach on the one proposed by Micro-
soft (using also their tool). Other authors, instead consider the relationship as an additional
threat source depending on the protocol used (Rak et al., 2022; Granata et al., 2022). Simi-
lar to their approaches, some authors (Verreydt et al., 2022; Meland et al., 2014; Ivanova &
Ivanenko, 2022; Rak et al., 2022) claim that relationships and components are not the only
threat source. According to them, some threats can be added to the overall threat model con-
sidering some Propagation rules (e.g. a threat can compromise a component, but also the
services used by it). Unlike these simple approaches, there are more complex threat selec-
tion criteria based on pattern recognition in the graph or specific rules mapped with threats
(Sion et al., 2021; Zeinali & Hadavi, 2018; Frydman et al., 2014; Messe et al., 2020; Valenza
et al., 2022). Threat modelling approaches aim also at ensuring security requirements in the
system. Few authors proposed their methodology based on model requirements (Moreira
et al., 2016; Wirtz and Heisel, 2020). As a result of SLR, we also analysed some less wide-
spread techniques using questionnaires (Schaad & Borozdin, 2012; Wuyts et al., 2018), threat
tree (Wuyts et al., 2018; Haji et al., 2019), and generic parameters (Dominic et al., 2016;
Ansari et al. (2019). Some of them instead used OWASP ASVS (Von Der Assen et al., 2022),
Petri-nets (Ramazanzadeh et al., 2022), weaknesses from CWE database (Alwaheidi &
Islam, 2022), and attack-paths (Haitao et al., 2022).

3.4.1 Tools

Once we analysed all the methodologies, we provide an enumeration of the tools used to
implement them. The most commonly used for automating threat modelling is Microsoft
threat modelling (Microsoft, 2018) used in 8 papers from the SLR. A research line carried
out by Granata et al. (2022) used instead sla-generator to perform threat modelling and even
risk analysis. Another supported tool is Threat Dragon provided by OWASP (Bhattacha-
rya, 2020). Some others’ tool are SPARTA (Sion et al., 2018) from KU Leuven, CoreTM
(Von Der Assen et al., 2022), TAMELESS (Valenza et al., 2022), MetaGME (Martins
et al., 2015), TAM tool (Schaad & Borozdin, 2012), AutSEC (Frydman et al., 2014), and
STS-tool (Meland et al., 2014). The SLR results reported 9 threat modelling tools, and we
enriched this list through a specific research by adding further tools such as CAIRIS (Faily,
2018), Threats Manager Studio (Curzi, 2020), Threatspec (Fraser Scott & Smotrakov, 2019),
PyTM (pyTM, 2019), and Threagile (Threat Agile, 2020). It is worth noticing that in this

@ Springer

Software Quality Journal (2024) 32:125-161 139

work, the enumeration of the tools is not complete, but it both derives from the SLR and is
carried out manually. This is why our focus regards the threat modelling techniques each tool
relies on and the tool is needful only to validate them.

Considering all these tools aimed at performing automatic threat modelling, we decided
to analyse the open-source ones that do not require any manual task to select the threats
and focus on web application Domain. Accordingly, a full analysis of the tools that meet
these requirements is shown in Table 6. For each tool selected from both the SLR and
the manual extension, the analysis provides the modelling techniques. The modelling field
describes two different parameters: (i) how the model is created by the user (i.e. graph-
ically or by coding) and (ii) the modelling technique (e.g. Threatspec generates a DFD
graph using the code provided as an input, instead OWASP Threat Dragon uses directly a
DFD model as an input).

The domain field is a list of all the areas in which the tools have been applied accord-
ing to the SLR or the documentation page. It is worth noting that taking into account the
application domains is useful to choose the appropriate tool for the threat modelling scope.
In addition to the threat modelling process, some tools were analysed to provide a risk
analysis process aimed at offering a rough evaluation of the risk (i.e. the probability that
a threat would occur). Among all the selected tools, sla-generator, SPARTA, and Threat-
agile support risk analysis and (in some cases) suggest the appropriate countermeasures
to reduce the risk. The threat selection methodology column describes how each tool can
use one or more approaches (described as a result of the SLR in Table 5) to select the
threats compromising each asset. As an example, Microsoft tool selection methodology is
based on the DFD relationships and, accordingly, associates each threat to a triple: Point-
ingNode, arch, PointedNode. Sla-generator, instead, has three different ways to select the
threats: (i) based on the component labels (i.e. specific parameters provided in the model-
ling phase), (ii) considering both the protocols used in each relationship and the role in the
communication (e.g. if an asset is a client or a server), and (iii) extending the analysis to
the threats that affect a component and can compromise also the neighboards.

4 Threat modelling tools

As already outlined, security experts are costly and human-driven threat modelling is
costly both in terms of money and time. As a result of SLR, there are now a few tools
that aim at offering support to experts in threat modelling, simplifying the work, requiring
less experienced experts (most of the threats are catalogued), and offering solutions that
produce the models in limited time. According to our analysis made in Section 3, most of
the threat modelling tools use graph-based approaches to model the system. Therefore, this
section provides a detailed analysis of the tools that rely on a graph-based model or can
generate it, created by the user: Microsoft threat modelling tool, which is probably the most
largely adopted one, the OWASP Threat Dragon and PyTM, supported by the OWASP
consortium, and the SLA-generator tool, developed in the H2020 MUSA European project.
SPARTA is also a promising tool, but it has not been selected for the following analysis
because, using the catalogue offered by the official documentation, the tool provides threats
using a stride-based approach: each STRIDE category is associated with the components
of the DFD and to their relationships. This technique is not (yet) compatible with the analy-
sis (i.e. it cannot be compared to the Microsoft and OWASP ones). In the following, we
briefly outline the threat modelling approaches they support.

@ Springer

Software Quality Journal (2024) 32:125-161

140

Ppaseq-sisjoueIeq
Poseq-[aqe]
SUOT)BJOUUER IPO))
paseq-uonesedoig
Ppaseq-a[ny
paseq-diysuoneoy
peseq A4d-0:-4AIILS
paseq-diysuorne[oy
Poseq-[oqe]

paseq-diysuoneoy
paseq uonededoid
paseq-diysuoneoy

poseq-[oqer]

X

/

pap1aoad 10N
dde qopm
pap1aoad 10N

SWISAS [BITUYDI)-0I00S JUSWATRUBW OLJRI) Iy
sdde qopm
sdde qopm

aAowoINy

‘swa)sAs A31oug yrews ‘sdde qap 93pH ‘swIsAs
Surnmjoenuew jrews ‘SwsAs [eorsAyd-19g4D

QM ‘DS Pno[D “98pH ‘101

Ad PIpUAX? :3p0))

weiderp 9ouanbas pue @i :9poD
add epop

[opow paseq-ydess umo :Ajeorydern
adq :Aqeswydesn

adq :Areorydesn

d4d umo :A[eoydern

INOVIA :A[resrydern

onde-jeany],
WLAd

oads-jearyy,
[003-S1S

VI1dvdS

uoSe1(JeaT L, dSVAMO

1JOSOIOTA

JIojeIduag-e[s

A3o[opoyjaur UOI)IIAS JLAIY],

sIsA[eue ysnyy

urewo(y

Surppoy

[ooL

saInjeay s[oo], 9 3|qel

pringer

Qs

Software Quality Journal (2024) 32:125-161 141

4.1 Microsoft threat modelling tool

The Microsoft threat modelling tool we tested was released in September 2018 (Microsoft, 2018).
It aims at reducing threat modelling times, generating the threats to which a system is subjected
automatically, relying on a model of the system. The system under analysis (SuA) is modelled by
the user through a graph-based model. The user has the possibility to choose various stencils to be
included in the application. Each node of the graph represents an application service, while each
edge indicates a generic data flow (i.e. request or response). The Microsoft modelling technique
requires that each node is characterized by two labels: component type and component value. The
first one describes the type of the component while the second provides further functional infor-
mation. Most of the pairs (componenttype, componentvalue) are shown in Table 7. For instance,
a node can represent a generic database, so it can be modelled as a generic data store type and
database value. The table does not represent all possible values for brevity’s sake.

