
Vol.:(0123456789)

https://doi.org/10.1007/s11219-020-09546-7

1 3

An improved text classification modelling approach
to identify security messages in heterogeneous projects

Tosin Daniel Oyetoyan1,2  · Patrick Morrison3

Accepted: 26 December 2020
© The Author(s) 2021

Abstract
Security remains under-addressed in many organisations, illustrated by the number of large-
scale software security breaches. Preventing breaches can begin during software development
if attention is paid to security during the software’s design and implementation. One
approach to security assurance during software development is to examine communications
between developers as a means of studying the security concerns of the project. Prior
research has investigated models for classifying project communication messages (e.g., issues
or commits) as security related or not. A known problem is that these models are project-
specific, limiting their use by other projects or organisations. We investigate whether we can
build a generic classification model that can generalise across projects. We define a set of
security keywords by extracting them from relevant security sources, dividing them into four
categories: asset, attack/threat, control/mitigation, and implicit. Using different combinations
of these categories and including them in the training dataset, we built a classification model
and evaluated it on industrial, open-source, and research-based datasets containing over 45
different products. Our model based on harvested security keywords as a feature set shows
average recall from 55 to 86%, minimum recall from 43 to 71% and maximum recall from
60 to 100%. An average f-score between 3.4 and 88%, an average g-measure of at least 66%
across all the dataset, and an average AUC of ROC from 69 to 89%. In addition, models
that use externally sourced features outperformed models that use project-specific features
on average by a margin of 26–44% in recall, 22–50% in g-measure, 0.4–28% in f-score, and
15–19% in AUC of ROC. Further, our results outperform a state-of-the-art prediction model
for security bug reports in all cases. We find using sound statistical and effect size tests that
(1) using harvested security keywords as features to train a text classification model improve
classification models and generalise to other projects significantly. (2) Including features in
the training dataset before model construction improve classification models significantly. (3)
Different security categories represent predictors for different projects. Finally, we introduce
new and promising approaches to construct models that can generalise across different
independent projects.

Keywords  Security · Classification model · Text classification · Software repository ·
Machine learning

 *	 Tosin Daniel Oyetoyan
	 tosin.daniel.oyetoyan@hvl.no

Extended author information available on the last page of the article

/ Published online: 27 May 2021

Software Quality Journal (2021) 29:509–553

http://orcid.org/0000-0003-0027-4522
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-020-09546-7&domain=pdf

1 3

1  Introduction

Security breaches have become regular occurrences, with devastating consequences
and costs to organisations and society (Ponemon-Institute, IBM-Security, 2017).
Unfortunately, security as a non-functional requirement is under-addressed in many
software development projects. Cois and Kazman (2015) analysed 400,000 projects on
GitHub and found only 1.4% to explicitly identify security-related issues. It is therefore
relevant to understand the security picture of a project by assessing product security and
the project’s management capabilities (Ellison et al., 2010).

Researchers (Cois & Kazman 2015; Cleland-Huang et al., 2006; Hindle et al., 2013;
Ray et al., 2016) have investigated security concerns in software management repositories
(e.g. Issue Trackers and Version Control Systems), seeking relevant quantitative measures
that could be derived from security analysis of software management repositories. Such
measures could assist project managers and development teams in taking informed
decisions regarding the security posture of a project by providing answers to, e.g., How
many security-related changes have been made in the system? How many security-related
bugs are left unresolved? What is the average window-of-exposure (in days) for security-
related issues in a project? However, these studies are project specific, and we do not
know how their results generalise beyond the environments studied.

Researchers have constructed text classification models by building a document
term matrix (DTM) from a project’s document corpus and selecting promising
features from the DTM(Sparck Jones, 1972; Salton et al., 1983; Salton & McGill, n.d.;
Salton and Buckley 1988; Wu et al., 2008). This approach limits the model to the
environment where it is constructed. (Gegick et al., 2010) advised against applying a
text classification model for identifying security messages trained on one system to a
different system. Based on their findings, cross-project classification suffered significant
performance reduction. In (Anvik et al., 2006), the precision of their model decreased
from 64 to 6% with low recalls in general when applied to another project’s dataset thus
showing the task to develop a generic text classification model that could be practically
useful across different systems to be non-trivial.

Many benefits could be derived from a model that works across heterogeneous
projects. First, it could eliminate the need to create a unique model for each project
in an organisation. Organisations sometimes maintain several hundred projects, making
development of classification models messy and difficult. Second, in many projects
and small businesses (Unterkalmsteiner et al., n.d.), time-to-market is critical, and as a
result, security activities are not prioritised. An off-the-shelf model that can be quickly
leveraged to identify security-related issues in such projects would reduce the time and
effort required to build a model for each project. Third, thid could provide the research
community with a benchmark for security-related issues across heterogeneous projects
and organisations.

The goal of this work is to investigate the hypothesis that a generic text classification
model can be developed for classifying security-related messages in software
development project communications. Generalising to unseen datasets is the goal of
a classification model. Typical text classification models in the security domain are
usually constructed based on an oracle dataset (Nigam et al., 2000) containing experts’
(human/system) classifications of a sample of the population that a classification
algorithm should learn. The requirement for an oracle presents a limitation to
generalising to unseen data.

510 Software Quality Journal (2021) 29:509–553

1 3

We address the problem of generalisation by augmentation of the training set with
security keywords, using these terms as features to train a text classification model. Our
research question is:

RQ: Does the performance of our classification model outperform models built using
project-specific terms when generalising to new projects? In other words, can we build
a model on one project and transfer it to another project using transfer project prediction
(TPP) approach (e.g., Peters et al., 2017)?

Our contributions in this paper are:

•	 A new and promising approach to weighting and training a generalised text
classification model for identifying security messages across projects.

•	 A list of security terms that can be used independently to identify security-related
issues in any repository.

•	 A new approach of using security terms divided into different categories to build
classification models.

•	 A security classifier framework and a add-on for the JIRA1 platform, based on our best-
performing trained model.

The remainder of the paper is organised as follows: In Sect. 2, we discuss studies
related to our work. In Sect. 3, we describe our dataset selection and analysis approach to
answer our research questions. In Sect. 4, we present the results of our study. We provide
discussion in Sect. 5. We discuss various threats to the validity of our study in Sect. 6.
Lastly, we conclude in Sect. 7.

2 � Related work

Researchers have applied text classification approaches to topics such as text filtering,
document categorisation, automatic text indexing, and to various text sources such as
the World Wide Web, Internet news feeds, electronic mail, corporate databases, medical
patient, records, and digital libraries (Nigam et al., 2000; Sebastiani, 2002). These
approaches leverage supervised (Debole & Sebastiani, 2004) or unsupervised learning
techniques (Le & Mikolov, 2014). A supervised technique uses an already labelled dataset
to train a classification algorithm. In an unsupervised approach, a dataset is labelled using
certain heuristics such as distance measures to cluster related texts (Yan et al., 2017).

Our problem is one of text classification for predicting security messages. We discuss
related works in text classification and specifically its application to predicting security
messages in software development repositories such as issue tracking systems and
version control systems. Researchers have applied a variety of approaches to identify and
characterise security-related messages in software development repositories. A problem in
this domain is the need for a labelled and large enough training dataset sample from which
a classifier can learn accurately (Nigam et al., 2000).

One approach for selecting a training dataset is to select a sample of text from a corpus
by using a set of security keywords (Cleland-Huang et al., 2006; Pletea et al., 2014; Ray
et al., 2014; Pletea et al., 2014) mined security discussions in commits and pull requests

1  https://​github.​com/​tosda​noye/​fsece​xt and https://​bitbu​cket.​org/​ootos/​jiras​ecplu​gin/​downl​oads/

511Software Quality Journal (2021) 29:509–553

https://github.com/tosdanoye/fsecext
https://bitbucket.org/ootos/jirasecplugin/downloads/

1 3

in GitHub by using a selected set of security keywords and then used the dataset to train
a classifier to understand emotions between security-related and non-security-related
discussions. Ray et al. (2014) used a restricted set of keywords covering different quality
attributes (e.g. security) to select training dataset from commit messages in GitHub as a
sample representation to determine the code quality of different programming languages.
We have applied text classification to develop a generic model for identifying security-
related messages in different software development projects.

An alternative to generic security keyword lists is to mine them from existing reposi-
tories where security issues have been labelled. Such training sample can be obtained
from labelled messages by developers, security champions in an organisation, or security
researchers (Gegick et al., 2010; Ohira et al., 2015; Riaz et al., 2014). This approach can
be fraught with subjectivity and inaccuracies (Gegick et al., 2010); (Scandariato et al.,
2014). Existing training samples can also be mined from security advisory reports (Zaman
et al., 2011) (e.g. Mozilla Firefox Security Advisor, Apache Security Advisories, or CVEs),
or mined from reports generated by a static analysis tool (Scandariato et al., 2014). The
MITRE CWE framework has also been used to manually categorise and label security-
related messages (Tyo, 2016).

Gegick et al. (2010) used text classification models constructed on manually labelled
bug reports to identify security bug reports that are manually mislabelled as non-security
bug reports in a large Cisco project. Their approach was based on document term matrix
construction to identify classification features. Their model successfully identified 78%
security bug reports previously misclassified as non-security bug reports by the Cisco engi-
neers with 98% probability. However, the model performance decreased significantly when
applied on other systems.

Wijayasekara et al. (2014) applied text mining to the Linux bug database to detect ‘hid-
den impact’ bugs (HIB). Their approach is based on term-frequency determination from the
Linux bug reports and mapping to the publicly disclosed vulnerability data from MITRE
CVE within the same period. Our study differs from Gegick et al. (2010) and Wijayasekara
et al. (2014) by exploiting security domain knowledge to extract promising features from
relevant security sources.

Cois and Kazman (2015) developed text classifiers that could identify security-related
messages in issue trackers and applied their models on the large-scale open source Chro-
mium software project. They have used features constructed as n-grams from the text arte-
facts of Chromium and recorded an average of over 85% in recall, precision and f-score.
Our approach differs from Cois and Kazman (2015) because we have manually defined our
set of features whereas they have used terms obtained automatically from the project’s text
artefacts.

Zaman et al. (2011) studied the characteristics of security vs. performance bugs in terms
of fix rates, change rates, and who fixes the bugs. They have used security bugs from the
Mozilla Foundation Security Advisory to represent a security dataset. Our study aims
to develop a generic model for identifying security-related messages in bug reports and
related repositories.

Riaz et al. (2014) manually classified requirement documents in the healthcare domain
to identify security-relevant requirements. They applied machine-learning algorithm to
develop automated tools built on their previously classified oracle dataset to assist require-
ment engineers during analysis. The results show 79% recall and 82% precision.

Cleland-Huang et al. (2006) developed a text classifier by using term-frequency to iden-
tify non-functional requirements from requirement specification documents that were devel-
oped by MS students. The result of the model when applied on an industrial dataset with

512 Software Quality Journal (2021) 29:509–553

1 3

terms from initial documents suffered performance reduction. Their results significantly
improved when the terms were augmented with terms from the industrial dataset.

Hindle et al. (2013) performed topic labelling of various non-functional requirements
using semi-unsupervised and supervised techniques on three large-scale relational
databases. They defined a set of generic keywords to build models that could generalise
on the different projects. Their results show an average f-score between 39 and 48% and a
range between 4 and 90%. Unlike the studies above that addressed a broad range of non-
functional requirements, we have focused primarily on security.

Scandariato et al. (2014) applied a static code analysis tool to collect security-related records
of 20 Android applications. By applying text mining approach to software source code, they
formulated their features as a set of source components (actual source files) with their associated
frequencies and then built a prediction model to predict which component is vulnerable or not.
This study is based on mining the actual source code which is different from our work that
focuses on the natural language contained in the software development repositories.

Peters et al. (2017) observed that the presence of security-related keywords in
both security and non-security bug reports (SBR, NSBR) can lead to mislabelling
of SBRs and reduce prediction performance on within project prediction (WPP) and
transfer project prediction (TPP). They proposed a framework, FARSEC, to filter and
rank bug reports to reduce NSBRs with security-related keywords before building
a prediction model. They applied their framework to data and security classifications
drawn from Ohira et al. (2015) and from the Chromium project. Their results showed
a 38% reduction in mislabelled SBRs. The goal of our work is similar to Peters et al.
(2017). However, on the one hand, our work is different from Peters et al. (2017) in the
approach we have used to construct a generalised model. While Peters et al. (2017). uses
filtering techniques on the dataset, we have used a harvested set of security keywords
for our models. On the other hand, we investigate how to improve model’s performance
by increasing the weight of security terms in the training dataset thereby showing some
similarities to their work.

3 � Methodology

In this section, we first present and describe our datasets. Next, we present project-specific
approach for extracting features to train a text classification model for a project. Then, we
present our proposed generalised modelling approach. Finally, we describe our experiment
setup, the metrics and our approach for answering the research questions.

3.1 � Dataset selection

For testing our models, we have used published datasets from nine different sources
(Table 1), containing messages that have been manually tagged as security related. We now
describe the bug report (BR) dataset we have used in this study.

1)	 Industrial systems (Comm): We collected data from two projects recorded in the JIRA
production environment of one of our industrial partners. The organisation has a security
champion and has created a security field in JIRA where they manually label created
issues (bug, story, task, or improvement) as security-related or not. This classification

513Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
1  

D
at

as
et

s u
se

d
in

 o
ur

 st
ud

y

Pr
oj

ec
t

D
om

ai
n

St
ar

t d
at

e
En

d
da

te
N

o.
 o

f B
R

s
N

o.
 o

f S
B

R
SB

R
 (%

)

A
m

ba
ri

H
ad

oo
p

m
an

ag
em

en
t w

eb
 U

I b
ac

ke
d

by
 it

s R
ES

Tf
ul

 A
PI

s
Se

p
26

 2
01

1
A

ug
 8

 2
01

4
10

00
29

2.
9

W
ic

ke
t

C
om

po
ne

nt
-b

as
ed

 w
eb

 a
pp

lic
at

io
n

fr
am

ew
or

k
fo

r J
av

a
pr

og
ra

m
m

in
g

O
ct

 2
0

20
06

N
ov

 9
 2

01
4

10
00

10
1.

0
C

am
el

A
 ru

le
-b

as
ed

 ro
ut

in
g

an
d

m
ed

ia
tio

n
en

gi
ne

Ju
l 8

 2
00

7
Se

p
18

 2
01

3
10

00
32

3.
2

D
er

by
A

 re
la

tio
na

l d
at

ab
as

e
m

an
ag

em
en

t s
ys

te
m

Se
p

28
 2

00
4

Se
p

17
 2

01
4

10
00

88
8.

8
C

hr
om

iu
m

W
eb

 b
ro

w
se

r
A

ug
 3

0
20

08
Ju

n
11

 2
01

0
41

,9
40

19
2

0.
5

A
pa

ch
e

D
iff

er
en

t p
ro

du
ct

s
–

–
25

66
12

83
50

M
oz

ill
a

D
iff

er
en

t w
eb

 b
ro

w
se

rs
–

–
65

52
32

76
50

C
om

m
Ti

ck
et

in
g

so
ftw

ar
e

–
–

94
6

20
2.

1
O

D
C

V
W

eb
 b

ro
w

se
rs

–
–

11
66

58
3

50

514 Software Quality Journal (2021) 29:509–553

1 3

has been applied on one of the projects. We downloaded 946 records of which 20 are
labelled as security related.

2)	 The high-impact bug dataset by Ohira et al. (2015) (HIB): This publicly available dataset
has been manually classified by a team of researchers to allow its use for research
studies. The four projects covered by this dataset are: Apache Camel, Apache Derby,
Apache Ambari and Apache Wicket. The dataset contains a total of 4000 records with
160 records manually labelled as security related.

3)	 Chromium dataset: The chromium dataset has been prepared and used in Peters et al.
(2017) The dataset is available online2, and we have downloaded the entire dataset and
reuse as-is in our environment.

4)	 Apache projects dataset (Apache): We downloaded data from Apache JIRA open-source
projects where developers have manually labelled their recorded issues as security
related. We search the apache Jira URL at ‘https://​issues.​apache.​org/​jira’ and use the
search criteria ‘labels = security OR labels = ‘security’ OR labels = security-issue’.
The query yields a total of 1283 records for different projects in Apache. The records
form our security bug reports (SBR). We separately downloaded 10,000 records for 10
different products using the search criteria ‘labels is EMPTY’ from which we randomly
extracted 1283 records as our non-security-related bugs (NSBRs).

5)	 Mozilla dataset (Mozilla): We downloaded security bugs from the Mozilla bug tracking
system at ‘https://​bugzi​lla.​mozil​la.​org’ by using the search criteria ‘group: security’
yielding a total of 3276 security bug reports (SBR). We separately downloaded 10,000
records for 31 different products using the search criteria ‘status: all’ from which we
randomly extracted 3276 records as our non-security-related bugs (NSBR)

6)	 Orthogonal defect classification-vulnerabilities (ODCV)(Morrison et al., 2018a) is a
publicly available dataset (https://​sites.​google.​com/a/​ncsu.​edu/​odc-v/) of 583 security
vulnerabilities and 583 non-security defects collected from three open-source projects
(Chrome, Firefox, phpMyAdmin), classified according to a security-enhanced version
of Orthogonal Defect Classification (Chillarege et al., 1992).

3.2 � Design and analysis approach

3.2.1 � Feature selection approaches

In this section, we describe three feature selection approaches that we have used in our
experiments:

3.2.1.1  tf and its variants—project‑specific modeling approach  Term frequency (tf) is a
standard metric for determining features in document classification problems (Manning
et al., 2008). Term frequency is computed by tokenizing each document in a document
corpus and collecting the number of occurrence (frequency) of the unique terms in the
entire corpus. Subsequently, a document term matrix (DTM) can then be constructed from
the document corpus using these terms. As an example, if we have three documents namely:

D1 = ‘owasp top software errors’

2  https://​bitbu​cket.​org/​fayol​a21-​lero/​farse​c47/​src/​master/​resou​rces/​data/​scrub​bed/

515Software Quality Journal (2021) 29:509–553

https://issues.apache.org/jira
https://bugzilla.mozilla.org
https://sites.google.com/a/ncsu.edu/odc-v/
https://bitbucket.org/fayola21-lero/farsec47/src/master/resources/data/scrubbed/

1 3

D2 = ‘buffer overflow is dangerous’
D3 = ‘software errors include buffer overflow errors’. A DTM is represented by tokeniz-

ing the documents and generating a term frequency for each text token as:

where the topmost row represents the unique tokens in the entire document corpus, and
the leftmost column represents each document. The values in the matrix represent the
frequency of terms (number of times the term appears). An algorithm can then use term
weighting or normalisation techniques (Manning et al., 2008; Sparck, 1972; Forman,
2003; Sebastiani, 2002) to determine the most interesting terms that could represent each
document from the document corpus.

In this study, we have considered the normalised variant of term frequency-inverse
document frequency (tf-idf) (Manning et al., 2008) as used in Peters et al. (2017).

