Software Quality Journal (2021) 29:509-553
https://doi.org/10.1007/511219-020-09546-7

®

Check for
updates

An improved text classification modelling approach
to identify security messages in heterogeneous projects

Tosin Daniel Oyetoyan'2® . Patrick Morrison®

Accepted: 26 December 2020 / Published online: 27 May 2021
© The Author(s) 2021

Abstract

Security remains under-addressed in many organisations, illustrated by the number of large-
scale software security breaches. Preventing breaches can begin during software development
if attention is paid to security during the software’s design and implementation. One
approach to security assurance during software development is to examine communications
between developers as a means of studying the security concerns of the project. Prior
research has investigated models for classifying project communication messages (e.g., issues
or commits) as security related or not. A known problem is that these models are project-
specific, limiting their use by other projects or organisations. We investigate whether we can
build a generic classification model that can generalise across projects. We define a set of
security keywords by extracting them from relevant security sources, dividing them into four
categories: asset, attack/threat, control/mitigation, and implicit. Using different combinations
of these categories and including them in the training dataset, we built a classification model
and evaluated it on industrial, open-source, and research-based datasets containing over 45
different products. Our model based on harvested security keywords as a feature set shows
average recall from 55 to 86%, minimum recall from 43 to 71% and maximum recall from
60 to 100%. An average f-score between 3.4 and 88%, an average g-measure of at least 66%
across all the dataset, and an average AUC of ROC from 69 to 89%. In addition, models
that use externally sourced features outperformed models that use project-specific features
on average by a margin of 26-44% in recall, 22-50% in g-measure, 0.4-28% in f-score, and
15-19% in AUC of ROC. Further, our results outperform a state-of-the-art prediction model
for security bug reports in all cases. We find using sound statistical and effect size tests that
(1) using harvested security keywords as features to train a text classification model improve
classification models and generalise to other projects significantly. (2) Including features in
the training dataset before model construction improve classification models significantly. (3)
Different security categories represent predictors for different projects. Finally, we introduce
new and promising approaches to construct models that can generalise across different
independent projects.

Keywords Security - Classification model - Text classification - Software repository -
Machine learning

P4 Tosin Daniel Oyetoyan
tosin.daniel.oyetoyan @hvl.no

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0003-0027-4522
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-020-09546-7&domain=pdf

510 Software Quality Journal (2021) 29:509-553

1 Introduction

Security breaches have become regular occurrences, with devastating consequences
and costs to organisations and society (Ponemon-Institute, IBM-Security, 2017).
Unfortunately, security as a non-functional requirement is under-addressed in many
software development projects. Cois and Kazman (2015) analysed 400,000 projects on
GitHub and found only 1.4% to explicitly identify security-related issues. It is therefore
relevant to understand the security picture of a project by assessing product security and
the project’s management capabilities (Ellison et al., 2010).

Researchers (Cois & Kazman 2015; Cleland-Huang et al., 2006; Hindle et al., 2013;
Ray et al., 2016) have investigated security concerns in software management repositories
(e.g. Issue Trackers and Version Control Systems), seeking relevant quantitative measures
that could be derived from security analysis of software management repositories. Such
measures could assist project managers and development teams in taking informed
decisions regarding the security posture of a project by providing answers to, e.g., How
many security-related changes have been made in the system? How many security-related
bugs are left unresolved? What is the average window-of-exposure (in days) for security-
related issues in a project? However, these studies are project specific, and we do not
know how their results generalise beyond the environments studied.

Researchers have constructed text classification models by building a document
term matrix (DTM) from a project’s document corpus and selecting promising
features from the DTM(Sparck Jones, 1972; Salton et al., 1983; Salton & McGill, n.d.;
Salton and Buckley 1988; Wu et al., 2008). This approach limits the model to the
environment where it is constructed. (Gegick et al., 2010) advised against applying a
text classification model for identifying security messages trained on one system to a
different system. Based on their findings, cross-project classification suffered significant
performance reduction. In (Anvik et al., 2006), the precision of their model decreased
from 64 to 6% with low recalls in general when applied to another project’s dataset thus
showing the task to develop a generic text classification model that could be practically
useful across different systems to be non-trivial.

Many benefits could be derived from a model that works across heterogeneous
projects. First, it could eliminate the need to create a unique model for each project
in an organisation. Organisations sometimes maintain several hundred projects, making
development of classification models messy and difficult. Second, in many projects
and small businesses (Unterkalmsteiner et al., n.d.), time-to-market is critical, and as a
result, security activities are not prioritised. An off-the-shelf model that can be quickly
leveraged to identify security-related issues in such projects would reduce the time and
effort required to build a model for each project. Third, thid could provide the research
community with a benchmark for security-related issues across heterogeneous projects
and organisations.

The goal of this work is to investigate the hypothesis that a generic text classification
model can be developed for classifying security-related messages in software
development project communications. Generalising to unseen datasets is the goal of
a classification model. Typical text classification models in the security domain are
usually constructed based on an oracle dataset (Nigam et al., 2000) containing experts’
(human/system) classifications of a sample of the population that a classification
algorithm should learn. The requirement for an oracle presents a limitation to
generalising to unseen data.

@ Springer

Software Quality Journal (2021) 29:509-553 511

We address the problem of generalisation by augmentation of the training set with
security keywords, using these terms as features to train a text classification model. Our
research question is:

RQ: Does the performance of our classification model outperform models built using
project-specific terms when generalising to new projects? In other words, can we build
a model on one project and transfer it to another project using transfer project prediction
(TPP) approach (e.g., Peters et al., 2017)?

Our contributions in this paper are:

e A new and promising approach to weighting and training a generalised text
classification model for identifying security messages across projects.

e A list of security terms that can be used independently to identify security-related
issues in any repository.

e A new approach of using security terms divided into different categories to build
classification models.

e A security classifier framework and a add-on for the JIRA' platform, based on our best-
performing trained model.

The remainder of the paper is organised as follows: In Sect. 2, we discuss studies
related to our work. In Sect. 3, we describe our dataset selection and analysis approach to
answer our research questions. In Sect. 4, we present the results of our study. We provide
discussion in Sect. 5. We discuss various threats to the validity of our study in Sect. 6.
Lastly, we conclude in Sect. 7.

2 Related work

Researchers have applied text classification approaches to topics such as text filtering,
document categorisation, automatic text indexing, and to various text sources such as
the World Wide Web, Internet news feeds, electronic mail, corporate databases, medical
patient, records, and digital libraries (Nigam et al., 2000; Sebastiani, 2002). These
approaches leverage supervised (Debole & Sebastiani, 2004) or unsupervised learning
techniques (Le & Mikolov, 2014). A supervised technique uses an already labelled dataset
to train a classification algorithm. In an unsupervised approach, a dataset is labelled using
certain heuristics such as distance measures to cluster related texts (Yan et al., 2017).

Our problem is one of text classification for predicting security messages. We discuss
related works in text classification and specifically its application to predicting security
messages in software development repositories such as issue tracking systems and
version control systems. Researchers have applied a variety of approaches to identify and
characterise security-related messages in software development repositories. A problem in
this domain is the need for a labelled and large enough training dataset sample from which
a classifier can learn accurately (Nigam et al., 2000).

One approach for selecting a training dataset is to select a sample of text from a corpus
by using a set of security keywords (Cleland-Huang et al., 2006; Pletea et al., 2014; Ray
et al., 2014; Pletea et al., 2014) mined security discussions in commits and pull requests

! https://github.com/tosdanoye/fsecext and https://bitbucket.org/ootos/jirasecplugin/downloads/

@ Springer

https://github.com/tosdanoye/fsecext
https://bitbucket.org/ootos/jirasecplugin/downloads/

512 Software Quality Journal (2021) 29:509-553

in GitHub by using a selected set of security keywords and then used the dataset to train
a classifier to understand emotions between security-related and non-security-related
discussions. Ray et al. (2014) used a restricted set of keywords covering different quality
attributes (e.g. security) to select training dataset from commit messages in GitHub as a
sample representation to determine the code quality of different programming languages.
We have applied text classification to develop a generic model for identifying security-
related messages in different software development projects.

An alternative to generic security keyword lists is to mine them from existing reposi-
tories where security issues have been labelled. Such training sample can be obtained
from labelled messages by developers, security champions in an organisation, or security
researchers (Gegick et al., 2010; Ohira et al., 2015; Riaz et al., 2014). This approach can
be fraught with subjectivity and inaccuracies (Gegick et al., 2010); (Scandariato et al.,
2014). Existing training samples can also be mined from security advisory reports (Zaman
et al., 2011) (e.g. Mozilla Firefox Security Advisor, Apache Security Advisories, or CVEs),
or mined from reports generated by a static analysis tool (Scandariato et al., 2014). The
MITRE CWE framework has also been used to manually categorise and label security-
related messages (Tyo, 2016).

Gegick et al. (2010) used text classification models constructed on manually labelled
bug reports to identify security bug reports that are manually mislabelled as non-security
bug reports in a large Cisco project. Their approach was based on document term matrix
construction to identify classification features. Their model successfully identified 78%
security bug reports previously misclassified as non-security bug reports by the Cisco engi-
neers with 98% probability. However, the model performance decreased significantly when
applied on other systems.

Wijayasekara et al. (2014) applied text mining to the Linux bug database to detect ‘hid-
den impact’ bugs (HIB). Their approach is based on term-frequency determination from the
Linux bug reports and mapping to the publicly disclosed vulnerability data from MITRE
CVE within the same period. Our study differs from Gegick et al. (2010) and Wijayasekara
et al. (2014) by exploiting security domain knowledge to extract promising features from
relevant security sources.

Cois and Kazman (2015) developed text classifiers that could identify security-related
messages in issue trackers and applied their models on the large-scale open source Chro-
mium software project. They have used features constructed as n-grams from the text arte-
facts of Chromium and recorded an average of over 85% in recall, precision and f-score.
Our approach differs from Cois and Kazman (2015) because we have manually defined our
set of features whereas they have used terms obtained automatically from the project’s text
artefacts.

Zaman et al. (2011) studied the characteristics of security vs. performance bugs in terms
of fix rates, change rates, and who fixes the bugs. They have used security bugs from the
Mozilla Foundation Security Advisory to represent a security dataset. Our study aims
to develop a generic model for identifying security-related messages in bug reports and
related repositories.

Riaz et al. (2014) manually classified requirement documents in the healthcare domain
to identify security-relevant requirements. They applied machine-learning algorithm to
develop automated tools built on their previously classified oracle dataset to assist require-
ment engineers during analysis. The results show 79% recall and 82% precision.

Cleland-Huang et al. (2006) developed a text classifier by using term-frequency to iden-
tify non-functional requirements from requirement specification documents that were devel-
oped by MS students. The result of the model when applied on an industrial dataset with

@ Springer

Software Quality Journal (2021) 29:509-553 513

terms from initial documents suffered performance reduction. Their results significantly
improved when the terms were augmented with terms from the industrial dataset.

Hindle et al. (2013) performed topic labelling of various non-functional requirements
using semi-unsupervised and supervised techniques on three large-scale relational
databases. They defined a set of generic keywords to build models that could generalise
on the different projects. Their results show an average f-score between 39 and 48% and a
range between 4 and 90%. Unlike the studies above that addressed a broad range of non-
functional requirements, we have focused primarily on security.

Scandariato et al. (2014) applied a static code analysis tool to collect security-related records
of 20 Android applications. By applying text mining approach to software source code, they
formulated their features as a set of source components (actual source files) with their associated
frequencies and then built a prediction model to predict which component is vulnerable or not.
This study is based on mining the actual source code which is different from our work that
focuses on the natural language contained in the software development repositories.

Peters et al. (2017) observed that the presence of security-related keywords in
both security and non-security bug reports (SBR, NSBR) can lead to mislabelling
of SBRs and reduce prediction performance on within project prediction (WPP) and
transfer project prediction (TPP). They proposed a framework, FARSEC, to filter and
rank bug reports to reduce NSBRs with security-related keywords before building
a prediction model. They applied their framework to data and security classifications
drawn from Ohira et al. (2015) and from the Chromium project. Their results showed
a 38% reduction in mislabelled SBRs. The goal of our work is similar to Peters et al.
(2017). However, on the one hand, our work is different from Peters et al. (2017) in the
approach we have used to construct a generalised model. While Peters et al. (2017). uses
filtering techniques on the dataset, we have used a harvested set of security keywords
for our models. On the other hand, we investigate how to improve model’s performance
by increasing the weight of security terms in the training dataset thereby showing some
similarities to their work.

3 Methodology

In this section, we first present and describe our datasets. Next, we present project-specific
approach for extracting features to train a text classification model for a project. Then, we
present our proposed generalised modelling approach. Finally, we describe our experiment
setup, the metrics and our approach for answering the research questions.

3.1 Dataset selection

For testing our models, we have used published datasets from nine different sources
(Table 1), containing messages that have been manually tagged as security related. We now
describe the bug report (BR) dataset we have used in this study.

1) Industrial systems (Comm): We collected data from two projects recorded in the JIRA
production environment of one of our industrial partners. The organisation has a security
champion and has created a security field in JIRA where they manually label created
issues (bug, story, task, or improvement) as security-related or not. This classification

@ Springer

Software Quality Journal (2021) 29:509-553

514

0s €8¢ 9911 - - SIOSMOIQ GO ADAO
1T 0¢ 96 - - QIeM)JOS SUnSYOL], wuwo))
0S 9LTE [495% - - SIOSMOIQ QoM JURIJI B[[IZO]N
0S €8¢C1 99¢6T - - sjonpoad JuareyIg Jyoedy
S0 61 ov6' 1Yy 010C 17 unf 800 0¢€ Snv 19sM0Iq QM wnroy)
8’8 88 0001 10T L1 dos 00T 8T dos WIISAS JUdWAFeURW ASeqRIep [BUONE[AL £qQq
e € 0001 €10¢ 81 dos £00T 8 Tnf QuI3uo uoneIpaw pue Sunnol paseq-dnl y [owre)
01 01 0001 +107 6 AON 9002 0Z 20 SurwwesSoxd eae[10§ yromawesy uonedridde gam paseq-jusuodwo) JOYOI M
6C 6¢ 000T ¥10T 8 Sny 1102 9t dos SIAV [NJLSHY $) Aq padoeq [gom Judwaseuew doopey Lequry
(%) 94s qgs Jo oN sJd Jo 'ON apep pug arep 1elS urewo(| 100l01g

Apmys Ino ur pasn sjesele(q | d|qel

pringer

Qs

Software Quality Journal (2021) 29:509-553 515

has been applied on one of the projects. We downloaded 946 records of which 20 are
labelled as security related.

2) The high-impact bug dataset by Ohira et al. (2015) (HIB): This publicly available dataset
has been manually classified by a team of researchers to allow its use for research
studies. The four projects covered by this dataset are: Apache Camel, Apache Derby,
Apache Ambari and Apache Wicket. The dataset contains a total of 4000 records with
160 records manually labelled as security related.

3) Chromium dataset: The chromium dataset has been prepared and used in Peters et al.
(2017) The dataset is available online?, and we have downloaded the entire dataset and
reuse as-is in our environment.

4) Apache projects dataset (Apache): We downloaded data from Apache JIRA open-source
projects where developers have manually labelled their recorded issues as security
related. We search the apache Jira URL at ‘https://issues.apache.org/jira’ and use the
search criteria ‘labels =security OR labels = ‘security’ OR labels =security-issue’.
The query yields a total of 1283 records for different projects in Apache. The records
form our security bug reports (SBR). We separately downloaded 10,000 records for 10
different products using the search criteria ‘labels is EMPTY’ from which we randomly
extracted 1283 records as our non-security-related bugs (NSBRs).