Once the application is modelled, the tool generates a threat report automatically.
Threats are associated with each interaction between components. Each threat is selected
from a proprietary catalogue taking into account the type of components involved in the
interaction and the type of interaction. For example, requests made by a web application
toward a storage service can generate the SQL Injection threat. In addition to provid-
ing threats associated with system assets, the tool suggests possible mitigations selected
from a proprietary Microsoft database.

4.2 OWASP threat dragon

Threat Dragon is a free, open-source, cross-platform threat modelling application based on dia-
gram models and rule engines to auto-generate threats and mitigations (Bhattacharya, 2020). It
supports STRIDE (Ansari et al., 2019) classification and CIA. The tool was presented during
the OWASP Open Security Summit in June 2020 by OWASP Lab Project and it is available
as open-source code in Goodwin (Goodwin). The tool requires the application to be modelled
through a graph-based model in which the nodes represent the components, while the edges

Table 7 Example values related

Component type Component value
to each component type P P P

Generic data store Azure Cosmos DB
Azure Key Vault
Azure Redis Cache
Database
Cache
Generic external interactor Browser
Dynamics CRM Mobile Client
IoT Device
Generic process Azure AD
Azure ML
Host
Web Application
IoT Cloud Gateway

@ Springer

142 Software Quality Journal (2024) 32:125-161

Table 8 Parameters related to

Component type Parameters

each component type P P
Actor Provide authentication
Process Handle card payment

Is a web application

Handles goods and services
Store Is alog

Stores credentials

Stores inventory

Is encrypted

Is signed
Data flow Protocol

Is encrypted

Is over a public network

define the transfer of data between them. Each node can be (i) a generic running process, (ii)
an actor, or (iii) a component that stores the data. Each element (node or edge) is character-
ized by a set of attributes that can be used to identify its security problems. All the parameters
related to each element of the graph are described in Table 8.

The pair (componentType, associatedParameters) is used to obtain the threats asso-
ciated with the component/flow (i.e. asset) of the diagram. For example, a store that
has is encrypted as a parameter may be subject to the vulnerable encryption algorithm
threat that could lead a malicious user to obtain data out of the application. The threats
are obtained from the related catalogue (OWASP, OWASP) in a fully automatic way.
The user can also define some custom threats and associate them with each element of
the application. For each pair (asset, threat), the tool asks the user for the threat status
(open or mitigated) field and a priority level (low, medium, high) and then suggest a list
of possible mitigations.

4.3 SLA-generator

The SLA-generator threat modelling technique (Granata & Rak, 2021; Rak et al., 2022)
relies on MACM, an expressive model that describes WHAT to assess and test. The MACM
is a graph-based modelling technique in which each graph node represents a component of
the system, and each edge characterizes the existing connection between two different com-
ponents. MACM offers a simple way to synthesize an application architecture, focusing on
its main components and relationships, enabling the security evaluation automation of the
assessed systems. Nodes have a primary label, which identifies the asset class and may
have a secondary label, which further specifies the primary class. Moreover, each node has
a set of properties that better describe more specific aspects. A mandatory property is the
asset type, which specifies the functional behaviour of the asset represented by the node.
The allowed asset types for a node depend on the labels. Labels and supported asset types
are listed and described in Table 9.

The possible relationships between the nodes are uses, hosts, provides, and con-
nects and are described extensively in some works, cited above. In order to manage the
MACM model, the tool represents them in a graph database, namely Neo4j. The MACM

@ Springer

143

Software Quality Journal (2024) 32:125-161

NALOI'MH ‘ORI MH

aremprey sunsoy [edrskyd v ‘AN'MH Dd'MH 19A1S' MH MH
S9I30[0UYD9) POAJOAUT 9y} UO Furpuddop SIQJIP S19SSe Y} ‘JI0MIU BAIR [BUOId] 20g 317" IOMION ‘G Td I0MION NVd YLOMIIN
SOIS0[0UT0) PIAJOAUT) U0 Furpuadop SIOIP S19SSE Y} YI0MIIN PAIIA YIOMION ‘THIA IOMION NV YLOMIDN
JouIaIu] oY) AJ[edrdAl “yIomiou BaIe opIm Jourau] NVA YLOMIDN
IOIGLLOW 991AI0S ‘MO LOIT
90IAIDS © Se PaIdo (SLOD Areord£y) aremijos "Q0IAIOS ‘(I OTAIIS ‘QOA "OITAIIS Sopg 2014498
SI2UIBIUOD JO QUIYILW [BNIIIA IoUTRII0D) ‘INA (Y224 2014428
SIOUIRIUOD JO QUIYIRW [BNIIIA IoUIRI0D) ‘INA S| 2014498
Iop1aoid Woo3[a) B 10 ‘9[3000) ‘Uozewry 1] Jop1aoid 991AIeS dsd dsD
SOOIAJAS S9SN Jey) JOWOISND Y uewnH SO 2SO
uondrsaq (s)ad £y 1assy [Pqe| A1epuoddg Pqe[Arewtag

S)osse pue s[oqe[9pou INDVIN 6 2]qeL

pringer

As

144 Software Quality Journal (2024) 32:125-161

Table 10 Threat catalogue template

Threat catalogue field Description

Threat A synthetic high-level label of the behaviour

Asset type The asset typology to which the threat is subject
Relationship Relation type

Protocol Protocol used in the communication

Role in relationship Role in communication

Behaviour Detailed description of the threat

STRIDE Stride classification (Ansari et al., 2019)
Compromised Which assets the malicious behaviour compromises

is preliminarily produced by the user in Neo4j and then requested by the tool (available
at link?) for the threat modelling phase. The tool communicates with the graph database,
obtaining the correctly modelled applications. The technique selects all the threats appli-
cable to the SuA by evaluating the asset-type field of each component (i.e. MACM node).
The technique relies on a threat catalogue, which organizes the threats according to their
asset type. The catalogue describes the threats with 8 parameters, as shown in Table 10.

A threat can be linked to an asset (asset type) or a communication protocol. For this rea-
son, some fields may be left blank. For example, if a threat affects a specific asset typology,
i.e. the read DB configuration threat for a service.DB asset type, both the relationship and
role fields are left unspecified.

The compromised field indicates the asset that is compromised by the malicious behav-
iour and it can assume the following values:

e Self, if the threat compromises only the node specified by the asset type;
e Source (relation), when it compromises the node pointing from the arch;
e Target (relation), when it compromises the node pointed by the arch;

It is worth noting that when the compromised field is source or target, the argument rela-
tion can be uses, connects, or hosts. The tool then obtains the threats by considering both
the asset-type field of the component and the related communication protocols used by the
component. The tool also suggests, for each selected threat, one (or more) NIST SP-800-
53 (Joint Task Force Interagency Working Group, Joint Task Force Interagency Working
Group) controls.

4.4 PyTM

A Pythonic framework for threat modelling (PyTM) (pyTM, 2019) is a framework devel-
oped in Python by the OWASP consortium. The tool is not based on graph-model directly,
but it implements a new paradigm: threat modelling as a code. Accordingly, the threat
modeller should model the system using Python code and this should improve the usability
of the threat modelling process by integrating this phase in the development. The model is
produced leveraging a set of Python elements (i.e. pytm Python module).

2 https://github.com/DanieleGranata94/SlaGenerator

@ Springer

https://github.com/DanieleGranata94/SlaGenerator

Software Quality Journal (2024) 32:125-161 145

Table 11 Threat parameters

Python element Description

Generic element A Python element whose function depends only on the specified properties.

External entity It is where certain data comes from or goes to

Datastore A data store represents the storage of persistent data required and/or pro-
duced by the process

Server An entity processing data

Actor User agent/browser

Process Function where the transformation of data takes place

Dataflow It is used to show the movement of data between the elements

Boundary The boundary describes the limits of the system/sub-system

Lambda A lambda function running in a function-as-a-service (FaaS) environment

Table 11 lists the supported elements and their brief description.

The tool also allows the user to associate some properties to each element of the model,
but, we will not enumerate them for brevity’s sake. Inspired by the infrastructure-as-a-code
approach, the core idea of pyTM is that the target system architecture can be described
through code, using as assets the elements outlined in Table 11. The model can be enriched
through a set of properties associated to the assets as variables of the object.