The normalised tf-idf is computed as:
Normalised term frequency: ntf t,d = 0.5 +

0.5×tf t,d

maxt(tf t,d)
 (1)

where tf t,d represents the number of times, term t appears in document d, and maxt
represents the frequency of the term with the maximum occurrence in document d. The
smoothing term, 0.5, is used to avoid a large swing in ntf t,d from a small change in tf t,d.

Inverse document frequency: idf t = log
N

df t
 (2)

where N = number of documents in the entire document corpus, and df t represents the
number of documents where term t appears. The intuition behind idf is that terms that are
frequent in all documents may not discriminate very well and will thus be penalised with
low idf. Conversely, terms that occur in a few documents may be more interesting for the
documents where they appear and will thus be weighted with higher idf.

Term frequency-inverse document frequency: tf − idf t = ntf t,d × idf t (3).
The tf-log is computed as
Term frequency (Logarithm): tf − logt = 1 + log(tf t,d) (4).
A project-specific approach can use any of tf, ntf, tf-idf or tf-log metrics based on a

threshold (e.g. top n terms) to determine the most promising features. For example, Peters
et al. (2017) use the top 100 terms with the highest tf-idf values as their feature set.

3.2.1.2  Our generalised modelling approach  In this approach, we first manually define
security keyword list by extracting security keywords from popular and relevant security
sources as depicted in Fig. 1. The feature set used in this work is based primarily on keywords

DTM =

⎡
⎢⎢⎢⎣

owasp top software errors buffer overflow is dangerous include

D1 1 1 1 1 0 0 0 0 0

D2 0 0 0 0 1 1 1 1 0

D3 0 0 1 2 1 1 0 0 1

⎤
⎥⎥⎥⎦

Fig. 1   Extracting security feature list from security data sources

516 Software Quality Journal (2021) 29:509–553

1 3

extracted from the RFC49493 (Internet Security Glossary) and NVD4 datasets. We also used
MITRE CWE,5 OWASP,6 SANS,7 and programming language exceptions (e.g. PHP8). We
parsed and tokenized the full text removing English stop words from the list and manually
reviewing the collected terms. We reviewed the other listed sources (CWE, OWASP and
SANS) manually for security keywords by reviewing their high-level documents. For example,
with CWE, we mainly reviewed the ‘Research Concepts’ view where the graph shows
high-level description of the CWE errors. Similarly, for OWASP, we reviewed annotated
categories such as attack and control, and for SANS, we reviewed the top 25 software errors
and extracted relevant terms. Next, we classified the keywords into four categories namely:

•	 Assets: set of terms that represents data or information that should be protected by an
entity (e.g. PII, credit card, ecash, token, keys, and session)

•	 Control: list of terms that represents implemented security controls or mitigations (e.g.
authentication, checksum, captchas and encryption)

•	 Attack/threats: list of terms that represents security attacks or threats to a system (e.g.
xss, backdoor, injection, vulnerability, untrusted data)

•	 Implicit: list of terms that does not fall under these categories and many times are
implicit security-related terms (e.g. incorrect, wrong, invalid, restrict, null pointer
exception)

Our approach relies on this set of keywords that we have defined to form a feature
set. A key point in machine learning is that better features tend to outperform a cleverer
algorithm (Sparck, 1972; Salton & Buckley, 1988; Wu et al., 2008; Forman, 2003).
Domain knowledge can improve data knowledge and representation and thus improve the
model. In addition, the feature space can be reduced with less computationally expensive
modelling operations (Wijayasekara et al., 2014) than using frequent terms computed from
a document term matrix (Feinerer, 2013).

3.2.1.3  Classification models and performance metrics  Based on the approaches described
in Sects. 3.2.1.1 and 3.2.1.2, we derive four different classification models based on two
feature selection methods (see Fig. 2):

1.	 Model fsec-ext+ uses the harvested security keywords as feature set and includes
security keywords from the list of attack/threat, control, asset and implicit terms as
records in the training dataset. This approach aims to increase the weight of the security
terms by including them in our training set and setting them as SBRs (see Table 2).

2.	 Model fsec-tfidf uses the tf-idf metric (Eq. 3) and preset to top 100 as used in Peters et al.
(2017) This metric is project specific as terms are determined from the security bug
reports of the project. Following the argument that the top 100 terms span nearly all the
feature families of the vulnerability reports (Bozorgi et al., 2010), we adopt these terms
for our experiments with the aim to also be able to compare our results.

3  https://​tools.​ietf.​org/​html/​rfc49​49
4  https://​nvd.​nist.​gov/​vuln/​data-​feeds#​XML_​FEED
5  https://​cwe.​mitre.​org/​data/​defin​itions/​1000.​html
6  https://​www.​owasp.​org/​index.​php/​Categ​ory:​Attack, https://​www.​owasp.​org/​index.​php/​Categ​ory:​Contr​ol
7  https://​www.​sans.​org/​top25-​softw​are-​errors/
8  https://​www.​php.​net/​manual/​en/​spl.​excep​tions.​php

517Software Quality Journal (2021) 29:509–553

https://tools.ietf.org/html/rfc4949
https://nvd.nist.gov/vuln/data-feeds#XML_FEED
https://cwe.mitre.org/data/definitions/1000.html
https://www.owasp.org/index.php/Category:Attack
https://www.owasp.org/index.php/Category:Control
https://www.sans.org/top25-software-errors/
https://www.php.net/manual/en/spl.exceptions.php

1 3

3.	 Model fsec-ext uses the harvested security keywords as feature set as in fsec-ext+ model
but exclude the features from the training dataset.

4.	 Model fsec-tfidf+ uses the tf-idf metric (Eq. 3) as in fsec-tfidf but includes the features
in the training dataset.

3.2.1.4  Performance metrics  We report the recall, precision, probability of false (pf)
alarm, f-score, g-measure and area under the curve of receiver operating curve (Powers,
2011) (aucroc) to show the performance of the text classification models (Sebastiani,
2002; Peters et al., 2017). We included pf and g-measure in order to compare our work
with Peters et al. (2017). The g-measure provides the harmonic mean between recall (true
positive rate) and true negative rate (100—pf) while the f-score measures the harmonic
mean between recall and precision. The roc measures the relationship between true

Fig. 2   Experiment setup and modelling approach

Table 2   Example of text and security keywords added to form our training dataset

Text/feature Label

backdoor 1
password 1
CAPTCHAS 1
cipher 1
security 1
CSS style Parser does not handle style names with leading dash
Consider the 0 following fragment:

0

ldap injection 1
Authentication with ZeppelinHubRealm throws 403 error
In some cases, depending where authentication server is deployed and what services are used, it is

possible that httpcomponents client request headers are not approved by the security rules…

1

Font size to paragraph config font size for paragraph text 0

518 Software Quality Journal (2021) 29:509–553

1 3

positive rate and false positive rate (aka pf) of a classifier at different thresholds, and
the auc computes a single metric that provides the area of a classifier under the roc.
This allows a fair comparison of the performance of one model to another. The metrics
are computed from true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) where:

TP = number of security records correctly identified as security records
TN = number of non-security records correctly identified as non-security records
FP = number of non-security records incorrectly identified as security records
FN = number of security records incorrectly identified as non-security records
as follows

3.2.1.5  Constructing training and test matrices from feature set  We use the hand-crafted
keywords (custom dictionary list) for fsec-ext model as the feature vector. In the case of
fsec-tfidf, the 100 terms forming the dictionary list is generated from SBR of the training
dataset as used in Peters et al. (2017). In both cases (fsec-ext and fsec-tfidf), the derived
features are used to construct the training and test matrices as shown in Fig. 2. We use the
tf-log metric (Eq. 4) when a word matches the feature vector otherwise, we record a ‘0’.
The example below demonstrates how the document-term matrix is constructed using a
predetermined dictionary list.

Assume a document contains 2 texts with classification categories as follows:

Given a set of security keywords, F determined by fsec-ext, or fsec-tfidf, such that
F = {password, xmli, security, overflow}, we arrive at vectors:
V(text1)F = [0,0,0,0]
V(text2)F = [1,0,1,0]

and a matrix: M
(
text1, text2

)
=

[
0 0 0 0

1 0 1 0

]
→

[
0

1

]

Recall =
TP

TP + FN

Precision =
TP

TP + FP

pf =
FP

FP + TN

F − score = 2 ×
Precision ∗ Recall

Precision + Recall

g − measure =
2 × Recall × (100 − pf)

Recall + (100 − pf)

⎡
⎢⎢⎣

Text Classification

Diffucult to place caret at the end of a line in Show All Tags view 0

Allow Personal Security Password > 30 characters 1

⎤⎥⎥⎦

519Software Quality Journal (2021) 29:509–553

1 3

3.2.1.6  Text cleaning and transformation approaches  We have used the four datasets
from Ohira and the cleaned and scrubbed version of Chromium dataset from Peters et al.
(2017). In addition to the four datasets described in Sect. 3.1, we remove stop words
from all the nine datasets and remove unwanted terms from Chromium and the HIB
dataset using the list from Peters et al. (2017). We then collect only text data from each
dataset using the regular expression [^a-z A-Z]. After these steps, we tokenise the text
and transform the documents (SBR or NSBR) into a document term matrix as described
in 3.2.1.5.

3.2.1.7  Generating training and test dataset  We split the Ohira dataset and Chromium
dataset by using date and exactly as reported in (Peters et al., 2017) into 50% past and
50% present. The training dataset represents the past while the test dataset represents
the present. In the case of ODCV, Apache, Mozilla, and Comm dataset, we sort by
the ‘Summary’ field and split into 50% training and 50% test dataset. Table 3 lists the
properties of our training and test dataset in terms of the number of security bug reports
(SBR) and non-security bug reports (NSBR). The test dataset is unseen data that is used
to evaluate the true performance of the constructed model.

3.2.1.8  Class imbalance and sampling techniques  Wicket, Derby, Camel, Ambari,
Chromium and Comm datasets are highly skewed with SBRs accounting for 1%, 8.8%,
3.2%, 2.9%, 0.5%, and 2.1% of the total bug reports respectively. Imbalance data is
known to reduce the performance of classifier on the class where the data is sparse. The
BR is highly skewed with very few reports labelled as SBR. We deal with this imbalance
in our training dataset by either over sampling or under sampling (He & Garcia, 2009)
the NSBR depending on the ratio of SBR to NSBR in the project. We treat sampling ratio
of NSBR to SBR in our training dataset as a treatment in our experiment to determine
which sampling ratio can produce adjusted training dataset that can best be learned by the
classifier. In other words, we do not change the size of the SBR in our training dataset;
rather, we adjust the size of NSBR by a factor of SBR as listed in Algorithm 1. In line
6, instances from NSBR are randomly picked by using a random number that returns an
integer bounded by the size of NSBR.

Table 3   Properties of the training and test data

Project Training Test
No. of BRs No. of SBR No. of training No. of SBR

in training
No. of test No. of

SBR in
test

Ambari 1000 29 500 22 500 7
Wicket 1000 10 500 4 500 6
Camel 1000 32 500 14 500 18
Derby 1000 88 500 46 500 42
Chromium 41,940 192 20,970 77 20,970 115
Apache 2566 1283 1283 664 1283 619
Mozilla 6552 3276 3276 1664 3276 1612
Comm 946 20 473 6 473 14
ODCV 1157 571 579 128 578 443

520 Software Quality Journal (2021) 29:509–553

1 3

Algorithm 1: OverOrUnderSample NSBR in Training Dataset

1: balanceNSBR (SBR, NSBR, factor) [factor is of primi�ve type double and > 0]
2: add (datastore, SBR)
3: if NSBR.size > SBR.size or NSBR.size < SBR.size then
4: adjustedSize = factor * SBR.size
5: for 1 to adjustedSize do
6: add(datastore, NSBR[RandomInteger(NSBR.size)])
7: end for
8: else // SBR == NSBR
9: add (datastore, NSBR)
10: return datastore

3.2.1.9  Training parameters and treatments  Some terms must be weighted higher than
the others. Term weighting is a known technique in machine learning (Salton & Buckley,
1988; Wu et al., 2008). The objective is to allow the algorithm to learn a function that
prioritises the term or feature with a higher weight. Our approach is to give a higher weight
to the security features (attack/threat, asset, control, and implicit terms). To achieve this, we
classify every term in our feature set to be security related. These terms are then included as
SBRs in our training dataset as shown in Table 2.

For the fsec-ext feature selection method, we experiment with using different
combinations of security category such as attack/threat (T), asset (A), control (C) and
implicit (I) terms to train our classification model. We devise seven combinations from
these categories (see Table 4)—T, C, TC, TA, CA, TCA, TCAI. The intuition is that
different projects may report on different security category which in turn may influence
the quality of the learner. In addition, this approach can provide insight into the dominant
security category and issues for a project. Furthermore, we experiment with including and
excluding these security categories as SBRs in our training dataset. Lastly, we experiment
with class imbalance ratio by adjusting (over- or undersampling) NSBR size relative to
the size of SBR. For instance, a value of 0 means the original size of SBR to NSBR in the
training dataset is kept, and a value of 1.0 means the ratio SBR:NSBR is 1:1. Table 4 lists
the parameters and the corresponding values we have adopted in our experiments.

3.2.1.10  Experiment setup and modelling approach  Figure 2 shows our experiment setup
and modelling approach. To answer our research question, we investigate two prediction
targets, Within Project Prediction (WPP) where a project’s prediction model is used to
predict on the project’s test dataset and Transfer Project Prediction (TPP) where a project’s
prediction model is used to predict on the test dataset of other projects. In total and using
the treatments listed in Table 4, we constructed 3600 prediction models for each project’s
dataset, 400 models for WPP and 3200 models for TPP as listed in Table 5. All data, source

Table 4   Treatments and parameters for training dataset

Treatment Values Feature selection method

Security Category Threat (T), control (C), asset (A),
implicit (I)

fsec-ext

Include Security Category in Training
dataset

true, false fsec-ext, fsec-tfidf

Class Ratio (SBR: NSBR) 0.0, 0.5, 1.0, 1.5, 2.0 fsec-ext, fsec-tfidf

521Software Quality Journal (2021) 29:509–553

1 3

code and analysis scripts for our experiments are available online.9 We have used five
common text classification algorithms that have been used extensively in the vulnerability
and defect prediction community (Joachims, 1998); (Peters et al., 2017) namely support
vector machine (SVM), random forest (RF), Naïve Bayes (NB), logistic regression (LR)
and K-nearest neighbour (KNN). We have used the Weka (Witten & Frank, 2005) machine
learning library version 3.8.4 with the default parameter settings for the five algorithms.

3.2.1.11  Complexity of our approach  A DTM typically yields a large number of terms that
are used as features for training a prediction model. Both the size of the features and the
training dataset influence the complexity of learning algorithms. For instance, the best-case
time complexity of random forest (Louppe, 2014) for building forests of M randomised tree
on N observation points and using K randomly drawn features (variables) from a total of
p variables (where K ≤ p) is given as O(MKNlog2N) and the worst case as O(MKN2logN).

Assume the number of features in fsec-ext is P, and N is the total bug records
(SBR + NSBR) in the training dataset (i.e. observation points), fsec-ext+ includes the
features P in the training dataset to increase the observation points to N + P. This implies
a complexity that is dependent on N or P depending on which one is higher. P > N exists
for cases where the number of features is more than the training bug reports. Examples
are the Ambari, Wicket, Derby, Camel, Comm, ODCV and Apache dataset. While N > P
exists for cases where the number of training bug reports is higher than the number of
features. Examples are Chromium and Mozilla dataset. Using random forest, which has the
worst running time in our experiments, the worst-case time complexity when N > P will be
O(MKN2log(N + P)) and when P > N, it will be O(MKP2log(N + P)).

3.2.1.12  Comparing with Peter’s et al. (2017)   We compare our results to Peters et al. (2017)
where applicable. Peters et al. (2017) use filtering techniques named FARSEC to remove

Table 5   Experiment details

Prediction approach Prediction models Total

WPP 1 dataset
5 machine learning algorithms (RF, SVM, NB, LR, KNN)
2 feature selection approaches (fsec-ext, fsec-tfidf)
7 security categories (T, C, TC, TA, CA, TCA, TCAI) for fsec-ext
2 Boolean include security category in train (True, False)
5 class ratios (0.0, 0.5, 1.0, 1.5, 2.0) 400

TPP 1 dataset
8 targets
5 machine learning algorithms (RF, SVM, NB, LR, KNN)
2 feature selection approaches (fsec-ext, fsec-tfidf)
7 security categories (T, C, TC, TA, CA, TCA, TCAI) for fsec-ext
2 Boolean include security category in train (True, False)
5 class ratios (0.0, 0.5, 1.0, 1.5, 2.0) 3200

Total 3600

9  https://​github.​com/​tosda​noye/​fsece​xt

522 Software Quality Journal (2021) 29:509–553

https://bitbucket.org/ootos/fsecext-sqj

1 3

NSBRs that contain security crosswords from the training dataset. A security crossword is a
feature (or dictionary term) that exists in both the SBR and NSBR. FARSEC filtering works
by first identifying 100 terms with the highest tf-idf as defined in Eq. 3 to form a dictionary.
Next, for each term in this dictionary, FARSEC computes a score which is the probability
of the term appearing in SBRs and NSBRs. FARSEC proceeds to score each bug report by
retrieving the scores for all the dictionary terms found in the bug report and then producing
an overall score or ranking for this bug report. Finally, FARSEC filters out NSBR with
overall ranking ≥ 0.75 from the training dataset. Rather than focusing on filtering NSBR,
we take a different approach by focusing on feature selection methods, term weighting and
sampling of imbalance dataset. To have a fair comparison with our work, we have used the
top 100 terms identified using the same tf-idf metric defined in Eq. 3 to generate our feature
set for the model fsec-tfidf.

Table 6 lists the security keywords generated by fsec-tfidf for each project compared
with the list in Peters et al. (2017). We observe some slight differences in both lists. We
speculate that the differences may be due to differences in the programming language
used and especially how tokens are derived from the documents. For example, the token
‘interfacerequest’ keyword from Peters et al. (2017) in Wicket is not a single word but
a substring from e.g. BookmarkableListenerInterfaceRequestTarget. Such differences can
account for the disparity between our list and Peters et al. (2017).

3.2.1.13  Approach to research questions  We now define our research questions and
hypotheses based on our overall question. Broadly, we investigate whether using features
based on external data sources can produce prediction models that improve transfer project
predictions on other projects. We then investigate whether including security features in
the training dataset can improve the performance of a model. Lastly, we investigate if these
modelling approaches have significant effect on within-project predictions.