5) Mozilla dataset (Mozilla): We downloaded security bugs from the Mozilla bug tracking
system at ‘https://bugzilla.mozilla.org’ by using the search criteria ‘group: security’
yielding a total of 3276 security bug reports (SBR). We separately downloaded 10,000
records for 31 different products using the search criteria ‘status: all” from which we
randomly extracted 3276 records as our non-security-related bugs (NSBR)

6) Orthogonal defect classification-vulnerabilities (ODCV)(Morrison et al., 2018a) is a
publicly available dataset (https://sites.google.com/a/ncsu.edu/odc-v/) of 583 security
vulnerabilities and 583 non-security defects collected from three open-source projects
(Chrome, Firefox, phpMyAdmin), classified according to a security-enhanced version
of Orthogonal Defect Classification (Chillarege et al., 1992).

3.2 Design and analysis approach
3.2.1 Feature selection approaches

In this section, we describe three feature selection approaches that we have used in our
experiments:

3.2.1.1 tf and its variants—project-specific modeling approach Term frequency (tf) is a

standard metric for determining features in document classification problems (Manning

et al., 2008). Term frequency is computed by tokenizing each document in a document

corpus and collecting the number of occurrence (frequency) of the unique terms in the

entire corpus. Subsequently, a document term matrix (DTM) can then be constructed from

the document corpus using these terms. As an example, if we have three documents namely:
D1 =‘owasp top software errors’

2 https://bitbucket.org/fayola2 I -lero/farsec47/src/master/resources/data/scrubbed/

@ Springer

https://issues.apache.org/jira
https://bugzilla.mozilla.org
https://sites.google.com/a/ncsu.edu/odc-v/
https://bitbucket.org/fayola21-lero/farsec47/src/master/resources/data/scrubbed/

516 Software Quality Journal (2021) 29:509-553

D2 = ‘buffer overflow is dangerous’
D3 = ‘software errors include buffer overflow errors’. A DTM is represented by tokeniz-
ing the documents and generating a term frequency for each text token as:

owasp top software errors buffer overflow is dangerous include

| Dy 1 1 1 1 0 0 0 0 0
b = D, O 0 0 0 1 1 1 1 0
D; O 0 1 2 1 1 0 0 1

where the topmost row represents the unique tokens in the entire document corpus, and
the leftmost column represents each document. The values in the matrix represent the
frequency of terms (number of times the term appears). An algorithm can then use term
weighting or normalisation techniques (Manning et al., 2008; Sparck, 1972; Forman,
2003; Sebastiani, 2002) to determine the most interesting terms that could represent each
document from the document corpus.

In this study, we have considered the normalised variant of term frequency-inverse
document frequency (tf-idf) (Manning et al., 2008) as used in Peters et al. (2017).

The normalised #f-idf is computed as:

Normalised term frequency: ntf, , = 0.5 + D1y

max(if 4) M

where ff,, represents the number of times, term ¢ appears in document d, and max,

represents the frequency of the term with the maximum occurrence in document d. The

smoothing term, 0.5, is used to avoid a large swing in ntf, , from a small change in #f, ;.
Inverse document frequency: idf, = log% 2)

where N=number of documents in the entire document corpus, and df, represents the
number of documents where term ¢ appears. The intuition behind idf is that terms that are
frequent in all documents may not discriminate very well and will thus be penalised with
low idf. Conversely, terms that occur in a few documents may be more interesting for the
documents where they appear and will thus be weighted with higher idf.

Term frequency-inverse document frequency: #f — idf, = ntf, ; X idf , (3).

The tf-log is computed as

Term frequency (Logarithm): f — log, = 1 + log(¢f, ;) (4).

A project-specific approach can use any of #f, ntf, tf-idf or tf-log metrics based on a
threshold (e.g. top n terms) to determine the most promising features. For example, Peters
et al. (2017) use the top 100 terms with the highest #f-idf values as their feature set.

3.2.1.2 Our generalised modelling approach In this approach, we first manually define
security keyword list by extracting security keywords from popular and relevant security
sources as depicted in Fig. 1. The feature set used in this work is based primarily on keywords

‘\dent\fdvslecunty Tokenize,remove ,OMa"ua"y | /OManua"y eview e categmi Security features
glossary datasources stopwords, print tokens review each token additional security datasources
_ : o S
RFC4949,NVD & 3 CWE, OWASP, SAN.
j password
ﬁ - fingerprint - -
__encryption

Fig. 1 Extracting security feature list from security data sources

Kundas-oN

@ Springer

Software Quality Journal (2021) 29:509-553 517

extracted from the REC4949° (Internet Security Glossary) and NVD* datasets. We also used
MITRE CWE,”> OWASP,® SANS,” and programming language exceptions (e.g. PHP®). We
parsed and tokenized the full text removing English stop words from the list and manually
reviewing the collected terms. We reviewed the other listed sources (CWE, OWASP and
SANS) manually for security keywords by reviewing their high-level documents. For example,
with CWE, we mainly reviewed the ‘Research Concepts’ view where the graph shows
high-level description of the CWE errors. Similarly, for OWASP, we reviewed annotated
categories such as attack and control, and for SANS, we reviewed the top 25 software errors
and extracted relevant terms. Next, we classified the keywords into four categories namely:

e Assets: set of terms that represents data or information that should be protected by an
entity (e.g. PII, credit card, ecash, token, keys, and session)

e Control: list of terms that represents implemented security controls or mitigations (e.g.
authentication, checksum, captchas and encryption)

e Attack/threats: list of terms that represents security attacks or threats to a system (e.g.
xss, backdoor, injection, vulnerability, untrusted data)

e TImplicit: list of terms that does not fall under these categories and many times are
implicit security-related terms (e.g. incorrect, wrong, invalid, restrict, null pointer
exception)

Our approach relies on this set of keywords that we have defined to form a feature
set. A key point in machine learning is that better features tend to outperform a cleverer
algorithm (Sparck, 1972; Salton & Buckley, 1988; Wu et al., 2008; Forman, 2003).
Domain knowledge can improve data knowledge and representation and thus improve the
model. In addition, the feature space can be reduced with less computationally expensive
modelling operations (Wijayasekara et al., 2014) than using frequent terms computed from
a document term matrix (Feinerer, 2013).

3.2.1.3 Classification models and performance metrics Based on the approaches described
in Sects. 3.2.1.1 and 3.2.1.2, we derive four different classification models based on two
feature selection methods (see Fig. 2):

1. Model fsec-ext+ uses the harvested security keywords as feature set and includes
security keywords from the list of attack/threat, control, asset and implicit terms as
records in the training dataset. This approach aims to increase the weight of the security
terms by including them in our training set and setting them as SBRs (see Table 2).

2. Model fsec-tfidf uses the tf-idf metric (Eq. 3) and preset to top 100 as used in Peters et al.
(2017) This metric is project specific as terms are determined from the security bug
reports of the project. Following the argument that the top 100 terms span nearly all the
feature families of the vulnerability reports (Bozorgi et al., 2010), we adopt these terms
for our experiments with the aim to also be able to compare our results.

3 https://tools.ietf.org/html/rfc4949

4 https://nvd.nist.gov/vuln/data-feeds#XML_FEED

5 https://cwe.mitre.org/data/definitions/1000.html

® https://www.owasp.org/index.php/Category:Attack, https://www.owasp.org/index.php/Category:Control
7 https://www.sans.org/top25-software-errors/

8 https://www.php.net/manual/en/spl.exceptions.php

@ Springer

https://tools.ietf.org/html/rfc4949
https://nvd.nist.gov/vuln/data-feeds#XML_FEED
https://cwe.mitre.org/data/definitions/1000.html
https://www.owasp.org/index.php/Category:Attack
https://www.owasp.org/index.php/Category:Control
https://www.sans.org/top25-software-errors/
https://www.php.net/manual/en/spl.exceptions.php

518 Software Quality Journal (2021) 29:509-553

Test (50%)

1
I
|
I
1
I

v

]

sort & split by date
/summary

Data (100%)

:@

Feature
Generation

=

Fig.2 Experiment setup and modelling approach

3. Model fsec-ext uses the harvested security keywords as feature set as in fsec-ext+ model
but exclude the features from the training dataset.

4. Model fsec-tfidf+ uses the tf-idf metric (Eq. 3) as in fsec-tfidf but includes the features
in the training dataset.

3.2.1.4 Performance metrics We report the recall, precision, probability of false (pf)
alarm, f-score, g-measure and area under the curve of receiver operating curve (Powers,
2011) (aucroc) to show the performance of the text classification models (Sebastiani,
2002; Peters et al., 2017). We included pf and g-measure in order to compare our work
with Peters et al. (2017). The g-measure provides the harmonic mean between recall (true
positive rate) and true negative rate (100—pf) while the f-score measures the harmonic
mean between recall and precision. The roc measures the relationship between true

Table 2 Example of text and security keywords added to form our training dataset

Text/feature Label

backdoor
password
CAPTCHAS
cipher

security

O = = = = e

CSS style Parser does not handle style names with leading dash
Consider the 0 following fragment:

—_

Idap injection
Authentication with ZeppelinHubRealm throws 403 error 1

In some cases, depending where authentication server is deployed and what services are used, it is
possible that httpcomponents client request headers are not approved by the security rules...

Font size to paragraph config font size for paragraph text 0

@ Springer

Software Quality Journal (2021) 29:509-553 519

positive rate and false positive rate (aka pf) of a classifier at different thresholds, and
the auc computes a single metric that provides the area of a classifier under the roc.
This allows a fair comparison of the performance of one model to another. The metrics
are computed from true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) where:

TP =number of security records correctly identified as security records

TN = number of non-security records correctly identified as non-security records

FP =number of non-security records incorrectly identified as security records

FN =number of security records incorrectly identified as non-security records

as follows

Recall = _TIP
TP + FN
.. TP
Precision = ———
TP + FP
FP
P = mprn

Precision * Recall

F —score =2 X ————
Precision + Recall

2 x Recall x (100 — pf)
Recall + (100 — pf)

g — measure =

3.2.1.5 Constructing training and test matrices from feature set We use the hand-crafted
keywords (custom dictionary list) for fsec-ext model as the feature vector. In the case of
[fsec-tfidf, the 100 terms forming the dictionary list is generated from SBR of the training
dataset as used in Peters et al. (2017). In both cases (fsec-ext and fsec-tfidf), the derived
features are used to construct the training and test matrices as shown in Fig. 2. We use the
tf-log metric (Eq. 4) when a word matches the feature vector otherwise, we record a ‘0’.
The example below demonstrates how the document-term matrix is constructed using a
predetermined dictionary list.
Assume a document contains 2 texts with classification categories as follows:

Text Classification
Diffucult to place caret at the end of a line in Show All Tags view 0
Allow Personal Security Password > 30 characters 1

Given a set of security keywords, F determined by fsec-ext, or fsec-tfidf, such that
F = {password, xmli, security, overflow }, we arrive at vectors:

V(text])F =[0,0,0,0]

V(text2)F =[1,0,1,0]

and a matrix: M (rext,, text,) = [(1) 8 (1) 8] N [(1)]

@ Springer

520 Software Quality Journal (2021) 29:509-553

3.2.1.6 Text cleaning and transformation approaches We have used the four datasets
from Ohira and the cleaned and scrubbed version of Chromium dataset from Peters et al.
(2017). In addition to the four datasets described in Sect. 3.1, we remove stop words
from all the nine datasets and remove unwanted terms from Chromium and the HIB
dataset using the list from Peters et al. (2017). We then collect only text data from each
dataset using the regular expression ["a-z A-Z]. After these steps, we tokenise the text
and transform the documents (SBR or NSBR) into a document term matrix as described
in 3.2.1.5.

3.2.1.7 Generating training and test dataset We split the Ohira dataset and Chromium
dataset by using date and exactly as reported in (Peters et al., 2017) into 50% past and
50% present. The training dataset represents the past while the test dataset represents
the present. In the case of ODCV, Apache, Mozilla, and Comm dataset, we sort by
the ‘Summary’ field and split into 50% training and 50% test dataset. Table 3 lists the
properties of our training and test dataset in terms of the number of security bug reports
(SBR) and non-security bug reports (NSBR). The test dataset is unseen data that is used
to evaluate the true performance of the constructed model.

3.2.1.8 Class imbalance and sampling techniques Wicket, Derby, Camel, Ambari,
Chromium and Comm datasets are highly skewed with SBRs accounting for 1%, 8.8%,
3.2%, 2.9%, 0.5%, and 2.1% of the total bug reports respectively. Imbalance data is
known to reduce the performance of classifier on the class where the data is sparse. The
BR is highly skewed with very few reports labelled as SBR. We deal with this imbalance
in our training dataset by either over sampling or under sampling (He & Garcia, 2009)
the NSBR depending on the ratio of SBR to NSBR in the project. We treat sampling ratio
of NSBR to SBR in our training dataset as a treatment in our experiment to determine
which sampling ratio can produce adjusted training dataset that can best be learned by the
classifier. In other words, we do not change the size of the SBR in our training dataset;
rather, we adjust the size of NSBR by a factor of SBR as listed in Algorithm 1. In line
6, instances from NSBR are randomly picked by using a random number that returns an
integer bounded by the size of NSBR.

Table 3 Properties of the training and test data

Project Training Test
No.of BRs No.of SBR No. of training No. of SBR No. of test ~ No. of
in training SBR in
test
Ambari 1000 29 500 22 500 7
Wicket 1000 10 500 4 500
Camel 1000 32 500 14 500 18
Derby 1000 88 500 46 500 42
Chromium 41,940 192 20,970 77 20,970 115
Apache 2566 1283 1283 664 1283 619
Mozilla 6552 3276 3276 1664 3276 1612
Comm 946 20 473 6 473 14
ODCV 1157 571 579 128 578 443

@ Springer

Software Quality Journal (2021) 29:509-553 521

Algorithm 1: Over0 NSBR in Training Dataset

1: balanceNSBR (SBR, NSBR, factor) [factor is of primitive type double and > 0]
2: add (datastore, SBR)

3: if NSBR.size > SBR.size or NSBR.size < SBR.size then

4: adjustedSize = factor * SBR.size

5: for 1to adjustedSize do

6: 3 ize)])

7. endfor

8: else // SBR == NSBR

9: add (datastore, NSBR)

10: return datastore

3.2.1.9 Training parameters and treatments Some terms must be weighted higher than
the others. Term weighting is a known technique in machine learning (Salton & Buckley,
1988; Wu et al., 2008). The objective is to allow the algorithm to learn a function that
prioritises the term or feature with a higher weight. Our approach is to give a higher weight
to the security features (attack/threat, asset, control, and implicit terms). To achieve this, we
classify every term in our feature set to be security related. These terms are then included as
SBRs in our training dataset as shown in Table 2.

For the fsec-ext feature selection method, we experiment with using different
combinations of security category such as attack/threat (T), asset (A), control (C) and
implicit (I) terms to train our classification model. We devise seven combinations from
these categories (see Table 4)—T, C, TC, TA, CA, TCA, TCAIL The intuition is that
different projects may report on different security category which in turn may influence
the quality of the learner. In addition, this approach can provide insight into the dominant
security category and issues for a project. Furthermore, we experiment with including and
excluding these security categories as SBRs in our training dataset. Lastly, we experiment
with class imbalance ratio by adjusting (over- or undersampling) NSBR size relative to
the size of SBR. For instance, a value of 0 means the original size of SBR to NSBR in the
training dataset is kept, and a value of 1.0 means the ratio SBR:NSBR is 1:1. Table 4 lists
the parameters and the corresponding values we have adopted in our experiments.