In order to illustrate the idea, consider the following code: it describes the creation of
a datastore, based on the CentOS operative system. The datastore is a relational database
based on MySQL. Setting the inScope parameter to true, allow the tool to consider this
database as in-scope of the threat model. Also, some controls can be applied in the mod-
elling phase, as shown in the code example. In this case, the database has been analysed
using a hardening process in order to find security vulnerabilities by applying recom-
mended best practices.

db = Datastore ("SQL Database")

db.OS = "CentOS"

db.type = DatastoreType.SQL

db.inScope = True

db.controls.isHardened = False

Once the model is built with all the data, the tool allows to:

Generate a DFD from the code by parsing the Python model into a graph-based model;
Generate a sequence diagram by considering the Python execution order.
Produce a threat model

Since our scope is to analyse the threat modelling process, we focus on how threats are
selected. The tool has its own threat database based on data provided by MITRE and
CAPEC. A threat is described as a set of 7 parameters, as shown in Table 12.

It is worth noticing that the most crucial parameter is Target since it is used to select the
threats for each element of the model. Custom threats (i.e. manually provided by the users/
developers) are supported by leveraging the overriding function.

The tool considers as assets all the elements defined in Python; accordingly, both the
DFD nodes and the data flows are the resources to protect and some threats are associated

@ Springer

146 Software Quality Journal (2024) 32:125-161

Table 12 Threat parameters

Threat element field Description

Id Identifier of the threat

Description An high-level description of the threat

Detail A detailed description of the threat in natural language

Target List of all the Python elements the threat applies to

Likelihood and impact Low, medium, high parameters describing the prob-
ability and the severity of an attack that implements
the threat

Prerequisites Necessary condition in order to apply the threat

Condition Boolean rule describing when the threat is applicable

with them. According to the tool technique, a threat compromises an element if the ele-
ment type is the target list of the threat and the condition is verified. The condition is a log-
ical condition that considers some Boolean parameters. As an example, a Privilege Abuse
threat can be applied only if the Target value is Server, Process, or Datastore and the
condition is target.controls.hasAccessControl is False or target.controls.authorizesSource
is False. Accordingly, the threat is applicable only if the server does not have an access
control system enabled AND an authorization control system.

An innovative function is the possibility to add controls to mitigate threats to the model.
This allows the user to apply the countermeasures, produce a new model, and update the
threat model (no longer considering the threats mitigated by the countermeasure). In this
way, the tool supports the continuous threat modelling paradigm since the process is car-
ried out on an ongoing basis rather than just being a one-time assessment.

5 Comparison

In this chapter, we want to compare the different threat modelling tools and the approaches
they adopt. In order to show the differences, we will use a very common application, typi-
cally executed on a cloud infrastructure: an e-commerce site developed on top of Word-
Press. Considering this application, we modelled the system with the four different tools
and documented the threat modelling results from each tool offered.

5.1 The WordPress case study

WordPress is an open-source content management system, which allows the creation and
distribution of an Internet site made up of textual or multimedia content, which can be
managed and updated dynamically. The web application WP is hosted on a cloud virtual
machine on top of an Apache web server and interfaced with a MySQL database. In order
to enable scalability, the WordPress component can be deployed multiple times, reusing
always the same Database (that can scale only vertically, i.e. adding memory and/or CPU
to the hosting VM). A Load Balancer distributes the Client requests to the connected WP
instances. The developer simply customizes the WP instances, through custom plugins and
customizing the application behaviour.

@ Springer

Software Quality Journal (2024) 32:125-161 147

Even if the development of such systems is simple and commonly relies on very limited
skills from the developer/system administrators, the application manages money and per-
sonal data, so it has strict security requirements. It must be considered that an incredible
amount of WordPress instances on the web are vulnerable (see Abela, 2020), due to incor-
rect security planning and management.

5.2 Microsoft tool analysis

The Microsoft tool allowed us to describe the WordPress application in a complete way,
as it supports a large number of stencils. As described above, the Microsoft tool consid-
ers the interactions between components (arcs of the graph) as assets and obtains security
information by evaluating the type of the two components involved in the communication
(Fig. 6).

In order to model the application, the client was modelled as a Browser, while Word-
Press and Load Balancer as a web application. The MySQL database instead was modelled
as a database component value. Each service is running on a host node. Once the user has
modelled the application, the tool automatically generates the threats for each asset (i.e.
threat model) by producing a report in HTML format. Part of the threat model is described
in Table 13.

It is important to note that the threat model shows, in this case, three values as asset
field: sourcenode, typeofrelationship, destinationnode. From the results, it can be noted
that, for example, each service exposes some threats in the relation to the generic process it
hosts. As an example, a malicious user can get sensitive data from the service configuration
files. A possible countermeasure that the tool suggests is to encrypt only the configuration
files that contain sensitive data. The sending of the access credentials by the user to the
service can also be compromised. In fact, a malicious user can steal this data in different
ways. In order to reduce the risk that this threat happens, the Microsoft tool suggests some
countermeasures. As an example, the user can disable the auto-complete HTML attribute
in sensitive forms and inputs. The analysis also shows problems related to the use of weak
encryption algorithms in the communication between the Load Balancer and WordPress.
In fact, a malicious user can intercept the packets containing the encrypted data and apply
an encryption reversing algorithm to recover the plain-text data.

Response| Response|
Response

Load Balancer Wordpress Database
MySQL

VM1

Browser

VM2

Fig.6 Microsoft tool model WordPress

@ Springer

Software Quality Journal (2024) 32:125-161

148

uonepIeA

aseqejep 03 oyjen Sur

9)eoyNI00 pue uondAIoUs UOTOISUUO0D JOAISS TO)S AINSUF INSO[OSI(] UORULIONU] -JJTUS AQ BIEP QAT)ISUIS O SS900E UreS ued AIesIoApe uy TOSAN-1sonbaI-ssargpIop
93ed Surpuey 10119 J[NEJI(T IUSW JUAUOD

-ordwy ‘soSessour J0119 Ul S[1eIop AJINods 9sodxa J0u 0 2INSO[ISI(] UOnBWIOfU] paysey 1o paydA1ous A[{eam 9SIOAAI uBd AIBSIOAPE UY SSAIJPIOA-Isonbar-1aoueegpeo|
+‘syndut pue SULIOJ SATIISUSS s[en

ur anque TN LH e[dwoosoine oy [qesip Aprordxg Sugoodg -uopaId 19SN AYI] BILP QANISUSS [€A)S URD AIRSIOADE UY Iodueegpeo-1senbar-juar)
BJep 9ANISUDS UIBIUOD so[y Syuoo s, ddy qop ur

Jjey) so[y uonernsyuod s, ddy qop Jo suonoas jdAroug Sunadwe], pal10Is BIEP QATIISUDS 0) SSAIOE UTeS Ued AIBSIoApE UY QOIAIOS-SISOU-IN A

uonesnIN HAT4LS jeaay, JIssy

003 1JOSOIOTJAl SUISN SSATIJPIOAN [OPOUT JBI) oY) JO Jed €1 d|qel

pringer

Qs

Software Quality Journal (2024) 32:125-161 149

—>
Client uses— | | oad Balancer uses——p Wordpress uses’ MySQL Database

Fig.7 Threat Dragon model WordPress

5.3 Dragon analysis

We modelled the system using the Threat Dragon diagram tool. The number of stencils
available is limited, so, as shown in Fig. 7, The WordPress application was modelled using
only the Process, Store, and Actor.

Load Balancer and WordPress were modelled as two processes, while for the Client and
Mysql database we have chosen the stencil of Actor and Store respectively. Each node of
the graph communicates through a DataFlow relationship. As highlighted in the previous
section, the tool considers both the nodes and the arcs of the graph as assets (i.e. resources
to be protected). Each asset has a set of properties aimed at selecting the related threats, as
shown in Table 14.

We modelled the Load Balancer service and WordPress application as a web applica-
tion. In particular, we assumed that the WordPress-based website is an e-commerce (man-
ages payment cards) that stores data and encrypted credentials in a MySQL database.
Each communication is made on a public network with HTTP protocol. Considering the
selected parameters, the tool automatically collects threats (i.e. threat name, description,
and STRIDE classification) for each component of the application and suggests the related
mitigations. A partial list of threats for each component is shown in Table 15.

