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Abstract
In this study, the dissipation problem of nonlinear pulse in mono mode optical fibers which 
is governed by the Fokas system (FS) is considered. The solutions of this system have an 
important role in comprehending the different wave structures in physical settings. There-
fore, a new version of the trial equation method (NVTEM) is employed to present the new 
exact wave solutions of the FS. The advantage of the NVTEM is to use different root pos-
sibilities of a polynomial which shape the solutions of the related model. Primarily this 
system is converted to a nonlinear ordinary differential equation (NODE) via the traveling 
wave transform to apply the proposed method. Various exact wave solutions to the FS are 
obtained such as rational function, exponential function, hyperbolic function, and Jacobi 
elliptic function solutions. Thus, we have revealed solutions featly which are unlike the 
wave solutions previously found by other analytical methods. The present results depict 
the formation and development of such waves and their interactions. The exhibition of the 
solutions is given by 3D plots together with the corresponding 2D plots. The outcomes 
have shown that the proposed technique is abundant in achieving different wave solutions 
of many nonlinear differential equations in the field of optics.
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1  Introduction

The nonlinear evolution equations (NLEEs) are not tools only in mathematics but also 
in mechanics, physics, biology, and material sciences. They are used to model various 
phenomena in nonlinear sciences. Thus, searching for the exact solutions to such equa-
tions has attracted the attention of scientists. Several useful methods have been devel-
oped and applied to NLEEs. The extended simple equation method, the Hirota bilinear 
method (Akram et al. 2023), the extended tanh-function method (Ahmad and Rani 2024), 
the enhanced direct algebraic method (Arnous et al. 2024), the new extended hyperbolic 
function method, the Sine-Gordon equation expansion method, the unified method and 
extended sinh-Gordon equation expansion method, the new extended direct algebraic 
method (Bilal et al. 2022a, b, 2023, 2024), 

(
G�∕G2

)
-expansion function method, the gen-

eralized tanh method, the generalized Kudryashov method, the generalized exponential 
rational function method, the expansion function method (Bilal et  al. 2021a, b, 2022c; 
Rehman et al. 2022), the extended Fan-sub equation method, the novel �6-model expan-
sion method (Bilal et al. 2021a, b, 2022d), the extended rational sine-cosine/sinh-cosh and 
advance expansion function techniques (Seadawy et  al. 2021), the extended trial equa-
tion method (Nadeem and Iambor 2023) and so on. On the other hand, complex nonlinear 
partial differential equations (CNPDEs) are employed to represent a wide family of non-
linear systems in applied sciences. In particular, electromagnetic wave propagation, light 
pulse propagation, and short pulse propagation in optical fibers are modeled via several 
CNPDEs, such as the Kundu-Eckhaus equation (Bekir and Zahran 2020), complex Ginz-
burg-Landau equation (Isah and Yokus 2023), Schrödinger equation (Liu and Feng 2023), 
complex Fokas-Lenells equation (Khater et al. 2021), Hirota Maccari system (Yokus and 
Baskonus 2022), complex Radhakrishnan-Kundu-Lakshmanan equation (Kudryashov 
2022), Kundu–Mukherjee–Naskar equation (Wang et  al. 2023), Lakshmanan-Porsezian-
Daniel equation (Peng et al. 2022), Triki-Biswas equation (González-Gaxiola 2022), Gerd-
jikov Ivanov equation (Iqbal et al. 2023), Biswas-Arshed equation (Cinar et al. 2023), new 
Hamiltonian amplitude equation (Taghizadeh and Mirzazadeh 2011), Davey-Stewartson 
equation and complex coupled Maccari equation (Sulaiman et al. 2021), Hirota equation 
(Demiray and Pandir 2016). Therefore, it has become an important issue to investigate the 
dynamic attitude and exact traveling wave solutions of CNPDEs. In this context, the FS is 
considered as in Eq. (1) (Ali et al. 2023; Alotaibi et al. 2023; Kaplan et al. 2023):

where r1, r2, r3, r4 are nonzero constants and w = w(x, y, t) and s = s(x, y, t) are complex 
functions symbolizing the propagation of nonlinear pulses in mono mode optical fib-
ers. This model was suggested by Fokas (1994) and Shulman (1983) as an extension of 
the nonlinear Schrödinger equation and it simulates the dynamics of waves through sin-
gle-mode fiber optics. Equation (1) is reduced to nonlinear Schrodinger equation when y 
approaches to x.

