
https://doi.org/10.1007/s11042-019-08126-7

An efficient lossy cartoon image compression method

Aljaž Jeromel1 ·Borut Žalik1

Received: 14 September 2018 / Revised: 18 July 2019 / Accepted: 13 August 2019 /

© The Author(s) 2019

Abstract
This paper introduces a new lossy approach for compression of cartoon images. The image
is firstly partitioned into regions of roughly the same colour. The chain codes are then
determined of all regions. The sequence of the obtained chain code symbols is transformed
with the Burrows-Wheeler Transform, Move-To-Front transform, and compressed with
Run-Length Encoding. In the final step, an arithmetic encoder may be used to compress
the obtained binary stream additionally. The proposed algorithm is asymmetric, meaning
that the decompression does not reverse all the steps of the compression procedure. The
experimental results have shown that the described method produces considerably better
compression ratios than JPEG, JPEG2000, WebP, SPIHT, PNG, and two of the algorithms
specialised in compression of cartoon images: the algorithm using quad-tree, and RS-LZ
algorithm.

Keywords Cartoon images · Image compression · Chain codes · String transformations

1 Introduction

Image compression is a widely researched area with a huge amount of developed meth-
ods. According to [15], there are five major image categories: Monochromatic, greyscale,
continuous-tone, discrete-tone, and cartoon images. Numerous methods intended for com-
pressing the images from the first four categories have been proposed, some of them being
very successful. On the other hand, although an extensive search through the available lit-
erature was done, no really efficient method has yet been developed for the compression of
the cartoon images. Indeed, only a few cartoon image compression techniques have been
reported until now. In 2006, Tsai et al. presented a quasi-lossless method for compressing
cartoon images using quad-trees [20]. The method applies dithering if the image contains
more than 256 colours. The method does not perform well when the image contains a lot of

This work was supported by the Slovenian Research Agency under Grants J2-8176 and P2-0041.

� Aljaž Jeromel
aljaz.jeromel@um.si

1 Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, SI-2000 Maribor,
Slovenia

Multimedia Tools and Applications (2020) 79:433–451

Published online: 29 20 19August

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-08126-7&domain=pdf
http://orcid.org/0000-0003-3502-2229
mailto: aljaz.jeromel@um.si


small regions. Another lossless compression method, named RS-LZ, was developed by Li
et al. [9]. The method uses the Freeman chain code in eight directions (F8) to represent the
borders of the solid regions, and encodes pixels that are contained neither on the border nor
inside of the solid region. Because of that, images containing a lot of small solid regions
and images, where edge smoothing or JPEG-like compression has been applied before, are
not compressed well. A promising research was done by Taylor in 2011 [18]. He introduced
a lossy compression algorithm, which takes into account small colour differences between
neighbouring pixels, and a quantization procedure for small details/noise. The algorithm
owns a good compression ratio at the expense of losing some image information.

A new lossy method for cartoon image compression, named Chain Code Cartoon Com-
pression (4C), is proposed in this paper. The main novelty of this work is fulfilling the
gaps in cartoon image compression by developing a new approach, which would outper-
form the state-of-the-art general-purpose and domain-specific algorithms. The proposed
method firstly divides the image into free-form regions having similar colours. The shapes
of the regions are described with chain codes, which are then transformed with Burrows-
Wheeler and Move-to-Front transforms. The obtained stream of chain code symbols is then
encoded with Run-Length Encoding and arithmetic coding. As the algorithm is asymmet-
ric, the decompression is faster than the compression. For cartoon images, the proposed
method produces better compression ratios than the referenced algorithms. Images com-
pressed with the proposed method are also more visually pleasing than those compressed
with JPEG, JPEG2000, WebP, or SPIHT, with approximately the same structural similarity
index (SSIM). In most cases, the same SSIM of two images means that they are of the same
quality. PSNR is also considered of decompressed images obtained with the mentioned
algorithms.

This paper contains 4 sections and an Appendix. The proposed compression algorithm
and its steps are presented in Section 2. The third Section contains the results of the expe-
riments, while conclusions are given in Section 4. The Appendix shows images used in the
experiments.

2 The algorithm

The presented algorithm works in eight steps, shown in Fig. 1. The first three steps of
the algorithm are lossy, and the other five are lossless. The losses are controlled by three
user-defined parameters: ctol, msz, and ptol. Two of these parameters, ctol and ptol, are
thresholds for joining colours during the region detection and palette calculation, respec-
tively. The third parameter, msz, defines the minimum size for the region to be allowed to
stay independent after the region reduction step. Each region is described by chain codes
in the fourth step. The chain codes of all regions are concatenated, and Burrows-Wheeler
Transform (BWT), Move-to-Front Transform (MTF), and Run-Length Encoding (RLE) are
applied to the resulting chain. In the final step, the arithmetic encoding is used. These steps
are explained in detail in the following subsections.