3.2.1.10 Experiment setup and modelling approach Figure 2 shows our experiment setup
and modelling approach. To answer our research question, we investigate two prediction
targets, Within Project Prediction (WPP) where a project’s prediction model is used to
predict on the project’s test dataset and Transfer Project Prediction (TPP) where a project’s
prediction model is used to predict on the test dataset of other projects. In total and using
the treatments listed in Table 4, we constructed 3600 prediction models for each project’s
dataset, 400 models for WPP and 3200 models for TPP as listed in Table 5. All data, source

Table 4 Treatments and parameters for training dataset

Treatment Values Feature selection method
Security Category Threat (T), control (C), asset (A), fsec-ext
implicit (I)
Include Security Category in Training true, false fsec-ext, fsec-tfidf
dataset
Class Ratio (SBR: NSBR) 0.0,0.5,1.0,1.5,2.0 fsec-ext, fsec-tfidf

@ Springer

522 Software Quality Journal (2021) 29:509-553

Table 5 Experiment details

Prediction approach ~ Prediction models Total

WPP 1 dataset

5 machine learning algorithms (RF, SVM, NB, LR, KNN)

2 feature selection approaches (fsec-ext, fsec-tfidf)

7 security categories (T, C, TC, TA, CA, TCA, TCAI) for fsec-ext

2 Boolean include security category in train (True, False)

5 class ratios (0.0, 0.5, 1.0, 1.5, 2.0) 400
TPP 1 dataset

8 targets

5 machine learning algorithms (RF, SVM, NB, LR, KNN)

2 feature selection approaches (fsec-ext, fsec-tfidf)

7 security categories (T, C, TC, TA, CA, TCA, TCAI) for fsec-ext

2 Boolean include security category in train (True, False)

5 class ratios (0.0, 0.5, 1.0, 1.5, 2.0) 3200
Total 3600

code and analysis scripts for our experiments are available online.” We have used five
common text classification algorithms that have been used extensively in the vulnerability
and defect prediction community (Joachims, 1998); (Peters et al., 2017) namely support
vector machine (SVM), random forest (RF), Naive Bayes (NB), logistic regression (LR)
and K-nearest neighbour (KNN). We have used the Weka (Witten & Frank, 2005) machine
learning library version 3.8.4 with the default parameter settings for the five algorithms.

3.2.1.11 Complexity of our approach A DTM typically yields a large number of terms that
are used as features for training a prediction model. Both the size of the features and the
training dataset influence the complexity of learning algorithms. For instance, the best-case
time complexity of random forest (Louppe, 2014) for building forests of M randomised tree
on N observation points and using K randomly drawn features (variables) from a total of
p variables (where K <p) is given as O(MKNlog®N) and the worst case as O(MKN?logN).

Assume the number of features in fsec-ext is P, and N is the total bug records
(SBR+NSBR) in the training dataset (i.e. observation points), fsec-ext+ includes the
features P in the training dataset to increase the observation points to N+ P. This implies
a complexity that is dependent on N or P depending on which one is higher. P>N exists
for cases where the number of features is more than the training bug reports. Examples
are the Ambari, Wicket, Derby, Camel, Comm, ODCV and Apache dataset. While N>P
exists for cases where the number of training bug reports is higher than the number of
features. Examples are Chromium and Mozilla dataset. Using random forest, which has the
worst running time in our experiments, the worst-case time complexity when N> P will be
O(MKN*og(N +P)) and when P> N, it will be O(MKP*log(N +P)).

3.2.1.12 Comparing with Peter’s etal.(2017) We compare our results to Peters et al. (2017)
where applicable. Peters et al. (2017) use filtering techniques named FARSEC to remove

® https://github.com/tosdanoye/fsecext

@ Springer

https://bitbucket.org/ootos/fsecext-sqj

Software Quality Journal (2021) 29:509-553 523

NSBRs that contain security crosswords from the training dataset. A security crossword is a
feature (or dictionary term) that exists in both the SBR and NSBR. FARSEC filtering works
by first identifying 100 terms with the highest #f-idf as defined in Eq. 3 to form a dictionary.
Next, for each term in this dictionary, FARSEC computes a score which is the probability
of the term appearing in SBRs and NSBRs. FARSEC proceeds to score each bug report by
retrieving the scores for all the dictionary terms found in the bug report and then producing
an overall score or ranking for this bug report. Finally, FARSEC filters out NSBR with
overall ranking > 0.75 from the training dataset. Rather than focusing on filtering NSBR,
we take a different approach by focusing on feature selection methods, term weighting and
sampling of imbalance dataset. To have a fair comparison with our work, we have used the
top 100 terms identified using the same #f-idf metric defined in Eq. 3 to generate our feature
set for the model fsec-tfidf.

Table 6 lists the security keywords generated by fsec-tfidf for each project compared
with the list in Peters et al. (2017). We observe some slight differences in both lists. We
speculate that the differences may be due to differences in the programming language
used and especially how tokens are derived from the documents. For example, the token
‘interfacerequest’ keyword from Peters et al. (2017) in Wicket is not a single word but
a substring from e.g. BookmarkableListenerInterfaceRequestTarget. Such differences can
account for the disparity between our list and Peters et al. (2017).

3.2.1.13 Approach to research questions We now define our research questions and
hypotheses based on our overall question. Broadly, we investigate whether using features
based on external data sources can produce prediction models that improve transfer project
predictions on other projects. We then investigate whether including security features in
the training dataset can improve the performance of a model. Lastly, we investigate if these
modelling approaches have significant effect on within-project predictions.

We formulate our research questions and hypotheses as follows:

RQ1: Do externally sourced features generalise better than project-specific
features for TPP?

We test the hypothesis: H1: fsec-ext/ fsec-ext+ can generalise on other projects
significantly better than fsec-tfidf/fsec-tfidf+ for TPP.

RQ2: Does including security features as SBRs in training dataset improve model’s
performance over models that exclude them for both WPP and TPP?

We test the hypothesis: H2: fsec-ext+ significantly outperform fsec-ext and fsec-tfidf+
significantly outperform fsec-tfidf.

RQ3: Do models that utilise external sources for features outperform model that
uses project-specific features in within-project prediction (WPP)?

We test the hypothesis: H3: fsec-ext/fsec-ext+ significantly outperforms fsec-tfidf/fsec-
tfidf+ for WPP.

We investigate the performance measures of each model type we have defined on its
own dataset (WPP) as well as other projects’ datasets (TPP) and compare the results. Both
goals are complementary and important to the goal of our study, as a model that performs
well on its own dataset but poorly on another dataset would not be useful for generalisation
purpose. Conversely, a model that performs well on other datasets but poorly on its own
dataset may be useless. We use summary statistics showing the minimum, maximum and
average of the performance metrics to explain our results. A well-generalised and robust
model will show high minimum and mean g-measure, recall, f-score and low standard
deviations. To capture this generalisation effect for a target, we collect the prediction

@ Springer

Software Quality Journal (2021) 29:509-553

524

Apuarmosuod uoneosriddeqom
19sn 9oy Aqrea1 Sunsod 1]y SYUBYIUOOS SIAAIIS AJLINDIS Jrednnur
ystp jueprodur pajeard Juipeordn puy ye[dwosur aords 3senbarosied
aseqpeojdnajypeodninnioyoim mory) Snq rondooxapeordnay 10jAseo
Suneos soyew yuIy) 9[dwexd punoreyIom pI[[ooued JUOAUR J[PURY Juem
poyiow 251e] odoy s1odofeadp [nneael 19[a19sd)y 9[0Lo3sanbar 510
PaIndo0 s[rej 939[ep Sungrep xy peojdn aedowoy waqoidssafae)s uaw
323838 Apal yoedun [[nyssoons 1o30oydssa[)eIs dewanea sajeard dpy
Teuy Arenuew [enoesuado 2onpoIdar 1oU)SI| 99JINULIIU)SI[ISINDAI
uado 1081e1150nba100B I0IULIOU]SI[}ORIISqR POPIIOINSUT SASNED UISO[
payoadxasienuapard awodaq sweled sisA[eue spuaddey 1oyus Addey
ouedurusts uondooxs Arerodwa) 921n0s 10119 J9praoidejep pajrwl|
oseqejep 95ed so[y payoe)je SOLNUD JUNOD JIesyoInb spregarrogojur

18 91dnod 3isiy s[es yusuodwod waojurusis 103 aedowoyssafarels uel uosear

SOUSBIO UNJ QUI] JNOYIIM
S9SN 9SNEO WAISAS AeM MOUY JUBM WNTWOIYIPIUI[AYS SUOTSIOA STIN
sd)y Jnjwesy Jur $S9008 SB[1SU0d dwn) uondniiod dwe mojfe so[y
A1y [TEJ YSLI pUnoj p[nod SuIyiowos Joeq snoIdIew J0Le pajoadxs odAy
mau jduoseael aIns JooeiIe XU payoeiie Jull Juryy promssed s1osmoiq
aew aseard 159 ATIqeIaunA 323 YOI[O MopuIM J[dUIEXd JUAUOD YSBId
WNIWOIYD BIEP LIeJes $)s3) pasn SuISn MOIA P[NOM OS[e UOISIOA SWAIS
uonouNy [UWY 9sn XoJaIy AIowew qe} s19sn duo waqoid opod qom
smopuim Jasmoiq 1] 3d1os 913008 3nq uado 91s ansst Aewr saFueyd uos
€6 -lod paynou paire)s 99s [in dyy 1esn peojumop oed A)noss sworyd Iy

1od
-deim)o[ates speary) [[eo s1adojeadp Sunsod mory) 3nq Funes oSre| ysip
QuoAue ATear juem jsonbarosied Surpeordn punoreyIom JUIy) pa[joouLd
9yordwoour seyewr adoy Asea jrednnu poyjowr jueiiodwr puy I9AI9s A1
-nd9s o[dwexa a[puey pajeard adeds ooy uonesjddeqom 510 peoydn syrey
3uno[ap 9)9[ep XY PaAINdd0 J[dAdsanbar jouedurusis worqordssafares
Kddey dewanpea ugis 19ju9 Arerodwa) yoedun uado sisATeue urgof uaw
re)syoInb Ioussipoensqe feuy [enoesuado [nJSsaons sasned saJeard
PapPa9dONSUT J90dYossI[oIels spuaddey 1ous)sI [nJore)s WIOJUT dW0Iq
A[renuew oSedawoy jsonbarooe)royur uondoeoxe dpy swered pajoadxasien
-USPAID Q0BJISULIoUA)SI[Isonbar A)3of wiojuruSIs 90In0s umousjun IorIo
eael 1811 108 a8ed uosear sarnua 1939)ur aseqerep 9[dnoos uel junod sa[y
paywt] Jusuodwod spresar ropraoidelep s[red payoeye aSedowoyssafalels
Jy3rw papeo|
PaaU [SS S[Tejop [y A1eniqie o[y [[IS WoISAS Juem [TeJ asned sasn Aem
SUOISIOA MOUY JNOYIIM JUI S[IN SOYSBIO $S9I08 Jorq 159) uondniiod oid
-wexe owr) pajoadxe MO[[e punoy A1) 9seaaI YSII p[nod aseo[d snororew
Jmuwed] 1drroseae[10119 mau Ligjes SUIYIQWOS JUJUOD JSU0D XY 193 elep
IoYOR)E PAYOR)IE YUI[SIOSMOIq aIns AJ[IqeIdunA ury) promssed 1o
USEIO WNIWOIYO SIOSN e PIsn MIIA JUISN P[NOM SN UOISIIA OS[e
qe) sweas we[qoid $1s9) UOTOUNY X0JaIy AIOWSW U0 IPod qam sdny
MOPUIM SMOPUIM 9 Josmolq 9[3003 uado Snq ay1s [1n 99s Aewr saueyo

paynou uosiad parre)s 1osn peojumop dny a8ed swoIyd AJLINo9s o[WNIWOIYD)

UIRINY (001 doy) s;mQ

(001 do1) (L107) Te 10 s193d

(800T “Te 10 Sutuuel) fpi-fi PISI[EWLIOU JY) SUISN WOIJ PIALIOP SPIOMADY PAIR[AI-AILINOAS 9 d|qe]

pringer

525

Software Quality Journal (2021) 29:509-553

88

6

B[UNYNS[YASI9SIR[SUIPLAIYIIMANSSTAD
-edsdeayeae(wos uonewojur JnowoijAdodsanninoledinsar agessowsuwls
-whusuodwoo jses] dwersnowreurasnxoqunsoy[eso[dijrin I9peayoAoal
SIOAIDS Y[BIEP UAYO) PAIRUSIBLOUOD SUIYIOWOS UsS Io[puey Lindny
woisno saroust yurodpuadiys pajosjod poyrewr syoede oas[o uondooxa Sur
-MO[[0} 93UBYIXA JUaIU0d Surysnd JOAIMOY SISSB[J PAseq JOWNSUOD MU
ssed yyed A1oarpapar dnysjqqeu pauado swl pasn uondaUUOd SIOBLINUI
110dwir A1owow)39Inoa sajpunq deay [Sp asudI| IS0y Yine 2)e3o[ep
SurApopun jurodpua0oipuasidodraiur s[rej 210UST JAOWI YYD a3es
-SQUIoWIBD SANSST JUs sn d) 9S8O SMOIY) JUISN SUBIW SAUI] A[JUSIIND
ap1aoid ooue)sur 19A19s 110oddns Quo sa3essow 10119 oY ANoI payroads
ur3of asodxa s1opeay Anel 110d oness syurodpus 99s dojs ansst s9[y Jur
-ss9001d ose Juauodwod 1 pnom dyy jutodpus 1opeay ofessowr 510

pajuemun Njows
rediourid 10119 $309330 Suoim Joyoen sasned Lreque Arewrid soAR[S SjuaUI
-ugisse doopeyjuoodle aseqy Jurssiu pounsa) ypl I9[[0NuUOd U oI1q
paidew apou ayeys eiSues 1oisew Jurpiom dwre sjorjnIe pasd0] apouwt
13oweu SoWeRU OpIs PAsTwolsnd pdny uoneSiaeu asye] KI0309IIP 1S9} 1031
-100ul payono} Jodeayooz aredaxd oy jsoy 1drios unjal urjqeus apraoid
119 Yoouo awy pa[qesIp sisoy A1) onn uoneinsguods uonensigar suondo
so1geu os[e a3ueyod [In Syuod dnjas snjess [[eIsul pandaxa uorssrurad Xy
SOOIAIOS O[qESIP PAsn PEAISUI [SS SUILUIISN 9[qEU qom Jsonbar apoueyep
a3ed awreu jnejop sSyuod ppe asn ayew A11adoid 198 Jouued 1Ie)s 1ISN[O

JIoSN UOTJEPI[eA MO[[E S[TeJ SUOISSTIIad 9INd9s 90TAISS PIBZIM AJLINO9S

as[e) Jurodpuadoou SINSAT ASD PUOIIS poyjau Jusuodwoodyy

Kdoo eyep yss Jurropun 9)e3o[ep pareud)eouod swil srowar jurodpuadyys
P9199)01d 1] SUIYIOWOS SISAIIS SAIOUST WOISND U0} JA[pUBY Jno[euon
-dour [[nu oyoede as1o uondadxa Surmor[oj a3ueyox? jutodpuoynsalr Apoq
-payoadxo Surysnd JS[PUBYIOLID J[NEJOP JOAIMOY] SISSB[O Paseq ASed Mou
yied ssed sownsuod soppung dyysrqqeu deay A1owaw Yoy UOTOUUOD
pasn jutodpuaojpuasidosioyut yine AI19A1[opal s[rej 1soy pauddo saoejIul
ISP 9SUQJI] 910UST SANSSI asn sueawr Juas dij ooue)sur Ajjuarmd apraoid
smoly) 3ursn saul] 10A19s 110ddns s19peay $25BSSAW SUO JOLID (Y AJNOI
ur3o] Surssaooid y10d payroads sjutodpua Apaf one)s o9s asodxa dois

anss1 os[e s9[y juauodwod Lin pynom 10 1apeay jutodpus dyy oFessowr

ann

IoIIe Paau oeq 10doax007 1s9) 9pou aseqy SUOIM AYOWS LIeqUIE I9)SEW
payoo[aredaxd erjSues uoneSiaeu Surssiur 9)e)s pdny SuryIom soweu
paxdewr opounse) Arewtid uay01q SeSNED SS[EJ PAIUBMUN APOW SO
pastwoIsno yyed K1030311p SWRUIISN IPIS SIAR[S SJUSWUTISSE S)oRJIIe
3001100UT payono) Tedrourad sonyrey o[y ansst 1d11os [[ed apraoxd unjer
awn [[eIsur Jsoy pI[qesIp yoayd Surjqeus A1 uonemsyuod [afueyd
os[e sysoy uonensigal sordeu dpy dnyos paynosxe suondo uorssrurrad Xy
J[qQESIP JOIIA SAIIAISS pasn piomssed [ss gam d[qeua peajsur jsonbar sweu
Kyradouid jynejop asn ppe opoueyep s3yuod a5ed oyew 195 Jouurd I)SN[O