This important class of nonlinear differential equations has been investigated in many 
studies to obtain exact wave solutions, such as the generalized Kudryashov and modified 
Kudryashov procedures (Kaplan et  al. 2023), Painlevé approach and semi-inverse varia-
tional principle (Alotaibi et al. 2023), Sardar sub-equation approach, Bernoulli sub-ODE 
method, and generic Kudryashov’s method (Ali et al. 2023), the method of planar dynami-
cal system (Tang and Li 2023), the complete discriminant system method of polynomials 

(1)
iwt + r1wxx + r2ws = 0,

r3sy − r4(|w|2)x = 0,
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(Zhang et al. 2023), the Jacobi elliptic function expansion method (Tarla et al. 2022), the 
Exp-function method (Wang 2022), the generalized projective Riccati equation method and 
the two variables 

(
G′

G
,
1

G

)
-expansion method (Sadaf et al. 2022), the extended rational sine-

cosine and sinh-cosh methods (Wang et al. 2022), Hirota’s bilinear method combined with 
the Kadomtsev-Petviashvili (KP) hierarchy reduction method (Rao et  al. 2019), and the 
Cole-Hopf transformation (Wang 2023).

This research is motivated to reveal the different exact wave structures of Eq. (1) by 
the NVTEM which has not been applied before. The advantages of the proposed method 
are that it acquires the rational, exponential, hyperbolic, and Jacobi elliptic type function 
solutions of an NLEE, which is not the case for some methods such as the tanh-function 
method, G�∕G-expansion method, Kudryashov method, and F-expansion method. Moreo-
ver, this scheme serves as a functioning and simple algorithm to evaluate the exact solu-
tions of NLEEs governing many physical phenomena such as optics, fluid dynamics, 
mechanics, and mathematical biological models. Various novel and efficient solutions have 
been established through this approach. The variety and diversity of the reported solution 
aid in analyzing the propagation of pulses in optical fibers.

The structure of the paper is as follows within the scope of our aim: In Sect.  2 the 
description of the NVTEM is given. In Sect.  3 the exact wave solutions of the FS are 
investigated through NVTEM, and the results are presented. In Sect.  4 the behaviors of 
the obtained solutions are observed graphically. In Sect.  5 the results are discussed and 
summarized.

2 � Representation of the method

In this section, the steps of the NVTEM are given to gain the wave solutions of a nonlin-
ear partial differential equation (NPDE). This method is a developed version of the trial 
equation method which was first proposed by Liu (2005a; b). The extended trial equation 
method and the NVTEM are improved as a variation of the trial equation method by Pandır 
et al. (2012; 2013a; 2013b).

Step 1 We consider a NPDE as follows,

Employing the traveling wave transform,

where c1, c2, c3 are nonzero constants, Eq. (2) is transformed into a NODE as in Eq. (4),

Step 2 This method assumes a solution for Eq. (4) as in the form,

(2)P
(
u, ux, uy, ut, uxx, uxy,…

)
= 0.

(3)u(x, y, t) = U(�), � = c1x + c2y − c3t,

(4)G

(
U,

dU

d�
,
d2U

d�2
,…

)
= 0.

(5)U(�) = A0 +

M∑
i=1

AiP
i(�) + BiP

−i(�),
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where A0, Ai, Bi, (i = 1, 2,… ,M) are nonzero constants and M will be determined by bal-
ancing the highest order derivative and highest nonlinear term in Eq. (4). Besides, the func-
tion P(�) satisfies the equation in Eq. (6).

Step 3 The solution in Eq. (5) is substituted into Eq. (4) and the required derivatives are 
evaluated using Eq. (6). This gives us an expression including the powers of the func-
tion P(�) and equating the coefficients of these powers, an algebraic equation system for 
A0, Ai, Bi, (i = 1, 2,… ,M), h0, h1,… , hN , c1, c2, c3 and for the other parameters in Eq. 
(2) is obtained to be solved by Mathematica software.

Step 4 Finally the function P(�) in Eq. (5) is evaluated from Eq. (6) as,

where EE is the integration constant. The desired exact wave solutions of Eq. (2) is 
obtained by considering the function P(�) from Eq. (7).