2.1 Region detection

In the first step of the algorithm, the image is partitioned into connected regions of similar
colour, based on the approach presented in [18]. The algorithm traverses the image in the
raster scan order. Whenever a pixel not yet belonging to any region is encountered, the
breadth-first traversal using the pixel’s eight neighbourhood is performed from the starting

Multimedia Tools and Applications (2020) 79:433–451434



Fig. 1 Steps of the compression algorithm

pixel. Pixels whose colour differs from the region’s average colour for less than the threshold
ctol are included into the considered region. The threshold for colour similarity is a user-
defined parameter, by which the compression ratio and the quality of the compressed image
are controlled. When deciding whether or not to add a considered pixel to the region, an
additional test needs to be done. If the pixel is discovered by its diagonal neighbour, the
other two pixels in their 2×2 sub-grid are checked as to whether their colours differ less than
ctol. If they do, the considered pixel is rejected. This test is necessary to prevent the region
interlacing, which causes the wrong reconstruction of the image. It should be noted that this
test does not prevent region interlacing completely - however, it reduces it considerably.
Region interlacing is explained in more detail in Section 2.9. When a considered pixel is
accepted into a region, its RGB colour values modify the accumulated colour values of the
region.

2.2 Region reduction

In this step, the regions smaller than the user-defined threshold msz are merged with neigh-
bouring regions. The algorithm iterates through the list of regions and, when too small
region is encountered, its neighbouring regions are determined. When the neighbouring
regions are found, the most suitable of them is merged with the current region. Firstly, the
region’s luma colour component of YCbCr colour space is calculated. If the calculated value
is lower than 100 (the value was determined experimentally), the region is considered as a
part of the contour (the black border between the coloured regions). In this case, it is merged
with the neighbouring region that has the most similar colour. Otherwise, the colours of the
region’s neighbours, larger than msz, are compared to the region’s colour, and the largest
region with the most similar colour is chosen for merging. However, if the region has no
neighbours larger than msz, it is merged to the neighbouring region most similar in colour.

Multimedia Tools and Applications (2020) 79:433–451 435



2.3 Generating palette

As a rule, cartoon images contain a small number of distinctly different colours. Thus, a
colour palette is useful to make the data less redundant. Furthermore, because of colour
tolerance in the first step and region merging in the second, some regions might get a slightly
different colour, despite having the same colour originally. Because of that, a user-defined
colour tolerance parameter ptol is used to unify similar colours. In that way, the palette
contains a small number of colours without visually impacting the image. The algorithm
iterates through all regions and checks whether a similar enough colour has already been
accepted. In that case, the colours are merged, and their average is weighted by the number
of involved regions. Otherwise, the colour is considered as a new colour.

2.4 Determining chain codes

Determining the chain codes of the regions is the first step of the lossless part of the pro-
posed algorithm. The Vertex Chain Code (VCC) [4] is used in our implementation, but any
chain code could be used here [6, 16, 21]. An example of applying the Vertex Chain Code is
given in Fig. 2. Vertex Chain Code moves along vertices that connect 4 neighbouring cells
and encodes the number of pixels belonging to the region. Because it moves along the bor-
ders of the region, the only valid symbols in the output are 1, 2, and 3. There is, however,
no need to establish the spatial relations between the regions, i. e. determining the holes in
the regions. Namely, the holes in the case of raster images do not represent the hollow parts,
but another region, filled with a specific colour.

The example of processing an image with the proposed algorithm up to this step is pre-
sented in Fig. 3, where ctol = 50 and msz = 5. Figure 3a shows the original image. In
Fig. 3b, the first pixel in the raster scan order is used, and the breadth-first traversal is started
from it to find all of the similar connected pixels. The result of filling the first region is
given in Fig. 3c, where the next starting pixel for the breadth-first traversal is also marked.
Figure 3d shows the image after the region detection step has been performed. The yellow
pixel was absorbed by the orange region, because the difference in colour was less than
ctol, and the orange region’s average colour was modified accordingly. The result of the

Fig. 2 Example of the Vertex
Chain Code (VCC)

Multimedia Tools and Applications (2020) 79:433–451436



Fig. 3 Example of the lossy part of the proposed algorithm at work

region reduction step is shown in Fig. 3e. Because the light green region contained less than
5 pixels, it was merged with the surrounding green region.

The chain codes are then concatenated into one chain, which is more compressible than
many short ones [10].

2.5 Chain code transformations

To achieve better compression, string transformation techniques are applied on the con-
catenated chain code symbols [22]. First, Burrows-Wheeler transform (BWT) [1] is used,
followed by the Move-to-Front transform [5] and Run-Length Encoding (RLE). The BWT
shuffles the string in a way that similar symbols are placed together, forming long runs of the
same symbol. The MTF then transforms these runs into runs of zeros and RLE compresses
these runs efficiently. The runs of 0 symbols are encoded as follows:

– Runs of 0-symbols shorter than threshold t1 are encoded with the unary code [15].
– Runs of 0-symbols longer than t1 and shorter than 2b1 + t1 are binary encoded using b1

bits.
– Runs of 0-symbols longer than 2b1 + t1 and shorter than 2b2 + t1 are encoded in binary

code with b2 bits.
– Runs of 0-symbols whose lengths are longer or equal to 2b2 + t1 are split into runs that

can be processed using the options above.