We formulate our research questions and hypotheses as follows:
RQ1: Do externally sourced features generalise better than project-specific

features for TPP?
We test the hypothesis: H1: fsec-ext/ fsec-ext+ can generalise on other projects

significantly better than fsec-tfidf/fsec-tfidf+ for TPP.
RQ2: Does including security features as SBRs in training dataset improve model’s

performance over models that exclude them for both WPP and TPP?
We test the hypothesis: H2: fsec-ext+ significantly outperform fsec-ext and fsec-tfidf+

significantly outperform fsec-tfidf.
RQ3: Do models that utilise external sources for features outperform model that

uses project-specific features in within-project prediction (WPP)?
We test the hypothesis: H3: fsec-ext/fsec-ext+ significantly outperforms fsec-tfidf/fsec-

tfidf+ for WPP.
We investigate the performance measures of each model type we have defined on its

own dataset (WPP) as well as other projects’ datasets (TPP) and compare the results. Both
goals are complementary and important to the goal of our study, as a model that performs
well on its own dataset but poorly on another dataset would not be useful for generalisation
purpose. Conversely, a model that performs well on other datasets but poorly on its own
dataset may be useless. We use summary statistics showing the minimum, maximum and
average of the performance metrics to explain our results. A well-generalised and robust
model will show high minimum and mean g-measure, recall, f-score and low standard
deviations. To capture this generalisation effect for a target, we collect the prediction

523Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
6  

S
ec

ur
ity

-r
el

at
ed

 k
ey

w
or

ds
 d

er
iv

ed
 fr

om
 u

si
ng

 th
e

no
rm

al
is

ed
 tf

-id
f (

M
an

ni
ng

 e
t a

l.,
 2

00
8)

Pr
oj

ec
t

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

op
 1

00
)

O
ur

s (
to

p
10

0)
%

M
at

ch

C
hr

om
iu

m
fil

e
se

cu
rit

y
ch

ro
m

e
pa

ge
 h

ttp
 d

ow
nl

oa
d

us
er

 st
ar

re
d

pe
rs

on
 n

ot
ifi

ed

ch
an

ge
s m

ay
 se

e
ur

l s
ite

 b
ug

 o
pe

n
go

og
le

 b
ro

w
se

r l
ik

e
w

in
do

w
s w

in
do

w

ht
tp

s w
eb

 c
od

e
on

e
m

em
or

y
fir

ef
ox

 fu
nc

tio
n

te
sts

 p
ro

bl
em

 se
em

s t
ab

al

so
 v

er
si

on
 u

se
 w

ou
ld

 u
si

ng
 v

ie
w

 u
se

d
m

ak
e

us
er

s c
hr

om
iu

m
 c

ra
sh

cl

ic
k

pa
ss

w
or

d
th

in
k

vu
ln

er
ab

ili
ty

 su
re

 b
ro

w
se

rs
 li

nk
 a

tta
ch

ed
 a

tta
ck

er

da
ta

 g
et

 fi
x

co
ns

t c
on

te
nt

 so
m

et
hi

ng
 sa

fa
ri

ne
w

 e
rr

or
 ja

va
sc

rip
t l

ca
m

tu
f

m
al

ic
io

us
 p

le
as

e
co

ul
d

ris
k

re
le

as
e

try
 fo

un
d

al
lo

w
 e

xp
ec

te
d

tim
e

ex
am

-
pl

e
co

rr
up

tio
n

te
st

ba
ck

 a
cc

es
s c

ra
sh

es
 u

rls
 in

t w
ith

ou
t k

no
w

 v
er

si
on

s
w

ay
 u

se
s c

au
se

 fa
il

w
an

t s
ys

te
m

 st
ill

 fi
le

s a
rb

itr
ar

y
ht

m
l d

et
ai

ls
 ss

l n
ee

d
lo

ad
ed

 m
ig

ht

fil
e

ch
ro

m
e

se
cu

rit
y

pa
ge

 d
ow

nl
oa

d
us

er
 h

ttp
 u

rl
se

e
st

ar
re

d
no

tifi
ed

 p
er

-
so

n
ch

an
ge

s m
ay

 is
su

e
si

te
 o

pe
n

bu
g

go
og

le
 sc

rip
t l

ik
e

br
ow

se
r w

in
do

w
s

w
eb

 c
od

e
pr

ob
le

m
 o

ne
 u

se
rs

 ta
b

m
em

or
y

fir
ef

ox
 u

se
 h

tm
l f

un
ct

io
n

se
em

s v
er

si
on

 a
ls

o
w

ou
ld

 v
ie

w
 u

si
ng

 u
se

d
te

sts
 sa

fa
ri

da
ta

 c
hr

om
iu

m

cr
as

h
co

nt
en

t e
xa

m
pl

e
w

in
do

w
 c

lic
k

ge
t v

ul
ne

ra
bi

lit
y

te
st

pl
ea

se
 m

ak
e

br
ow

se
rs

 p
as

sw
or

d
th

in
k

lin
k

at
ta

ch
ed

 fi
x

at
ta

ck
er

 su
re

 ja
va

sc
rip

t n
ew

ty

pe
 e

xp
ec

te
d

er
ro

r m
al

ic
io

us
 b

ac
k

so
m

et
hi

ng
 c

ou
ld

 fo
un

d
ris

k
fa

il
try

fil

es
 a

llo
w

 a
m

p
co

rr
up

tio
n

tim
e

co
ns

t r
el

ea
se

 a
cc

es
s i

nt
 lc

am
tu

f h
ttp

s
ur

ls
 v

er
si

on
s s

ky
lin

ed
ch

ro
m

iu
m

 w
an

t k
no

w
 w

ay
 sy

ste
m

 c
au

se
 u

se
s

w
ith

ou
t l

in
e

ru
n

cr
as

he
s

93

W
ic

ke
t

st
at

el
es

sh
om

ep
ag

e
at

ta
ch

ed
 c

al
ls

 d
at

ap
ro

vi
de

r r
eg

ar
ds

 c
om

po
ne

nt
 li

m
ite

d
fil

es
 c

ou
nt

 ja
n

co
up

le
 d

at
ab

as
e

in
te

ge
r e

nt
rie

s r
ea

so
n

pa
ge

 g
et

 fi
rs

t j
av

a
er

ro
r u

nk
no

w
n

so
ur

ce
 si

gn
in

fo
rm

 je
tty

 re
qu

es
tli

ste
ne

rin
te

rfa
ce

 c
re

de
n-

tia
ls

ex
pe

ct
ed

 p
ar

am
s h

ttp
 e

xc
ep

tio
n

in
te

rfa
ce

re
qu

es
t h

om
ep

ag
e

m
an

ua
lly

be

co
m

e
in

fo
rm

 st
at

ef
ul

 li
ste

ne
r h

ap
pe

nd
s s

ta
te

le
ss

ch
ec

ke
r i

ns
uc

ce
ed

ed

cr
ea

te
s c

au
se

s s
uc

es
sf

ul
l o

pe
ns

ac
tu

al
 fi

na
l a

bs
tra

ct
lis

te
ne

r q
ui

ck
st

ar
t

m
vn

 lo
gi

n
an

al
ys

is
 o

pe
n

un
pa

ck
 te

m
po

ra
ry

 e
nt

er
 si

gn
 v

al
ue

m
ap

 h
ap

py

st
at

el
es

sp
ro

bl
em

 si
gn

in
pa

ne
l r

eq
ue

stc
yc

le
 o

cc
ur

ed
 fi

x
de

le
te

 d
el

et
in

g
fa

ils
 u

pl
oa

d
or

g
w

eb
ap

pl
ic

at
io

n
ho

le
 sp

ac
e

cr
ea

te
d

ha
nd

le
 e

xa
m

pl
e

se
cu

-
rit

y
se

rv
er

 fi
nd

 im
po

rta
nt

 m
et

ho
d

m
ul

tip
ar

t e
as

y
ho

pe
 m

ak
es

 in
co

m
pl

et
e

ca
nc

el
le

d
th

in
k

w
or

ka
ro

un
d

up
lo

ad
in

g
pa

rs
er

eq
ue

st
w

an
t r

ea
lly

 a
ny

on
e

di
sk

 la
rg

e
ea

tin
g

bu
g

th
ro

w
 p

os
tin

g
de

ve
lo

pe
rs

 c
al

l t
hr

ea
ds

 se
rv

le
tw

ra
p-

pe
r

re
as

on
 ja

n
st

at
el

es
sh

om
ep

ag
e

ge
t s

ig
ni

nf
or

m
 c

om
po

ne
nt

 c
al

ls
 fi

rs
t c

ou
pl

e
in

te
ge

rr
eg

ar
ds

 q
ui

ck
st

ar
t c

ou
nt

 e
nt

rie
s a

tta
ch

ed
 fi

le
s p

ag
e

da
ta

ba
se

lim

ite
d

da
ta

pr
ov

id
er

 e
rr

or
 so

ur
ce

 te
m

po
ra

ry
 e

xc
ep

tio
n

si
gn

in
pa

ne
l

ha
pp

y
en

te
r h

ap
pe

nd
s a

na
ly

si
s p

ar
am

s b
ec

om
e

cr
ed

en
tia

ls
ex

pe
ct

ed

lo
gi

n
ca

us
es

 in
su

cc
ee

de
d

ab
str

ac
tli

ste
ne

rin
te

rfa
ce

re
qu

es
tta

rg
et

 o
pe

n
re

qu
es

tli
ste

ne
rin

te
rfa

ce
 li

ste
ne

r r
ep

ro
du

ce
 o

pe
ns

ac
tu

al
 m

an
ua

lly
 fi

na
l

ht
tp

 c
re

at
es

 v
al

ue
m

ap
 st

at
el

es
sc

he
ck

er
 su

ce
ss

fu
ll

un
pa

ck
 je

tty
 st

at
ef

ul

m
vn

 st
at

el
es

sp
ro

bl
em

 h
om

ep
ag

e
up

lo
ad

 fi
x

de
le

tin
g

de
le

te
 fa

ils
 o

cc
ur

ed

or
g

re
qu

es
tc

yc
le

 h
ttp

se
rv

le
t j

av
au

til
 d

ev
el

op
er

s h
op

e
la

rg
e

m
et

ho
d

w
an

t h
an

dl
e

an
yo

ne
 c

an
ce

lle
d

w
or

ka
ro

un
d

ex
am

pl
e

th
in

k
m

ak
es

 e
at

in
g

ea
sy

fo
r fi

le
up

lo
ad

ex
ce

pt
io

ni
 b

ug
 th

ro
w

 w
ic

ke
tu

til
up

lo
ad

fil
eu

pl
oa

db
as

e
pa

rs
er

eq
ue

st
sp

ac
e

in
co

m
pl

et
e

fin
d

up
lo

ad
in

g
cr

ea
te

d
im

po
rta

nt
 d

is
k

m
ul

tip
ar

t s
ec

ur
ity

 se
rv

er
s s

oo
nt

ha
nk

s fi
le

si
 p

os
tin

g
re

al
ly

 h
ol

e
us

er

w
eb

ap
pl

ic
at

io
n

co
nc

ur
re

nt
ly

87

524 Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
6  

(c
on

tin
ue

d)

Pr
oj

ec
t

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

op
 1

00
)

O
ur

s (
to

p
10

0)
%

M
at

ch

A
m

ba
ri

se
cu

rit
y

w
iz

ar
d

se
rv

ic
e

se
cu

re
 fa

ils
 p

er
m

is
si

on
s a

llo
w

 st
ar

t v
al

id
at

io
n

us
er

cl

us
te

r c
an

no
t s

et
 m

ak
e

pa
ge

 c
on

fig
s d

at
an

od
e

ad
d

us
e

de
fa

ul
t p

ro
pe

rty

na
m

e
re

qu
es

t i
ns

te
ad

 e
na

bl
e

w
eb

 ss
l p

as
sw

or
d

us
ed

 se
rv

ic
es

 e
rr

or
 d

is
ab

le

fix
 p

er
m

is
si

on
 o

pt
io

ns
 e

xe
cu

te
d

se
tu

p
ht

tp
 n

ag
io

s r
eg

ist
ra

tio
n

ho
sts

 a
ls

o
ch

an
ge

 u
rl

co
nfi

gu
ra

tio
n

try
 e

na
bl

in
g

ch
ec

k
di

sa
bl

ed
 h

os
t i

ns
ta

ll
tim

e
re

tu
rn

 p
ro

vi
de

 c
al

l s
cr

ip
t i

ss
ue

 fi
le

 fa
ilu

re
s p

rin
ci

pa
l t

ou
ch

ed
 in

co
rr

ec
t

ar
tif

ac
ts

 a
ss

ig
nm

en
ts

 sl
av

es
 si

de
 u

se
rn

am
e

di
re

ct
or

y
pa

th
 c

us
to

m
is

ed

eff
ec

ts
 m

od
e

un
w

an
te

d
fa

ls
e

ca
us

es
 b

ro
ke

n
pr

im
ar

y
te

stm
od

e
m

ap
re

d
na

m
es

 w
or

ki
ng

 h
ttp

d
st

at
e

m
is

si
ng

 n
av

ig
at

io
n

ga
ng

lia
 p

re
pa

re
 lo

ck
ed

m

as
te

r a
m

ba
ri

sm
ok

e
w

ro
ng

 h
ba

se
 n

od
e

te
st

zo
ok

ee
pe

r b
ac

k
ne

ed
 e

ith
er

tru

e

se
cu

rit
y

w
iz

ar
d

se
rv

ic
e

se
cu

re
 p

er
m

is
si

on
s f

ai
ls

 a
llo

w
 v

al
id

at
io

n
us

er

cl
us

te
r s

ta
rt

ca
nn

ot
 se

t p
ro

pe
rty

 m
ak

e
us

e
ad

d
co

nfi
gs

 d
ef

au
lt

na
m

e
pa

ge

da
ta

no
de

 re
qu

es
t w

eb
 e

na
bl

e
us

er
na

m
e

ss
l i

ns
te

ad
 u

se
d

di
sa

bl
e

se
rv

ic
es

fix

 p
er

m
is

si
on

 e
xe

cu
te

d
in

st
al

l s
ta

tu
s s

et
up

 c
on

fig
 u

rl
ch

an
ge

 a
ls

o
na

gi
os

op

tio
ns

 re
gi

str
at

io
n

co
nfi

gu
ra

tio
n

tru
e

try
 h

os
ts

 d
is

ab
le

d
tim

e
ch

ec
k

ca
ll

pr
ov

id
e

en
ab

lin
g

re
tu

rn
 sc

rip
t h

os
t fi

le
 p

re
pa

re
 z

oo
ke

ep
er

 to
uc

he
d

in
co

r-
re

ct
 te

st
di

re
ct

or
y

fa
ls

e
na

vi
ga

tio
n

ht
tp

d
cu

sto
m

is
ed

 si
de

 n
am

es
 n

am
eg

t
m

od
e

lo
ck

ed
 a

rti
fa

ct
s a

m
p

w
or

ki
ng

 m
as

te
r g

an
gl

ia
 st

at
e

no
de

 m
ap

re
d

br
ok

en
 c

on
tro

lle
r j

dk
 te

stm
od

e
m

is
si

ng
 h

ba
se

 e
tc

co
nf

ha
do

op
 a

ss
ig

n-
m

en
ts

 sl
av

es
 p

rim
ar

y
am

ba
ri

ca
us

es
 tr

ac
ke

r w
ro

ng
 e

ffe
ct

s e
rr

or
 p

rin
ci

pa
l

sm
ok

e
un

w
an

te
d

92

C
am

el
m

es
sa

ge
 h

ttp
 e

nd
po

in
t h

ea
de

r o
rg

 w
ou

ld
 u

ri
co

m
po

ne
nt

 fi
le

s a
ls

o
is

su
e

sto
p

ex
po

se
 se

e
st

at
ic

 je
tty

 e
nd

po
in

ts
 sp

ec
ifi

ed
 p

or
t p

ro
ce

ss
in

g
lo

gi
n

ro
ut

e
fil

e
er

ro
r o

ne
 m

es
sa

ge
s h

ea
de

rs
 su

pp
or

t s
er

ve
r l

in
es

 u
si

ng
 th

ro
w

s
pr

ov
id

e
cu

rr
en

tly
 in

st
an

ce
 ft

p
se

nt
 m

ea
ns

 u
se

 is
su

es
 ig

no
re

 li
ce

ns
e

ds
l

in
te

rfa
ce

s o
pe

ne
d

ho
st

fa
ils

 re
de

liv
er

y
au

th
 in

te
rc

ep
ts

en
dt

oe
nd

po
in

t u
se

d
co

nn
ec

tio
n

ch
ec

k
m

em
or

y
he

ap
 n

ab
bl

eh
ttp

 b
un

dl
es

 c
on

su
m

er
 p

as
s p

at
h

ne
w

 c
as

e
ba

se
d

cl
as

se
s h

ow
ev

er
 d

ef
au

lt
er

ro
rh

an
dl

er
 p

us
hi

ng
 e

xp
ec

te
d-

bo
dy

 re
su

lte
nd

po
in

t e
xc

ha
ng

e
fo

llo
w

in
g

ex
ce

pt
io

n
el

se
 a

pa
ch

e
nu

ll
in

op
-

tio
na

lo
ut

 h
an

dl
er

 to
ke

n
cu

sto
m

 ig
no

re
s s

er
ve

rs
 so

m
et

hi
ng

 li
ke

 p
ro

te
ct

ed

sf
tp

en
dp

oi
nt

 re
m

ov
e

jm
s c

on
ca

te
na

te
d

de
le

ga
te

 u
nd

er
ly

in
g

ss
h

da
ta

 c
op

y
ftp

co
m

po
ne

nt
 m

et
ho

d
se

co
nd

 c
sv

 re
su

lts
 m

oc
ke

nd
po

in
t f

al
se

or
g

m
es

sa
ge

 h
ea

de
r e

nd
po

in
t h

ttp
 w

ou
ld

 u
ri

co
m

po
ne

nt
 a

ls
o

pr
oc

es
s-

in
g

fil
es

 is
su

e
sto

p
se

e
en

dp
oi

nt
s s

ta
tic

 p
or

t j
et

ty
 h

ea
de

rs
 e

xp
os

e
lo

gi
n

sp
ec

ifi
ed

 ro
ut

e
fil

e
er

ro
r m

es
sa

ge
s o

ne
 su

pp
or

t s
er

ve
r i

ns
ta

nc
e

pr
ov

id
e

cu
rr

en
tly

 li
ne

s m
ea

ns
 u

si
ng

 th
ro

w
s c

as
e

ftp
 u

se
 se

nt
 is

su
es

 c
am

el
m

es
-

sa
ge

 c
he

ck
 re

m
ov

e
ig

no
re

 fa
ils

 in
te

rc
ep

ts
en

dt
oe

nd
po

in
t u

nd
er

ly
in

g
de

le
ga

te
 a

ut
h

ho
st

lic
en

se
 d

sl
 h

ea
p

bu
nd

le
s r

ou
te

gt
 m

em
or

y
im

po
rt

in
te

rfa
ce

s c
on

ne
ct

io
n

us
ed

 jm
s o

pe
ne

d
na

bb
le

ht
tp

 re
de

liv
er

y
pa

th
 p

as
s

ne
w

 c
on

su
m

er
 b

as
ed

 c
la

ss
es

 h
ow

ev
er

 p
us

hi
ng

 c
on

te
nt

 e
xc

ha
ng

e
fo

llo
w

-
in

g
ex

ce
pt

io
n

el
se

 a
pa

ch
e

m
et

ho
d

pr
ot

ec
te

d
sf

tp
en

dp
oi

nt
 ig

no
re

s c
us

to
m

ht

tp
ur

i h
an

dl
er

 ss
h

so
m

et
hi

ng
 c

on
ca

te
na

te
d

to
ke

n
da

ta
 li

ke
 se

rv
er

s
re

m
ov

eh
ea

de
r u

rif
tp

lo
ca

lh
os

tin
bo

xu
se

rn
am

eu
sr

am
p

le
as

t c
om

po
ne

nt
jm

-
sj

m
sm

es
sa

ge
 re

su
ltg

et
ou

ttr
ue

co
py

fro
m

ou
t i

nf
or

m
at

io
n

co
m

ja
va

he
ap

sp
a-

ce
is

su
ew

ith
re

ad
in

gl
ar

ge
cs

vfi
le

tth
tm

la

88

525Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
6  

(c
on

tin
ue

d)