3 � Application of NVTEM to FS

In this section the NVTEM is applied to the FS in Eq. (1). First, the traveling wave trans-
formation is used as in the following,

where � = k1x + k2y + k3t + k4 , k1, k2, k3, k4 are constants and � is for the speed of wave 
frame. Then the following results are obtained,

Integrating Eq. (10) with zero integration constant we obtain,

Eq. (11) is substituted into Eq. (9) and by writing � = 2r1k1 , Eq. (12) is obtained as follows,

Balancing the terms � ′′ and �3 in Eq. (12), M = 1 is evaluated. Then the NVTEM pro-
poses a solution for Eq. (12) as in the form,

Eq. (13) is substituted in Eq. (12) by considering N = 4 . Thus the derivative � ′′ is deter-
mined by considering the following equation,

(6)(P�)2(�) = h0 + h1P(�) + h2P
2(�) +⋯ hNP

N(�).

(7)±(� − EE) = ∫
dP√

h0 + h1P(�) + h2P
2(�) +⋯ hNP

N(�)
,

(8)w(x, y, t) = �(�)ei� , s(x, y, t) = �(�), � = x + y − �t,

(9)(−� + 2r1k1)i�
� − k3� + r1�

�� − r1k
2

1
� + r2�� = 0,

(10)r3�
� − 2r4�� � = 0.

(11)�(�) =
r4

r3
�2(�).

(12)r1�
�� − (k3 + r1k

2

1
)� +

r2r4

r3
�3 = 0.

(13)�(�) = A0 + A1P(�) +
B1

P(�)
.
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The algebraic equation system which is obtained by equating the coefficients of the pow-
ers of function P(�) , is solved via Mathematica software. The P(�) function in Eq. (13) is 
determined from Eq. (7) as,

If we suppose that �1, �2, �3, �4 are the roots of the polynomial 
h0 + h1P(�) + h2P

2(�) + h3P
3(�) + h4P

4(�) then the following results are obtained for the 
integral in Eq. (15),

where F(�, l) = ∫ �

0

d�√
1−l2 sin2(� )

, � = arcsin

�
(P−�1)(�2−�4)

(P−�2)(�1−�4)
 and l2 = (�2−�3)(�1−�4)

(�1−�3)(�2−�4)
 . The fol-

lowing cases are evaluated and the corresponding exact wave solutions of Eq. (1) are pre-
sented. Case-1:

In this case, the integral in Eq. (22)

is considered and the function P(�) is evaluated as in the following,

(14)(P�)2(�) = h0 + h1P(�) + h2P
2(�) + h3P

3(�) + h4P
4(�).

(15)±(� − EE) = ∫
dP√

h0 + h1P(�) + h2P
2(�) + h3P

3(�) + h4P
4(�)

.

(16)±(� − EE) = −
1

P − �1
,

(17)±(𝜂 − EE) =
2

𝛼1 − 𝛼2

√
P − 𝛼2

P − 𝛼1
, 𝛼2 > 𝛼1

(18)±(𝜂 − EE) =
1

𝛼1 − 𝛼2
ln
||||
P − 𝛼1

P − 𝛼2

||||, 𝛼1 > 𝛼2

(19)

±(𝜂 − EE) =
2√

(𝛼1 − 𝛼2)(𝛼1 − 𝛼3)

ln

������

√
(P − 𝛼2)(𝛼1 − 𝛼3) −

√
(P − 𝛼3)(𝛼1 − 𝛼2)√

(P − 𝛼2)(𝛼1 − 𝛼3) +
√
(P − 𝛼3)(𝛼1 − 𝛼2)

������
, 𝛼1 > 𝛼2 > 𝛼3

(20)±(𝜂 − EE) =
2F(𝜙, l)√

(𝛼1 − 𝛼2)(𝛼2 − 𝛼4)
, 𝛼1 > 𝛼2 > 𝛼3 > 𝛼4,

(21)

A0 = 0, A1 = −
i
√
r1r3h4√
r2r4

, B1 =
2i(k3 + k2

1
r1)

√
r3

3
√
r1r2r4h4

,

h0 =
2(k3 + k2

1
r1)

2

9r2
1
h4

, h1 = 0, h2 = −
2(k3 + k2

1
r1)

3r1
, h3 = 0.

(22)±(� − EE) = ∫
dP√

h0 + h2P
2(�) + h4P

4(�)
,
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where �1 =

�
−h2−

√
h2
2
−4h0h4

2h4
 and �2 =

�
−h2+

√
h2
2
−4h0h4

2h4
 . Thus the exact wave solutions of 

Eq. (1) are obtained by substituting Eq. (23) into Eq. (13) together with the coefficients in 
Eq. (21) as,

where � = x + y − �t and � = k1x + k2y + k3t + k4 . Equations (24–25) are the Jacobi ellip-
tic function solutions of Eq. (1) for Case-1.