IOSN UOTJEPI[BA 1T8)S MO[[E SUOTSSTILIAd S[TEJ 2INJ2S 9OTAISS PIBZIM AJLINJDS

YOIING

(001 dop) s;nQ

(001 dom) (L107) Te 10 S1030d

(ponunuoo) g s|qey

pringer

As

Software Quality Journal (2021) 29:509-553

526

Apoar
-100UT 0M] 9FBSSOW SUTEIUOD dsh J1asul [bs sanfea Anooxo eiil £y syoof oo Apderroour ofessaw yredsserd jur asn [bs synsar opowr
opow 103311 jur ySnoy) yoes p[nod ajepdn Jnoyirm oyew pus oweu A3y om) SY0O[SUIejuod sAneu y3noy 1o3311 ayew pinod dyy ojepdn puo
eyde £1030911p UMOIY) SMOI JULIND UOTJRWLIOJUT QU0 UONEdINUIYINe Jef 9)BOIO QUO SWEU JNOYIIM UMOIY) BYd[e UOTJRULIOJUT PUNOJ 950ART SMOI

Korjod Juar[o 91| paTe] 1Ie)s 9)ea1d pojueIs ayoAal urew pagoratid uon umowdjun yoe)s Jaels Aorjod rel uns uondAIoud NUIY) MU UOTJOUUOD K10}
-J0UU09 MU Spaau uolsstuIadary uondA1ous [[ed YuIy) PeaIy) Poyldwl -9IIp SPIdu uoneonuayine pajueld urkn uorssturadory poyleu s aqpl

Su1k1 195 23s pasn waqoid uondooxaKIIndds sse[d pairnbar 901nos 995 Juar[d padaoiaLid wajqord pafrey a1 pasn pinom uondaoxaAILInoos
J90[q P[nom J[qe) JoFeurWAILINOIS SO[Y SUTUUNT JUSUWAIL]S JOUUOD 300[q PeAIY) SSBIJ JO2UUO0D J[qe) AINOS JUAWIRIS paIrnbal [[ed sy
JI0M1U SUTMO[[O] UOTSIIA [Tef JoSeuew Pasu 9[eI0] S[Tey oqpl uni 1esn SUIMO[[0] JIOMIQU JOTBURWIAILINIDS FUTUUNT [Te] UOISIOA PAJU S[TeJ unt
pea1 o[y punoj Jiunl apod aseqerep paruap 1oddns s159) ssadoe Funsa) 9[eo0[IoFeUBW peal Jasn 9pod seqelep uondaoxa a1y Junl parusp 110d -
€6 uondooxa Fursn 10110 uorsstuniad 1593 £q1op eAe[A)11n09s 19A10s 510 -dns 10119 $159) $s200€ Juisn eAel uorssturrad AqIop 1593 19AIAS A11INd3s S10 KqrQq mo
LR AV (001 doy) smQo (001 do) (L107) '[e 10 s101ed 1oloig 4,

w
(ponunuoo) gajqer &l

Software Quality Journal (2021) 29:509-553 527

performance results from each source per treatment—algorithm, selection method, ratio
and security category. For eight (8) sources, this will yield a total of 8 performance results
per target per treatment. We then compute the minimum, maximum, mean and standard
deviations for g-measure, f-score and recall. These statistics allow us to truly appreciate
how well a given model can generalise across all projects.

We follow the guideline of Demsar (2006) (He & Garcia, 2009) and use the Wilcoxon
signed rank test (a non-parametric test) at 95% confidence level to compare (1) whether
the performance of each model (fsec-ext or fsec-tfidf) significantly improve when security
features are included (fsec-ext+ or fsec-tfidf+) over when security features are excluded
and (2) whether the performance of model fsec-ext is better and statistically significant or
not to model fsec-tfidf. In addition, we perform effect size check on our results. As noted
in Kampenes et al. (2007), effect size quantifies the size of the difference between two
groups and allows us to judge whether the conclusions drawn from our hypotheses testing
are meaningful or not. It might be possible that the effect size is negligible even when the
statistical test is significant and vice versa. We apply the Hedges, g standardised effect size
measure calculated as:

X —X
Hedges, g = il
P

where X, and X, represent the sample means for classification measures (recall, f-score and
g-measure) for the model pairs per project (e.g. fsec-ext vs. fsec-ifidf) and S, represents the
pooled standard deviation computed from the standard deviations of s; and s, of the two
groups. Effect size results can be interpreted in different ways as explained in Kampenes
et al. (2007). For fsec-ext+ vs fsec-ext and fsec-tfidf+ vs fsec-tfidf, we use paired data. That
is, each data pair contains metric values of model before and after treatment. The treatment
in this case is including security features as SBR in the training dataset, all other variables
for both groups are kept constant—i.e. algorithm, ratio and security category. For fsec-
ext+ vs fsec-tfidf+ and fsec-ext vs fsec-tfidf, we use unpaired data by collecting top 20
results for each model type and then test which group’s mean is significant to the other.
We compare our results with those reported in Software Engineering empirical studies
categorised under Table 9. The size category for 284 estimated values for Hedges, g is
given as Small: 0.00-0.376, Medium: 0.378-1.000 and Large: 1.002-3.40. We have used
standard statistical packages in R (2008) for these purposes.

4 Results
4.1 Harvested security keywords

We have mined a total of 54 keywords for the asset category, 334 keywords for the control
category, 329 keywords for the attack category and 203 keywords for the implicit category.
We present a sample of the security words we have mined in Table 7. We caution that this
list is not, and cannot be, exhaustive, as additional keywords can be extracted from other
sources.

We present the results of the models (fsec-ext and fsec-tfidf). We have reported the
best results and the summary statistics for TPP. The best result is determined by sorting

@ Springer

Software Quality Journal (2021) 29:509-553

528

1010wered

‘uononnsqo ‘poy orqnd [euy-uou
‘uondooxargyurodynu ‘royurodjnu
‘oyutod-qinu ‘xajurod [[nu ‘[[nu ‘esn
-stw ‘Krowow ‘dooy 3oy ‘@)epireAut
‘PI[BAUL }031I00UI ‘QATIORUI ‘UISO]
1son3 ‘mep ‘Andxe ‘Suridxe ‘ondxe
‘uonenrdxa ‘91ndox? ‘uondooxe
‘10119 ‘9[qeua ‘9oeds YSIp ‘Auap

‘a19[op ‘uonepeISOp ‘UoNEIIYUOD
€0¢

asrwordwod ‘uonodsfur puewwod
‘uonosfuy apo)) ‘Suruosiod ayoe)
‘ssed£q ‘MOPIoAO J9]INq ‘9010F
ainiq ‘uonoefuy yreqx puilg ‘uon
-oofuy JOS puIlg yoene purq
“yoene Kepyiaiq ‘Sunuerd Areurg
“oene Jornorq ‘I00pyoRq
‘pavoolq dwane ‘9pod Arenigle
‘ur3o[snowAuoue ‘AIesIoApe
‘1ooeNe ‘Tenuajod yoeje Yoene
‘Kresioape ‘Surddejonm aanoe

6Cc

SVHDLdVD ‘uonezifesruoue)
‘uonedsnjqo apooAg ‘Sunjoay)
Spunog ‘ysymorg ‘Sunyoorg si
yoelq ‘ormawolq dA10q ‘yined
-Iseq ‘dn yoeq ‘HINV ‘panpne
‘301 ypne JIpne ‘0a1 yoene
‘wel-nue ‘urdo[snowAuoue
‘[eNUIPAId SNOWAUOUR ‘UOTOAIP
Aewoue ‘SHV ‘pIepuels uon
-dA1oug paoueApy ‘Iojensiurwipe
‘Urpe “JIV ‘[0l $s920e I
$59008 “9[JoId SS0® ‘[OAI]
$$900® ‘[0NUO0D $S008 ‘SHAE

yee

uoyo) ‘nd ‘uoneurojur
9[qeynupI [euosiad ‘UonRULIONUL
yireay [euosiad ‘pred juowked
‘promssed ‘aseaydssed ‘urdof ‘ur
3o[‘s ‘ssarppe d1 ‘KAynuapt
‘SsaIppe swoy ‘d)e-pen
quudia3uy 9o[em d1U01I[
“QInJeuSIS OIUONIA[“QIISWI0D
JIUOIII[D ‘YSBI- ‘qOp ‘YMIq
JO 9)ep ‘pIed JIPAID ‘[eNUIPAID
An009 ‘pIed ‘OLnewolq ‘NJd ‘19q
-WInu UONEOYIUpI Jueq ‘JUnodoe

S [BI0L

yorduy

JeI)/oeNY

[onuo)

NENS

$911039182 1, 0Jul padnoIs pue SIOINOS JUAIAIFIP WOIJ PAJOBNX SPIOMADY AILInods Jo odwres 7 ajqel

pringer

Qs

529

Software Quality Journal (2021) 29:509-553

¥y v68 €¥6 TE8 S6 9¥8 0¢ ¥L9 €6 088 8C6 SLL 0¢ S8 1'¢€6 S8L 1 S0 DL +Ixe-d9s) Syoedy

v o 9¢c €65 v9y 0¢I LOI 6¢€ 00 86l o6¥%¥I 69y 00 €I 8SI 005 00 kg 01 Jpy3-o0sy

LT LSS €65 SIS 8¢€l T8 L6S 06l €6 o6vr I8 €S6C 8L 69y 8CS ClE NN 00 +JpYI-09s}

¢ 665 €69 8vS €91 veC LTy vC ¥0T vee LLS 9% T'lc SveE 885 9V dT 0C VOL 1x9-09s%

0l T69 ¥OL 8L9 LT TSS €09 TIS I'l 8¢9 8¢9 179 60 LS9 €L9 TV NN S0 OL +1Xo-09s) ADdO

s ¥8¢ 099 116 ¢II +09 018 6¢Cy I'c LLI 0T 8¢l €6 €65 6’19 18 4N S0 JPYI-098)

88 G¢C 889 8ey vel ges 069 01c 89 6LL 9l TIL T'6 I'lS T'L9 T'ly qdl 0¢C +JPYI-098}

6 L99 G08 96y 9¢€l 905 98 LS TS 88C L8 8TC 99 909 0¢CL VOS d1 0C VOL 1X9-09s]

§C 6%L O6L I'IL TS 199 ¥IL T1'LS &L ¢ce 005 ¢T9¢ 6T +vO0L GSSL SS9 1 0c D HIXe-d098y Kqreq

€L S¥S 6.9 ¢cev €01 1T L99 68 ST 68 S€l 19 89 6%S 08 ¥or 4N S0 Jpy1-o9s}

cor 019 908 8Ly 67CI 88 ¢€¢8 ¥vw Tvr 66 86l L 88 IV¥S ¥OL LO¥ d1 Sl +JpyI-098)

08 v¥9 19L GCS T10C 6¢€§ 688 ¢CC 06 67CI Ive LL Lel TvS €89 9¢E 4N ¢0 IVOL 1X9-098§

Lec vIL 19L LS89 LL L6S L99 ¥vy 1T 9vl 891 &II €¥ 69 ¢€IL TLS qT S0 VO HIXe-098y [owen

oyl §19 06L &8¢ 67C T1'LS LS8 €yl 0¢ 9¢ CTIl ST 9L TO9 ¥LL OVC 4N S0 = JPYIo9sy

801 ¢TL ¢€¥8 OIS 86l 18 0001 e6cv 01 ¥ 9¢ Tt L€l 9SS 669 0¥¢ 1 S - +Ipyr-oosy

9¢ §8L 098 TL9 801 €v9 V¥IL 6Tr 99 991 €9C 16 '8 vvL ¥I18 €8¢ 4N 01 VO 1x9-008}

78 TeL 808 0¢S 901 199 ¥IL 6Ty ¢S'1 €6 C¢l 6L SS9 €CL 08L 9LS NN S0 D HIXe-09s) Lequiy

9oL I'I9 TIL 0¢s 86l 968 L99 LI L1 I'v 08 81 6€SI 68y 6S€L §'LC 4N - - JPYI-09sy

11 €99 €18 ¢¢sy 8¢l 80L ¢€¢€8 005 ¥CT ¢€¥ 86 €C 601 965 6VvL LTy d1 - - +Jpyp-o9sy

96 1'€9 T6L VIS ¥Ic 8Sy L99 L9 8T 69 LTI €€ €6l €95 €9L 18C d1 01 VL 1X9-098}

69 I'SL TL8 8§L9 LL T6L ¢€€8 L99 61 0L L6 6% ¥S LSL €78 169 dT S0 OL +1X9-09s) IM

el €8S vvL 16 90C LLc 0¢S 19 6T 6T 06 80 8¢ 6S¢ ¥¥9 VIl 4N S0 - JpY-oos)

¢cCl 919 TI'SL ¢Se TTl 1'6S ¥LL €88 LO 81 Le L0 Sel LSS voL SIE 44 Sl - +IpyI-oosy

e 969 8EL SE9 68 SOy €v9 €8¢ I'L TC¢l Ive 9¢ 09 SI9 LIL 0SS qd1 0¢ 0) 1x9-508}

Le 68 Te8 I'IL 86 8CL 608 TS9 80 ve €5 9T €T I'vL 88L 1TL 44 00 OL +IXo-09sp wWnIwoIyd
pls Sae xew umw pIs Sae Xew uiw p)s Sae xew U pls SAe Xew Ul IoUIRY] oney 1®) POYRIN JERAC

somone pd 91005s-] amseow-3

dd. 10J S[opow pasI[eIouas 1s9q JO soNsne)s Arewrung g 3jqel

pringer

As

Software Quality Journal (2021) 29:509-553

530

auryoew 103994 J10ddns pAS “IoquSIou Jsareau-3] NNY 1S9I0J WOpURI Y ‘UOISSaISa1 onsiSo] y7 ‘sokeq oATeN gN

€8 6.9 €98 609 Tl S¥s 6TC6 98 CT¢ 96 Y9l €9 ITCL L8 908 Ol¥ 4N S0 Jpyi-09s}
Syl €69 8§18 ¢y ¥o6l 0L9 0001 LS L€ vo6 TLL 6S vyl LLS V¥SL 60¢ Lt 0c +JpyI-098}
9¢l €69 T1'¢8 9%y 6CC LTS LS8 vIT 9v 8¢Cl TI'lc LL €SI 865 T'LL S¥¢ 1 0C VOL 1x9-008}
€y Te8 €88 08L 10l LS8 0001 ¥IL SII 19C &Sy 8Tl 8¢ 818 T8 L¢EL NAS 0C JOL +Ixe-098y wwon
08 §T9 T'eL €9y L€l 791 L9 TI1 00T Lvye S€§ €T €0C vST 9¢s €T 4N S0 Jpy3-o0s}
Ly €09 9.9 TvS 6¢l SLy TS9O 0LC v6 ¥eS 619 TSe 8L v¥S 9¢9 Le6g NN 00 +JpyI-098)
€y LS9 0¢€L 109 Ovl 8C¢ ¥eS 6% LLI 9Ly ¥69 T6 LLI LLy S69 €6 AT 01 VO 1X9-098}
0C T6L €¢€8 69L LT ¥99 TIL 679 €1 €9L 08L €vL Tl €LL 98L TSL NN S0 IVOL +Xo-09s) B[[1Z0N
0L TOL Le6L 9LS TTI ¢6S 8¢L €8¢ &8 679 90L 6Ly 8L I'V9 97TL 8IS 4N S0 JPYI-098]
et LS9 I'L8 ¢ov viLI 0¥9 €06 TSy 88 665 LSL LLy 86 665 80L 08¢ qT 0¢ +JpY1-098}
01T 0SL 6¢6 095 ¢¥l 965 106 Ivr 66 0CL €16 685 L6 LT L16 TO09 d1 01 VO 1x0-098§
p)Is Sae xew uwmu p)s SAe Xew U pIS SAB Xew Ul p)S SAB XBW UMW JOUIRQT oney ®) POUYIOIN 1oSe],
Jorone pd 91005-] QInseaw-3