Pr
oj

ec
t

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

op
 1

00
)

O
ur

s (
to

p
10

0)
%

M
at

ch

D
er

by
or

g
se

cu
rit

y
se

rv
er

 te
st

de
rb

y
pe

rm
is

si
on

 ja
va

 u
si

ng
 a

cc
es

s t
es

ts
 e

rr
or

 su
p-

po
rt

de
ni

ed
 ju

ni
t fi

le
 e

xc
ep

tio
n

da
ta

ba
se

 c
od

e
us

er
 re

ad
 m

an
ag

er
 lo

ca
le

ru

n
fa

ils
 n

ee
d

ve
rs

io
n

fa
il

ru
nn

in
g

se
cu

rit
ym

an
ag

er
 n

et
w

or
k

fo
llo

w
in

g
fil

es
 c

al
l r

eq
ui

re
d

st
at

em
en

t s
ou

rc
e

ta
bl

e
co

nn
ec

t c
la

ss
 th

re
ad

 b
lo

ck

se
cu

rit
ye

xc
ep

tio
n

w
ou

ld
 u

se
d

lik
e

fa
ile

d
pr

ob
le

m
 p

riv
ile

ge
d

cl
ie

nt
 se

e
jd

bc
 se

t m
et

ho
d

fil
ep

er
m

is
si

on
 tr

yi
ng

 g
ra

nt
ed

 a
ut

he
nt

ic
at

io
n

ne
ed

s d
ire

c-
to

ry
 c

on
ne

ct
io

n
ne

w
 th

in
k

en
cr

yp
tio

n
su

n
ja

r p
ol

ic
y

st
ar

t s
ta

ck
 u

nk
no

w
n

ro
w

s r
ev

ok
e

fo
un

d
in

fo
rm

at
io

n
al

ph
a

th
ro

w
n

w
ith

ou
t n

am
e

on
e

cr
ea

te

en
d

up
da

te
 h

ttp
 c

ou
ld

 m
ak

e
tri

gg
er

 th
ou

gh
 n

at
iv

e
co

nt
ai

ns
 lo

ok
s t

w
o

ke
y

m
od

e
re

su
lts

 sq
l u

se
 in

t c
la

ss
pa

th
 m

es
sa

ge
 in

co
rr

ec
tly

 c
he

ck

or
g

se
rv

er
 se

cu
rit

y
ja

va
 d

er
by

 te
st

pe
rm

is
si

on
 e

rr
or

 u
si

ng
 e

xc
ep

tio
n

te
sti

ng
 a

cc
es

s t
es

ts
 su

pp
or

t d
en

ie
d

da
ta

ba
se

 c
od

e
ju

ni
t f

ou
nd

 fi
le

 re
ad

us

er
 ru

n
jd

bc
 fa

ils
 lo

ca
le

 n
ee

d
m

an
ag

er
 fa

il
ve

rs
io

n
fo

llo
w

in
g

ne
tw

or
k

co
nn

ec
t s

ta
te

m
en

t r
un

ni
ng

 fi
le

s s
ec

ur
ity

m
an

ag
er

 ta
bl

e
w

ou
ld

 b
lo

ck

so
ur

ce
 re

qu
ire

d
cl

as
s s

ec
ur

ity
ex

ce
pt

io
n

pr
ob

le
m

 u
se

d
se

e
se

t t
ry

in
g

m
et

ho
d

th
re

ad
 th

in
k

ca
ll

en
cr

yp
tio

n
fil

ep
er

m
is

si
on

 n
ee

ds
 n

ew
 c

on
ne

c-
tio

n
pr

iv
ile

ge
d

m
ai

n
re

vo
ke

 g
ra

nt
ed

 c
re

at
e

st
ar

t f
ai

le
d

lik
e

cl
ie

nt
 p

ol
ic

y
ja

r a
ut

he
nt

ic
at

io
n

on
e

in
fo

rm
at

io
n

cu
rr

en
t r

ow
s t

hr
ow

n
di

re
ct

or
y

al
ph

a
na

m
e

en
d

m
ak

e
w

ith
ou

t u
pd

at
e

co
ul

d
st

ac
k

th
ou

gh
 in

t t
rig

ge
r m

od
e

lo
ok

s k
ey

 ji
ra

 e
xe

cu
te

 v
al

ue
s s

ql
 in

se
rt

us
e

co
nt

ai
ns

 m
es

sa
ge

 tw
o

in
co

r-
re

ct
ly

93

526 Software Quality Journal (2021) 29:509–553

1 3

performance results from each source per treatment—algorithm, selection method, ratio
and security category. For eight (8) sources, this will yield a total of 8 performance results
per target per treatment. We then compute the minimum, maximum, mean and standard
deviations for g-measure, f-score and recall. These statistics allow us to truly appreciate
how well a given model can generalise across all projects.

We follow the guideline of Demsar (2006) (He & Garcia, 2009) and use the Wilcoxon
signed rank test (a non-parametric test) at 95% confidence level to compare (1) whether
the performance of each model (fsec-ext or fsec-tfidf) significantly improve when security
features are included (fsec-ext+ or fsec-tfidf+) over when security features are excluded
and (2) whether the performance of model fsec-ext is better and statistically significant or
not to model fsec-tfidf. In addition, we perform effect size check on our results. As noted
in Kampenes et al. (2007), effect size quantifies the size of the difference between two
groups and allows us to judge whether the conclusions drawn from our hypotheses testing
are meaningful or not. It might be possible that the effect size is negligible even when the
statistical test is significant and vice versa. We apply the Hedges, g standardised effect size
measure calculated as:

where
−

X1 and
−

X2 represent the sample means for classification measures (recall, f-score and
g-measure) for the model pairs per project (e.g. fsec-ext vs. fsec-tfidf) and Sp represents the
pooled standard deviation computed from the standard deviations of s1 and s2 of the two
groups. Effect size results can be interpreted in different ways as explained in Kampenes
et al. (2007). For fsec-ext+ vs fsec-ext and fsec-tfidf+ vs fsec-tfidf, we use paired data. That
is, each data pair contains metric values of model before and after treatment. The treatment
in this case is including security features as SBR in the training dataset, all other variables
for both groups are kept constant—i.e. algorithm, ratio and security category. For fsec-
ext+ vs fsec-tfidf+ and fsec-ext vs fsec-tfidf, we use unpaired data by collecting top 20
results for each model type and then test which group’s mean is significant to the other.
We compare our results with those reported in Software Engineering empirical studies
categorised under Table 9. The size category for 284 estimated values for Hedges, g is
given as Small: 0.00–0.376, Medium: 0.378–1.000 and Large: 1.002–3.40. We have used
standard statistical packages in R (2008) for these purposes.

4 � Results

4.1 � Harvested security keywords

We have mined a total of 54 keywords for the asset category, 334 keywords for the control
category, 329 keywords for the attack category and 203 keywords for the implicit category.
We present a sample of the security words we have mined in Table 7. We caution that this
list is not, and cannot be, exhaustive, as additional keywords can be extracted from other
sources.

We present the results of the models (fsec-ext and fsec-tfidf). We have reported the
best results and the summary statistics for TPP. The best result is determined by sorting

Hedges, g =

−

X1 −
−

X2

Sp

527Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
7  

S
am

pl
e

of
 se

cu
rit

y
ke

yw
or

ds
 e

xt
ra

ct
ed

 fr
om

 d
iff

er
en

t s
ou

rc
es

 a
nd

 g
ro

up
ed

 in
to

 4
 c

at
eg

or
ie

s

A
ss

et
s

C
on

tro
l

A
tta

ck
/th

re
at

Im
pl

ic
it

To
ta

l
54

33
4

32
9

20
3

ac
co

un
t,

ba
nk

 id
en

tifi
ca

tio
n

nu
m

-
be

r,
B

IN
, b

io
m

et
ric

, c
ar

d,
 c

oo
ki

e,

cr
ed

en
tia

l,
cr

ed
it

ca
rd

, d
at

e
of

bi

rth
, d

ob
, e

-c
as

h,
 e

le
ct

ro
ni

c
co

m
m

er
ce

, e
le

ct
ro

ni
c

si
gn

at
ur

e,

el
ec

tro
ni

c
w

al
le

t,
fin

ge
rp

rin
t,

G
el

d-
K

ar
te

, h
om

e
ad

dr
es

s,
id

en
tit

y,
 ip

 a
dd

re
ss

, k
ey

s,
lo

g
in

, l
og

in
, p

as
sp

hr
as

e,
 p

as
sw

or
d,

pa

ym
en

t c
ar

d,
 p

er
so

na
l h

ea
lth

in

fo
rm

at
io

n,
 p

er
so

na
l i

de
nt

ifi
ab

le

in
fo

rm
at

io
n,

 p
ii,

 to
ke

n

3D
ES

, a
cc

es
s c

on
tro

l,
ac

ce
ss

le

ve
l,

ac
ce

ss
 p

ro
fil

e,
 a

cc
es

s
rig

ht
, a

cc
es

s r
ol

e,
 A

C
L,

 a
dm

in
,

ad
m

in
ist

ra
to

r,
A

dv
an

ce
d

En
cr

yp
-

tio
n

St
an

da
rd

, A
ES

, a
no

m
al

y
de

te
ct

io
n,

 a
no

ny
m

ou
s c

re
de

nt
ia

l,
an

on
ym

ou
s l

og
in

, a
nt

i-j
am

,
at

ta
ck

 tr
ee

, a
ud

it,
 a

ud
it

lo
g,

au

di
te

d,
 A

U
TH

, b
ac

k
up

, b
as

i-
ca

ut
h,

 b
cr

yp
t,

bi
om

et
ric

, b
la

ck

lis
t,

B
lo

ck
in

g,
 B

lo
w

fis
h,

 B
ou

nd
s

C
he

ck
in

g,
 B

yt
ec

od
e

ob
fu

sc
at

io
n,

C

an
on

ic
al

iz
at

io
n,

 C
A

PT
C

H
A

S

ac
tiv

e
w

ire
ta

pp
in

g,
 a

dv
er

sa
ry

,
at

ta
ck

, a
tta

ck
 p

ot
en

tia
l,

at
ta

ck
er

,
ad

ve
rs

ar
y,

 a
no

ny
m

ou
s l

og
in

,
ar

bi
tra

ry
 c

od
e,

 a
tte

m
pt

, b
lo

ck
ed

,
ba

ck
do

or
, b

ac
kt

ra
ck

 a
tta

ck
,

B
in

ar
y

pl
an

tin
g,

 b
irt

hd
ay

 a
tta

ck
,

bl
in

d
at

ta
ck

, B
lin

d
SQ

L
In

je
c-

tio
n,

 B
lin

d
X

Pa
th

 In
je

ct
io

n,
 b

ru
te

fo

rc
e,

 b
uff

er
 o

ve
rfl

ow
, b

yp
as

s,
C

ac
he

 P
oi

so
ni

ng
, C

od
e

In
je

ct
io

n,

co
m

m
an

d
in

je
ct

io
n,

 c
om

pr
om

is
e

co
nfi

gu
ra

tio
n,

 d
eg

ra
da

tio
n,

 d
el

et
e,

de

ny
, d

is
k

sp
ac

e,
 e

na
bl

e,
 e

rr
or

,
ex

ce
pt

io
n,

 e
xe

cu
te

, e
xp

ira
tio

n,

ex
pi

re
, e

xp
iri

ng
, e

xp
iry

, fl
aw

, g
ue

st
lo

gi
n,

 in
ac

tiv
e,

 in
co

rr
ec

t,
in

va
lid

,
in

va
lid

at
e,

 lo
g,

 lo
op

, m
em

or
y,

 m
is

-
us

e,
 n

ul
l,

nu
ll

po
in

te
r,

nu
ll-

po
in

te
r,

nu
llp

oi
nt

er
, n

ul
lp

oi
nt

er
ex

ce
pt

io
n,

no

n-
fin

al
 p

ub
lic

 fi
el

d,
 o

bs
tru

ct
io

n,

pa
ra

m
et

er

528 Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
8  

S
um

m
ar

y
st

at
ist

ic
s o

f b
es

t g
en

er
al

is
ed

 m
od

el
s f

or
 T

PP

g-
m

ea
su

re
f-

sc
or

e
Pd

au
cr

oc

Ta
rg

et
M

et
ho

d
C

at
R

at
io

Le
ar

ne
r

m
in

m
ax

av
g

std
m

in
m

ax
av

g
std

m
in

m
ax

av
g

std
m

in
m

ax
av

g
std

C
hr

om
iu

m
fs

ec
-e

xt
+

TC
0.

0
R

F
72

.1
78

.8
74

.1
2.

3
2.

6
5.

3
3.

4
0.

8
65

.2
80

.9
72

.8
5.

8
71

.1
83

.2
78

.9
3.

7
fs

ec
-e

xt
C

2.
0

LR
55

.0
71

.7
61

.5
6.

0
3.

6
24

.1
12

.2
7.

1
38

.3
64

.3
46

.5
8.

9
63

.5
73

.8
69

.6
3.

2
fs

ec
-tfi

df
+

–
1.

5
R

F
31

.5
70

.4
55

.7
13

.5
0.

7
2.

7
1.

8
0.

7
38

.3
77

.4
59

.1
12

.2
35

.5
75

.1
61

.6
12

.5
fs

ec
-tfi

df
–

0.
5

N
B

11
.4

64
.4

35
.9

22
.8

0.
8

9.
0

2.
9

2.
9

6.
1

53
.0

27
.7

20
.6

39
.1

74
.4

58
.3

13
.1

W
ic

ke
t

fs
ec

-e
xt

+
TC

0.
5

LR
69

.1
82

.3
75

.7
5.

4
4.

9
9.

7
7.

0
1.

9
66

.7
83

.3
79

.2
7.

7
67

.8
87

.2
78

.1
6.

9
fs

ec
-e

xt
TA

1.
0

LR
28

.1
76

.3
56

.3
19

.3
3.

3
12

.7
6.

9
2.

8
16

.7
66

.7
45

.8
21

.4
51

.4
79

.1
63

.1
9.

6
fs

ec
-tfi

df
+

–
–

LR
42

.7
74

.9
59

.6
10

.9
2.

3
9.

8
4.

3
2.

4
50

.0
83

.3
70

.8
14

.8
45

.3
81

.3
66

.3
11

.7
fs

ec
-tfi

df
–

–
N

B
27

.5
73

.5
48

.9
15

.9
1.

8
8.

0
4.

1
1.

7
16

.7
66

.7
39

.6
19

.8
53

.0
71

.2
61

.1
7.

6
A

m
ba

ri
fs

ec
-e

xt
+

C
0.

5
K

N
N

57
.6

78
.0

72
.3

6.
5

7.
9

12
.2

9.
3

1.
5

42
.9

71
.4

66
.1

10
.6

55
.0

80
.8

73
.2

8.
2

fs
ec

-e
xt

CA
1.

0
N

B
58

.3
81

.4
74

.4
8.

1
9.

1
26

.3
16

.6
6.

6
42

.9
71

.4
64

.3
10

.8
67

.2
86

.0
78

.5
5.

6
fs

ec
-tfi

df
+

–
1.

5
LR

34
.0

69
.9

54
.6

13
.7

3.
1

5.
6

4.
2

1.
0

42
.9

10
0.

0
82

.1
19

.8
51

.0
84

.3
72

.2
10

.8
fs

ec
-tfi

df
–

0.
5

N
B

24
.0

77
.4

60
.2

17
.6

1.
5

11
.2

5.
6

3.
0

14
.3

85
.7

57
.1

22
.9

38
.5

79
.0

61
.5

14
.0

C
am

el
fs

ec
-e

xt
+

CA
0.

5
LR

57
.2

71
.3

65
.9

4.
3

11
.8

16
.8

14
.6

2.
1

44
.4

66
.7

59
.7

7.
7

68
.7

76
.1

71
.4

2.
7

fs
ec

-e
xt

TC
A

I
0.

5
N

B
33

.6
68

.3
54

.2
13

.7
7.

7
24

.1
12

.9
5.

0
22

.2
88

.9
53

.5
20

.1
52

.5
76

.1
64

.4
8.

0
fs

ec
-tfi

df
+

1.
5

LR
40

.7
70

.4
54

.1
8.

8
7.

2
19

.8
9.

9
4.

2
44

.4
83

.3
68

.8
12

.9
47

.8
80

.6
61

.0
10

.2
fs

ec
-tfi

df
0.

5
N

B
46

.4
68

.0
54

.9
6.

8
6.

1
13

.5
8.

9
2.

5
38

.9
66

.7
52

.1
10

.3
43

.3
67

.9
54

.5
7.

3
D

er
by

fs
ec

-e
xt

+
C

2.
0

LR
65

.5
75

.5
70

.4
2.

9
26

.2
50

.0
32

.3
7.

5
57

.1
71

.4
66

.1
5.

2
71

.1
79

.0
74

.9
2.

5
fs

ec
-e

xt
TC

A
​

2.
0

LR
50

.4
73

.0
60

.6
6.

6
22

.8
38

.7
28

.8
5.

2
35

.7
78

.6
50

.6
13

.6
49

.6
80

.5
66

.7
9.

4
fs

ec
-tfi

df
+

2.
0

LR
41

.1
67

.1
51

.1
9.

1
11

.2
31

.6
17

.9
6.

8
31

.0
69

.0
53

.3
13

.4
43

.8
68

.8
55

.5
8.

8
f s

ec
-tfi

df
0.

5
N

B
48

.1
61

.9
55

.3
5.

3
13

.8
22

.0
17

.7
3.

1
42

.9
81

.0
60

.4
11

.4
51

.1
66

.0
58

.4
5.

1
O

D
C

V
fs

ec
-e

xt
+

TC
0.

5
K

N
N

64
.2

67
.3

65
.7

0.
9

62
.1

65
.8

63
.8

1.
1

51
.2

60
.3

55
.2

2.
7

67
.8

70
.4

69
.2

1.
0

fs
ec

-e
xt

TC
A

​
2.