Case-2:

For Case-2 the exact wave solutions of Eq. (1) are obtained by evaluating the function P(�) 
from Eqs. (16–20) as in the following.

(23)P(�) = −sn

[
�2(EE − �),

�2

1

�2

2

]
�1,

(24)w1(x, y, t) = ei�

⎛⎜⎜⎜⎝
−A1sn

�
�2(EE − �),

�2

1

�2

2

�
�1 +

B1

sn
�
�2(EE − �),

�2

1

�2

2

�
�1

⎞⎟⎟⎟⎠
,

(25)s1(x, y, t) =
r4

r3

⎛
⎜⎜⎜⎝
−A1sn

�
�2(EE − �),

�2

1

�2

2

�
�1 +

B1

sn
�
�2(EE − �),

�2

1

�2

2

�
�1

⎞
⎟⎟⎟⎠

2

,

(26)

A0 = −

�
13

3

�
−(k3 + k2

1
r1)r3

√
r2r4

, A1 = −
i
√
r1r3h4√
r2r4

, B1 =
28i(k3 + k2

1
r1)

√
r3

3
√
r1r2r4h4

,

h0 =
392(k3 + k2

1
r1)

2

9r2
1
h4

, h1 = −16i

�
13

3

�
(−(k3 + k2

1
r1)r3)

3

√
(r1r3)

3
√
h4

,

h2 = −
28(k3 + k2

1
r1)

3r1
, h3 = −4i

�
13

3

�
(−(k3 + k2

1
r1)r3h4)

√
r1r3

.

(27)w2,1(x, y, t) = ei�

⎛⎜⎜⎜⎝
A0 + A1

�
�1 −

1

� − EE

�
+

B1�
�1 −

1

�−EE

�
⎞⎟⎟⎟⎠
,

(28)s2,1(x, y, t) =
r4

r3

⎛
⎜⎜⎜⎝
A0 + A1

�
�1 −

1

� − EE

�
+

B1�
�1 −

1

�−EE

�
⎞
⎟⎟⎟⎠

2

,
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(29)w2,2(x, y, t) = ei�
⎛
⎜⎜⎝

A0 + A1

�
�1 +

4(�2−�1)

4−(�2−�1)
2(�−EE)2

�

+
B1�

�1+
4(�2−�1 )

4−(�2−�1 )
2 (�−EE)2

�
⎞
⎟⎟⎠
,

(30)s2,2(x, y, t) =
r4

r3

⎛⎜⎜⎝

A0 + A1

�
�1 +

4(�2−�1)

4−(�2−�1)
2(�−EE)2

�

+
B1�

�1+
4(�2−�1 )

4−(�2−�1 )
2 (�−EE)2

�
⎞⎟⎟⎠

2

,

(31)w2,3(x, y, t) = ei�

⎛⎜⎜⎜⎝
A0 + A1

�
�2e

(�1−�2)(�−EE) − �1

e(�1−�2)(�−EE) − 1

�
+

B1�
�2e

(�1−�2 )(�−EE)−�1

e(�1−�2 )(�−EE)−1

�
⎞⎟⎟⎟⎠
,

(32)s2,3(x, y, t) =
r4

r3

⎛
⎜⎜⎜⎝
A0 + A1

�
�2e

(�1−�2)(�−EE) − �1

e(�1−�2)(�−EE) − 1

�
+

B1�
�2e

(�1−�2 )(�−EE)−�1

e(�1−�2 )(�−EE)−1

�
⎞
⎟⎟⎟⎠

2

,

(33)w2,4(x, y, t) = ei�

⎛
⎜⎜⎜⎜⎝

A0

+A1

�
�1 −

2(�1−�2)(�1−�3)

2�1−�2−�3+(�3−�2) cosh(
√
(�1−�2)(�1−�3)(�−EE))

�

+
B1�

�1−
2(�1−�2 )(�1−�3 )

2�1−�2−�3+(�3−�2 ) cosh(
√
(�1−�2 )(�1−�3 )(�−EE))

�

⎞
⎟⎟⎟⎟⎠
,

(34)s2,4(x, y, t) =
r4

r3

⎛⎜⎜⎜⎜⎝

A0

+A1

�
�1 −

2(�1−�2)(�1−�3)