(ponunuod) g sjqer

pringer

A s

531

Software Quality Journal (2021) 29:509-553

SLL SLL 69L V¥9L €TT VLL 8yl Ovl 6LY 91¢ INAS 0¢ - HIPY-098) B[[IZON

6°€6 8°C6 9T6 976 69 9'C6 9 9 €LS 819 A1 0C VOL 1X9-098% B[[IZON

€°€6 4% I'¢6 L1608 Sv6 €S Pe G8¢ 119 INAS 0 JL +1X9-09s) B[[IZ0IN oyoedy

6°6S 9°9¢ I'vS 119 0C€ S'8Y 16 ¢S1 34! €61 NN 0] - JpI-o98) B[[IZON

09 0°LS 679 818 €6E LES €6 ¢0C 8¢€C 8 44 00 — HIpYy-oesy wniuonyy

€69 99 9°0L 068 L€T S8 e 18l 6S¢C €01 44 01 V1 1X9-008] B[[IZON

§L9 6'89 8€L L'68 L'€T 879 e 991 8LC €01 44 00 L +1X9-09s) B[[IZOIN ADdO

vIL 1'69 76T 681 €ST €9 911 Sl LT e 44 01 - Jpy-0984 oyoedy

9L 9'IL 66T 681 T8 VIL 6C1 Cl 0¢€ 6C¢ 44 1 - HIPY-09sy oyoedy

T8L 9'LL 9cy €0¢ IST ¥IL 69 Cl 0€ 68¢ AS ST VOL 1X9-09s] ayoedy

6'8L 8'8L oy 9Lz €81 T9L 78 o1 [43 YLE NAS S'1 OL +1X0-09s) ayoedy £qroq

108 L'EL €Ll 8% L'vT TTL 611 S €l £9¢ d1 S'1 - Jpi-o98) aypedy

S18 1'2L vl 6°L g9g €8 9LI € Sl 90¢ qd1 S0 - +Jpyi-d9sy ayoedy

S9L V'EL v'ze 0Tt I8 119 6¢ L Il 324 INAS 00 VO 1X9-09s] ayoedy

TIL €€L 691 96 6T T €Cl S €l 65¢ d1 0T IVOL +1Xo-00s) £qreq [Pwe)

9'IL P18 €97 191 €€ VL 9C [4 S L9y 44 ! - JPYI-09s) WINIUOIY?

678 678 el IL 8CI LS8 8L 1 9 Sly INAS 00 - HIpY-00s) Kqrq

198 128 Sye L't e v'IL L1 4 S oLy aN 00 VOL 1X9-095] woy

€08 L18 v'6c S8l S YIL C C S ILY aN Sl VO +1X0-09s} B[[IZOIN Lequry

0°€L 8L 6°C 0°¢ T'te £'€8 651 I S gee J44 0] - Jp1-o98) oypedy

6'L8 £€8 901 LS 891 €£'¢8 €8 I S 884 d1 00 - HIP-dosy wwo?

Sv8 ¥'¥8 0cr §9 9v1 €£'€8 CL I S (444 d1 0¢ OL 1X9-09s] ayoedy

0'v6 6°06 8Tl 89 991 0°00I 8 0 9 (484 d1 0C 1IVOL +1Xo-39s] [owe) 1T

€GL 0CL €6 8T 811 609 09¥C Sy 0L 98¢'8I dd 0¢ - JpyI-098) ADdO

I°SL 9°0L LT ! SLT L'89 LTLS 9¢ 6L 611°CI 44 00 - HIpy-oosy ADdO

608 69L (4 LT 6'€l 9'%69 06T 33 08 TP6'LI 44 07 VOL 1X9-038] ADAO

(4% 8°8L (Y LT vl 0'€L 66T Ie ¥8 TSSLI 44 00 JL +1X0-39s] ADdO wniwory?
DOYDNY dInseow-f) dI00S-J 991g d pd dd NA dL NL JIoured] oney 1’ POYIOIN 90IN0S jo8re],

amseaw-3 1509 oY) UM SINSAT JJL 6 3]qel

pringer

As

Software Quality Journal (2021) 29:509-553

532

€98 9°08 ¥91 06 8'8C 676 cel ! €l LTE aN 0 - JPI-09s}) dyoedy
608 808 9‘Ic ST 891 9'8L LL € 11 8¢ INAS 01 - +IPLp-desy ayoedy
1°06 G'¢s Loy Stz €9 9°8L 6C € It (1574 dN 0C 1IVOL 1X9-098) wnIwoIyy
6°68 1'68 Loy L9 TL LS8 €€ C 4! 9T d1 0cC oL +IX9-098) WNIWoIyD wwop
€€9 €09 TLS S69 90T 98r eve 6C8 €8L Y43} U1 0c - JPyI-09s) winrworyn
VIL 679 9'¢9 ¥'S9 8IE 079 6CS €19 666 SAn! g9 S0 - +JPYI-O9sy ayoedy
9°9L STL S'tL 866 10 69 T ¥69 816 7991 q1 0C VOL 1X9-09s§ ayoedy
¥'S8 (a4 818 SS6 T SIL ¥S oSy €SII 0191 d1 00 IVOL +1X9-00s3) ayoedy B[[IZON
6°6L L'6L L'SL T8 ¥91 €9L 601 LY Ly (S99 INAS S - JPL3-09sy B[[IZON
DOYDNY dINseaw-f) dI00S-J 991g d pd dd NA dL NL Joumeo] oney 1’ POUIOIN 90IN0S 1o8re],

(ponunuod) 6 3jqer

pringer

A s

Software Quality Journal (2021) 29:509-553 533

Table 10" HI-Wilcoxon and fsec-ext+ vs. fsec- fsec-ext vs. fsec-tfidf
effect size tests comparing

tfid)
models fsec-ext and fsec-tfidf fidf+
(TPP) Metrics pvalue Hedges, g pvalue Hedges, g

Chromium recall (Pd) <0.0001 1.88 <0.0001 1.96
f-score <0.0001 1.06 <0.0001 1.61
g-measure <0.0001 8.04 <0.0001 3.59
Wicket recall (Pd) <0.0001 1.53 0.07 0.32
f-score <0.0001 1.97 <0.0001 2.34
g-measure <0.0001 8.23 <0.0001 2.01
Ambari recall (Pd) 091 -0.60 0.001 1.03
f-score <0.0001 3.48 <0.0001 3.05
g-measure <0.0001 2.13 <0.0001 2.65
Camel recall (Pd) 0.17 0.28 0.01 0.34
f-score <0.0001 3.92 <0.0001 2.52
g-measure <0.0001 6.70 <0.0001 2.76
Derby recall (Pd) <0.0001 1.60 0.16 0.1
f-score <0.0001 5.12 <0.0001 2.73
g-measure <0.0001 8.15 <0.0001 3.10
ODCV recall (Pd) ~ 0.0002 1.40 <0.0001 1.12

f-score 0.0004 1.00 <0.0001 1.33
g-measure <0.0001 4.47 <0.0001 2.10
Apache recall (Pd) <0.0001 2.61 <0.0001 2.86
f-score <0.0001 6.63 <0.0001 7.03
g-measure <0.0001 10.1 <0.0001 8.60
Mozilla recall (Pd) <0.0001 3.73 <0.0001 4.70
f-score <0.0001 17.9 <0.0001 6.81
g-measure <0.0001 19.9 <0.0001 6.21
Comm recall (Pd) <0.0001 1.65 003 0.58
f-score <0.0001 2.64 0.0003 1.24

g-measure <0.0001 4.73 <0.0001 2.18

first by the g-measure, followed by the f-score and then by recall. Table 8 presents the
summary statistics (i.e. mean, minimum, maximum and standard deviations) of the
most generalised model for Transfer Project Prediction (TPP). Table 9 lists the results
with the best g-measure for TPP. Table 10 lists the statistical tests for comparing the
two models for TPP. Table 11 presents the statistical tests for comparing the effect of
including and excluding features during training on both WPP and TPP. Table 12 lists
the results with the best g-measure for WPP. Figure 3 shows the mean of top 20 results
of each model for WPP. Table 13 lists the statistical tests that compare the two models
for WPP. Finally, Tables 14 and 15 list the results with the best g-measure from all the
models for WPP and TPP respectively in comparison with the best results from Peters
et al. (2017).

@ Springer

534

Software Quality Journal (2021) 29:509-553

Table 11 H2—Wilcoxon and effect size tests comparing models fsec-ext and fsec-tfidf when feature is
included or excluded

Metrics fsec-ext+ vs fsec-ext [fsec-tfidf+ vs. fsec-tfidf
WPP TPP WPP TPP
pvalue Hedges, pvalue Hedges, pvalue Hedges, pvalue Hedges, g
8 8 8
Chro- recall <0.0001 035 <0.0001 0.67 <0.0001 1.51 <0.0001 1.17
mium (Pd)
f-score 0.95 -0.17 0.67 - 0.21 0.77 0.06 <0.0001 0.16
g-meas- 0.23 -0.02 <0.0001 0.46 0.0001 0.90 <0.0001 0.73
ure
Wicket recall <0.0001 0.48 <0.0001 0.86 <0.0001 2.18 <0.0001 1.01
(Pd)
f-score 0.99 -025 <0.0001 0.04 <0.0001 1.50 0.20 -0.02
g-meas- <0.0001 0.70 <0.0001 0.64 <0.0001 2.61 <0.0001 0.51
ure
Ambari Recall 0.99 -0.58 <0.0001 0.14 0.04 040 <0.0001 0.96
(Pd)
f-score 1.0 -0.77 1.0 -0.37 0.41 -0.15 0.99 -0.25
g-meas- 0.99 - 0.57 0.88 —-0.03 0.07 0.40 0.11 0.15
ure
Camel recall <0.0001 033 <0.0001 0.60 0.33 024 <0.0001 1.02
(Pd)
f-score 0.002 0.18 0.58 —0.03 0.74 —-0.11 <0.0001 0.36
g-meas- <0.0001 0.78 <0.0001 0.43 0.51 0.17 <0.0001 0.50
ure
Derby recall 0.62 —-0.01 <0.0001 0.46 0.0003 0.89 <0.0001 0.78
(Pd)
f-score 0.99 -0.72 0.81 0.01 0.99 -0.73 0.04 0.24
g-meas- 0.99 —-041 <0.0001 0.30 0.08 0.34 0.0005 0.40
ure
ODCV recall 0.41 0.13 <0.0001 0.84 <0.0001 1.11 <0.0001 1.21
(Pd)
f-score 0.66 0.02 <0.0001 1.05 <0.0001 0.85 <0.0001 1.46
g-meas- 0.99 —-0.18 <0.0001 0.78 0.003 022 <0.0001 0.66
ure
Apache recall 0.03 0.08 <0.0001 0.56 0.003 0.56 <0.0001 1.14
(Pd)
f-score 0.51 -0.02 <0.0001 0.46 0.91 -0.33 <0.0001 0.71
g-meas- 0.72 -0.12 <0.0001 0.27 0.99 —0.64 0.06 0.18
ure
Mozilla recall 0.001 0.17 <0.0001 0.80 0.005 0.57 <0.0001 1.46
(Pd)
f-score 0.08 0.05 <0.0001 0.88 0.01 0.45 <0.0001 1.60
g-meas- 0.40 -0.07 <0.0001 0.50 0.01 0.47 <0.0001 0.60
ure
Comm recall <0.0001 123 <0.0001 0.84 0.0003 093 <0.0001 1.12
(Pd)
f-score <0.0001 0.81 <0.0001 0.18 0.006 0.52 0.25 0.10

@ Springer

Software Quality Journal (2021) 29:509-553 535

Table 11 (continued)

Metrics fsec-ext+ vs fsec-ext [fsec-tfidf+ vs. fsec-tfidf

WPP TPP WPP TPP

pvalue Hedges, pvalue Hedges, pvalue Hedges, pvalue Hedges, g
8 8 8

g-meas- <0.0001 1.05 <0.0001 0.53 <0.0001 1.10 <0.0001 0.36
ure

4.2 RQ1: Do externally sourced features generalise better than project-specific
features for TPP?

To answer RQ1, we use the summary statistics listed in Table 8§ complimented by the
results in Table 9 that lists the results for TPP with the best g-measure. The summary
statistics show the treatments—ratio, security category, algorithm—and the feature
selection method that yield the best results from using different sources (8) to predict a
target. For example, for Chromium, random forest (RF) combined with 0.0 ratio and using
security categories threats and control produce the best and most stable results when
applied on each source project to predict Chromium. Predictions using TPP shows model
fsec-ext+ with an average recall from 55 to 86%, minimum recall from 43 to 71% and
maximum recall from 60 to 100% across all projects. Model fsec-ext has an average recall
from 23 to 64%, minimum recall from 2.4 to 44% and maximum recall from 42 to 90%.
Model fsec-tfidf+ has an average recall from 38 to 82%, minimum recall from 19 to 50%
and maximum recall from 60 to 100%. Model fsec-tfidf has an average recall from 11 to
60%, minimum recall from 0 to 43% and maximum recall from 36 to 60%.

In comparison with model fsec-tfidf+ , model fsec-ext+ increased recall on average by
4-17% and by 26-44% when compared with fsec-tfidf. The average f-score for model fsec-
ext+ is between 3.4 and 88% which is higher by 1.6-28% in all projects when compared
with model fsec-tfidf+. One reason for the low precision and subsequent low f-score is
because of scarcity of SBRs in the Commercial, Ambari, Derby, Camel and Wicket
datasets. Although the f-score is lower, the average g-measure for fsec-ext+ is at least 66%
across all projects and higher than model fsec-tfidf+ by 19-28% across the projects. This
shows that the true negative rate is relatively high and that the cost of misclassification can
be manageable. For instance, the TPP result of Camel — Wicket in Table 9 gives a TP=6,
FN=0, TN=412, and FP=82. This confusion matrix produces a recall of 100%, f-score
of 13% and a g-measure of 91%. Based on this model’s prediction, a total of 88 (TP =6 and
FP =82) security bug reports will have to be examined by a security/quality assurance team
that relies on such model which is equivalent to reviewing 17.6% (88 out of 500) of the
total bug reports for security-related bugs.