0
LR

4.
6

58
.8

34
.5

21
.1

4.
6

57
.7

33
.4

20
.4

2.
4

42
.7

23
.4

16
.3

54
.8

69
.3

59
.9

5.
5

fs
ec

-tfi
df

+
0.

0
K

N
N

31
.3

55
.8

46
.9

7.
8

29
.5

58
.1

44
.9

9.
3

19
.0

59
.7

38
.2

13
.8

51
.5

59
.3

55
.7

2.
7

fs
ec

-tfi
df

1.
0

LR
0.

0
50

.0
15

.8
21

.3
0.

0
46

.9
14

.9
19

.8
0.

0
35

.9
10

.7
15

.0
46

.4
59

.3
53

.6
4.

4
A

pa
ch

e
fs

ec
-e

xt
+

TC
0.

5
LR

78
.5

93
.1

88
.5

5.
0

77
.5

92
.8

88
.0

5.
3

67
.4

95
.0

84
.6

9.
5

83
.2

94
.3

89
.4

4.
4

529Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

g-
m

ea
su

re
f-

sc
or

e
Pd

au
cr

oc

Ta
rg

et
M

et
ho

d
C

at
R

at
io

Le
ar

ne
r

m
in

m
ax

av
g

std
m

in
m

ax
av

g
std

m
in

m
ax

av
g

std
m

in
m

ax
av

g
std

fs
ec

-e
xt

CA
1.

0
LR

60
.2

91
.7

72
.7

9.
7

58
.9

91
.3

72
.0

9.
9

44
.1

90
.1

59
.6

14
.2

56
.0

93
.9

75
.0

11
.0

fs
ec

-tfi
df

+
2.

0
LR

38
.0

70
.8

55
.9

9.
8

47
.7

75
.7

59
.9

8.
8

45
.2

90
.3

64
.0

17
.4

49
.3

87
.1

65
.7

12
.1

fs
ec

-tfi
df

0.
5

N
B

51
.8

72
.6

64
.1

7.
8

47
.9

70
.6

62
.5

8.
5

38
.3

73
.8

59
.3

12
.2

57
.6

79
.7

70
.1

7.
0

M
oz

ill
a

fs
ec

-e
xt

+
TC

A
I

0.
5

K
N

N
75

.2
78

.6
77

.3
1.

2
74

.3
78

.0
76

.3
1.

3
62

.5
71

.2
66

.4
2.

7
76

.9
83

.3
79

.2
2.

0
fs

ec
-e

xt
CA

1.
0

LR
9.

3
69

.5
47

.7
17

.7
9.

2
69

.4
47

.6
17

.7
4.

9
53

.4
32

.8
14

.0
60

.1
73

.0
65

.7
4.

3
fs

ec
-tfi

df
+

0.
0

K
N

N
39

.7
63

.6
54

.4
7.

8
35

.2
61

.9
52

.4
9.

4
27

.0
65

.2
47

.5
13

.9
54

.2
67

.6
60

.3
4.

7
fs

ec
-tfi

df
0.

5
N

B
2.

3
53

.6
25

.4
20

.3
2.

3
53

.5
24

.7
20

.0
1.

2
36

.7
16

.2
13

.7
46

.3
73

.1
62

.5
8.

0
C

om
m

fs
ec

-e
xt

+
TC

2.
0

SV
M

73
.7

88
.2

81
.8

5.
8

12
.8

45
.5

26
.1

11
.5

71
.4

10
0.

0
85

.7
10

.1
78

.0
88

.3
83

.2
4.

3
fs

ec
-e

xt
TC

A
​

2.
0

LR
34

.5
77

.1
59

.8
15

.3
7.

7
21

.1
13

.8
4.

6
21

.4
85

.7
52

.7
22

.9
44

.6
83

.1
65

.3
13

.6
fs

ec
-tfi

df
+

2.
0

R
F

30
.9

75
.4

57
.7

14
.4

5.
9

17
.1

9.
4

3.
7

35
.7

10
0.

0
67

.0
19

.4
43

.3
81

.8
65

.3
14

.5
fs

ec
-tfi

df
0.

5
N

B
41

.6
80

.6
58

.7
12

.1
6.

3
16

.4
9.

6
3.

2
28

.6
92

.9
54

.5
21

.2
60

.5
86

.3
67

.9
8.

3

N
B

N
aï

ve
 B

ay
es

, L
R

lo
gi

sti
c

re
gr

es
si

on
, R

F
ra

nd
om

 fo
re

st,
 K

N
N

 K
-n

ea
re

st
ne

ig
hb

ou
r,

SV
M

 su
pp

or
t v

ec
to

r m
ac

hi
ne

530 Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
9  

T
PP

 re
su

lts
 w

ith
 th

e
be

st
g-

m
ea

su
re

Ta
rg

et
So

ur
ce

M
et

ho
d

C
at

R
at

io
Le

ar
ne

r
TN

TP
FN

FP
Pd

Pf
Pr

ec
F-

sc
or

e
G

-m
ea

su
re

A
U

C
RO

C

C
hr

om
iu

m
O

D
C

V
fs

ec
-e

xt
+

TC
0.

0
R

F
17

,8
52

84
31

29
94

73
,0

14
,4

2,
7

5,
3

78
,8

83
,2

O
D

C
V

fs
ec

-e
xt

TC
A

​
2.

0
R

F
17

,9
42

80
35

29
04

69
,6

13
,9

2,
7

5,
2

76
,9

80
,9

O
D

C
V

f s
ec

-tfi
df

+
–

0.
0

R
F

15
,1

19
79

36
57

27
68

,7
27

,5
1,

4
2,

7
70

,6
75

,1
O

D
C

V
fs

ec
-tfi

df
–

2.
0

R
F

18
,3

86
70

45
24

60
60

,9
11

,8
2,

8
5,

3
72

,0
75

,3
W

ic
ke

t
C

am
el

fs
ec

-e
xt

+
TC

A
I

2.
0

LR
41

2
6

0
82

10
0,

0
16

,6
6,

8
12

,8
90

,9
94

,0
A

pa
ch

e
fs

ec
-e

xt
TC

2.
0

LR
42

2
5

1
72

83
,3

14
,6

6,
5

12
,0

84
,4

84
,5

C
om

m
fs

ec
-tfi

df
+

–
0.

0
LR

41
1

5
1

83
83

,3
16

,8
5,

7
10

,6
83

,3
87

,9
A

pa
ch

e
fs

ec
-tfi

df
–

0.
5

R
F

33
5

5
1

15
9

83
,3

32
,2

3,
0

5,
9

74
,8

73
,0

A
m

ba
ri

M
oz

ill
a

fs
ec

-e
xt

+
CA

1.
5

N
B

47
1

5
2

22
71

,4
4,

5
18

,5
29

,4
81

,7
80

,3
C

om
m

fs
ec

-e
xt

TC
A

​
0.

0
N

B
47

6
5

2
17

71
,4

3,
4

22
,7

34
,5

82
,1

86
,1

D
er

b y
fs

ec
-tfi

df
+

–
0.

0
SV

M
41

5
6

1
78

85
,7

15
,8

7,
1

13
,2

84
,9

84
,9

C
hr

om
iu

m
fs

ec
-tfi

df
–

1.
5

R
F

46
7

5
2

26
71

,4
5,

3
16

,1
26

,3
81

,4
71

,6
C

am
el

D
er

by
fs

ec
-e

xt
+

TC
A

I
1.

0
LR

35
9

13
5

12
3

72
,2

25
,5

9,
6

16
,9

73
,3

71
,2

A
pa

ch
e

fs
ec

-e
xt

CA
0.

0
SV

M
44

3
11

7
39

61
,1

8,
1

22
,0

32
,4

73
,4

76
,5

A
pa

ch
e

fs
ec

-tfi
df

+
–

0.
5

LR
30

6
15

3
17

6
83

,3
36

,5
7,

9
14

,4
72

,1
81

,5
A

pa
ch

e
fs

ec
-tfi

df
–

1.
5

LR
36

3
13

5
11

9
72

,2
24

,7
9,

8
17

,3
73

,7
80

,1
D

er
by

A
pa

ch
e

fs
ec

-e
xt

+
TC

1.
5

SV
M

37
4

32
10

84
76

,2
18

,3
27

,6
40

,5
78

,8
78

,9
A

pa
ch

e
fs

ec
-e

xt
TC

A
​

1.
5

SV
M

38
9

30
12

69
71

,4
15

,1
30

,3
42

,6
77

,6
78

,2
A

pa
ch

e
fs

ec
-tfi

df
+

–
1.

5
R

F
32

9
30

12
12

9
71

,4
28

,2
18

,9
29

,9
71

,6
76

,2
A

pa
ch

e
fs

ec
-tfi

df
–

1.
0

R
F

34
2

27
15

11
6

64
,3

25
,3

18
,9

29
,2

69
,1

71
,4

O
D

C
V

M
oz

ill
a

fs
ec

-e
xt

+
T

0.
0

R
F

10
3

27
8

16
5

32
62

,8
23

,7
89

,7
73

,8
68

,9
67

,5
M

oz
ill

a
fs

ec
-e

xt
TA

1.
0

R
F

10
3

25
9

18
4

32
58

,5
23

,7
89

,0
70

,6
66

,2
65

,3
C

hr
om

iu
m

fs
ec

-tfi
df

+
–

0.
0

R
F

82
23

8
20

5
53

53
,7

39
,3

81
,8

64
,9

57
,0

60
,2

M
oz

ill
a

fs
ec

-tfi
df

–
0.

5
K

N
N

19
3

14
3

15
2

91
48

,5
32

,0
61

,1
54

,1
56

,6
59

,9
A

pa
ch

e
M

oz
ill

a
fs

ec
-e

xt
+

TC
2.

0
SV

M
61

1
58

5
34

53
94

,5
8,

0
91

,7
93

,1
93

,2
93

,3
M

oz
ill

a
fs

ec
-e

xt
TC

A
​

2.
0

LR
61

8
57

3
46

46
92

,6
6,

9
92

,6
92

,6
92

,8
93

,9
M

oz
ill

a
fs

ec
-tfi

df
+

–
2.

0
SV

M
51

6
47

9
14

0
14

8
77

,4
22

,3
76

,4
76

,9
77

,5
77

,5

531Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
9  

(c
on

tin
ue

d)

Ta
rg

et
So

ur
ce

M
et

ho
d

C
at

R
at

io
Le

ar
ne

r
TN

TP
FN

FP
Pd

Pf
Pr

ec
F-

sc
or

e
G

-m
ea

su
re

A
U

C
RO

C

M
oz

ill
a

fs
ec

-tfi
df

–
1.

5
SV

M
55

5
47

2
14

7
10

9
76

,3
16

,4
81

,2
78

,7
79

,7
79

,9
M

oz
ill

a
A

pa
ch

e
fs

ec
-e

xt
+

TC
A

I
0.

0
LR

16
10

11
53

45
9

54
71

,5
3,

2
95

,5
81

,8
82

,2
85

,4
A

pa
ch

e
fs

ec
-e

xt
TC

A
​

2.
0

LR
16

62
91

8
69

4
2

56
,9

0,
1

99
,8

72
,5

72
,5

76
,6

A
pa

ch
e

fs
ec

-tfi
df

+
–

0.
5

R
F

11
35

99
9

61
3

52
9

62
,0

31
,8

65
,4

63
,6

64
,9

71
,4

C
hr

om
iu

m
fs

ec
-tfi

df
–

2.
0

LR
13

21
78

3
82

9
34

3
48

,6
20

,6
69

,5
57

,2
60

,3
63

,3
C

om
m

C
hr

om
iu

m
fs

ec
-e

xt
+

TC
2.

0
LR

42
6

12
2

33
85

,7
7,

2
26

,7
40

,7
89

,1
85

,9
C

hr
om

iu
m

fs
ec

-e
xt

TC
A

I
2.

0
N

B
43

0
11

3
29

78
,6

6,
3

27
,5

40
,7

85
,5

90
,1

A
pa

ch
e

fs
ec

-tfi
df

+
–

1.
0

SV
M

38
2

11
3

77
78

,6
16

,8
12

,5
21

,6
80

,8
80

,9
A

pa
ch

e
fs

ec
-tfi

df
–

0.
5

N
B

32
7

13
1

13
2

92
,9

28
,8

9,
0

16
,4

80
,6

86
,3

532 Software Quality Journal (2021) 29:509–553

1 3

first by the g-measure, followed by the f-score and then by recall. Table 8 presents the
summary statistics (i.e. mean, minimum, maximum and standard deviations) of the
most generalised model for Transfer Project Prediction (TPP). Table 9 lists the results
with the best g-measure for TPP. Table 10 lists the statistical tests for comparing the
two models for TPP. Table 11 presents the statistical tests for comparing the effect of
including and excluding features during training on both WPP and TPP. Table 12 lists
the results with the best g-measure for WPP. Figure 3 shows the mean of top 20 results
of each model for WPP. Table 13 lists the statistical tests that compare the two models
for WPP. Finally, Tables 14 and 15 list the results with the best g-measure from all the
models for WPP and TPP respectively in comparison with the best results from Peters
et al. (2017).

Table 10   H1-Wilcoxon and
effect size tests comparing
models fsec-ext and fsec-tfidf
(TPP)

fsec-ext+ vs. fsec-
tfidf+

fsec-ext vs. fsec-tfidf

Metrics p value Hedges, g p value Hedges, g

Chromium recall (Pd) < 0.0001 1.88 < 0.0001 1.96
f-score < 0.0001 1.06 < 0.0001 1.61
g-measure < 0.0001 8.04 < 0.0001 3.59

Wicket recall (Pd) < 0.0001 1.53 0.07 0.32
f-score < 0.0001 1.97 < 0.0001 2.34
g-measure < 0.0001 8.23 < 0.0001 2.01

Ambari recall (Pd) 0.91 -0.60 0.001 1.03
f-score < 0.0001 3.48 < 0.0001 3.05
g-measure < 0.0001 2.13 < 0.0001 2.65

Camel recall (Pd) 0.17 0.28 0.01 0.34
f-score < 0.0001 3.92 < 0.0001 2.52
g-measure < 0.0001 6.70 < 0.0001 2.76

Derby recall (Pd) < 0.0001 1.60 0.16 0.1
f-score < 0.0001 5.12 < 0.0001 2.73
g-measure < 0.0001 8.15 < 0.0001 3.10

ODCV recall (Pd) 0.0002 1.40 < 0.0001 1.12
f-score 0.0004 1.00 < 0.0001 1.33
g-measure < 0.0001 4.47 < 0.0001 2.10

Apache recall (Pd) < 0.0001 2.61 < 0.0001 2.86
f-score < 0.0001 6.63 < 0.0001 7.03
g-measure < 0.0001 10.1 < 0.0001 8.60

Mozilla recall (Pd) < 0.0001 3.73 < 0.0001 4.70
f-score < 0.0001 17.9 < 0.0001 6.81
g-measure < 0.0001 19.9 < 0.0001 6.21

Comm recall (Pd) < 0.0001 1.65 0.03 0.58
f-score < 0.0001 2.64 0.0003 1.24
g-measure < 0.0001 4.73 < 0.0001 2.18

533Software Quality Journal (2021) 29:509–553

1 3

Table 11   H2—Wilcoxon and effect size tests comparing models fsec-ext and fsec-tfidf when feature is
included or excluded

Metrics fsec-ext+ vs fsec-ext fsec-tfidf+ vs. fsec-tfidf

WPP TPP WPP TPP

p value Hedges,
g

p value Hedges,
g

p value Hedges,
g

p value Hedges, g

Chro-
mium

recall
(Pd)

< 0.0001 0.35 < 0.0001 0.67 < 0.0001 1.51 < 0.0001 1.17

f-score 0.95 − 0.17 0.67 − 0.21 0.77 0.06 < 0.0001 0.16
g-meas-

ure
0.23 − 0.02 < 0.0001 0.46 0.0001 0.90 < 0.0001 0.73

Wicket recall
(Pd)

< 0.0001 0.48 < 0.0001 0.86 < 0.0001 2.18 < 0.0001 1.01

f-score 0.99 − 0.25 < 0.0001 0.04 < 0.0001 1.50 0.20 − 0.02
g-meas-

ure
< 0.0001 0.70 < 0.0001 0.64 < 0.0001 2.61 < 0.0001 0.51

Ambari Recall
(Pd)

0.99 − 0.58 < 0.0001 0.14 0.04 0.40 < 0.0001 0.96

f-score 1.0 − 0.77 1.0 − 0.37 0.41 − 0.15 0.99 − 0.25
g-meas-

ure
0.99 − 0.57 0.88 − 0.03 0.07 0.40 0.11 0.15

Camel recall
(Pd)

< 0.0001 0.33 < 0.0001 0.60 0.33 0.24 < 0.0001 1.02

f-score 0.002 0.18 0.58 − 0.03 0.74 − 0.11 < 0.0001 0.36
g-meas-

ure
< 0.0001 0.78 < 0.0001 0.43 0.51 0.17 < 0.0001 0.50

Derby recall
(Pd)

0.62 − 0.01 < 0.0001 0.46 0.0003 0.89 < 0.0001 0.78

f-score 0.99 − 0.72 0.81 0.01 0.99 − 0.73 0.04 0.24
g-meas-

ure
0.99 − 0.41 < 0.0001 0.30 0.08 0.34 0.0005 0.40

ODCV recall
(Pd)

0.41 0.13 < 0.0001 0.84 < 0.0001 1.11 < 0.0001 1.21

f-score 0.66 0.02 < 0.0001 1.05 < 0.0001 0.85 < 0.0001 1.46
g-meas-

ure
0.99 − 0.18 < 0.0001 0.78 0.003 0.22 < 0.0001 0.66

Apache recall
(Pd)

0.03 0.08 < 0.0001 0.56 0.003 0.56 < 0.0001 1.14

f-score 0.51 − 0.02 < 0.0001 0.46 0.91 − 0.33 < 0.0001 0.71
g-meas-

ure
0.72 − 0.12 < 0.0001 0.27 0.99 − 0.64 0.06 0.18

Mozilla recall
(Pd)

0.001 0.17 < 0.0001 0.80 0.005 0.57 < 0.0001 1.46

f-score 0.08 0.05 < 0.0001 0.88 0.01 0.45 < 0.0001 1.60
g-meas-

ure
0.40 − 0.07 < 0.0001 0.50 0.01 0.47 < 0.0001 0.60

Comm recall
(Pd)

< 0.0001 1.23 < 0.0001 0.84 0.0003 0.93 < 0.0001 1.12

f-score < 0.0001 0.81 < 0.0001 0.18 0.006 0.52 0.25 0.10

534 Software Quality Journal (2021) 29:509–553

1 3

4.2 � RQ1: Do externally sourced features generalise better than project‑specific
features for TPP?