2�1−�2−�3+(�3−�2) cosh(
√
(�1−�2)(�1−�3)(�−EE))

�

+
B1�

�1−
2(�1−�2 )(�1−�3 )

2�1−�2−�3+(�3−�2 ) cosh(
√
(�1−�2 )(�1−�3 )(�−EE))

�

⎞⎟⎟⎟⎟⎠

2

,

(35)w2,5(x, y, t) = ei�

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A0

+A1

�
�2 +

(�1−�2)(�4−�2)

�4−�2+(�1−�4)sn
2

�√
(�1−�3 )(�2−�4 )

2
(�−EE),

(�2−�3 )(�1−�4 )

(�1−�3 )(�2−�4 )

�

�

+
B1

⎛
⎜⎜⎜⎝
�2+

(�1−�2 )(�4−�2 )

�4−�2+(�1−�4 )sn
2

� √
(�1−�3 )(�2−�4 )

2
(�−EE),

(�2−�3 )(�1−�4 )

(�1−�3 )(�2−�4 )

�
⎞
⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,
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Eqs. (35–36) are the Jacobi elliptic function solutions of Eq. (1) for Case-2. Case-3:

The function P(�) is as in Eq. (23) since the result h1 = h3 = 0 causes the integral in Eq. 
(22). Then the wave solutions of Eq. (1) are evaluated as below by considering the coef-
ficients in (37).

where �1 and �2 are defined before and the values h0, h2, h4 in �1, �2 are as in Eq. (37). 
Equations (38–39) are the Jacobi elliptic function solutions of Eq. (1) for Case-3.

Case-4:

In Case-4 the coefficients A0, A1, B1 are different from zero. Therefore the form of the solu-
tions of Eq. (1) will be as in Eqs. (27–36). It can be chosen as A0 = −�1A1 and A0 = −�2A1 
to obtain the rational function solution, combined soliton solution, and the combined Jac-
obi elliptic function solution of Eq. (1) which is not possible in Case-2 due to the fixed 
value of A0.

If A0 = −�1A1 and EE = 0 , the rational function solutions are obtained as,

(36)s2,5(x, y, t) =
r4

r3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A0

+A1

�
�2 +

(�1−�2)(�4−�2)

�4−�2+(�1−�4)sn
2

�√
(�1−�3 )(�2−�4 )

2
(�−EE),

(�2−�3 )(�1−�4 )

(�1−�3 )(�2−�4 )

�

�

+
B1

⎛
⎜⎜⎜⎝
�2+

(�1−�2 )(�4−�2 )

�4−�2+(�1−�4 )sn
2

� √
(�1−�3 )(�2−�4 )

2
(�−EE),

(�2−�3 )(�1−�4 )

(�1−�3 )(�2−�4 )

�
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

,

(37)

A0 = 0, A1 = −
i
√
r1r3h4√
r2r4

, h0 =
−r2r4B

2

1

2r1r3
, h1 = 0, h2 =

i
√
r2r4h4B1

r1r3
,

h3 = 0, k1 = −

�
−2k3r3 − 3i

√
r1r2r3r4h4B1√

2r1r3

.

(38)w3(x, y, t) = ei�

⎛⎜⎜⎜⎝
−A1sn

�
�2(EE − �),

�2

1

�2

2

�
�1 +

B1

sn
�
�2(EE − �),

�2

1

�2

2

�
�1

⎞⎟⎟⎟⎠
,

(39)s3(x, y, t) =
r4

r3

⎛
⎜⎜⎜⎝
−A1sn

�
�2(EE − �),

�2

1

�2

2

�
�1 +

B1

sn
�
�2(EE − �),

�2

1

�2

2

�
�1

⎞
⎟⎟⎟⎠

2

,

(40)

A1 = −
i
√
r1r3h4√
r2r4

, B1 = −
28i

√
r2r4A

2

0

13
√
r1r3h4

, h0 =
392r2

2
r2
4
A4

0

169r2
1
r2
3
h4

, h1 =
48i

�
r3
2
r3
4
A3

0

13

�
r3
1
r3
3
h4

,

h2 =
28r2r4A

2

0

13r1r3
, h3 =

4i
√
r2r4h4A0√
r1r3

, k1 = −

�
−13k3r3 − 3r2r4A

2

0√
13r1r3

.
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and the traveling wave solution in Eqs. (45–46) together with the soliton solution in Eqs. 
(47–48) are obtained:

(41)w4,1(x, y, t) =e
i�

�
i
√
r1r3h4(−13 + ��1(13 + 28��1))

13
√
r2r4�(−1 + ��1)

�
,

(42)s4,1(x, y, t) = −
r1h4(−13 + ��1(13 + 28��1))

2

169r2�
2(−1 + ��1)

2
,

(43)w4,2(x, y, t) = ei�
⎛⎜⎜⎝
i

√
r1r3h4

13
√
r2r4

⎛⎜⎜⎝
−

52(�2 − �1)

4 − �2(�1 − �2)
2
+

28�2

1

�1 +
4(�2−�1)

4−�2(�1−�2)
2

⎞⎟⎟⎠

⎞⎟⎟⎠
,

(44)s4,2(x, y, t) = −
r1h4

169r2

⎛⎜⎜⎝
−

52(�2 − �1)

4 − �2(�1 − �2)
2
+

28�2

1

�1 +
4(�2−�1)

4−�2(�1−�2)
2

⎞⎟⎟⎠

2

,

Fig. 1   The 3D-depiction of w1 and s1 for r2 = 2.3, r3 = 3, r4 = 5.1, r1 = 6.2, h4 = 3, k1 = 3.6, k2 = 2, k3 = 1.4,

k4 = 2,EE = 5, y = 0.85, � = 2
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(45)w4,3(x, y, t) = ei�
(
±�2A1 coth

[�1 − �2

2
�

]
±

B1

2
tanh

[�1 − �2

2
�

])
,

(46)s4,3(x, y, t) =
r4

r3

(
±�2A1 coth

[�1 − �2

2
�

]
±

B1

2
tanh

[�1 − �2

2
�

])2

,

Fig. 2   The 2D-depiction of w1 and s1 for r2 = 2.3, r3 = 3, r4 = 5.1, r1 = 6.2, h4 = 3, k1 = 3.6, k2 = 2,

k3 = 1.4, k4 = 2,EE = 5, y = 0.85, � = 2, t = 1



A new version of trial equation method for a complex nonlinear…

1 3

Page 11 of 20  1019

where �3 =
−2(�1−�2)(�1−�3)

(�3−�2)
, �4 =

2�1−�2−�3

�3−�2
, �5 =

√
(�1 − �2)(�1 − �3).

If A0 = −�2A1 , the Jacobi elliptic function solutions of Eq. (1) are evaluated as in Eqs. 
(49–50) for Case-4.

(47)w4,4(x, y, t) = ei�
⎛⎜⎜⎝

A1�3

�4 + cosh
�
�5�

� + B1

�1 −
�3

�4+cosh [�5�]

⎞⎟⎟⎠
,

(48)s4,4(x, y, t) =
r4

r3

⎛⎜⎜⎝
A1�3

�4 + cosh
�
�5�

� + B1

�1 −
�3

�4+cosh [�5�]

⎞⎟⎟⎠

2

,

(49)w4,5(x, y, t) =e
i�

⎛⎜⎜⎝
�6A1

�7 + sn2
�
�8�, �9

� + B1

�2 +
�6A1

�7+sn
2[�8�,�9]

⎞⎟⎟⎠
,

Fig. 3   The 3D-depiction of w2,4 and s2,4 for r2 = 3.3, r4 = −1.86, r1 = 3.2, r3 = −2.6, h4 = −2.1, k1 = 4.6,

k2 = 2.48, k3 = 1.3, k4 = 2.5,EE = 0.7, �1 = 2, �2 = 1.5, �3 = 1, y = 0.85, � = 1.6
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where �6 =
(�1−�2)(�4−�2)

�1−�4
, �7 =

�4−�2

�1−�4
, �8 =

√
(�1−�3)(�2−�4)

2
, �9 =

(�2−�3)(�1−�4)

(�1−�3)(�2−�4)
.