As the user can access from a public network, a malicious user can exploit a fingerprint-
ing threat against the data exchange between the client and the Load Balancer, sending
specific requests to obtain information in order to profile the application. The WordPress-
based web application on the other hand can be subject to Card Cracking threats since it
manages payment cards. In this case, the malicious user can carry out a brute force attack
on the payment process in order to identify the missing values of the card (i.e. expiry date,
security code, etc.). A brute force attack prevention system can (partially) mitigate the
threat.

Table 14 Parameters related to

Component Selected parameters
each component type

Client Provide authentication

Load Balancer Web application

Handles goods and services
WordPress Web application

Handles goods and services

Handles card payment
MySQL database Stores credentials

Is a stores inventory

Is encrypted
Each data flow Protocol: http

Is over a public network

@ Springer

Software Quality Journal (2024) 32:125-161

150

MOJPIOM
[BINOIABYDQ JO JUSWIDOIOJUS pue uonoe anbrun

9[3uIs © JO JUIWADIOJUL ‘Aouanbaiy uonoeIauy
uonewWoINe-NUE pue

syoee 9010 9niq Sunuasald ‘Kousnbaiy uonoeidyuy
Joo[peap padiof 3ul

-p1oAe pue JuswaSeuRW 90IN0SAI ‘JJoyorq SUIPIAOIJ
Kypeuon

-ounj Jo asnqge Jo uonuaaaid pue uonewoNe-NUY
[9A9] 110dsuen

10 d3essow) Je JoyII2 pAdAIouD 2q pnoys eleq

s9ssao01d dnugis
junodoe s .uonedrdde oy Sursn Aq ‘vonyendod
SOSO[IALI] JO UOIBAI[H 9[gyoid sowroWos pue ‘UONEAId JUNOOJE [N UONEAI) JUNOIIY aseqerep TOSAN

sonyeA Jursstw oy} AJnuapr 0} ssa001d preo
SQINSO[OSI(] UOTJBRWLIOJU] juowAed uoneorjdde jsureSe yoene 010y Anig Sunpoei) pre)
$92IN0SAI JO UOTISNEBYXD 0] SPBI[Inq
S939[1ALId Jo uonead[g aFesn uonesrjdde gjewniSo] ojquiasal Aew oFes) 9JIAISG JO [BIUS SSAIJPIOA
syoe)e Sunur) Jo WiIoy
SOS9[IALIJ JO UONBAJ[H) UI SAIOUdJe] WA)sAs Jo uonejiofdxa pajewoiny Surdrug Iaoue[eq peO]
Iayoe)e Uk Aq pear pue pajdaoraiul oq
S2INSO[OsI(J uonewlioju] Aew y1omiou d1qnd € 1940 Juas eyep paydArousun) uondAIous asn)

s[rejop oSe uor

-yoed pue sroquinu uoIsIoA ‘ojdwrexs 10y ‘popraoid -eoridde oy o[yoi1d 03 JopI10 UT UOHEWIOJUT SUT
ST UOTRULIOJUT Jeym SUTOLISAI SOPN[OUT 90URJO(] SAINSO[ISI(uonewoju] -31o1j9 uonesrjdde ayy 03 Juss are sysonbar oyroadg SununidieSur] 1ooue[Rg PROT-IULID
uonesnIN AATALS uondrnsa(q yeaay, 1988y

AL uoSe1 Sursn ssaIgpIop| [opoul JeaIy) oY) Jo 1red G| djqel

pringer

Qs

Software Quality Journal (2024) 32:125-161 151

5.4 SLA-generator analysis

Figure 8 shows the MACM model of our case study. Each label affects the colour of the
nodes, while attributes are not visible in the picture. As anticipated, the system is com-
posed of a cloud service provider (e.g. Azure or a private cloud) that provides three virtual
machines. which are labelled as IaasS, and their asset type is VM, e.g. virtual machine. One
VM hosts a Load Balancer service while the other two VMs host respectively a Word-
Press instance and a MySQL a database instance. We modelled the Load Balancer (LB)
and WordPress (WP) as SaaS nodes and we set their asset type as web application. The
MySQL instance, instead, was labelled as a SaaS, but with database (DB) value as asset
type. The LB uses the WP that, in turn, uses the DB. The Client (modelled as a CSC
node) uses the Load Balancer service, which acts as the application interface. Each virtual
machine is connected to the public network.

Applying our threat modelling technique, we produce a list of threats but, for simplic-
ity’s sake, we report in Table 16 just one for each asset type. The full list of threats is not
compatible with the length of the paper.

The results show how nodes labelled as SERVICE. Web can be subject to Injection threat
in which an attacker legitimately sends commands to the exposed service without proper
authorization. In order to mitigate this threat, we suggest the usage of NIST Control SI-10,
Invalid input validation.

The tool also models the threats associated with the network, such as Message Reply
threat for which an attacker can re-transmit some packets (previously intercepted) in order
to obtain data.

provides

provides

connects
1
provides
| VM1 |<—connects— Network —oonnects-Nf VM2 | VM3 |
hosts hosts
hosts
A4 v A4
Client —usesy Load’ |\ u »Wordpress—uses—y Database |
\Balancer T ‘ P \ /

Fig.8 WordPress MACM

@ Springer

Software Quality Journal (2024) 32:125-161

152

Q) I9Je[© 1B JASSE Y Wolj Surwod

UONBUIULI, UOISSAS ‘TT-DV Sugoodg sjoxord 9y} JO JUNUOD AY) JIWSUBI)-II URD ATBSIDAPE UY Kdoy o8essoN FIOMION JI0MION
s[onuod

uonezZLIOYINY 9-y) SAZI[IALIJ JO UONBAJ[H UuoneZLIOYINe Y} JUSAWNDIID 0) Qe ST ATeSIOAPE UY 9snqy uonezuoyiny INA IDIANAS SINA

uonoolid sod ‘6-OS QOIAIRS JO [RIUS(SIUSI[O AJOWAI 0) J[QISSARUI SINF(AY) PRI so@aoway gAIADIAYAS °seqerep TOSAN
SPUBWIWIOD PApUUIUN FUNNIIXD

uonepiyea indut preauy 01-1S Suradwe], ojur 19)21dIs)ur 9y} MOLI) UBD BIRP 9[1ISOY S JayorNe oy], uonodfuy QoA ADIAYES SSAIJPIOA

[0nu0d ISIN AATALS uondinsaq Jeday [, ad£y jessy 1988y

J101BI0U0S-Y IS Sulsn SSaIJPIOA\ [OPOW JeAIY) dY) JO Mg 9| d|qel

pringer

Qs

Software Quality Journal (2024) 32:125-161 153

5.5 PyTM analysis

We modelled the system using the Python code and the related documentation. Since
the number of elements is limited, we used only two Server to model WordPress and
the Load Balancer, the Actor to model the browser, and the Datastore to model the
MySQL database. The DFD produced by the Python code is shown in Fig. 9.

The user also has modelled all the requests and the responses through the Data-
Flow element. There is also the possibility to attach some data in the data flow (e.g.
tokens, credentials), but, at the moment, the tool does not consider them to evaluate
the threats. The tool produced a report containing 91 threats, each one associated with
the compromised asset. A part of the threat model is shown as an example in Table 17.

From the analysis of the table, we can notice that the threats are described at a low
level as well as the suggested mitigation. There are also some technological references
that make the threat model less applicable (not generic). For example, an attacker can
include some code into a file using PHP (assuming installed on the server). Also, the
database can be subjected to brute force attack if it uses some weak encryption algo-
rithm for the data.