To answer RQ1, we use the summary statistics listed in Table 8 complimented by the
results in Table 9 that lists the results for TPP with the best g-measure. The summary
statistics show the treatments—ratio, security category, algorithm—and the feature
selection method that yield the best results from using different sources (8) to predict a
target. For example, for Chromium, random forest (RF) combined with 0.0 ratio and using
security categories threats and control produce the best and most stable results when
applied on each source project to predict Chromium. Predictions using TPP shows model
fsec-ext+ with an average recall from 55 to 86%, minimum recall from 43 to 71% and
maximum recall from 60 to 100% across all projects. Model fsec-ext has an average recall
from 23 to 64%, minimum recall from 2.4 to 44% and maximum recall from 42 to 90%.
Model fsec-tfidf+ has an average recall from 38 to 82%, minimum recall from 19 to 50%
and maximum recall from 60 to 100%. Model fsec-tfidf has an average recall from 11 to
60%, minimum recall from 0 to 43% and maximum recall from 36 to 60%.

In comparison with model fsec-tfidf+ , model fsec-ext+ increased recall on average by
4–17% and by 26–44% when compared with fsec-tfidf. The average f-score for model fsec-
ext+ is between 3.4 and 88% which is higher by 1.6–28% in all projects when compared
with model fsec-tfidf+. One reason for the low precision and subsequent low f-score is
because of scarcity of SBRs in the Commercial, Ambari, Derby, Camel and Wicket
datasets. Although the f-score is lower, the average g-measure for fsec-ext+ is at least 66%
across all projects and higher than model fsec-tfidf+ by 19–28% across the projects. This
shows that the true negative rate is relatively high and that the cost of misclassification can
be manageable. For instance, the TPP result of Camel → Wicket in Table 9 gives a TP = 6,
FN = 0, TN = 412, and FP = 82. This confusion matrix produces a recall of 100%, f-score
of 13% and a g-measure of 91%. Based on this model’s prediction, a total of 88 (TP = 6 and
FP = 82) security bug reports will have to be examined by a security/quality assurance team
that relies on such model which is equivalent to reviewing 17.6% (88 out of 500) of the
total bug reports for security-related bugs.

A striking observation is that fsec-ext+ produces the most stable model that generalises
better across all projects with the exception of Ambari where fsec-ext is slightly better
in g-measure and f-score. The standard deviations of the measures for fsec-ext+ are also
lower in most cases compared with the other models. This suggests that including security
features can produce a more robust, stable and generalisable model. As regards AUC
of ROC, model fsec-ext+ has an average between 69 and 89%, fsec-ext has an average
between 60 and 78%, fsec-tfidf+ has an average from 55 to 72%, and fsec-tfidf from 54 to
70%. For all the projects, except Ambari, the AUC of ROC of fsec-ext+ is the highest and

Table 11   (continued)

Metrics fsec-ext+ vs fsec-ext fsec-tfidf+ vs. fsec-tfidf

WPP TPP WPP TPP

p value Hedges,
g

p value Hedges,
g

p value Hedges,
g

p value Hedges, g

g-meas-
ure

< 0.0001 1.05 < 0.0001 0.53 < 0.0001 1.10 < 0.0001 0.36

535Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
12

  
B

es
t g

-m
ea

su
re

 p
er

 p
ro

je
ct

 fo
r W

PP

Ta
rg

et
M

et
ho

d
C

at
R

at
io

Le
ar

ne
r

TN
TP

FN
FP

Pd
Pf

Pr
ec

F-
sc

or
e

G
-m

ea
su

re
A

U
C

RO
C

C
hr

om
iu

m
fs

ec
-e

xt
+

TC
A

​
0.

5
K

N
N

18
,3

25
80

35
25

21
69

.6
12

.1
3.

1
5.

9
77

.7
80

.6
fs

ec
-e

xt
TC

A
​

2.
0

LR
19

,1
06

76
39

17
40

66
.1

8.
3

4.
2

7.
9

76
.8

78
.8

f s
ec

-tfi
df

+
–

0.
0

N
B

16
,2

38
80

35
46

08
69

.6
22

.1
1.

7
3.

3
73

.5
81

.4
fs

ec
-tfi

df
–

1.
5

LR
13

,3
60

90
25

74
86

78
.3

35
.9

1.
2

2.
3

70
.5

76
.3

W
ic

ke
t

fs
ec

-e
xt

+
TC

A
I

2.
0

LR
42

7
5

1
67

83
.3

13
.6

6.
9

12
.8

84
.9

82
.9

fs
ec

-e
xt

TC
A

I
1.

0
SV

M
43

3
4

2
61

66
.7

12
.3

6.
2

11
.3

75
.7

77
.2

fs
ec

-tfi
df

+
–

1.
0

SV
M

30
8

5
1

18
6

83
.3

37
.7

2.
6

5.
1

71
.3

72
.8

fs
ec

-tfi
df

–
0.

5
N

B
31

0
2

4
18

4
33

.3
37

.2
1.

1
2.

1
43

.5
37

.9
A

m
ba

ri
fs

ec
-e

xt
+

TC
A

I
0.

0
K

N
N

36
6

5
2

12
7

71
.4

25
.8

3.
8

7.
2

72
.8

72
.4

fs
ec

-e
xt

TC
A

I
1.

5
R

F
46

6
5

2
27

71
.4

5.
5

15
.6

25
.6

81
.4

74
.2

fs
ec

-tfi
df

+
–

1.
0

N
B

34
5

4
3

14
8

57
.1

30
.0

2.
6

5.
0

62
.9

60
.5

fs
ec

-tfi
df

–
2.

0
N

B
28

9
4

3
20

4
57

.1
41

.4
1.

9
3.

7
57

.9
56

.5
C

am
el

fs
ec

-e
xt

+
CA

0.
5

LR
40

7
12

6
75

66
.7

15
.6

13
.8

22
.9

74
.5

80
.0

fs
ec

-e
xt

TC
A

​
2.

0
N

B
43

1
9

9
51

50
.0

10
.6

15
.0

23
.1

64
.1

67
.3

fs
ec

-tfi
df

+
–

0.
5

LR
24

6
12

6
23

6
66

.7
49

.0
4.

8
9.

0
57

.8
63

.4
fs

ec
-tfi

df
–

1.
5

N
B

26
8

9
9

21
4

50
.0

44
.4

4.
0

7.
5

52
.7

51
.2

D
er

by
fs

ec
-e

xt
+

C
0.

0
LR

42
6

26
16

32
61

.9
7.

0
44

.8
52

.0
74

.3
76

.7
fs

ec
-e

xt
TC

A
​

0.
5

R
F

36
1

29
13

97
69

.0
21

.2
23

.0
34

.5
73

.6
78

.2
fs

ec
-tfi

df
+

–
0.

0
N

B
29

3
31

11
16

5
73

.8
36

.0
15

.8
26

.1
68

.5
75

.6
fs

ec
-tfi

df
–

2.
0

LR
40

5
23

19
53

54
.8

11
.6

30
.3

39
.0

67
.6

70
.8

O
D

C
V

fs
ec

-e
xt

+
TC

0.
0

K
N

N
21

2
17

8
11

7
72

60
.3

25
.4

71
.2

65
.3

66
.7

72
.2

fs
ec

-e
xt

TC
1.

0
R

F
11

5
25

8
18

5
20

58
.2

14
.8

92
.8

71
.6

69
.2

72
.3

fs
ec

-tfi
df

+
–

0.
0

K
N

N
20

1
20

0
95

83
67

.8
29

.2
70

.7
69

.2
69

.3
71

.9
fs

ec
-tfi

df
–

1.
0

LR
22

4
18

0
11

5
60

61
.0

21
.1

75
.0

67
.3

68
.8

72
.5

A
pa

ch
e

fs
ec

-e
xt

+
TC

0.
5

LR
63

3
57

8
41

31
93

.4
4.

7
94

.9
94

.1
94

.3
95

.1
fs

ec
-e

xt
TC

1.
5

R
F

63
8

56
3

56
26

91
.0

3.
9

95
.6

93
.2

93
.4

96
.2

fs
ec

-tfi
df

+
–

1.
5

LR
62

1
51

1
10

8
43

82
.6

6.
5

92
.2

87
.1

87
.7

90
.5

536 Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
12

  (
co

nt
in

ue
d)

Ta
rg

et
M

et
ho

d
C

at
R

at
io

Le
ar

ne
r

TN
TP

FN
FP

Pd
Pf

Pr
ec

F-
sc

or
e

G
-m

ea
su

re
A

U
C

RO
C

fs
ec

-tfi
df

–
1.

0
LR

61
6

51
7

10
2

48
83

.5
7.

2
91

.5
87

.3
87

.9
91

.2
M

oz
ill

a
fs

ec
-e

xt
+

TC
A

I
0.

0
LR

16
16

11
92

42
0

48
73

.9
2.

9
96

.1
83

.6
84

.0
86

.6
fs

ec
-e

xt
TC

A
I

2.
0

LR
16

37
11

36
47

6
27

70
.5

1.
6

97
.7

81
.9

82
.1

85
.2

fs
ec

-tfi
df

+
–

0.
5

LR
15

11
11

97
41

5
15

3
74

.3
9.

2
88

.7
80

.8
81

.7
86

.7
fs

ec
-tfi

df
–

0.
5

LR
15

20
11

86
42

6
14

4
73

.6
8.

7
89

.2
80

.6
81

.5
86

.8
C

om
m

fs
ec

-e
xt

+
TC

0.
5

LR
40

0
13

1
59

92
.9

12
.9

18
.1

30
.2

89
.9

90
.3

fs
ec

-e
xt

TC
A

I
1.

0
N

B
41

0
8

6
49

57
.1

10
.7

14
.0

22
.5

69
.7

78
.2

fs
ec

-tfi
df

+
–

1.
5

LR
34

3
10

4
11

6
71

.4
25

.3
7.

9
14

.3
73

.0
76

.9
fs

ec
-tfi

df
–

2.
0

N
B

30
8

9
5

15
1

64
.3

32
.9

5.
6

10
.3

65
.7

73
.9

537Software Quality Journal (2021) 29:509–553

1 3

most stable, ranging between 67 and 94%. In comparison with the other models that have
minimum AUC-ROC below 45%, fsec-ext+ models show the best classification results at
different thresholds.

In terms of security category used for training, the threat (T) and control (C) categories
dominate the best result. The exceptions are Ambari and Camel that include the asset (A)
category and Mozilla with the asset (A) and implicit (I) categories. Camel, for example,
contains security bugs that feature terms in the asset category such as ipaddress, token and
password. This is plausible as Camel is a rule-based routing and mediation engine where
such keywords frequently feature.

Results in Table 9 compliment the results in Table 8 with fsec-ext+ producing the best
results for g-measure in seven out of nine projects. However, model fsec-tfidf+ fair slightly
better for Ambari and Camel. The ratio of SBR to NSBR varies as well as the machine
learning algorithms. We cannot infer any specific pattern as different ratio and algorithm
work for different projects and feature methods.

The result in Table 8 shows that model fsec-ext+ thrives well for projects Chromium,
Ambari, Derby, Wicket, Camel and Comm where security bug reports are scarce as well
as projects with balanced SBR to NSBR—Apache, ODCV and Mozilla. In general, we
can infer that model fsec-ext+ generalises better than models fsec-ext and fsec-tfidf on all
unseen and independent dataset. As observed in the result (Table 8), the effect of including
the security keywords as records in the training dataset produced models that can generalise
on unseen security instances in a different project’s dataset.

Hypothesis testing—H1: fsec-ext generalises significantly better than fsec-tfidf
We test the null hypothesis H0: fsec-ext+ ≤ fsec-tfidf+ for transfer project predictions

(TPP). We use Table 10 to present our results. It lists the p values for the Wilcoxon test
performed on the hypothesis and the Hedges, g values for the effect size. Results show
that the mean values for recall, f-score and g-measure for model fsec-ext+ are higher
and statistically significant than those for model fsec-tfidf+ with the exception of

Fig. 3   Mean of recall, f-score and g-measure of top 20 results for WPP

538 Software Quality Journal (2021) 29:509–553

1 3

recalls for Ambari and Camel. The effect sizes are medium to large between 0.84 and
4.54 across all the metrics. The effect size test validates the result of our hypotheses
showing that the differences in the mean are indeed not trivial and suggests that model
fsec-ext+ are better predictors of security bug reports in different software projects
compared with models fsec-tfidf and fsec-tfidf+. Similarly, the significant tests between
fsec-ext vs. fsec-tfidf show fsec-ext to have average recalls, f-scores and g-measures
that are higher and statistically significant than model fsec-tfidf and mostly with large
effect sizes (1.22–4.66). Three cases—f-score for Chromium, recall for Ambari and
recall for Camel—have medium effect sizes.

In summary, using the statistical test results, we can strongly suggest that models
that use the harvested security keywords and include those keywords in the training
sample can, on the average, predict better than models that use project-specific terms.

Table 13   H3—Wilcoxon and
effect size tests comparing
models fsec-ext and fsec-tfidf
(WPP)

fsec-ext+ vs. fsec-
tfidf+

fsec-ext vs. fsec-tfidf

Metrics p value Hedges, g p value Hedges, g

Chromium recall (Pd) 0.99 − 1.28 0.0002 1.07
f-score < 0.0001 3.08 0.0002 1.04
g-measure < 0.0001 1.41 < 0.0001 1.62

Wicket recall (Pd) 0.002 1.05 < 0.0001 3.03
f-score < 0.0001 2.10 < 0.0001 2.70
g-measure < 0.0001 2.67 < 0.0001 4.03

Ambari recall (Pd) 0.16 0.27 < 0.0001 3.86
f-score < 0.0001 2.93 < 0.0001 4.17
g-measure 0.002 0.99 < 0.0001 4.68

Camel recall (Pd) < 0.0001 1.60 < 0.0001 1.59
f-score < 0.0001 4.63 < 0.0001 2.54
g-measure < 0.0001 3.41 < 0.0001 2.02

Derby recall (Pd) 0.71 -0.26 0.0006 1.08
f-score < 0.0001 3.01 < 0.0001 1.50
g-measure < 0.0001 1.92 < 0.0001 1.76

ODCV recall (Pd) 0.99 -1.58 0.02 0.68
f-score 0.99 -1.27 < 0.0001 1.21
g-measure 0.99 -0.79 < 0.0001 1.33

Apache recall (Pd) < 0.0001 3.16 < 0.0001 3.15
f-score < 0.0001 5.72 < 0.0001 6.43
g-measure < 0.0001 3.82 < 0.0001 5.90

Mozilla recall (Pd) < 0.0001 1.51 0.01 0.76
f-score < 0.0001 2.57 < 0.0001 1.57
g-measure < 0.0001 2.40 < 0.0001 1.41

Comm recall (Pd) < 0.0001 2.18 < 0.0001 2.00
f-score < 0.0001 3.01 < 0.0001 1.43
g-measure < 0.0001 5.02 < 0.0001 2.12

539Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
14

  
W

PP
 re

su
lts

 w
ith

 th
e

be
st

g-
m

ea
su

re
 in

 c
om

pa
ris

on
 t

o
th

e
be

st
re

su
lts

 fr
om

 P
et

er
s e

t a
l.

(2
01

7)

Ta
rg

et
Pa

pe
r (

M
od

el
)

C
at

R
at

io
Le

ar
ne

r
TN

TP
FN

FP
pd

pf
pr

ec
f-

sc
or

e
g-

m
ea

su
re

C
hr

om
iu

m
Pe

te
rs

 e
t a

l.
(2

01
7)

 (c
ln

ifa
rs

ec
sq

)
–

M
LP

20
,0

66
57

58
78

9
49

.6
3.

8
6.

7
11

.9
65

.4
fs

ec
-e

xt
+

TC
A

​
0.

5
K

N
N

18
,3

25
80

35
25

21
69

.6
12

.1
3.

1
5.

9
77

.7
a

fs
ec

-e
xt

TC
A

​
2.

0
LR

19
,1

06
76

39
17

40
66

.1
8.

3
4.

2
7.

9
76

.8
fs

ec
-tfi

df
+

–
0.

0
N

B
16

,2
38

80
35

46
08

69
.6

22
.1

1.
7

3.
3

73
.5

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

ra
in

)
–

0.
0

LR
20

,8
15

18
97

40
15

.7
0.

2
31

.0
20

.8
27

.1
fs

ec
-tfi

df
–

0.
0

N
B

20
,3

87
11

10
4

45
9

9.
6

2.
2

2.
3

3.
8

17
.4

W
ic

ke
t

Pe
te

rs
 e

t a
l.

(2
01

7)
 (f

ar
se

ct
w

o)
–

LR
31

3
4

2
18

1
66

.7
36

.6
2.

2
4.

2
65

.0
fs

ec
-e

xt
+

TC
A

I
2.

0
LR

42
7

5
1

67
83

.3
13

.6
6.

9
12

.8
84

.9
fs

ec
-e

xt
TC

A
I

1.
0

SV
M

43
3

4
2

61
66

.7
12

.3
6.

2
11

.3
75

.7
fs

ec
-tfi

df
+

–
1.

0
SV

M
30

8
5

1
18

6
83

.3
37

.7
2.

6
5.

1
71

.3
Pe

te
rs

 e
t a

l.
(2

01
7)

 (t
ra

in
)

–
0.

0
N

B
45

9
1

5
35

16
.7

7.
1

2.
8

4.
8

28
.3

fs
ec

-tfi
df

–
0.

0
N

B
45

9
1

5
35

16
.7

7.
1

2.
8

4.
8

28
.3

A
m

ba
ri

Pe
te

rs
 e

t a
l.

(2
01

7)
 (f

ar
se

ct
w

o)
–

R
F

47
8

4
3

15
57

.1
3.

0
21

.1
30

.8
71

.9
fs

ec
-e

xt
+

TC
A

I
0.

0
K

N
N

36
6

5
2

12
7

71
.4

25
.8

3.
8

7.
2

72
.8

fs
ec

-e
xt

TC
A

I
1.

5
R

F
46

6
5

2
27

71
.4

5.
5

15
.6

25
.6

81
.4

b

fs
ec

-tfi
df

+
–

1.
0

N
B

34
5

4
3

14
8

57
.1

30
.0

2.
6

5.
0

62
.9

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

ra
in

)
–

0.
0

M
LP

48
5

1
6

8
14

.3
1.

6
11

.1
12

.5
24

.9
fs

ec
-tfi

df
0.

0
N

B
40

7
2

5
86

28
.6

17
.4

2.
3

4.
2

42
.5

C
am

el
Pe

te
rs

 e
t a

l.
(2

01
7)

 (f
ar

se
ct

w
o)

–
LR

28
0

9
9

20
1

50
.0

41
.8

4.
3

7.
9

53
.8

fs
ec

-e
xt

+
CA

0.
5

LR
40

7
12

6
75

66
.7

15
.6

13
.8

22
.9

74
.5

fs
ec

-e
xt

TC
A

​
2.

0
N

B
43

1
9

9
51

50
.0

10
.6

15
.0

23
.1

64
.1

fs
ec

-tfi
df

+
–

0.
5

LR
24

6
12

6
23

6
66

.7
49

.0
4.