A striking observation is that fsec-ext+ produces the most stable model that generalises
better across all projects with the exception of Ambari where fsec-ext is slightly better
in g-measure and f-score. The standard deviations of the measures for fsec-ext+ are also
lower in most cases compared with the other models. This suggests that including security
features can produce a more robust, stable and generalisable model. As regards AUC
of ROC, model fsec-ext+ has an average between 69 and 89%, fsec-ext has an average
between 60 and 78%, fsec-tfidf+ has an average from 55 to 72%, and fsec-tfidf from 54 to
70%. For all the projects, except Ambari, the AUC of ROC of fsec-ext+ is the highest and

@ Springer

Software Quality Journal (2021) 29:509-553

536

§'06 L'L8 I'L8 [S9 98 € 801 IS 129 1 Sl - +3pY1-098)

796 ¥'€6 e6 96 6'¢ 016 9C 9¢ £€9¢ 8¢9 44 S'1 JL 1X9-038§

1°S6 €16 1'v6 6’16 Ly ¥'€6 |13 v 8LS £€9 q1 S0 JL +1%9-098] syoedy

STL 8'89 €LY 0'SL I'1¢ 0’19 09 STl 081 yee a1 01 - JPI-098)

6'1L £'69 69 LoL T6c 8'L9 €8 S6 00¢ 10 NN 00 - +Jp-008)

e€CL 69 9'1IL 8'C6 8Vl T'8S 0c S81 86¢C ST a4 01 oL 1X9-098]

L L99 €69 CIL 'SC €09 L LTT 8L 414 NN 00 OL +1%2-098] ADdO

8'0L 9°L9 06¢ £0¢ 911 8¢S €S 61 € SOy d1 0c - JpyI-09s)

9°SL $'89 1'9¢ 8°CI 09¢ 8'€L So1 I Ie €60 aN 00 - +IpPY1-5908}

T8L 9€L Sve 0°¢€C [069 L6 el 6¢ 19¢ 449 (0] VOL 1X9-098]

L9L €YL 0¢s 81y oL 619 [43 91 9¢ 9ty A1 00 o) +1X9-0953 £qrg

IS L'cS S'L (187 A% 0°0S 1414 6 6 89¢C aN Sl - Jpy1-o9sy

'€9 8'LS 06 81 0'6v L99 9¢€¢ 9 4! 9vC d1 g0 - +3pY1-008)

€LY I'v9 |4 0°¢I 9°01 0°0S 58S 6 6 Iev aN 0c VOL 1X9-09s]

008 SvL 6'CC 8¢l 9°¢l L99 SL 9 Cl LOY d1 0 VO +1Xo-00s) [pure)

§9¢ 6'LS Le 61 A% I'Ls 0¢ € 4 68¢ aN 0¢ - JPYI-098)

$09 679 0¢ 9¢C 0°0¢ 1'LS 8yl € ¥ SYe aN 01 - +3pYI-09s)

Tyl ¥'18 9'¢C 9°¢l1 Y VIL LT 4 S 99 a4 Sl IVOL 1X9-03s3

V'L 8CL L 8¢ 8'6C VIL LTl C S 99¢ NN 00 IVOL +1X0-09s} Lequy

6°LE ey |4 I'1 TLE £'ee P81 14 4 (183 aN 0] - JpI-098y

8CL €IL s 9C L'Le £'e8 981 I S 80¢ INAS 01 - +JPYI-098)

TLL L'SL el 9 €l L99 19 C 4 €ey INAS 01 IVOL 1X9-098]

678 6178 8¢l 69 9°¢l £e8 L9 1 S Ly k- 0¢ IVOL +1X0-39s] 1T

€9L oL €T (4! 6'S¢ €8L 98v7L 4 06 09¢°¢l d1 Sl - Jpy-0984

718 SEL €€ L1 1'ce 969 809 33 08 8€T91 4N 00 - +IpY1-098)

8'8L 8'9L 6L (44 €8 199 OvLT 6¢ 9L 901°61 q1 0c VOL 1X3-09s§

9°08 L'LL 6°C I'e |4} 969 Icse 43 08 STE8I NN 0] VOL +1Xo-39s] wniwory?
D0IDNV QInseow-n) 91008-] 201d 1d pd dd NA dL N Joureo| oney 1’ POUIOIN jo8re],

ddM 103 100foxd 1od amseow-3 1sog | 3|qel

pringer

A s

537

Software Quality Journal (2021) 29:509-553

6L LS9 €01 9 67 €19 IST S 6 80€ aN 0T - IP-03s]
6'9L 0€L €vl 6L €5T VL 911 ¥ o1 €re 1 'l - HIpy-oasy
8L L'69 ¢z ovl Lol TLS 6t 9 8)8 aN 01 IVOL 1%0-005]
€06 6'68 ToE 181 6T 676 6S I €l 00 A1) oL 11x0-035) wuoy)
898 $'I8 908 768 LS 9€L vrl 9Ty 9811 0zST A1 0 - Ip-095]
L98 L'18 808 L88 T6 €L €I SIv L6II T1ST A1 $0 - +Ipy1-oasy
Ts8 1'e8 618 LL6 91 S0L [z 9y 9€II LE91 1 07 IVOL 1X0-005]
998 0v8 9¢8 196 6T 6L 8 otr T6ll 9191 1 00 IVOL +1X0-035] ®[[IZO
16 6L8 €18 16 TL €8 8y 0l LIS 919 1 01 - Jp-0asy
o0¥DNV aInseaw-n QI0JS-4 14 d Pd dd NA dL N.L Jourea| oney ®) POYRIN HQMHN,H

(ponunuod) | ajqeL

pringer

A's

538 Software Quality Journal (2021) 29:509-553

Chromium Wicket Ambari

Camel Derby oDcv

—

Mozilla Comm

plll = OO
= " | ﬂ =4 Ll -

Apache

Fig.3 Mean of recall, f-score and g-measure of top 20 results for WPP

most stable, ranging between 67 and 94%. In comparison with the other models that have
minimum AUC-ROC below 45%, fsec-ext+ models show the best classification results at
different thresholds.

In terms of security category used for training, the threat (T) and control (C) categories
dominate the best result. The exceptions are Ambari and Camel that include the asset (A)
category and Mozilla with the asset (A) and implicit (I) categories. Camel, for example,
contains security bugs that feature terms in the asset category such as ipaddress, token and
password. This is plausible as Camel is a rule-based routing and mediation engine where
such keywords frequently feature.

Results in Table 9 compliment the results in Table 8 with fsec-ext+ producing the best
results for g-measure in seven out of nine projects. However, model fsec-tfidf+ fair slightly
better for Ambari and Camel. The ratio of SBR to NSBR varies as well as the machine
learning algorithms. We cannot infer any specific pattern as different ratio and algorithm
work for different projects and feature methods.

The result in Table 8 shows that model fsec-ext+ thrives well for projects Chromium,
Ambari, Derby, Wicket, Camel and Comm where security bug reports are scarce as well
as projects with balanced SBR to NSBR—Apache, ODCV and Mozilla. In general, we
can infer that model fsec-ext+ generalises better than models fsec-ext and fsec-tfidf on all
unseen and independent dataset. As observed in the result (Table 8), the effect of including
the security keywords as records in the training dataset produced models that can generalise
on unseen security instances in a different project’s dataset.

Hypothesis testing—H1: fsec-ext generalises significantly better than fsec-tfidf

We test the null hypothesis H: fsec-ext+ < fsec-tfidf+ for transfer project predictions
(TPP). We use Table 10 to present our results. It lists the p values for the Wilcoxon test
performed on the hypothesis and the Hedges, g values for the effect size. Results show
that the mean values for recall, f-score and g-measure for model fsec-ext+ are higher
and statistically significant than those for model fsec-tfidf+ with the exception of

@ Springer

Software Quality Journal (2021) 29:509-553 539

Table 13 H3—Wilcoxon and

—_ext . fsec- sec-ext vs. fsec-tfidf
effect size tests comparing {j;al}fx + vs. frec Jsec-ext vs. fsec-tfidf
models fsec-ext and fsec-tfidf
(WPP) Metrics pvalue Hedges, g pvalue Hedges, g

Chromium recall (Pd) 0.99 - 1.28 0.0002 1.07
f-score <0.0001 3.08 0.0002 1.04

g-measure <0.0001 1.41 <0.0001 1.62
Wicket recall (Pd) 0.002 1.05 <0.0001 3.03
f-score <0.0001 2.10 <0.0001 2.70
g-measure < 0.0001 2.67 <0.0001 4.03
Ambari recall (Pd) 0.16 0.27 <0.0001 3.86
f-score <0.0001 2.93 <0.0001 4.17
g-measure 0.002 0.99 <0.0001 4.68
Camel recall (Pd) <0.0001 1.60 <0.0001 1.59
f-score <0.0001 4.63 <0.0001 2.54
g-measure <0.0001 341 <0.0001 2.02
Derby recall (Pd) 0.71 -0.26 0.0006 1.08
f-score <0.0001 3.01 <0.0001 1.50
g-measure <0.0001 1.92 <0.0001 1.76

ODCV recall (Pd) 0.99 -1.58 0.02 0.68
f-score 0.99 -1.27 <0.0001 1.21
g-measure 0.99 -0.79 <0.0001 1.33

Apache recall (Pd) <0.0001 3.16 <0.0001 3.15
f-score <0.0001 5.72 <0.0001 6.43
g-measure <0.0001 3.82 <0.0001 5.90
Mozilla recall (Pd) <0.0001 1.51 0.01 0.76
f-score <0.0001 2.57 <0.0001 1.57
g-measure <0.0001 2.40 <0.0001 1.41
Comm recall (Pd) <0.0001 2.18 <0.0001 2.00
f-score <0.0001 3.01 <0.0001 1.43
g-measure < 0.0001 5.02 <0.0001 2.12

recalls for Ambari and Camel. The effect sizes are medium to large between 0.84 and
4.54 across all the metrics. The effect size test validates the result of our hypotheses
showing that the differences in the mean are indeed not trivial and suggests that model
fsec-ext+ are better predictors of security bug reports in different software projects
compared with models fsec-tfidf and fsec-tfidf+. Similarly, the significant tests between
fsec-ext vs. fsec-tfidf show fsec-ext to have average recalls, f-scores and g-measures
that are higher and statistically significant than model fsec-tfidf and mostly with large
effect sizes (1.22-4.66). Three cases—f-score for Chromium, recall for Ambari and
recall for Camel—have medium effect sizes.

In summary, using the statistical test results, we can strongly suggest that models
that use the harvested security keywords and include those keywords in the training
sample can, on the average, predict better than models that use project-specific terms.

@ Springer

Software Quality Journal (2021) 29:509-553

540

9¢L Sve 0°¢C [069 L6 €l 6C 19¢ d4d S0 VOL 1X9-09s§
EvL 0cs 8y 0L 619 [43 91 9C 9Ty q1 00 O +1X9-098)
L'T19 9¢e 09T v 9LV LS w 0C 10v BE | - (om103s18)) (L10T) ‘T8 30 S1930d Aqiaq
Sy 6 Y 8'LI 8'LT 98 el S 96¢ dN 00 - Jpy1-09sy
661 801 S o1 Se I'T1 L1 91 4 9% a1 00 - (uren) (L10T) T8 12 s1912d
8'LS 06 8V 0'6¥ L99 9¢C 9 Cl 9C d1 0 - +JPLI-098)
I'v9 |4 (Y 901 0°0S 159 6 6 Iev aN 0c VOL 1X9-995%
SvL 6CC 8¢l 961 L99 SL 9 4! LOY d1 0 VO +1X9-0938]
8¢S 6L (4 81y 0°0S 10¢ 6 6 08¢ d1 - (om109s1ey) (L10T) T8 19 s13ed [pwre)
44 (4% €T VLT 9'8¢ 98 S [LOv aN 00 Jp1-o98)
6'tvC gl I't1 91 (41 8 9 I S8y dTN 00 - (uren) (L107) Te 19 s1019d
679 0°¢ 9C 0°0¢ I'LS 871 € 14 Sve dN 01 - +JpY3-09s}
q7'18 9°6C 96l 9 V'L Le C S 991 a4 S'1 IVOL 1X3-99s)
8L L 8¢ 8'6C VIL LTl C S 99¢ NN 00 IVOL +1%9-09s]
6'1L 8'0¢ I'1e 0¢ I'LS Sl € 14 8LV R - (omy0as1e]) (L107) Te 10 s193ed Lequiy
€8¢ 8V 8¢ I'L L9l e S 1 65V aN 00 - JpyI-09sy
£'8¢C 8Y 87T 'L L9l 43 S I 65 aN 00 - (uren) (L10T) Te 10 s1019J
eIL I's 9C L'Le £'e8 981 ! S 80¢ INAS 01 - +IPYI-09s}
L'SL €1l 79 £l L99 19 C 4 ey NAS 01 IVOL 1X2-035]
678 8¢l 69 9¢l £'e8 L9 I S Ley d1 0c IVOL +1X9-038]
099 (44 (4 9'9¢ L99 181 C % ele d1 - (om109s.1e) (L10T) T8 19 s1919d 1IN
VLI 8'¢ €T [96 651 01 11 L8E0T aN 00 - JpyI-09sj
I'Le 8°0¢ 01¢ 0 L'ST oy L6 81 SI8°0C d1 00 - (uren) (L107) T8 19 s1919d
SeL e L'l 1ce 969 809% S¢ 08 8€T91 aN 00 - +JpYI-098]
89L 6L (4% €8 1'99 ovLT 6¢ 9L 901°61 q1 07cC VOL 1X9-098]
eL'LL 6'G I'e et 9'69 12sc 53 08 cTesl NN 0] VOL +1%9-09s}
7'$9 611 L9 8¢ 961 68L 8¢ LS 990°0C dTN - (bsoasresiupd) (L107) 'Te 10 s1a10d WOy
Qmseow-3 Q100s-] oaxd d pd dd N dL N helibielg | oney 1) (19poIN) Jodeq jodre],

ANQONV ‘Te 19 SI9)9d WOIJ S3ynsal 1saq ayj 0} EOwEmQEOo ur QImseow-3 189q 9 yum synsar JdM vL @|qelL

pringer

&l

541

Software Quality Journal (2021) 29:509-553

77z=01d ‘p] =dd ‘b= dL :Ploysa1y pasnlpy,
pre=001d ‘£ 19] =dd ‘LS =d L :Ploysa1y) pasnlpy,

€9 6'vy 9Ty 6'S 9Ly LT (44 0C 1§34 aN 00 - JP1I-09s]
1849 09¢ (023 89 1'8¢ Ie 9T 91 Ly aN 00 - (uten) (L107) Te 10 s1019d
$'89 1'9¢ 8°¢I 09¢ 8'€L 91 17 1€ £6C aN 00 - +JpYI-098]
Qmseow-3 Q1008- ooxd 3d pd dd NA dL NI helinielg | oney 1) (1opoIN) Jodeq ja31e],