5.6 Comparison

It is worth noting that, as highlighted above, most of the tools rely on a graph-based
model to describe the target system, where the node represents the asset and the edge
of their connections. Just PyTM relies on a code-based approach that allows the user
to leverage a Python class to model the system, but it can produce a DFD from the
code. Accordingly, a comparison can be carried out by considering the edges and the
nodes produced by the code. The tools differ in the interpretation and metadata associ-
ated with nodes and edges of the graph. According to Microsoft’s approach, there is a
large variety of possible nodes, but the key role in the threat modelling is associated
with the connection among them: in fact the threats are listed per-connection, taking
into account the connected nodes and the connection attributes. According to OWASP,
on the other hand, the Threat Dragon tool evaluates both the nodes and the arcs of the
graph as assets, associating the threats to each element. However, the types of nodes
and edges are very limited and the threats are selected according to a few attributes
associated with both nodes and relationship. The SLA-generator, instead, focuses on
system assets (the graph nodes) and identifies the possible threats relying on the asset
type attribute, which offers a large variety of different values, similar to the Microsoft
threat modelling tool. Moreover, relationships affect the possible threats to which each

'‘Network !
E —(1)) 3) |
.| Browser Load ordpress MySQL :
. Balancer Database |
: <) ®) @— :

__

Fig.9 PyTM DFD

@ Springer

Software Quality Journal (2024) 32:125-161

154

‘sonred pozuoyine
0) A[Uo 9[qISSa29k J1 Sunjew snyj BIep JO Uols
-STWISUBI) Y} 9poou? 0) uondA1ous 95eIoAd|

SOZIS Aoy papuowo
-001 pue swpIoS[e peydoooe A[uowriod s
‘uonejuawaduy
JUSJUOD PAJRISUAZ-IISN PUB dJ0WI FUIpnyour
uQIu0d 9OWAI [[J0J uonepIfea ndur WLIOJId]

Kuap 0 o[y uoneIn3Yuod I9AIIS qam [eqo[S
A Ul HHIXHONSPIPU] SNOLLJO 241 39S

sosodind

Sunoy)es uonewIofUI J0J Ja31e) 9Y) WOIJ
10 0} SUIEQI)S BJEp SIOJUOW ATBSISAPE UY

1xaqurerd

ay) ureiqo 03 3xayraydio ayy ssdL1o9p jey)

K9y oy} QuruIo)ap 03 9oeds Ay) uo
[oIeas oAnSneyxs ue wiojrad ued oyoene uy

‘uonjeordde ay3 woiy 9[qe

-[reAe AJ9)OWAT 9p0d ATENIQIE 9INIIXD PUE
peo[01 9[qe SI AIesioape ay) uroped siy) ug

“TOATOS qom) AQ POINOAXD

308 uay) ey uoneorjdde gam & 0) 9pod
pues 03 uonoaluy [SS 9sn ued IoeNEe Uy

uoneSNIA

uondrsaq

uondoorou] — 109a mopereq MOF BIRp yoey

Suroro einug uondLroug — Go¥D aroiseie aseqerep TOSAN
uorsn[ouy I AowdY dHd — 9TdNI JOAIIS Jddueleq peo|
uonodfuy (ISS) opnpou] 9pIS 1AI0S 0JNI IOAIOS SSQIJPIOA
jeaay], Jd4£) yuswdy JUIWI[H

INLAJ Suisn ssaIgpIOp\ [9pOUl JeaI) o) Jo Jred /| djqel

pringer

Qs

Software Quality Journal (2024) 32:125-161 155

Table 18 Threat modelling comparison table

Asset SLA-generator Microsoft threat OWASP PyTM
threat threat
WordPress Data Leakage Read web app’s config files Fingerprinting Data leak
Steal sensitive data like user Carding
credentials
Card Cracking
WordPress Injection SQL injection through Web - Many types of injection
App
Database Read Injection SQL injection Account Crea- SQL Injection

tion
Insert Injection

VM Data Breach Access to sensitive data from - -
log files

VM Denial of Service - - -

node, but the threats are always listed as associated with nodes. A different approach is
adopted by PyTM that considers all the Python elements as assets (even the data flows).

It is out of the scope of this work to say which approach is better (we aim at com-
paring the ideas not at making a rank of the tools), but it is worth noting that in the
graph they made a completely different choice: one focuses on edge, one on nodes and
the last on both of them. However, the final result, in all the cases, is a list of threats
that contains an explicit description of the malicious behaviour (in natural language)
and the classification of the threat according to STRIDE or respect to the impact on
Confidentiality, Integrity, and Availability. The tools, even in the case of the WordPress
application, which is pretty simple, produce a pretty long list of threats (88 for the MS
threat modelling tool, 84 for SLA-generator, 31 for the Dragon tool, and 97 for PyTM).
We, acting as experts, consider that the choice of listing threats only respects assets or
only respects relationships (the choices done by SLA-generator and by MS threat mod-
elling Tool) helps the expert work in the analysis of the results, but this is and remains
a subjective choice. However, the number of threats outlined by the OWASP tool looks
at the state of the art, with limited respect to the other tools. This is due to the limited
set of parameters available for the selection and, probably, to the underlying threat cata-
logue dimension. PyTM instead has the greatest number of threats, but, as already men-
tioned, the threats are high-level attacks from CAPEC (i.e. attack patterns and in some
cases, they depend on the technological implementation of the asset). Another interest-
ing aspect is that the four techniques present threats at different levels of granularity, as
shown in Table 18.

As an example, the SLA-generator tool underlines how WordPress can be subject to
data leakage. The same threat is (partially) expressed by the Microsoft tool with read con-
figuration files and steal user credentials threats and fully expressed by PyTM. According
to OWASP, instead, data loss can be caused both by an application profiling technique (e.g.
fingerprinting) and by techniques that aim at obtaining information on users’ virtual cards.

In general, the threats affecting WordPress were 10 for both OWASP and SLA-
generator, 25 according to Microsoft, and 42 for PyTM. It is important to note, however,
that threats are expressed with different levels of detail. The analysis also shows how a
Injection threat can affect both WordPress and the database. Considering the database

@ Springer

156 Software Quality Journal (2024) 32:125-161

Table 19 Tool comparison features

Features SLA-generator ~ Microsoft OWASP PyTM
Threats 84 88 30 97
Asset Nodes Archs Both All Python elements
Use case Generic Suitable for architecture Generic Generic
using Microsoft compo-
nents
Threat granularity ~ Variable High Low High

as an asset, a Microsoft SQL injection can be as SLA-generator Read/Insert injection
that takes into account that a malicious user wants to get information from the database
or write to it (e.g. create an account), while PyTM describes many ways to inject data
through more detailed threats. In this case, the threats according to the SLA-generator
tool are 15, while OWASP and Microsoft consider only 8 and 12 for PyTM. Virtual
machines, on the other hand, are not considered in the OWASP model and PyTM code,
the table shows the comparison only between SLA-generator and Microsoft tool. One of
the 13 threats described by the SLA-generator is that of Data Breach, partially mapped
with Access to sensitive data from log files by Microsoft (which instead considers 6
threats). Network assets were modelled only by the SLA-generator and threat modelling
reported 12 threats.”> As a result, a generic tool comparison, shown in Table 19,
summarizes the main differences between the selected tools.

6 Conclusions and future work

In this paper, we have analysed the state of the art of automated threat modelling tech-
niques using a systematic literature review technique. According to the review results,
we focused on three different graph-based methodologies and their tools: SLA-generator,
Microsoft tool, and Threat Dragon by OWASP. The analysed tools require a very simpli-
fied graph-based model of the application in which the nodes represent the components of
the system and the arcs represent the interactions between the various components. The
simplicity of modelling allows the user in all three approaches to obtain security infor-
mation in a fully automatic way. The approaches were applied to a case study involving
WordPress, a content management system that allows you to manage a website. The results
show that the threats are described at different levels of detail, but still compatible. In par-
ticular, OWASP Threat Dragon has proved to be the tool that produces a less complete
threat model than the others. The number of threats related to the WordPress component
was greater (25) with the Microsoft tool, while the threat model related to the database
and virtual machines was more complete with SLA-generator. Furthermore, the tool also
considered the network as an asset, highlighting 12 threats. As mentioned in the paper, risk
analysis builds on threat modelling by assessing the likelihood of a threat occurring and
the potential consequences. Accordingly, our future work is performing a complementary
systematic literature review on risk analysis methodologies in the literature and the tools
used to implement them.

3 Full threat modelling comparison is available on request.

@ Springer

Software Quality Journal (2024) 32:125-161 157

Author contribution Daniele Granata performed the systematic literature review and the tool analysis, wrote
the manuscript text, and prepared all the figures; Massimiliano Rak contributed to review planning and vali-
dated the results, contributed to tools analysis, defined the paper structure, and reviewed the manuscript; all
the authors contributed to the development of the methodology.