8
9.

0
57

.8
Pe

te
rs

 e
t a

l.
(2

01
7)

 (t
ra

in
)

–
0.

0
LR

46
4

2
16

17
11

.1
3.

5
10

.5
10

.8
19

.9
fs

ec
-tfi

df
–

0.
0

N
B

39
6

5
13

86
27

.8
17

.8
5.

5
9.

2
41

.5
D

er
by

Pe
te

rs
 e

t a
l.

(2
01

7)
 (f

ar
se

ct
w

o)
–

R
F

40
1

20
22

57
47

.6
12

.4
26

.0
33

.6
61

.7
fs

ec
-e

xt
+

C
0.

0
LR

42
6

26
16

32
61

.9
7.

0
44

.8
52

.0
74

.3
fs

ec
-e

xt
TC

A
​

0.
5

R
F

36
1

29
13

97
69

.0
21

.2
23

.0
34

.5
73

.6

540 Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
14

  (
co

nt
in

ue
d)

Ta
rg

et
Pa

pe
r (

M
od

el
)

C
at

R
at

io
Le

ar
ne

r
TN

TP
FN

FP
pd

pf
pr

ec
f-

sc
or

e
g-

m
ea

su
re

fs
ec

-tfi
df

+
–

0.
0

N
B

29
3

31
11

16
5

73
.8

36
.0

15
.8

26
.1

68
.5

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

ra
in

)
–

0.
0

N
B

42
7

16
26

31
38

.1
6.

8
34

.0
36

.0
54

.1
fs

ec
-tfi

df
–

0.
0

N
B

43
1

20
22

27
47

.6
5.

9
42

.6
44

.9
63

.2

a  A
dj

us
te

d
th

re
sh

ol
d:

 T
P 

=
 57

, F
P 

=
 16

17
, p

re
c =

 3.
4

b  A
dj

us
te

d
th

re
sh

ol
d:

 T
P 

=
 4,

 F
P 

=
 14

, p
re

c =
 22

.2

541Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
15

  
TP

P
re

su
lts

 w
ith

 th
e

be
st

g-
m

ea
su

re
 in

 c
om

pa
ris

on
 t

o
th

e
be

st
re

su
lts

 fr
om

 P
et

er
s e

t a
l.

(2
01

7)

Ta
rg

et
So

ur
ce

Pa
pe

r (
M

od
el

)
C

at
R

at
io

Le
ar

ne
r

TN
TP

FN
FP

pd
pf

pr
ec

f-
sc

or
e

g-
m

ea
su

re

C
hr

om
iu

m
A

m
ba

ri
Pe

te
rs

 e
t a

l.
(2

01
7)

 (c
ln

ifa
rs

ec
sq

)
–

–
M

LP
19

,8
17

56
59

1,
03

8
48

.7
5.

0
5.

1
9.

3
63

.9
C

am
el

fs
ec

-e
xt

+
TC

A
I

2.
0

LR
16

,7
37

84
31

41
09

73
.0

19
.7

2.
0

3.
9

76
.5

a

A
m

ba
ri

fs
ec

-e
xt

TC
1.

0
LR

19
,1

44
57

58
17

02
49

.6
8.

2
3,

2
6.

1
64

.4
C

am
el

fs
ec

-tfi
df

+
–

0.
0

LR
14

,5
78

68
47

62
68

59
.1

30
.1

1.
1

2.
1

64
.1

D
er

by
Pe

te
rs

 e
t a

l.
(2

01
7)

 (t
ra

in
)

–
0.

0
R

F
20

,8
35

2
11

3
20

1.
7

0.
1

9.
1

2.
9

3.
4

W
ic

ke
t

fs
ec

-tfi
df

–
0.

0
N

B
20

,1
88

5
11

0
65

8
4.

3
3.

2
0.

8
1.

3
8.

3
W

ic
ke

t
C

am
el

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

ra
in

)
–

N
B

43
7

3
3

57
50

.0
11

.5
5.

0
9.

1
63

.9
C

am
el

fs
ec

-e
xt

+
TC

A
I

2.
0

LR
41

2
6

0
82

10
0.

0
16

.6
6.

8
12

.8
90

.9
C

hr
om

iu
m

fs
ec

-e
xt

TA
2.

0
LR

44
6

4
2

48
66

.7
9.

7
7.

7
13

.8
76

.7
C

am
el

fs
ec

-tfi
df

+
–

1.
5

LR
33

4
4

2
16

0
66

.7
32

.4
2.

4
4.

7
67

.1
C

am
el

Pe
te

rs
 e

t a
l.

(2
01

7)
 (t

ra
in

)
–

0.
0

N
B

43
7

3
3

57
50

.0
11

.5
5.

0
9.

1
63

.9
A

m
ba

ri
fs

ec
-tfi

df
–

0.
0

N
B

37
4

3
3

12
0

50
.0

24
.3

2.
4

4.
7

60
.2

A
m

ba
ri

C
hr

om
iu

m
Pe

te
rs

 e
t a

l.
(2

01
7)

 (f
ar

se
cs

q)
–

M
LP

47
4

3
4

19
42

.9
3.

9
13

.6
20

.7
59

.3
C

hr
om

iu
m

fs
ec

-e
xt

+
CA

1.
5

SV
M

45
6

5
2

37
71

.4
7.

5
11

.9
20

.4
80

.6
b

W
ic

ke
t

fs
ec

-e
xt

C
1.

5
R

F
47

3
5

2
20

71
.4

4.
1

20
.0

31
.3

81
.9

D
er

by
fs

ec
-tfi

df
+

–
0.

0
SV

M
41

5
6

1
78

85
.7

15
.8

7.
1

13
.2

84
.9

c

D
er

by
Pe

te
rs

 e
t a

l.
(2

01
7)

 (t
ra

in
)

–
0.

0
M

LP
48

4
2

5
9

28
.6

1.
8

18
.2

22
.2

44
.3

C
hr

om
iu

m
fs

ec
-tfi

df
–

0.
0

N
B

46
5

4
3

28
57

.1
5.

7
12

.5
20

.5
71

.2
C

am
el

D
er

by
Pe

te
rs

 e
t a

l.
(2

01
7)

 (f
ar

se
ct

w
o)

–
N

B
37

1
8

10
11

0
44

.4
22

.9
6.

8
11

.8
56

.4
D

er
by

fs
ec

-e
xt

+
TC

A
I

1.
0

LR
35

9
13

5
12

3
72

.2
25

.5
9.

6
16

.9
73

.3
D

er
by

fs
ec

-e
xt

TC
A

I
0.

5
N

B
42

7
10

8
55

55
.6

11
.4

15
.4

24
.1

68
.3

D
er

by
fs

ec
-tfi

df
+

–
1.

5
LR

24
1

14
4

24
1

77
.8

50
.0

5.
5

10
.3

60
.9

D
er

by
Pe

te
rs

 e
t a

l.
(2

01
7)

 (t
ra

in
)

–
0.

0
N

B
45

7
3

15
24

16
.7

5.
0

11
.1

13
.3

28
.4

W
ic

ke
t

fs
ec

-tfi
df

0.
0

N
B

44
5

4
14

37
22

.2
7.

7
9.

8
13

.6
35

.8
D

er
by

C
hr

om
iu

m
Pe

te
rs

 e
t a

l.
(2

01
7)

 (c
ln

ifa
rs

ec
sq

)
–

N
B

37
2

19
23

86
45

.2
18

.8
18

.1
25

.9
58

.1
W

ic
ke

t
fs

ec
-e

xt
+

C
2.

0
LR

41
9

27
15

39
64

.3
8.

5
40

.9
50

.0
75

.5
C

hr
om

iu
m

fs
ec

-e
xt

CA
0.

5
R

F
38

0
25

17
78

59
.5

17
.0

24
.3

34
.5

69
.3

542 Software Quality Journal (2021) 29:509–553

1 3

Ta
bl

e 
15

  (
co

nt
in

ue
d)

Ta
rg

et
So

ur
ce

Pa
pe

r (
M

od
el

)
C

at
R

at
io

Le
ar

ne
r

TN
TP

FN
FP

pd
pf

pr
ec

f-
sc

or
e

g-
m

ea
su

re

W
ic

ke
t

fs
ec

-tfi
df

+
–

2.
0

LR
35

1
21

21
10

7
50

.0
23

.4
16

.4
24

.7
60

.5
A

m
ba

ri
Pe

te
rs

 e
t a

l.
(2

01
7)

 (t
ra

in
)

–
0.

0
N

B
39

3
13

29
65

31
.0

14
.2

16
.7

12
.7

45
.5

W
ic

ke
t

fs
ec

-tfi
df

–
0.

0
N

B
35

5
19

23
10

3
45

.2
22

.5
15

.6
23

.2
57

.1

M
LP

 m
ul

til
ay

er
 p

er
ce

pt
ro

n
a  A

dj
. t

hr
es

ho
ld

: T
P 

=
 56

, F
P 

=
 24

22
, p

re
c =

 2.
2

b  A
dj

. t
hr

es
ho

ld
: T

P 
=

 3,
 F

P 
=

 3,
 p

re
c =

 50
c  A

dj
. t

hr
es

ho
ld

: T
P 

=
 3,

 F
P 

=
 6,

 p
re

c =
 33

.3

543Software Quality Journal (2021) 29:509–553

1 3

4.3 � RQ2: Does including security features as SBRs in training dataset improve
model’s performance over models that exclude them for both WPP and TPP?

To answer this research question, we perform a hypothesis testing on results reported by
fsec-ext+ versus fsec-ext and fsec-tfidf+ versus fsec-tfidf for both WPP and TPP.

Hypothesis testing—H2: Including security terms in the training set during model-
ling can significantly outperform models that do not include them.

We test the null hypotheses H0: fsec-ext+ ≤ fsec-ext and H0: fsec-tfidf+ ≤ fsec-tfidf. We
use Table 11 to answer RQ2. It lists the p values for the Wilcoxon test performed on the
hypotheses and the Hedges, g values for the effect size.

4.3.1 � TPP

We observe a clear pattern of significant results for fsec-ext+ and fsec-tfidf+ when using
TPP. All recall results in TPP are significant with medium to large effect sizes. The excep-
tion is Ambari where there is a small effect size showing that the mean recall of fsec-ext+
is only slightly higher than fsec-ext. G-measures show effect sizes between medium and
large for six projects (Chromium, Wicket, Camel, Derby, ODCV, Mozilla) indicating a fair
model with a relative balance between recalls and true negative rates. We observe worse
test and effect size results for f-score for model fsec-ext+ for projects with few SBRs (Chro-
mium, Wicket, Ambari, Camel, and Derby) whereas the results are better for fsec-tfidf+ in
some cases. Examples are Chromium, Camel and Derby. One reason for this difference
is the project-specific nature of the features used by fsec-tfidf+. fsec-ext+ uses externally
sourced features resulting in higher false positives and consequently low precisions and
low f-scores. Further study can investigate how to combine both project-specific and exter-
nally sourced features to both maximise recalls and f-scores.

Clearly, the test results demonstrate that including features in the training dataset pro-
duce superior results to models that exclude them when transferring model from one pro-
ject to another.

4.3.2 � WPP

Here, the results are mixed. For fsec-ext+, we observe that including security features in
training clearly worsen the results in some of the projects (Ambari, Derby, ODCV). For
instance, the result in Ambari indicates that the metrics for fsec-ext fair better as the mean
values are significantly greater than fsec-ext+ as indicated by the negative Hedges, g val-
ues. Model fsec-ext+ also improves results in a few projects (Comm and Camel). The rest
of the projects (Chromium, Wicket, Apache and Mozilla) contain mixed results. We also
reckon from the results that fsec-ext+ increases recalls in six out of the nine projects albeit
with mixed effect sizes ranging from negligible to medium.

Model fsec-tfidf+ significantly improve fsec-tfidf across all metrics in four projects
(Wicket, ODCV, Mozilla, and Comm) while it worsens f-scores in Ambari, Camel, Derby
and Apache. Model fsec-tfidf+ also significantly improve recall and g-measure results in
Chromium with medium and large effect sizes. However, the f-score result is not signifi-
cant, and the effect size is negligible although they are slightly higher than fsec-tfidf. Our
observation from the WPP result is that model built with project-specific features (fsec-
tfidf) fair better when treated (fsec-tfidf+) than model built with externally sourced fea-
tures (fsec-ext) when treated (fsec-ext+). One reason may be that WPP model captures

544 Software Quality Journal (2021) 29:509–553

1 3

project-specific terms that are not possible with externally sourced features and therefore
can predict better on own test dataset.

Overall, using the statistical test results, we can strongly suggest that models that include
security keywords in the training sample can, on the average, generalise better than models
that exclude them during model construction. When predicting within project, including
security keywords can improve results especially by using project-specific features.

4.4 � RQ3: Do models that utilise external sources for features outperform the model
that uses project‑specific features in within‑project prediction (WPP)?

As listed in Table 12, fsec-ext+ has the best g-measure in seven out of the nine projects.
In ODCV, fsec-tfidf+ records a slightly higher g-measure over fsec-ext+ and fsec-ext. The
mean of top 20 values for the metrics (see Fig. 3) further reveals fsec-tfidf+ to perform bet-
ter compared with fsec-ext+ for ODCV. Similarly, fsec-tfidf+ produces higher mean recalls
for Chromium and Derby. Otherwise, fsec-ext+ records higher mean values for the metrics
for the remaining projects. Different combinations of security category work for the differ-
ent fsec-ext models demonstrating the usefulness of separating the categories. In addition,
the ratio SBR to NSBR is different for the models suggesting that finding a useful model
will require searching for which SBR to NSBR ratio is best for a given dataset and feature
selection type. AUC of ROC also shows the same pattern similar to other metrics where
the mean for AUC is higher for fsec-ext+ or fsec-ext. We can establish that models that use
externally sourced features are more robust with the highest AUC at different thresholds.

In general, the results show that models that use the harvested security-related keywords
as a feature set perform relatively and reasonably well on their own oracle dataset in terms
of recall, f-score and g-measure. The f-scores suffer reduced performance in general for
most of the projects with fewer cases of security bug reports in their dataset. Although,
some f-scores can be judged to be relatively high. An example is Derby with 42 SBRs
where 26 SBRs are correctly classified, and 32 NSBRs are incorrectly classified as SBR
giving a 52% f-score. This translates to reviewing 58 bug reports if we are concerned with
type I error. Similarly, the g-measure also shows a relatively useful model where majority
of security bug reports are correctly classified (true positive rate) and majority of non-
security bug reports are also correctly classified (true negative rate). As an example, the
Comm performance shows 93% recall and a true negative rate of 87% (59 misclassified
non-security bug reports out of 459).

Hypothesis testing—H3: using externally sourced features significantly outperform
project-specific features for WPP

We test the null hypothesis H0: fsec-ext+ ≤ fsec-tfidf+ and H0: fsec-ext ≤ fsec-tfidf
for WPP. Without treatment, models built with externally sourced features (fsec-ext) sig-
nificantly outperformed those built with project-specific features (fsec-tfidf) in all projects.
Across all metrics, the difference in mean values also has large effect sizes showing that
the differences in the means values are not trivial. Only the recalls for ODCV and Mozilla
have medium effect sizes. We can conclude that in the absence of treatments or noise filter-
ing before training, models built on externally sourced features will be a better choice by
default.

With treatment, fsec-ext+ shows significantly higher mean across the three metrics
(g-measure, f-score, recall) than fsec-tfidf+ in five projects—Wicket, Camel, Apache,
Mozilla and Comm—and with large effect sizes. However, fsec-tfidf+ outperformed
fsec-ext+ only in ODCV and the recalls for Chromium and Derby as reflected by the

545Software Quality Journal (2021) 29:509–553

1 3

negative effect sizes (see also Fig. 3). Otherwise, fsec-ext+ outperformed fsec-tfidf+ in
the remaining metrics and with large effect sizes.

The results suggest that using externally sourced features can reliably predict SBRs
when used in WPP and with better results in most cases than project-specific features.
The mixed results in Chromium and Derby however, hint on the potential for improved
results over both models when the features are combined. This remains a possible future
work.

4.5 � Comparing our results with Peters et al. (2017)

To compare our results fairly with Peters et al. (2017), we remove the other four projects
(ODCV, Apache, Mozilla, and Comm) before we run our analysis for this comparison.
We report the result with the best g-measure of using the feature selection method used
in Peters et al. (2017) with treatment—fsec-tfidf+ (i.e. including features in the training
set and adjusting the ratio of NSBR relative to SBR) and without treatment—fsec-tfidf.
We note here that fsec-tfidf (without treatment) corresponds to the ‘Peters et al. (2017)
(train)’. We report the best overall results from Peters et al. (2017) when their filtering
techniques are used as well as the best result for the ‘train’ benchmark. We report the
best results of our generalised feature selection method (fsec-ext). We then compare the
results of our best models on the five projects—Chromium, Wicket, Ambari, Camel and
Derby. We use similar metrics which are the g-measure, f-score, probability of false
alarm (pf) and recall (pd) to compare which result is better to the other.

In the case of WPP (Table 14), fsec-ext+ improves g-measure by 1–21% over the
best results in all of the five projects (100%) reported in Peters et al. (2017). Similarly,
for recall (Pd), our model outperformed (Peters et al., 2017) in all the projects by
14–20%. For f-score, our model score better in three out of the five projects. Similarly,
for TPP (Table 15), fsec-ext+ improves g-measure by 13–27% over the best results in
all of the five projects (100%) reported in Peters et al. (2017). Interestingly, for Ambari,
our feature inclusion method (fsec-tfidf+) and adjusted ratio also improve the feature
selection method in Peters et al. (fsec-tfidf) by 13.7%. For recall, fsec-ext+ improves by
19–50% over the best results in Peters et al. (2017) For f-score, our model scores better
in three out of the five projects.

We note here, also, that applying our treatment to the same feature selection method
used in Peters et al. improved both the g-measure and recall in 90% cases over the best
results reported in Peters et al. (2017). However, in cases where business users care
more about precision, we use the TP of Peters et al. (2017) as threshold to compute
the FP equivalent for our best model. For WPP, fsec-ext+ reports 3.4% precision (see
footnote in Table 14) for Chromium as against 6.7% reported by Peters et al. (2017)
Similarly, for TPP, fsec-ext+ reports a precision of 2.2% (see footnote in Table 15) as
against 5.1% reported by Peters et al. (2017) In this context, (Peters et al., 2017) score
better than our model. For Ambari, our model is better than (Peters et al., 2017) when
we apply the same threshold.

Overall, the results from our experiment demonstrate that using the model fsec-ext+
can be robust, generalisable and superior to existing state-of-the-art prediction models
for classification of security bug reports in software development projects. It remains to
see whether combining fsec-ext+ with FARSEC filtering approaches can improve fsec-
ext+. We reserve this investigation as a future study.