(ponunuod) | a|qey

pringer

As

Software Quality Journal (2021) 29:509-553

542

£'69 Sve ¢¥e OLI S'6S 8L LT ST 08¢ 44 S0 VO 1Xe-09s}) WNIWOIYD
SSL 00S 607 '8 €9 6¢ ST LT 611 d1 0c o) +1X9-095) 1IIM
18 6'ST 181 881 TSP 98 €T 6l TLE aN — (bsossreyiupd) (L107) e 10 S1919d WnHwoIy) kqreq
8'¢¢ 9¢l 8'6 L'L e LE 14! 14 Sty aN 00 Jpy3-o0s) JOIIM
¥'8¢C €er I oS L9l Yo SI € LSy aN 00 - (uren) (L102) T8 19 8191 Aqreq
609 €01 ¢c 00S 8'LL 1874 vyl 1874 d1 S'1 - +IpPY1-008) £qreq
€89 I've vS1 vl 9°¢¢ 89 8 0I Ly aN ¢0 IVOL 1X9-39s] Kqrq
€eL 691 96 66T L €Cl ¢ €l 65¢ d1 0T IVOL +IX9-008§ Kareq
98 811 89 6CC L a44 (8! 01 8 1LE aN - (om109s1e]) (L10T) T8 19 s1ared Lqreq [pwre)
CIL goc STl LS 1'LS 8¢C € 14 944 4N 00 - JpI-09s) wnIwoIyy
€y T T8l 81 98T 6 S T ¥8Y dIN 00 - (uren) (L107) T8 10 19194 £qrq
2678 el 'L 8€I LS8 8L I 9 Siy NAS 00 - +3pY1-o98§ Aquq
6'18 £1e 00¢C I'v V'L 0c C S LY J4d ! 0] 1X3-938) I
908 ¥0C 6’11 'L V'IL LE 4 S 9¢v INAS Sl VO +1Xe-dosjy WNIWOIYD
£6S Loc 9¢l 6t 6'Cy 61 14 € LY dTN - (bsoostey) (L107) ‘B0 sI0)ed wNIWOIY) Hequy
09 LY v'Ce eve 0°0S 0cI € € VLE aN 00 - JPYI-09s) Lrequry
6'¢9 1'6 0s STI 0°0¢ LS € € Ley aN 00 - (uren) (L10T) Te 30 s1019d [pwre)
1'L9 Ly v'c ve L99 091 [14 yee q1 ST - +IP1I-098] [Pued
L9L 8¢l L'L L'6 L99 8y [14 5124 q1 0¢ VL 1X9-09s] WINIWOIYDY
6'06 8¢l 89 991 000l 78 0 9 (484 d1 0C IVDOL +1X0-d9s) [owe)
6°¢9 I'e 0¢ ¢SI1 0°0S LS € € LEY aN - (uren) (L107) 'Te 19 81919 [owe) JIM
€8 €1 80 e 194 8¢9 OII S 88I°0C aN 00 - JpyI-o98) 1IM
v'e 6C 1'6 10 LT 0c €Il T Ses80c 44 00 - (uren) (L107) ‘T8 19 s1919g Kqreq
1'v9 1C 't 1o¢ 1'6S 8979 Ly 89 8LSYI d1 00 - +Ip-098) [pwre)
79 19 (43 8 96y COLI 8S LS wvI'6l d1 01 oL 1X9-098% Lrequry
eSOL 6'¢ 0Cc L6l 0'¢L 601 I€ ¥8 LELOT A1 0C IVOL +1X0-00s) [Pwe)
6'¢9 €6 1's 0's L'Sy 8€0°1 65 95 LIg6l dTN - = (bsoaszejuro) (L107) T8 30 s10%ed Hequy WNiworyy
amseow-3 9100s-} oaxd d pd dd Nd dL NI Joumed] oney 1®) (1opoIA) Jodeq 22In0S jodre],

(LT0T) 'Te 19 SI1919d WOIJ $)[NSaI 1saq 9y} 0) uosiredwos ur ainseaw-3 159q Y YIIMm $INSAI Jd1 SL d[qel

pringer

&l

543

Software Quality Journal (2021) 29:509-553

¢'ge=o01d ‘9=d4 ‘¢=dL :proyserys py,

0§ =92ud ‘¢=dA ‘¢=dL :Proysery ‘[pv,
¢t=91d ‘TzHT=dd ‘95 =dL :Ployseryp ‘[py,
uondaorad rekemnuw g7

I'LS Tee 961 g TSy €01 € ol SSe aN 00 - Jp-o98) I
S'Sy LT L91 Tyl 0'1¢ <9 6C €1 £6¢ 4N 00 - (uren) (L10T) Te 10 s1039d Hequy
$'09 LYT v91 ¥'€C 0°0S LOT Ic 1I¢ 16¢ a1 0C - +IPY3-098}) I
amseow-3 9100s-} oaxd d pd dd Nd dL NL Joureo] oney 1’ (1opoIA) Jodeq 0In0§ 1o81e],

(ponunuod) g ajqey

pringer

As

544 Software Quality Journal (2021) 29:509-553

4.3 RQ2:Does including security features as SBRs in training dataset improve
model’s performance over models that exclude them for both WPP and TPP?

To answer this research question, we perform a hypothesis testing on results reported by
fsec-ext+ versus fsec-ext and fsec-tfidf+ versus fsec-tfidf for both WPP and TPP.
Hypothesis testing—H2: Including security terms in the training set during model-
ling can significantly outperform models that do not include them.
We test the null hypotheses Hy: fsec-ext+ < fsec-ext and Hy: fsec-tfidf+ < fsec-tfidf. We
use Table 11 to answer RQ?2. It lists the p values for the Wilcoxon test performed on the
hypotheses and the Hedges, g values for the effect size.

43.1 TPP

We observe a clear pattern of significant results for fsec-ext+ and fsec-tfidf+ when using
TPP. All recall results in TPP are significant with medium to large effect sizes. The excep-
tion is Ambari where there is a small effect size showing that the mean recall of fsec-ext+
is only slightly higher than fsec-ext. G-measures show effect sizes between medium and
large for six projects (Chromium, Wicket, Camel, Derby, ODCV, Mozilla) indicating a fair
model with a relative balance between recalls and true negative rates. We observe worse
test and effect size results for f-score for model fsec-ext+ for projects with few SBRs (Chro-
mium, Wicket, Ambari, Camel, and Derby) whereas the results are better for fsec-tfidf+ in
some cases. Examples are Chromium, Camel and Derby. One reason for this difference
is the project-specific nature of the features used by fsec-tfidf+. fsec-ext+ uses externally
sourced features resulting in higher false positives and consequently low precisions and
low f-scores. Further study can investigate how to combine both project-specific and exter-
nally sourced features to both maximise recalls and f-scores.

Clearly, the test results demonstrate that including features in the training dataset pro-
duce superior results to models that exclude them when transferring model from one pro-
ject to another.

4.3.2 WPP

Here, the results are mixed. For fsec-ext+, we observe that including security features in
training clearly worsen the results in some of the projects (Ambari, Derby, ODCV). For
instance, the result in Ambari indicates that the metrics for fsec-ext fair better as the mean
values are significantly greater than fsec-ext+ as indicated by the negative Hedges, g val-
ues. Model fsec-ext+ also improves results in a few projects (Comm and Camel). The rest
of the projects (Chromium, Wicket, Apache and Mozilla) contain mixed results. We also
reckon from the results that fsec-ext+ increases recalls in six out of the nine projects albeit
with mixed effect sizes ranging from negligible to medium.

Model fsec-tfidf+ significantly improve fsec-tfidf across all metrics in four projects
(Wicket, ODCV, Mozilla, and Comm) while it worsens f-scores in Ambari, Camel, Derby
and Apache. Model fsec-tfidf+ also significantly improve recall and g-measure results in
Chromium with medium and large effect sizes. However, the f-score result is not signifi-
cant, and the effect size is negligible although they are slightly higher than fsec-tfidf. Our
observation from the WPP result is that model built with project-specific features (fsec-
tfidf) fair better when treated (fsec-tfidf+) than model built with externally sourced fea-
tures (fsec-ext) when treated (fsec-ext+). One reason may be that WPP model captures

@ Springer

Software Quality Journal (2021) 29:509-553 545

project-specific terms that are not possible with externally sourced features and therefore
can predict better on own test dataset.

Overall, using the statistical test results, we can strongly suggest that models that include
security keywords in the training sample can, on the average, generalise better than models
that exclude them during model construction. When predicting within project, including
security keywords can improve results especially by using project-specific features.

4.4 RQ3: Do models that utilise external sources for features outperform the model
that uses project-specific features in within-project prediction (WPP)?

As listed in Table 12, fsec-ext+ has the best g-measure in seven out of the nine projects.
In ODCYV, fsec-tfidf+ records a slightly higher g-measure over fsec-ext+ and fsec-ext. The
mean of top 20 values for the metrics (see Fig. 3) further reveals fsec-tfidf+ to perform bet-
ter compared with fsec-ext+ for ODCV. Similarly, fsec-tfidf+ produces higher mean recalls
for Chromium and Derby. Otherwise, fsec-ext+ records higher mean values for the metrics
for the remaining projects. Different combinations of security category work for the differ-
ent fsec-ext models demonstrating the usefulness of separating the categories. In addition,
the ratio SBR to NSBR is different for the models suggesting that finding a useful model
will require searching for which SBR to NSBR ratio is best for a given dataset and feature
selection type. AUC of ROC also shows the same pattern similar to other metrics where
the mean for AUC is higher for fsec-ext+ or fsec-ext. We can establish that models that use
externally sourced features are more robust with the highest AUC at different thresholds.

In general, the results show that models that use the harvested security-related keywords
as a feature set perform relatively and reasonably well on their own oracle dataset in terms
of recall, f-score and g-measure. The f-scores suffer reduced performance in general for
most of the projects with fewer cases of security bug reports in their dataset. Although,
some f-scores can be judged to be relatively high. An example is Derby with 42 SBRs
where 26 SBRs are correctly classified, and 32 NSBRs are incorrectly classified as SBR
giving a 52% f-score. This translates to reviewing 58 bug reports if we are concerned with
type I error. Similarly, the g-measure also shows a relatively useful model where majority
of security bug reports are correctly classified (true positive rate) and majority of non-
security bug reports are also correctly classified (true negative rate). As an example, the
Comm performance shows 93% recall and a true negative rate of 87% (59 misclassified
non-security bug reports out of 459).

Hypothesis testing—H3: using externally sourced features significantly outperform
project-specific features for WPP

We test the null hypothesis Hy: fsec-ext+ < fsec-tfidf+ and H,: fsec-ext < fsec-tfidf
for WPP. Without treatment, models built with externally sourced features (fsec-ext) sig-
nificantly outperformed those built with project-specific features (fsec-tfidf) in all projects.
Across all metrics, the difference in mean values also has large effect sizes showing that
the differences in the means values are not trivial. Only the recalls for ODCV and Mozilla
have medium effect sizes. We can conclude that in the absence of treatments or noise filter-
ing before training, models built on externally sourced features will be a better choice by
default.

With treatment, fsec-ext+ shows significantly higher mean across the three metrics
(g-measure, f-score, recall) than fsec-tfidf+ in five projects—Wicket, Camel, Apache,
Mozilla and Comm—and with large effect sizes. However, fsec-tfidf+ outperformed
fsec-ext+ only in ODCV and the recalls for Chromium and Derby as reflected by the

@ Springer

546 Software Quality Journal (2021) 29:509-553

negative effect sizes (see also Fig. 3). Otherwise, fsec-ext+ outperformed fsec-tfidf+ in
the remaining metrics and with large effect sizes.

The results suggest that using externally sourced features can reliably predict SBRs
when used in WPP and with better results in most cases than project-specific features.
The mixed results in Chromium and Derby however, hint on the potential for improved
results over both models when the features are combined. This remains a possible future
work.

4.5 Comparing our results with Peters et al. (2017)

To compare our results fairly with Peters et al. (2017), we remove the other four projects
(ODCYV, Apache, Mozilla, and Comm) before we run our analysis for this comparison.
We report the result with the best g-measure of using the feature selection method used
in Peters et al. (2017) with treatment—fsec-tfidf+ (i.e. including features in the training
set and adjusting the ratio of NSBR relative to SBR) and without treatment—fsec-tfidf.
We note here that fsec-tfidf (without treatment) corresponds to the ‘Peters et al. (2017)
(train)’. We report the best overall results from Peters et al. (2017) when their filtering
techniques are used as well as the best result for the ‘train’ benchmark. We report the
best results of our generalised feature selection method (fsec-ext). We then compare the
results of our best models on the five projects—Chromium, Wicket, Ambari, Camel and
Derby. We use similar metrics which are the g-measure, f-score, probability of false
alarm (pf) and recall (pd) to compare which result is better to the other.

In the case of WPP (Table 14), fsec-ext+ improves g-measure by 1-21% over the
best results in all of the five projects (100%) reported in Peters et al. (2017). Similarly,
for recall (Pd), our model outperformed (Peters et al., 2017) in all the projects by
14-20%. For f-score, our model score better in three out of the five projects. Similarly,
for TPP (Table 15), fsec-ext+ improves g-measure by 13-27% over the best results in
all of the five projects (100%) reported in Peters et al. (2017). Interestingly, for Ambari,
our feature inclusion method (fsec-tfidf+) and adjusted ratio also improve the feature
selection method in Peters et al. (fsec-tfidf) by 13.7%. For recall, fsec-ext+ improves by
19-50% over the best results in Peters et al. (2017) For f-score, our model scores better
in three out of the five projects.

We note here, also, that applying our treatment to the same feature selection method
used in Peters et al. improved both the g-measure and recall in 90% cases over the best
results reported in Peters et al. (2017). However, in cases where business users care
more about precision, we use the TP of Peters et al. (2017) as threshold to compute
the FP equivalent for our best model. For WPP, fsec-ext+ reports 3.4% precision (see
footnote in Table 14) for Chromium as against 6.7% reported by Peters et al. (2017)
Similarly, for TPP, fsec-ext+ reports a precision of 2.2% (see footnote in Table 15) as
against 5.1% reported by Peters et al. (2017) In this context, (Peters et al., 2017) score
better than our model. For Ambari, our model is better than (Peters et al., 2017) when
we apply the same threshold.

Overall, the results from our experiment demonstrate that using the model fsec-ext+
can be robust, generalisable and superior to existing state-of-the-art prediction models
for classification of security bug reports in software development projects. It remains to
see whether combining fsec-ext+ with FARSEC filtering approaches can improve fsec-
ext+. We reserve this investigation as a future study.

@ Springer

Software Quality Journal (2021) 29:509-553 547

5 Discussion
5.1 Project-specific vocabularies and explicit security keywords

We assess a sample of the records that are predicted to be false negatives by fsec-ext.
We find that specific security-related project terms are used in many of these messages.
Some of the examples we found are: ‘SecureServerTest’, ‘NSSecurityMechanismTest’,
‘testOSReadOnly’, ‘DefaultShutdownStrategy’, ‘camel-xmlsecurity’. In Mozilla, among
issues classified as false negatives, we found many issues identified by the team as secu-
rity related but lacking the traditional security terms. Examples including ‘Link Visited-
ness can be detected by redraw timing’, ‘Cross-domain drag and drop across IFrames’ or
‘Page can stomp on PRIMARY clipboard by calling select() at the right time’ are classified
as medium security issues. These cases present limitations for our approach because the
project-specific terms are missing and would need to be represented during model con-
struction (Morrison et al., 2018b). One approach we hope to further investigate is to detect
project-specific vocabularies by using fsec-tfidf feature selection approach and combine
with the externally harvested keyword approach to improve the model’s performance.

5.2 Security categories

Our results point to the usefulness of separating the security categories for building pre-
diction models. We observe that different combinations of the categories work for differ-
ent projects. Prior to our work and to the best of our knowledge, no study has separated
features the way we have done—i.e. into threat, control, asset and implicit, and combining
them to build a classifier. This can also provide insight into dominant security issues in a
project. For instance, the best model for Camel is based on control and asset features. This
new technique provides a new approach to separate features before applying them to build
models. An interesting extension will be to look into how to extend our approach to auto-
matically separate project-specific features into these categories before combining them
with our externally sourced features. We aim to investigate word embedding (Dai et al.,
2017) in the future for this purpose.

5.3 When data scarcity is an issue

As noted by Peters et al. (2017), there exist a core set of security-related keywords which
can predict security bug reports on any project. However, we establish that these core secu-
rity keywords can vary from project to project in terms of their predicting power. We show
that by separating these keywords into different security categories, we can further refine
models per projects. Our result shows that by using our harvested security-related terms
and by including them in the training dataset, it is possible to build prediction models on
small dataset that can be successfully transferred to other projects irrespective of their
sizes. This is the case with all the projects—Camel, Derby, Wicket, Ambari and Comm—
where security bug reports are scarce. Our approach can also prove useful for projects
with no prior labels for security bug reports in their bug report repositories. As discussed
in Cois and Kazman (2015), very few projects (1.4%) explicitly identify security-related
issues when they analysed 400,000 projects on GitHub. Our set of security keywords can
be used for auto labelling, and a WPP model can be constructed for future classification of
newly reported bug reports.