Funding Open access funding provided by Universita degli Studi della Campania Luigi Vanvitelli within
the CRUI-CARE Agreement. This work was partially supported by project SSeCeGOV funded by Univer-
sity of Campania under program Valere 2020.

Data availability The datasets generated during and analysed during the current study are available from the
corresponding author on reasonable request.

Declarations
Conflict of interest All authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abela, R. (2020). Statistics show why WordPress is a popular hacker target. https://www.wpwhitesecurity.
com/statistics-70-percent-wordpress-installations-vulnerable/

AbuEmera, E. A., ElZouka, H. A., & Saad, A. A. (2022). Security framework for identifying threats in
smart manufacturing systems using stride approach. In: 2022 2nd International Conference on Con-
sumer Electronics and Computer Engineering (ICCECE) (pp. 605-612). https://doi.org/10.1109/
ICCECES54139.2022.9712770

Althar, R. R., Samanta, D., Kaur, M., Singh, D., & Lee, H.-N. (2022). Automated risk management based
software security vulnerabilities management. /[EEE Access, 10, 90597-90608. https://doi.org/10.
1109/ACCESS.2022.3185069

Almubairik, N. A., & Wills, G. (2016). Automated penetration testing based on a threat model. In: 2016
11th International Conference for Internet Technology and Secured Transactions (ICITST) (pp. 413—
414). https://doi.org/10.1109/ICITST.2016.7856742

Alwaheidi, M. K. S., & Islam, S. (2022). Data-driven threat analysis for ensuring security in cloud enabled
systems. Sensors, 22(15). https://doi.org/10.3390/s22155726

Ansari, M. T. J., Pandey, D., & Alenezi, M. (2022). STORE: security threat oriented requirements engi-
neering methodology. Journal of King Saud University-Computer and Information Sciences, 34(2),
191-203.

Asif, M. R. A, Hasan, K. F,, Islam, M. Z., & Khondoker, R. (2021). STRIDE-based cyber security threat
modeling for IoT-enabled precision agriculture systems. In: 202/ 3rd International Conference on Sus-
tainable Technologies for Industry 4.0 (STI) (pp. 1-6). https://doi.org/10.1109/ST153101.2021.9732597

Bernsmed, K., Cruzes, D., Jaatun, M., & Iovan, M. (2021). Adopting threat modelling in agile software
development projects. Journal of Systems and Software, 183, 111090. https://doi.org/10.1016/j.jss.
2021.111090

Bhattacharya, D. (2020). OWASP threat dragon review.

Brown, S., Fox, S., Hewage, C., & Khan, I. (2022). Threat modelling of cyber physical systems: A real
case study based on window cleaning business. SN Computer Science, 3. https://doi.org/10.1007/
$42979-022-01021-3

Casola, V., Benedictis, A. D., Mazzocca, C., & Montanari, R. (2021). Toward automated threat modeling of
edge computing systems. In: 2021 IEEE International Conference on Cyber Security and Resilience
(CSR) (pp. 135-140). https://doi.org/10.1109/CSR51186.2021.9527937

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://www.wpwhitesecurity.com/statistics-70-percent-wordpress-installations-vulnerable/
https://www.wpwhitesecurity.com/statistics-70-percent-wordpress-installations-vulnerable/
https://doi.org/10.1109/ICCECE54139.2022.9712770
https://doi.org/10.1109/ICCECE54139.2022.9712770
https://doi.org/10.1109/ACCESS.2022.3185069
https://doi.org/10.1109/ACCESS.2022.3185069
https://doi.org/10.1109/ICITST.2016.7856742
https://doi.org/10.3390/s22155726
https://doi.org/10.1109/STI53101.2021.9732597
https://doi.org/10.1016/j.jss.2021.111090
https://doi.org/10.1016/j.jss.2021.111090
https://doi.org/10.1007/s42979-022-01021-3
https://doi.org/10.1007/s42979-022-01021-3
https://doi.org/10.1109/CSR51186.2021.9527937

158 Software Quality Journal (2024) 32:125-161

Casola, V., De Benedictis, A., Rak, M., & Villano, U. (2019). Toward the automation of threat modeling and
risk assessment in IoT systems. Internet of Things, 7.

Chen, H. (2019). Determining information security threats for an iot-based energy internet by adopting software
engineering and risk management approaches. Inventions, 4, 53. https://doi.org/10.3390/inventions4030053

Chen, Y. -T. (2018). Modeling information security threats for smart grid applications by using software
engineering and risk management. In: 2018 IEEE International Conference on Smart Energy Grid
Engineering (SEGE) (pp. 128-132). https://doi.org/10.1109/SEGE.2018.8499431

Curzi, S. (2020). Threat Manager Studio. https://threatsmanager.com/

Danielis, P., Beckmann, M., & Skodzik, J. (2020). An ISO-compliant test procedure for technical risk analy-
ses of IoT systems based on STRIDE. In: 2020 IEEE 44th Annual Computers, Software, and Applica-
tions Conference (COMPSAC) (pp. 499-504). https://doi.org/10.1109/COMPSAC48688.2020.0-203

DeMarco, T. (1979). Structured analysis and system specification. Prentice Hall PTR, USA.

Ding, J., Atif, Y., Andler, S., Lindstrom, B., & Jeusfeld, M. (2017). CPS-based threat modeling for critical
infrastructure protection. ACM SIGMETRICS Performance Evaluation Review, 45, 129-132. https://
doi.org/10.1145/3152042.3152080

Dominic, D., Chhawri, S., Eustice, R., Ma, D., & Weimerskirch, A. (2016). Risk assessment for cooperative
automated driving (pp. 47-58). https://doi.org/10.1145/2994487.2994499

Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A., & Belgamo, A. (2016). Improvements
in the start tool to better support the systematic review process. In: Proceedings of the 20th Interna-
tional Conference on Evaluation and Assessment in Software Engineering. EASE ’16. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2915970.2916013

Faily, S. (2018). Designing usable and secure software with IRIS and CAIRIS. Springer Cham - Computer
Science.

Ficco, M., Granata, D., Rak, M., & Salzillo, G. (2021). Threat modeling of edge-based IoT applications. In:
International Conference on the Quality of Information and Communications Technology (pp. 282—
296). Springer.

Fraser Scott, M. R., & Smotrakov, A. (2019). Threat Spec. https://threatspec.org/

Frydman, M., Ruiz, G., Heymann, E., César, E., & Miller, B. P. (2014). Automating risk analysis of soft-
ware design models. The Scientific World Journal, 2014.

Goodwin, M. (2020). OWASP Threat Dragon. Retrieved October 28, 2022, from https://github.com/owasp/
threat-dragon/releases

Granata, D., & Rak., M. (2021). Design and development of a technique for the automation of the risk analy-
sis process in IT security. In: Proceedings of the 11th International Conference on Cloud Computing and
Services Science - CLOSER (pp. 87-98). SciTePress. https://doi.org/10.5220/0010455200870098.INSTICC

Granata, D., Rak, M., & Salzillo, G. (2022). Automated threat modeling approaches: Comparison of open
source tools. In A. Vallecillo, J. Visser, & R. Pérez-Castillo (Eds.), Quality of Information and Com-
munications Technology (pp. 250-265). Cham: Springer.

Granata, D., Rak, M., Salzillo, G., & Barbato, U. (2021). Security in IoT pairing & authentication protocols,
a threat model, a case study analysis. 2490, 207-218. CEUR-WS.

Haitao, Z., Lei, L., Ruikun, L., Jiajia, Y., Yun, L., & Lirong, C. (2022). Research and application of intel-
ligent vehicle cybersecurity threat model. In: 2022 7th IEEE International Conference on Data Science
in Cyberspace (DSC) (pp. 102-109). https://doi.org/10.1109/DSC55868.2022.00021

Haji, S., Tan, Q., & Costa, R. (2019). A hybrid model for information security risk assessment. Interna-
tional Journal of Advanced Trends in Computer Science and Engineering, 8, 100-106. https://doi.org/
10.30534/ijatcse/2019/1981.12019

Hasan, R., & Hasan, R. (2021). Towards a threat model and security analysis of video conferencing systems.
In: 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-4).
https://doi.org/10.1109/CCNC49032.2021.9369505

Hoque, M. A., & Hasan, R. (2019). Towards a threat model for vehicular fog computing (pp. 1051-1057).