546 Software Quality Journal (2021) 29:509–553

1 3

5 � Discussion

5.1 � Project‑specific vocabularies and explicit security keywords

We assess a sample of the records that are predicted to be false negatives by fsec-ext.
We find that specific security-related project terms are used in many of these messages.
Some of the examples we found are: ‘SecureServerTest’, ‘NSSecurityMechanismTest’,
‘testOSReadOnly’, ‘DefaultShutdownStrategy’, ‘camel-xmlsecurity’. In Mozilla, among
issues classified as false negatives, we found many issues identified by the team as secu-
rity related but lacking the traditional security terms. Examples including ‘Link Visited-
ness can be detected by redraw timing’, ‘Cross-domain drag and drop across IFrames’ or
‘Page can stomp on PRIMARY clipboard by calling select() at the right time’ are classified
as medium security issues. These cases present limitations for our approach because the
project-specific terms are missing and would need to be represented during model con-
struction (Morrison et al., 2018b). One approach we hope to further investigate is to detect
project-specific vocabularies by using fsec-tfidf feature selection approach and combine
with the externally harvested keyword approach to improve the model’s performance.

5.2 � Security categories

Our results point to the usefulness of separating the security categories for building pre-
diction models. We observe that different combinations of the categories work for differ-
ent projects. Prior to our work and to the best of our knowledge, no study has separated
features the way we have done—i.e. into threat, control, asset and implicit, and combining
them to build a classifier. This can also provide insight into dominant security issues in a
project. For instance, the best model for Camel is based on control and asset features. This
new technique provides a new approach to separate features before applying them to build
models. An interesting extension will be to look into how to extend our approach to auto-
matically separate project-specific features into these categories before combining them
with our externally sourced features. We aim to investigate word embedding (Dai et al.,
2017) in the future for this purpose.

5.3 � When data scarcity is an issue

As noted by Peters et al. (2017), there exist a core set of security-related keywords which
can predict security bug reports on any project. However, we establish that these core secu-
rity keywords can vary from project to project in terms of their predicting power. We show
that by separating these keywords into different security categories, we can further refine
models per projects. Our result shows that by using our harvested security-related terms
and by including them in the training dataset, it is possible to build prediction models on
small dataset that can be successfully transferred to other projects irrespective of their
sizes. This is the case with all the projects—Camel, Derby, Wicket, Ambari and Comm—
where security bug reports are scarce. Our approach can also prove useful for projects
with no prior labels for security bug reports in their bug report repositories. As discussed
in Cois and Kazman (2015), very few projects (1.4%) explicitly identify security-related
issues when they analysed 400,000 projects on GitHub. Our set of security keywords can
be used for auto labelling, and a WPP model can be constructed for future classification of
newly reported bug reports.

547Software Quality Journal (2021) 29:509–553

1 3

5.4 � Implications for practice and research

5.4.1 � Practice

We have deployed the project10 as open source on both github and bitbucket to provide an
off-the-shelf add-on on JIRA platform. As an off-the-shelf add-on, it offers the possibility
for immediate installation and usage. The idea of transferring the research results via a plat-
form that is widely and popularly used is to increase the visibility and impact on the secu-
rity consciousness across all projects. We believe that the add-on can be used to access the
security portfolio of a system prior to a buy or build decision. In addition, the model/add-on
can be used to collect useful metrics such as records of security-related issues that are still
open, records of security-related issues that have been changed and the window of exposure
of identified security-related records. The approach we have employed provides the possibil-
ity of adaptation to include ‘implicit’ security-related terms and generate an organisational-
based classification model that can be used across projects within an organisation.

5.4.2 � Research

Researchers have long conducted studies to develop text classification models. Our model-
ling approach and eventual add-on provide more possibilities for further research studies in
this direction. First by making it possible to quickly collect security related messages from
different projects. Second, by making it possible to apply the same approach to prediction
in related areas where domain knowledge exists, and feature set can be extracted upfront.

6 � Threats to validity

Manual term extraction: we manually harvested security-related terms from many popu-
lar sources. However, this is not exhaustive as there are many other sources where addi-
tional security-related keywords could be extracted.

Manual labelling of security-related records: manually labelled security records
including those reported in publicly disclosed venues such as the MITRE CVE have been
argued to be subjective and sometimes inaccurate (Gegick et al., 2010; Scandariato et al.,
2014; Massacci & Nguyen, 2010; Christey & Martin, n.d.; Massacci & Nguyen, 2010; Dai
et al., 2017) showed that using different vulnerability databases can yield different results.
Further studies will be useful on the dataset we have used to replicate our study.

Modelling: We have used default settings for the parameters of the algorithms during
model construction. It is possible that by tuning the parameters, different results might be
obtained (Xia et al., 1805). As mitigation, we have performed our experiments under the
same conditions, and we could expect further tuning of the algorithm to produce results
in the same direction we have reported in this work. Additionally, we have only explored
a subset of imbalance ratio. It is possible that higher SBR to NSBR ratio worsens or
improves the results.

10  https://​github.​com/​tosda​noye/​fsece​xt and https://​bitbu​cket.​org/​ootos/​jiras​ecplu​gin

548 Software Quality Journal (2021) 29:509–553

https://github.com/tosdanoye/fsecext
https://bitbucket.org/ootos/jirasecplugin

1 3

Categorisation of terms: our categorisation of security-related terms is subjective
and prone to inaccuracies. It is possible to find some of the terms we have included in the
implicit category to be directly related to attack/threat and control categories.

Generalisation: Although we have evaluated our approach on 8 major open source
datasets and one commercial dataset, we can still not claim generalisation of the result to
all types of datasets. Further empirical studies are necessary to validate our result on new
dataset in domains we have not covered in this study.

7 � Conclusion

We have investigated an approach for training a text classification model to identify security
messages in heterogeneous software project repositories such as issue tracking and version con-
trol systems. Due to the problem of unseen security instances in different projects, we proposed
harvesting security keywords from relevant security sources as features and including them as
security-related records in the training set during modelling versus typical text classification
approaches that determine promising features from the project’s dataset. We provide meaning
to our feature set by grouping the extracted terms into different categories of asset, attack/threat,
control/mitigation and implicit. We then use these groups as treatments in our experiments by
combining them to derive classification models.

Our evaluation of these approaches shows that using a broad security keyword as feature
set during model construction can out-perform the approach that uses project-specific features.
Further, including these security keywords as SBRs in the training dataset produced models that
generalised better on unseen and heterogeneous datasets. In addition, breaking down security
features into different categories reveal that different projects perform better with different com-
binations of security categories. Finally, we compare our results with a state-of-the-art result
for both WPP and TPP. Results demonstrate that our modelling approaches produce superior
results in all of the projects evaluated.

In the future, we aim to investigate (1) using an unsupervised learning approach in
combination with sentiment analysis of discussions and fsec-tfidf features to augment generic
security keywords with project-specific keywords and (2) using our approach for risk-estimation
during software development and maintenance. Our idea is that the categories we have
formulated can be useful to derive a risk model for a project. For instance, it might be possible
to compute risk = likelihood × Impact, where the likelihood can be approximated from the
vulnerabilities and existing mitigations, and the impact can be derived from assets and the threats/
attacks to these assets. In addition, it might be possible to assign weights to these categories
during classification. Keywords in asset and attack categories could be assigned higher weights
as compared with control and implicit keywords. We believe this could lay a good foundation for
building classification tools with useful feedback and interesting use cases. Lastly, we want to
investigate whether building a model on all the remaining projects’ training dataset to predict a
target will produce a better result. In addition, we want to investigate whether a bellwether effect
exists in our TPP as this effect has been observed in many transfer learning tasks of software
engineering.

Funding  Open Access funding provided by Western Norway University Of Applied Sciences. This work is
supported by the Research Council of Norway through the project SoS-Agile: Science of Security in Agile
Software Development (247678/O70).

549Software Quality Journal (2021) 29:509–553

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Anvik, J., Hiew, L., & Murphy, G. C. (2006). Who should fix this bug? In: Proceedings of the 28th
international conference on Software engineering, ACM, pp. 361–370.

Bozorgi, M., Saul, L. K., Savage, S. & Voelker, G. M. (2010). Beyond heuristics: learning to classify
vulnerabilities and predict exploits. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 105–114.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. K., & Wong, M. Y.
(1992). Orthogonal defect classification-a concept for in-process measurements. IEEE Transactions on
Software Engineering, 18(11), 943–956.

Christey, S., & Martin, B. (n.d.). Buying into the bias: why vulnerability statistics suck, BlackHat, Las
Vegas, USA, Tech. Rep 1.

Cleland-Huang, J., Settimi, R., Zou, X., & Solc, P. (2006). The detection and classification of non-functional
requirements with application to early aspects. In Requirements Engineering, 14th IEEE International
Conference, Minneapolis, Minnesota, pp. 39–48. https://​doi.​org/​10.​1109/​RE.​2006.​65

Cois, C. A., & Kazman, R. (2015). Natural language processing to quantify security effort in the software
development lifecycle. In SEKE, pp. 716– 721.

Dai, X., et al. (2017). From social media to public health surveillance: word embedding based clustering
method for twitter classification. In SoutheastCon pp.1–7.

Debole, F., & Sebastiani, F. (2004). Supervised term weighting for automated text categorization. In Text
mining and its applications, Springer, pp. 81–97.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning
research, 7, 1–30.

Ellison, R. J., Goodenough, J. B., Weinstock, C. B., & Woody, C. (2010). Evaluating and mitigating
software supply chain security risks. Tech. rep.: CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST.

Feinerer, I. (2013). Introduction to the tm Package Text Mining in R. Accessible enligne: http://​cran.r-​proje​ct.​
org/​web/​packa​ges/​tm/​vigne​ttes/​tm.​pdf

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification, Journal
of machine learning research, 3, 1289–1305.

Gegick, M., Rotella, P., & Xie, T. (2010). Identifying security bug reports via text mining: An industrial
case study. In Mining software repositories (MSR), 2010 7th IEEE working conference on, IEEE, pp.
11–20.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data
engineering, 21(9), 1263–1284.

Hindle, A., Ernst, N. A., Godfrey, M. W., & Mylopoulos, J. (2013). Auto- mated topic naming. Empirical Softw.
Engg., 18(6), 1125–1155. https://​doi.​org/​10.​1007/​s10664-​012-​9209-9.​doi:​10.​1007/​s10664-​012-​9209-9

Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features,
Machine learning: ECML-98, 137–142.

Kampenes, V. B., Dybå, T., Hannay, J. E., & Sjøberg, D. I. K. (2007). A systematic review of effect size in
software engineering experiments. Information and Software Technology, 49(11–12), 1073–1086.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the
31st International Conference on Machine Learning (ICML-14), pp. 1188–1196.

Louppe, G. (2014). Understanding random forests: from theory to practice. arXiv preprint arXiv: 1407.7502.
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Scoring, term weighting and the vector space model.

Introduction to information retrieval, 100(2–4), 100–123.
Massacci, F., & Nguyen, V. H. (2010). Which is the right source for vulnerability studies?: an empirical

analysis on Mozilla Firefox. In Proceedings of the 6th International Workshop on Security
Measurements and Metrics, ACM, p. 4.

550 Software Quality Journal (2021) 29:509–553

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/RE.2006.65
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
http://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
https://doi.org/10.1007/s10664-012-9209-9.doi:10.1007/s10664-012-9209-9

1 3

Morrison, P., Oyetoyan, T. D., & Williams, L. (2018b). Identifying security issues in software development:
are keywords enough? In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, pp. 426–427.

Morrison, P. J., Pandita, R., Xiao, X., Chillarege, R., & Williams, L. (2018a). Are vulnerabilities discovered
and resolved like other defects? Empirical Software Engineering, 23(3), 1383–1421.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from labeled and
unlabeled documents using em. Machine learning, 39(2), 103–134.

Ohira, M., Kashiwa, Y., Yamatani, Y., Yoshiyuki, H., Maeda, Y., Lim- settho, N., Fujino, K., Hata, H.,
Ihara, A., & Matsumoto, K. (2015). A dataset of high impact bugs: manually-classified issue reports.
In Mining Soft- ware Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, IEEE, pp.
518–521.

Peters, F., Tun, T., Yu, Y., & Nuseibeh, B. (2017). Text filtering and ranking for security bug report
prediction. IEEE Transactions on Software Engineering.

Pletea, D., Vasilescu, B., & Serebrenik, A. (2014). Security and emotion: sentiment analysis of security
discussions on github. In Proceedings of the 11th working conference on mining software repositories,
ACM, pp. 348–351.

Ponemon-Institute, IBM-Security. (2017). Cost of data breach study: Global overview benchmark research
sponsored by ibm security independently conducted by ponemon institute llc, Ponemon Institute
Research Report.

Powers, D. (2011). Evaluation: from precision, recall and F-Factor to ROC, informedness, markedness &
correlation. J. Mach. Learn. Technol, 2(1), 37–63.

R Development Core Team. (2008). R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051–07–0. http://​www.R-​proje​ct.​
org

Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2006). On the ”naturalness” of
buggy code. In Proceedings of the 38th In- ternational Conference on Software Engineering, ICSE ’16,
ACM, New York, NY, USA, pp. 428–439. https://​doi.​org/​10.​1145/​28847​81.​28848​48

Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2014). A large scale study of pro- gramming languages
and code quality in github. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Soft- ware Engineering, ACM, pp. 155–165.

Riaz, M., King, J., Slankas, J., & Williams, L. (2014). Hidden in plain sight: auto- matically identifying
security requirements from natural language arti- facts. In Proc. 22nd RE, IEEE, pp. 183–192.

Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information
processing & management, 24(5), 513–523.

Salton, G., Fox, E. A., & Wu, H. (1983). Extended Boolean information retrieval. Communications of the
ACM, 26(11), 1022–1036.

Salton, G., & McGill, M. J. (n.d.). Introduction to modern information retrieval.
Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014). Predicting vulnerable software

components via text mining. IEEE Transactions on Software Engineering, 40(10), 993–1006.
Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR),

34(1), 1–47.
Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval.

Journal of Documentation, 28(1), 11–21.
Tyo, J. P. (2016). Empirical analysis and automated classification of security bug reports.
Unterkalmsteiner, M., Abrahamsson, P., Wang, X., Nguyen-Duc, A., Shah, S., Bajwa, S. S., Baltes, G. H.,

Conboy, K., Cullina, E., Dennehy D., et al. (n.d.). Software startups–a research agenda, e-Informatica
Software En- gineering Journal 10 (1).

Wijayasekara, D., Manic, M., & McQueen, M. (2014). Vulnerability identification and classification via text
mining bug databases. In Industrial Electronics Society, IECON 2014–40th Annual Conference of the
IEEE, IEEE, pp. 3612–3618.

Witten, I. H., & Frank, E. (2005). Data mining: practical machine learning tools and techniques (2nd ed.).
San Francisco: Morgan Kaufmann.

Wu, H. C., Luk, R. W. P., Wong, K. F., & Kwok, K. L. (2008). Interpreting TF-IDF term weights as making
relevance decisions. ACM Trans Inf Systems (TOIS), 26(3), 1–37.

Xia, T., Krishna, R., Chen, J., Mathew, G., Shen, X., & Menzies, T. (2018). Hyperparameter optimization for
effort estimation. arXiv preprint arXiv: 1805.00336.

Yan, M., Zhang, X., Liu, C., Xu, L., Yang, M., & Yang, D. (2017). Automated change- prone class
prediction on unlabeled dataset using unsupervised method. Information and Software Technology, 92,
1–16.

551Software Quality Journal (2021) 29:509–553

http://www.R-project.org
http://www.R-project.org
https://doi.org/10.1145/2884781.2884848

1 3

Zaman, S., Adams, B., & Hassan, A. E. (2011). Security versus performance bugs: a case study on firefox.
In Proceedings of the 8th working conference on mining software repositories, ACM, pp. 93–102.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Tosin Daniel Oyetoyan  Tosin Daniel
Oyetoyan is an Associate Professor at the
Department of Computing, Mathematics,
and Physics, Western Norway University
of Applied Sciences. He received his PhD
in Computer and Information Science
from the Norwegian University of Science
and Technology (NTNU) in 2015. His
research interests are in software security,
agile software development, software
quality and maintenance, software design,
code analysis, software testing, software
refactoring, software metrics, empirical
software engineering, and application of
machine learning in software engineering.
He is a member of IEEE and IEEE Com-
puter Society.

Patrick J. Morrison  Patrick J. Morrison is a
software engineer at IBM, and an adjunct
professor at North Carolina State Univer-
sity (NCSU). He received his PhD candi-
date in Computer Science at NCSU under
the supervision of Dr. Laurie Williams. He
received the BS degree in computer sci-
ence from the University of Florida and
the MS degree in computer science from
Florida Atlantic University His research
interests are in empirical software engi-
neering, security, and agile software devel-
opment practices and processes. He has
interned at Microsoft Research and IBM.
He worked as a developer and consultant
before returning to academia. He is a
member of the ACM and IEEE.

552 Software Quality Journal (2021) 29:509–553

1 3

Authors and Affiliations

Tosin Daniel Oyetoyan1,2  · Patrick Morrison3

	 Patrick Morrison
	 pjmorris@ncsu.edu

1	 Department of Software Engineering, Safety and Security, SINTEF Digital, Trondheim, Norway
2	 Department of Computing, Mathematics and Physics, Western Norway University of Applied

Sciences, Bergen, Norway
3	 Department of Computer Science, North Carolina State University, Raleigh, NC, USA

553Software Quality Journal (2021) 29:509–553

http://orcid.org/0000-0003-0027-4522

	An improved text classification modelling approach to identify security messages in heterogeneous projects
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Dataset selection
	3.2 Design and analysis approach
	3.2.1 Feature selection approaches
	3.2.1.1 tf and its variants—project-specific modeling approach
	3.2.1.2 Our generalised modelling approach
	3.2.1.3 Classification models and performance metrics
	3.2.1.4 Performance metrics
	3.2.1.5 Constructing training and test matrices from feature set
	3.2.1.6 Text cleaning and transformation approaches
	3.2.1.7 Generating training and test dataset
	3.2.1.8 Class imbalance and sampling techniques
	3.2.1.9 Training parameters and treatments
	3.2.1.10 Experiment setup and modelling approach
	3.2.1.11 Complexity of our approach
	3.2.1.12 Comparing with Peter’s et al. (2017)
	3.2.1.13 Approach to research questions

	4 Results
	4.1 Harvested security keywords
	4.2 RQ1: Do externally sourced features generalise better than project-specific features for TPP?
	4.3 RQ2: Does including security features as SBRs in training dataset improve model’s performance over models that exclude them for both WPP and TPP?
	4.3.1 TPP
	4.3.2 WPP

	4.4 RQ3: Do models that utilise external sources for features outperform the model that uses project-specific features in within-project prediction (WPP)?
	4.5 Comparing our results with Peters et al. (2017)

	5 Discussion
	5.1 Project-specific vocabularies and explicit security keywords
	5.2 Security categories
	5.3 When data scarcity is an issue
	5.4 Implications for practice and research
	5.4.1 Practice
	5.4.2 Research

	6 Threats to validity
	7 Conclusion
	References