4 � Results and discussion

The long-time behavior of a solution to a NLEE is significant in applied sciences. Thus, 
the dynamical behaviors of the solution pair w1 − s1 in Eqs. (24–25), w2,4 − s2,4 in Eqs. 
(33–34), w2,5 − s2,5 in Eqs. (35–36), w3 − s3 in Eqs. (38–39) and w4,3 − s4,3 in Eqs. (45–46) 
are presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 for some fixed values of parameters. 
Our findings are new wave types when compared to the results in (Ali et al. 2023; Alotaibi 

(50)s4,5(x, y, t) =
r4

r3

⎛⎜⎜⎝
�6A1

�7 + sn2
�
�8�, �9

� + B1

�2 +
�6A1

�7+sn
2[�8�,�9]

⎞
⎟⎟⎠

2

,

Fig. 4   The 2D-depiction of w2,4 and s2,4 for r2 = 3.3, r4 = −1.86, r1 = 3.2, r3 = −2.6, h4 = −2.1, k1 = 4.6,

k2 = 2.48, k3 = 1.3, k4 = 2.5,EE = 0.7, �1 = 2, �2 = 1.5, �3 = 1, y = 0.85, � = 1.6, t = 1
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et al. 2023; Kaplan et al. 2023; Rao et al. 2019; Sadaf et al. 2022; Tang and Li 2023; Tarla 
et al. 2022; Wang 2022; Wang et al. 2022; Wang 2023; Zhang et al. 2023). The NVTEM 
has given different results than the other analytical methods used in the literature for FS. 
We have presented Jacobi elliptic function solutions which are not reported in (Ali et al. 
2023; Alotaibi et al. 2023; Kaplan et al. 2023; Rao et al. 2019; Sadaf et al. 2022; Wang 
2022; Wang et al. 2022; Wang 2023). The graphical representation also demonstrates dis-
tinct characteristics of the current solutions.

In Figs. 1, 2, 5, 6, 7 and 8 the combined Jacobi elliptic function solutions are illustrated. 
In Figs. 3, 4, 9 and 10 the hyperbolic type solutions are presented.

Fig. 5   The 3D-depiction of w2,5 and s2,5 for r2 = 3.3, r4 = −1.86, r1 = 3.2, r3 = −2.6, h4 = −2.1, k1 = 4.6,

k2 = 2.48, k3 = 1.3, k4 = 2.5,EE = 0.7, �1 = 3, �2 = 2.5, �3 = 1.5, �4 = 1, y = 0.85, � = 1.6
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5 � Conclusions

In this paper, many novel computational wave solutions of the FS that describe the prop-
agation of the nonlinear pulses in mono-mode optical fibers are investigated through 
NVTEM. The rational, exponential, hyperbolic, and Jacobi elliptic function types are 
evaluated for this complex system. All these solutions are fresh in the frame of NVTEM 
and they are verified with the aid of Mathematica. The benefit of the proposed method is 
that it presents different waveforms by considering the roots of a Nth-order polynomial 
and as a result, the current results demonstrate various superposed waveforms. Therefore, 
this research illustrates how the NVTEM is an effective and straightforward method to be 
applied to many NLEEs. The evolvement of some obtained solutions is presented in 3D 
and 2D graphs for a better comprehension of their physical behaviors. The current method 
is capable of capturing the different wave solutions of various nonlinear partial differential 
equations in applied sciences. This research offers beneficial information about the FS and 
NVTEM for the related physical analysis.

Fig. 6   The 2D-depiction of w2,5 and s2,5 for r2 = 3.3, r4 = −1.86, r1 = 3.2, r3 = −2.6, h4 = −2.1, k1 = 4.6,

k2 = 2.48, k3 = 1.3, k4 = 2.5,EE = 0.7, �1 = 3, �2 = 2.5, �3 = 1.5, �4 = 1, y = 0.85, � = 1.6, t = 1
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Fig. 7   The 3D-depiction of w3 and s3 for r2 = 2.3, r4 = 2.1, r1 = 4.2, r3 = 3, h4 = 2, k2 = 4, k3 = 5.4, k4 = 3,

EE = 0.7, y = 0.85, � = 4,B1 = 4.5



	 O. Kirci et al.

1 3

1019  Page 16 of 20

Fig. 8   The 2D-depiction of w3 and s3 for r2 = 2.3, r4 = 2.1, r1 = 4.2, r3 = 3, h4 = 2, k2 = 4, k3 = 5.4, k4 = 3,

EE = 0.7, y = 0.85, � = 4,B1 = 4.5, t = 1
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Fig. 9   The 3D-depiction of w4,3 and s4,3 for r2 = 7.2, r4 = −2.5, r1 = 2, r3 = 3.4, h4 = 3, k2 = 1.48, k3 = −3.3,

k4 = 2.5, �1 = 3.8, �2 = 0.2, y = 0.85, � = 10
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