Hussain, S., Kamal, A., Ahmad, S., Rasool, G., & Igbal, S. (2014). Threat modelling methodologies: A
survey. 26, 1607-1609.

Ivanova, N. D., & Ivanenko, V. G. (2022). Modeling advanced persistent threats using risk matrix methods.
Journal of Computer Virology and Hacking Techniques, 1-6.

Jamil, A. -M., Khan, S., Lee, J. K., & Ben Othmane, L. (2021). Towards automated threat modeling of
cyber-physical systems. In: 2021 International Conference on Software Engineering & Computer
Systems and 4th International Conference on Computational Science and Information Management
(ICSECS-ICOCSIM) (pp. 614-619). https://doi.org/10.1109/ICSECS52883.2021.00118

Joint Task Force Interagency Working Group. (2020, September). Security and privacy controls for
information systems and organizations. Technical report, National Institute of Standards and Tech-
nology. https://doi.org/10.6028/NIST.SP.800-53r5. Edition: Revision 5.

@ Springer

https://doi.org/10.3390/inventions4030053
https://doi.org/10.1109/SEGE.2018.8499431
https://threatsmanager.com/
https://doi.org/10.1109/COMPSAC48688.2020.0-203
https://doi.org/10.1145/3152042.3152080
https://doi.org/10.1145/3152042.3152080
https://doi.org/10.1145/2994487.2994499
https://doi.org/10.1145/2915970.2916013
https://threatspec.org/
https://github.com/owasp/threat-dragon/releases
https://github.com/owasp/threat-dragon/releases
https://doi.org/10.5220/0010455200870098.INSTICC
https://doi.org/10.1109/DSC55868.2022.00021
https://doi.org/10.30534/ijatcse/2019/1981.12019
https://doi.org/10.30534/ijatcse/2019/1981.12019
https://doi.org/10.1109/CCNC49032.2021.9369505
https://doi.org/10.1109/ICSECS52883.2021.00118
https://doi.org/10.6028/NIST.SP.800-53r5

Software Quality Journal (2024) 32:125-161 159

Khan, R., McLaughlin, K., Laverty, D., & Sezer, S. (2017). Stride-based threat modeling for cyber-physical
systems. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) (pp.
1-6). https://doi.org/10.1109/ISGTEurope.2017.8260283

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic
literature reviews in software engineering - A systematic literature review. Information and Soft-
ware Technology, 51(1), 7-15. https://doi.org/10.1016/j.infsof.2008.09.009. Special Section - Most
Cited Articles in 2002 and Regular Research Papers.

Kornecki, A. J., & Janusz, Z. (2015). Threat modeling for aviation computer security. Crosstalk, 21.

Kosachenko, T., Dudkin, D., Konev, A., & Sharamok, A. (2021). Threat model for trusted sensory infor-
mation collection and processing platform. In P. K. Singh, G. Veselov, A. Pljonkin, Y. Kumar, M.
Paprzycki, & Y. Zachinyaev (Eds.), Futuristic trends in network and communication technologies
(pp- 296-304). Singapore: Springer.

Leander, B., Cau§evié, A., & Hansson, H. (2019). Cybersecurity challenges in large industrial IoT sys-
tems. In: 2019 24th IEEE International Conference on Emerging Technologies and Factory Auto-
mation (ETFA) (pp. 1035-1042). https://doi.org/10.1109/ETFA.2019.8869162

LINDDUN. (2020). LINDDUN privacy engineering. Retrieved October 28, 2022, from https://www.
linddun.org/

Mahak, M., & Singh, Y. (2021). Threat modelling and risk assessment in internet of things: A review.
In: P. K. Singh, S. T. Wierzchon, S. Tanwar, M. Ganzha, & J. J. P. C. Rodrigues (Eds.), Proceed-
ings of Second International Conference on Computing, Communications, and Cyber-Security (pp.
293-305). Singapore: Springer.

Mahmood, S., Nguyen, H. N., & Shaikh, S. A. (2022). Systematic threat assessment and security testing
of automotive over-the-air (OTA) updates. Vehicular Communications, 35, 100468. https://doi.org/
10.1016/j.vehcom.2022.100468

Mani, P., & Venkat, M. (2017). A risk-centric defensive architecture for threat modeling in e-government
application. Electronic Government, an International Journal, 14, 1. https://doi.org/10.1504/EG.
2017.10008841

Martins, G., Bhatia, S., Koutsoukos, X., Stouffer, K., Tang, C., & Candell, R. (2015). Towards a sys-
tematic threat modeling approach for cyber-physical systems. In: 2015 Resilience Week (RWS) (pp.
1-6). https://doi.org/10.1109/RWEEK.2015.7287428

Meland, P. H., Paja, E., Gjere, E. A., Paul, S., Dalpiaz, F., & Giorgini, P. (2014). Threat analysis in goal-
oriented security requirements modelling. International Journal of Secure Software Engineering, 5,
1-19. https://doi.org/10.4018/ijsse.2014040101

Messe, N., Chiprianov, V., Belloir, N., El-Hachem, J., Fleurquin, R., & Sadou, S. (2020). Asset-oriented threat
modeling. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom) (pp. 491-501). https://doi.org/10.1109/TrustCom50675.2020.00073

Microsoft. (2018). Microsoft threat modeling tool. Microsoft.

Monteuuis, J. -P., Boudguiga, A., Zhang, J., Labiod, H., Servel, A., & Urien, P. (2018). SARA: Security
automotive risk analysis method (pp. 3—14). https://doi.org/10.1145/3198458.3198465

Moreira, A., Amaral, V., & De Faveri, C. (2016). Goal-driven deception tactics design. In: 2016 IEEE
27th International Symposium on Software Reliability Engineering (ISSRE) (pp. 264-275). https://
doi.org/10.1109/ISSRE.2016.44

Naagas, M. (2018). A threat-driven approach to modeling a campus network security. https://doi.org/10.
1145/3193092.3193096

Nweke, L., & Wolthusen, S. (2020). A review of asset-centric threat modelling approaches. Interna-
tional Journal of Advanced Computer Science and Applications, 11, 1-6. https://doi.org/10.14569/
IJACSA.2020.0110201

Omotunde, H., & Ibrahim, R. (2015). A review of threat modelling and its hybrid approaches to software
security testing.

OWASP. OWASP automated threats to web applications.

pyTM. (2019). https://github.com/izar/pytm

Ramazanzadeh, M., Barzegar, B., & Motameni, H. (2022). ASATM: Automated security assistant of threat
models in intelligent transportation systems. IET Computers Digital Techniques, 16. https://doi.org/10.
1049/cdt2.12045

Radoglou-Grammatikis, P., Rompolos, K., Sarigiannidis, P., Argyriou, V., Lagkas, T., Sarigiannidis, A.,
Goudos, S., & Wan, S. (2022). Modeling, detecting, and mitigating threats against industrial healthcare
systems: A combined software defined networking and reinforcement learning approach. IEEE Trans-
actions on Industrial Informatics, 18(3), 2041-2052. https://doi.org/10.1109/T11.2021.3093905

@ Springer

https://doi.org/10.1109/ISGTEurope.2017.8260283
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/ETFA.2019.8869162
https://www.linddun.org/
https://www.linddun.org/
https://doi.org/10.1016/j.vehcom.2022.100468
https://doi.org/10.1016/j.vehcom.2022.100468
https://doi.org/10.1504/EG.2017.10008841
https://doi.org/10.1504/EG.2017.10008841
https://doi.org/10.1109/RWEEK.2015.7287428
https://doi.org/10.4018/ijsse.2014040101
https://doi.org/10.1109/TrustCom50675.2020.00073
https://doi.org/10.1145/3198458.3198465
https://doi.org/10.1109/ISSRE.2016.44
https://doi.org/10.1109/ISSRE.2016.44
https://doi.org/10.1145/3193092.3193096
https://doi.org/10.1145/3193092.3193096
https://doi.org/10.14569/IJACSA.2020.0110201
https://doi.org/10.14569/IJACSA.2020.0110201
https://github.com/izar/pytm
https://doi.org/10.1049/cdt2.12045
https://doi.org/10.1049/cdt2.12045
https://doi.org/10.1109/TII.2021.3093905

160 Software Quality Journal (2024) 32:125-161

Rak, M., Casola, V., De Benedictis, A., & Umberto, V. (2019). Automated risk analysis for IoT systems. In:
Proceedings of the 13th International Conference on P2P, Parallel, Grid, Cloud and Internet Comput-
ing (3PGCIC-2018) (pp. 265-275). https://doi.org/10.1007/978-3-030-02607-3_24

Rak, M., Salzillo, G., & Granata, D. (2022). ESSecA: An automated expert system for threat modelling and
penetration testing for IoT ecosystems. Computers and Electrical Engineering, 99, 107721. https://doi.
org/10.1016/j.compeleceng.2022.107721

Rak, M., Salzillo, G., & Romeo, C. (2020). Systematic IoT penetration testing: Alexa case study, 2597,
190-200. CEUR-WS.