@ Springer

548 Software Quality Journal (2021) 29:509-553

5.4 Implications for practice and research
5.4.1 Practice

We have deployed the project'® as open source on both github and bitbucket to provide an
off-the-shelf add-on on JIRA platform. As an off-the-shelf add-on, it offers the possibility
for immediate installation and usage. The idea of transferring the research results via a plat-
form that is widely and popularly used is to increase the visibility and impact on the secu-
rity consciousness across all projects. We believe that the add-on can be used to access the
security portfolio of a system prior to a buy or build decision. In addition, the model/add-on
can be used to collect useful metrics such as records of security-related issues that are still
open, records of security-related issues that have been changed and the window of exposure
of identified security-related records. The approach we have employed provides the possibil-
ity of adaptation to include ‘implicit’ security-related terms and generate an organisational-
based classification model that can be used across projects within an organisation.

5.4.2 Research

Researchers have long conducted studies to develop text classification models. Our model-
ling approach and eventual add-on provide more possibilities for further research studies in
this direction. First by making it possible to quickly collect security related messages from
different projects. Second, by making it possible to apply the same approach to prediction
in related areas where domain knowledge exists, and feature set can be extracted upfront.

6 Threats to validity

Manual term extraction: we manually harvested security-related terms from many popu-
lar sources. However, this is not exhaustive as there are many other sources where addi-
tional security-related keywords could be extracted.

Manual labelling of security-related records: manually labelled security records
including those reported in publicly disclosed venues such as the MITRE CVE have been
argued to be subjective and sometimes inaccurate (Gegick et al., 2010; Scandariato et al.,
2014; Massacci & Nguyen, 2010; Christey & Martin, n.d.; Massacci & Nguyen, 2010; Dai
et al., 2017) showed that using different vulnerability databases can yield different results.
Further studies will be useful on the dataset we have used to replicate our study.

Modelling: We have used default settings for the parameters of the algorithms during
model construction. It is possible that by tuning the parameters, different results might be
obtained (Xia et al., 1805). As mitigation, we have performed our experiments under the
same conditions, and we could expect further tuning of the algorithm to produce results
in the same direction we have reported in this work. Additionally, we have only explored
a subset of imbalance ratio. It is possible that higher SBR to NSBR ratio worsens or
improves the results.

10" https://github.com/tosdanoye/fsecext and https://bitbucket.org/ootos/jirasecplugin

@ Springer

https://github.com/tosdanoye/fsecext
https://bitbucket.org/ootos/jirasecplugin

Software Quality Journal (2021) 29:509-553 549

Categorisation of terms: our categorisation of security-related terms is subjective
and prone to inaccuracies. It is possible to find some of the terms we have included in the
implicit category to be directly related to attack/threat and control categories.

Generalisation: Although we have evaluated our approach on 8 major open source
datasets and one commercial dataset, we can still not claim generalisation of the result to
all types of datasets. Further empirical studies are necessary to validate our result on new
dataset in domains we have not covered in this study.

7 Conclusion

We have investigated an approach for training a text classification model to identify security
messages in heterogeneous software project repositories such as issue tracking and version con-
trol systems. Due to the problem of unseen security instances in different projects, we proposed
harvesting security keywords from relevant security sources as features and including them as
security-related records in the training set during modelling versus typical text classification
approaches that determine promising features from the project’s dataset. We provide meaning
to our feature set by grouping the extracted terms into different categories of asset, attack/threat,
control/mitigation and implicit. We then use these groups as treatments in our experiments by
combining them to derive classification models.

Our evaluation of these approaches shows that using a broad security keyword as feature
set during model construction can out-perform the approach that uses project-specific features.
Further, including these security keywords as SBRs in the training dataset produced models that
generalised better on unseen and heterogeneous datasets. In addition, breaking down security
features into different categories reveal that different projects perform better with different com-
binations of security categories. Finally, we compare our results with a state-of-the-art result
for both WPP and TPP. Results demonstrate that our modelling approaches produce superior
results in all of the projects evaluated.

In the future, we aim to investigate (1) using an unsupervised learning approach in
combination with sentiment analysis of discussions and fsec-tfidf features to augment generic
security keywords with project-specific keywords and (2) using our approach for risk-estimation
during software development and maintenance. Our idea is that the categories we have
formulated can be useful to derive a risk model for a project. For instance, it might be possible
to compute risk=likelihood x Impact, where the likelihood can be approximated from the
vulnerabilities and existing mitigations, and the impact can be derived from assets and the threats/
attacks to these assets. In addition, it might be possible to assign weights to these categories
during classification. Keywords in asset and attack categories could be assigned higher weights
as compared with control and implicit keywords. We believe this could lay a good foundation for
building classification tools with useful feedback and interesting use cases. Lastly, we want to
investigate whether building a model on all the remaining projects’ training dataset to predict a
target will produce a better result. In addition, we want to investigate whether a bellwether effect
exists in our TPP as this effect has been observed in many transfer learning tasks of software
engineering.

Funding Open Access funding provided by Western Norway University Of Applied Sciences. This work is
supported by the Research Council of Norway through the project SoS-Agile: Science of Security in Agile
Software Development (247678/070).

@ Springer

550 Software Quality Journal (2021) 29:509-553

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this bug? In: Proceedings of the 28th
international conference on Software engineering, ACM, pp. 361-370.

Bozorgi, M., Saul, L. K., Savage, S. & Voelker, G. M. (2010). Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 105-114.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. K., & Wong, M. Y.
(1992). Orthogonal defect classification-a concept for in-process measurements. IEEE Transactions on
Software Engineering, 18(11), 943-956.

Christey, S., & Martin, B. (n.d.). Buying into the bias: why vulnerability statistics suck, BlackHat, Las
Vegas, USA, Tech. Rep 1.

Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2006). The detection and classification of non-functional
requirements with application to early aspects. In Requirements Engineering, 14th IEEE International
Conference, Minneapolis, Minnesota, pp. 39-48. https://doi.org/10.1109/RE.2006.65

Cois, C. A., & Kazman, R. (2015). Natural language processing to quantify security effort in the software
development lifecycle. In SEKE, pp. 716— 721.

Dai, X., et al. (2017). From social media to public health surveillance: word embedding based clustering
method for twitter classification. In SoutheastCon pp.1-7.

Debole, F., & Sebastiani, F. (2004). Supervised term weighting for automated text categorization. In Text
mining and its applications, Springer, pp. 81-97.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning
research, 7, 1-30.

Ellison, R. J., Goodenough, J. B., Weinstock, C. B., & Woody, C. (2010). Evaluating and mitigating
software supply chain security risks. Tech. rep.. CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST.

Feinerer, 1. (2013). Introduction to the tm Package Text Mining in R. Accessible enligne: http://cran.r-project.
org/web/packages/tm/vignettes/tm.pdf

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification, Journal
of machine learning research, 3, 1289-1305.

Gegick, M., Rotella, P., & Xie, T. (2010). Identifying security bug reports via text mining: An industrial
case study. In Mining software repositories (MSR), 2010 7th IEEE working conference on, IEEE, pp.
11-20.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data
engineering, 21(9), 1263-1284.

Hindle, A., Ernst, N. A., Godfrey, M. W., & Mylopoulos, J. (2013). Auto- mated topic naming. Empirical Softw.
Engg., 18(6), 1125-1155. https://doi.org/10.1007/310664-012-9209-9.doi: 10.1007/s10664-012-9209-9

Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features,
Machine learning: ECML-98, 137-142.

Kampenes, V. B., Dybda, T., Hannay, J. E., & Sjgberg, D. I. K. (2007). A systematic review of effect size in
software engineering experiments. Information and Software Technology, 49(11-12), 1073-1086.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the
31st International Conference on Machine Learning (ICML-14), pp. 1188-1196.

Louppe, G. (2014). Understanding random forests: from theory to practice. arXiv preprint arXiv: 1407.7502.

Manning, C. D., Raghavan, P., & Schiitze, H. (2008). Scoring, term weighting and the vector space model.
Introduction to information retrieval, 100(2—4), 100-123.

Massacci, F., & Nguyen, V. H. (2010). Which is the right source for vulnerability studies?: an empirical
analysis on Mozilla Firefox. In Proceedings of the 6th International Workshop on Security
Measurements and Metrics, ACM, p. 4.

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/RE.2006.65
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
https://doi.org/10.1007/s10664-012-9209-9.doi:10.1007/s10664-012-9209-9

Software Quality Journal (2021) 29:509-553 551

Morrison, P., Oyetoyan, T. D., & Williams, L. (2018b). Identitying security issues in software development:
are keywords enough? In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, pp. 426-427.

Morrison, P. J., Pandita, R., Xiao, X., Chillarege, R., & Williams, L. (2018a). Are vulnerabilities discovered
and resolved like other defects? Empirical Software Engineering, 23(3), 1383-1421.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and
unlabeled documents using em. Machine learning, 39(2), 103-134.

Ohira, M., Kashiwa, Y., Yamatani, Y., Yoshiyuki, H., Maeda, Y., Lim- settho, N., Fujino, K., Hata, H.,
Ihara, A., & Matsumoto, K. (2015). A dataset of high impact bugs: manually-classified issue reports.
In Mining Soft- ware Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, IEEE, pp.
518-521.

Peters, F., Tun, T., Yu, Y., & Nuseibeh, B. (2017). Text filtering and ranking for security bug report
prediction. IEEE Transactions on Software Engineering.

Pletea, D., Vasilescu, B., & Serebrenik, A. (2014). Security and emotion: sentiment analysis of security
discussions on github. In Proceedings of the 11th working conference on mining software repositories,
ACM, pp. 348-351.

Ponemon-Institute, IBM-Security. (2017). Cost of data breach study: Global overview benchmark research
sponsored by ibm security independently conducted by ponemon institute llc, Ponemon Institute
Research Report.

Powers, D. (2011). Evaluation: from precision, recall and F-Factor to ROC, informedness, markedness &
correlation. J. Mach. Learn. Technol, 2(1), 37-63.

R Development Core Team. (2008). R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.
org

Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2006). On the “naturalness” of
buggy code. In Proceedings of the 38th In- ternational Conference on Software Engineering, ICSE ’16,
ACM, New York, NY, USA, pp. 428—439. https://doi.org/10.1145/2884781.2884848

Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014). A large scale study of pro- gramming languages
and code quality in github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Soft- ware Engineering, ACM, pp. 155-165.

Riaz, M., King, J., Slankas, J., & Williams, L. (2014). Hidden in plain sight: auto- matically identifying
security requirements from natural language arti- facts. In Proc. 22nd RE, IEEE, pp. 183-192.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information
processing & management, 24(5), 513-523.

Salton, G., Fox, E. A., & Wu, H. (1983). Extended Boolean information retrieval. Communications of the
ACM, 26(11), 1022-1036.

Salton, G., & McGill, M. J. (n.d.). Introduction to modern information retrieval.

Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014). Predicting vulnerable software
components via text mining. /EEE Transactions on Software Engineering, 40(10), 993-1006.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR),
34(1), 1-47.

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 28(1), 11-21.

Tyo, J. P. (2016). Empirical analysis and automated classification of security bug reports.

Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S., Bajwa, S. S., Baltes, G. H.,
Conboy, K., Cullina, E., Dennehy D., et al. (n.d.). Software startups—a research agenda, e-Informatica
Software En- gineering Journal 10 (1).

Wijayasekara, D., Manic, M., & McQueen, M. (2014). Vulnerability identification and classification via text
mining bug databases. In Industrial Electronics Society, IECON 2014—40th Annual Conference of the
IEEE, IEEE, pp. 3612-3618.

Witten, 1. H., & Frank, E. (2005). Data mining: practical machine learning tools and techniques (2nd ed.).
San Francisco: Morgan Kaufmann.

Wu, H. C.,, Luk, R. W. P, Wong, K. F., & Kwok, K. L. (2008). Interpreting TF-IDF term weights as making
relevance decisions. ACM Trans Inf Systems (TOIS), 26(3), 1-37.

Xia, T., Krishna, R., Chen, J., Mathew, G., Shen, X., & Menzies, T. (2018). Hyperparameter optimization for
effort estimation. arXiv preprint arXiv: 1805.00336.

Yan, M., Zhang, X., Liu, C., Xu, L., Yang, M., & Yang, D. (2017). Automated change- prone class
prediction on unlabeled dataset using unsupervised method. Information and Software Technology, 92,
1-16.

@ Springer

http://www.R-project.org
http://www.R-project.org
https://doi.org/10.1145/2884781.2884848

552 Software Quality Journal (2021) 29:509-553

Zaman, S., Adams, B., & Hassan, A. E. (2011). Security versus performance bugs: a case study on firefox.
In Proceedings of the 8th working conference on mining software repositories, ACM, pp. 93—102.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Tosin Daniel Oyetoyan Tosin Daniel
Oyetoyan is an Associate Professor at the
Department of Computing, Mathematics,
and Physics, Western Norway University
of Applied Sciences. He received his PhD
in Computer and Information Science
from the Norwegian University of Science
and Technology (NTNU) in 2015. His
research interests are in software security,
agile software development, software
quality and maintenance, software design,
code analysis, software testing, software
refactoring, software metrics, empirical
software engineering, and application of
machine learning in software engineering.
He is a member of IEEE and IEEE Com-
puter Society.

Patrick J. Morrison Patrick J. Morrison is a
software engineer at IBM, and an adjunct
professor at North Carolina State Univer-
sity (NCSU). He received his PhD candi-
date in Computer Science at NCSU under
the supervision of Dr. Laurie Williams. He
received the BS degree in computer sci-
ence from the University of Florida and
the MS degree in computer science from
Florida Atlantic University His research
interests are in empirical software engi-
neering, security, and agile software devel-
opment practices and processes. He has
interned at Microsoft Research and IBM.
He worked as a developer and consultant
before returning to academia. He is a
member of the ACM and IEEE.

@ Springer

Software Quality Journal (2021) 29:509-553 553

Authors and Affiliations

Tosin Daniel Oyetoyan'2® . Patrick Morrison®

Patrick Morrison
pjmorris @ncsu.edu
Department of Software Engineering, Safety and Security, SINTEF Digital, Trondheim, Norway

Department of Computing, Mathematics and Physics, Western Norway University of Applied
Sciences, Bergen, Norway

Department of Computer Science, North Carolina State University, Raleigh, NC, USA

@ Springer

http://orcid.org/0000-0003-0027-4522

	An improved text classification modelling approach to identify security messages in heterogeneous projects
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Dataset selection
	3.2 Design and analysis approach
	3.2.1 Feature selection approaches
	3.2.1.1 tf and its variants—project-specific modeling approach
	3.2.1.2 Our generalised modelling approach
	3.2.1.3 Classification models and performance metrics
	3.2.1.4 Performance metrics
	3.2.1.5 Constructing training and test matrices from feature set
	3.2.1.6 Text cleaning and transformation approaches
	3.2.1.7 Generating training and test dataset
	3.2.1.8 Class imbalance and sampling techniques
	3.2.1.9 Training parameters and treatments
	3.2.1.10 Experiment setup and modelling approach
	3.2.1.11 Complexity of our approach
	3.2.1.12 Comparing with Peter’s et al. (2017)
	3.2.1.13 Approach to research questions

	4 Results
	4.1 Harvested security keywords
	4.2 RQ1: Do externally sourced features generalise better than project-specific features for TPP?
	4.3 RQ2: Does including security features as SBRs in training dataset improve model’s performance over models that exclude them for both WPP and TPP?
	4.3.1 TPP
	4.3.2 WPP

	4.4 RQ3: Do models that utilise external sources for features outperform the model that uses project-specific features in within-project prediction (WPP)?
	4.5 Comparing our results with Peters et al. (2017)

	5 Discussion
	5.1 Project-specific vocabularies and explicit security keywords
	5.2 Security categories
	5.3 When data scarcity is an issue
	5.4 Implications for practice and research
	5.4.1 Practice
	5.4.2 Research

	6 Threats to validity
	7 Conclusion
	References