Rumbaugh, J., Jacobson, 1., & Booch, G. (2004). Unified modeling language reference manual, The (2nd
Edition). Pearson Higher Education.

Saatkamp, K., Krieger, C., Leymann, F., Sudendorf, J., & Wurster, M. (2019). Application threat modeling
and automated VNF selection for mitigation using TOSCA. In: 2019 International Conference on Net-
worked Systems (NetSys) (pp. 1-6). https://doi.org/10.1109/NetSys.2019.8854524

Salzillo, G., Rak, M., & Moretta, F. (2020). Threat modeling based penetration testing: The open energy
monitor case study. In: 13th International Conference on Security of Information and Networks. SIN
2020. Association for Computing Machinery, New York, NY, USA.

Schaad, A., & Borozdin, M. (2012). TAM2: Automated threat analysis. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing (pp. 1103-1108). Association for Computing Machinery.
Schlegel, R., Obermeier, S., & Schneider, J. (2015). Structured system threat modeling and mitigation
analysis for industrial automation systems. In: 2015 IEEE 13th International Conference on Industrial

Informatics (INDIN) (pp. 197-203). https://doi.org/10.1109/INDIN.2015.7281734

Shi, Z., Graffi, K., Starobinski, D., & Matyunin, N. (2021). Threat modeling tools: A taxonomy. /[EEE Secu-
rity & Privacy, 20(4), 29-39.

Shelupanov, A., & Konev, A. (2019). Threat model for IoT systems on the example of openUNB protocol.
International Journal of Emerging Trends in Engineering Research, 7, 283-290. https://doi.org/10.
30534/ijeter/2019/11792019

Sion, L., Landuyt, D., Yskout, K., & Joosen, W. (2018). Sparta: Security & privacy architecture through
risk-driven threat assessment (pp. 89-92). https://doi.org/10.1109/ICSA-C.2018.00032

Sion, L., Van Landuyt, D., Yskout, K., Verreydt, S., & Joosen, W. (2021). Automated threat analysis and
management in a continuous integration pipeline. In: 2021 IEEE Secure Development Conference
(SecDev) (pp. 30-37). https://doi.org/10.1109/SecDev51306.2021.00021

Sion, L., Wuyts, K., Yskout, K., Van Landuyt, D., & Joosen, W. (2018). Interaction-based privacy threat
elicitation. In: 20/8 IEEE European Symposium on Security and Privacy Workshops (EuroS &
PW) (pp. 79-86). https://doi.org/10.1109/EuroSPW.2018.00017

Tan, K., & Garg, V. (2022). An analysis of open-source automated threat modeling tools and their extensi-
bility from security into privacy.

Tatam, M., Shanmugam, B., Azam, S., & Kannoorpatti, K. (2021). A review of threat modelling approaches
for APT-style attacks. Heliyon, 7(1). https://doi.org/10.1016/j.heliyon.2021.e05969

Threat Agile. (2020). Retrieved October 28, 2022, from https://github.com/Threagile/threagile

Valenza, F., Karafili, E., Steiner, R. V., & Lupu, E. C. (2022). A hybrid threat model for smart systems.
IEEE Transactions on Dependable and Secure Computing, 1-14. https://doi.org/10.1109/TDSC.2022.
3213577

Vallant, H., Stojanovic, B., Bozi¢, J., & Hofer-Schmitz, K. (2021). Threat modelling and beyond-novel
approaches to cyber secure the smart energy system. Applied Sciences, 11, 5149. https://doi.org/10.
3390/app11115149

Verreydt, S., Sion, L., Yskout, K., & Joosen, W. (2022). Relationship-based threat modeling. In: 2022
IEEE/ACM 3rd International Workshop on Engineering and Cybersecurity of Critical Systems (EnCy-
CriS) (pp. 41-48). https://doi.org/10.1145/3524489.3527303

Von Der Assen, J., Franco, M.F., Killer, C., Scheid, E.J., & Stiller, B. (2022). CoReTM: An approach
enabling cross-functional collaborative threat modeling. In: 2022 IEEE International Conference on
Cyber Security and Resilience (CSR) (pp. 189-196). https://doi.org/10.1109/CSR54599.2022.9850283

Wirtz, R., & Heisel, M. (2020). Risk identification: From requirements to threat models (pp. 385-396).
https://doi.org/10.5220/0008935803850396

Wauyts, K., Sion, L., & Joosen, W. (2020). Linddun go: A lightweight approach to privacy threat modeling.
In: 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS &PW) (pp. 302—
309). https://doi.org/10.1109/EuroSPW51379.2020.00047

Wauyts, K., Van Landuyt, D., Hovsepyan, A., Joosen, W. (2018). Effective and efficient privacy threat mod-
eling through domain refinements. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. SAC ’18 (pp. 1175-1178). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3167132.3167414

@ Springer

https://doi.org/10.1007/978-3-030-02607-3_24
https://doi.org/10.1016/j.compeleceng.2022.107721
https://doi.org/10.1016/j.compeleceng.2022.107721
https://doi.org/10.1109/NetSys.2019.8854524
https://doi.org/10.1109/INDIN.2015.7281734
https://doi.org/10.30534/ijeter/2019/11792019
https://doi.org/10.30534/ijeter/2019/11792019
https://doi.org/10.1109/ICSA-C.2018.00032
https://doi.org/10.1109/SecDev51306.2021.00021
https://doi.org/10.1109/EuroSPW.2018.00017
https://doi.org/10.1016/j.heliyon.2021.e05969
https://github.com/Threagile/threagile
https://doi.org/10.1109/TDSC.2022.3213577
https://doi.org/10.1109/TDSC.2022.3213577
https://doi.org/10.3390/app11115149
https://doi.org/10.3390/app11115149
https://doi.org/10.1145/3524489.3527303
https://doi.org/10.1109/CSR54599.2022.9850283
https://doi.org/10.5220/0008935803850396
https://doi.org/10.1109/EuroSPW51379.2020.00047
https://doi.org/10.1145/3167132.3167414

Software Quality Journal (2024) 32:125-161 161

Zeinali, M., & Hadavi, M. A. (2018). Threat extraction method based on uml software description. In: 2018
15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryp-
tology (ISCISC) (pp. 1-8). https://doi.org/10.1109/ISCISC.2018.8546868

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.1109/ISCISC.2018.8546868

	Systematic analysis of automated threat modelling techniques: Comparison of open-source tools
	Abstract
	1 Introduction
	2 Related work
	3 Systematic literature review
	3.1 Methodology
	3.2 Planning
	3.3 Conducting
	3.4 Results
	3.4.1 Tools

	4 Threat modelling tools
	4.1 Microsoft threat modelling tool
	4.2 OWASP threat dragon
	4.3 SLA-generator
	4.4 PyTM

	5 Comparison
	5.1 The WordPress case study
	5.2 Microsoft tool analysis
	5.3 Dragon analysis
	5.4 SLA-generator analysis
	5.5 PyTM analysis
	5.6 Comparison

	6 Conclusions and future work
	References