The values t1, b1, and b2 are calculated by the programme on the stream of symbols
produced by MTF. The programme tests each combination of values for t1, b1 and b2, where
the following relations apply:

– 0 ≤ t1, b1 < 8,
– 1 ≤ b2 ≤ 16,
– b1 ≤ b2,
– t1 ≤ 2b1 .

Multimedia Tools and Applications (2020) 79:433–451 437



The algorithm then chooses the values that produce the lowest number of bits on the
transformed chain code symbols.

2.6 The storage format

To be able to reconstruct the image, certain parameters need to be written in the compressed
file in addition to the region metadata that includes the coordinates, colours, and transformed
chain code symbols. The structure of the compressed file is presented in Fig. 4. A more
detailed description of the file structure is presented below:

– 12 bits for the width of the image,
– 12 bits for the height of the image,
– 16 bits for the number of regions,
– 4 bits for the number of bits needed for the number of colours nc,
– nc bits for the number of colours,
– 24 bits for each colour’s RGB components,
– lx bits for the X coordinate of each region’s starting pixel (explained in the continuation),
– ly bits for the Y coordinate of each region’s starting pixel (explained in the continuation),
– nc bits for each region’s colour index,

Fig. 4 Structure of the compressed file

Multimedia Tools and Applications (2020) 79:433–451438



– variable length for size and shape indices of each region (explained in the continuation),
– 32 bits for BWT index,
– 32 bits for the length of the concatenated transformed chain code symbols,
– 3 bits for RLE threshold t1,
– 3 bits for number of bits b1,
– 4 bits for number of bits b2,
– RLE encoded chain code symbols.

The bit length, lx , for encoding x-coordinates, is determined using (1), where W is the
width of the image.

lx =
{ ⌈

log2
√

W
⌉

, if
⌈
log2 xi

⌉
<

⌈
log2

√
W

⌉
⌈
log2 W

⌉
, otherwise

(1)

The bit length ly for encoding y-coordinates is determined the same way from the height of
the image H . The xi and yi values are obtained by subtracting the previous region’s starting
coordinates from the starting coordinates of the current region. The negative differences
are mapped to positive numbers by adding the width of the image. Because the regions are
sorted by their y-coordinate, the differences between y-coordinates are always positive. The
differences between x-coordinates can be negative, in which case the width of the image is
added to the difference. Because the region detection is applied in the raster-scan order, the
first region always starts at the coordinates (0, 0), so its coordinates do not have to be stored.

The size and the shape indices of regions are an optional part of the compressed file,
which is denoted using one bit. If the bit is 0, this part is skipped. Otherwise, for each region,
one of the following codes is emitted:

– 0: the region is described by chain code symbols.
– 10: the region contains only one pixel.
– 11: the region contains two pixels. A 2-bit code representing shape of the region is

emitted, in accordance with Fig. 5.

2.7 Arithmetic encoding

The file, organised as described in the previous subsection, is compressed by the binary
arithmetic coder in the final step. The arithmetic coder is a compression procedure, where,
instead of assigning a specific code to each character, the entire file is encoded into one
number [15]. The arithmetic coder starts with an interval, which is then narrowed itera-
tively, depending on the observed character. In comparison to other well-known lossless
data compression methods (i.e. Huffman coding), arithmetic coding compresses data more
efficiently at the expense of the processing time. An extensive explanation of arithmetic
coding is given in, for example, [2, 7, 14].

Fig. 5 Possible shapes of the region containing 2 pixels and their bit codes

Multimedia Tools and Applications (2020) 79:433–451 439



The binary arithmetic encoder PAQ8L [11] was used in our case. The PAQ family of the
encoders uses context mixing to determine the probabilities of zeros and ones. The PAQ7
and the newer versions use the artificial neural networks to achieve better compression, but,
unfortunately, they require more processing time.

2.8 Decompression

During the decompression, lossless compression steps need to be applied in reversed order.
Firstly, if the file was additionally compressed with an arithmetic encoder, the arithmetic
decoding is applied. Then, the metadata from the file header is obtained. The rest of the file
represents the RLE-encoded concatenated chain code symbols. The inverse operations of
RLE, MTF and BWT are applied to reconstruct the concatenated codes of all regions. The
algorithm iterates through all regions, reconstructs their contour, and fills the regions by
the flood fill algorithm [19]. During the contour reconstruction, the pixels next to the chain
code segments are marked as locked, so as not to be added mistakenly to another region.
The decompression is much faster than compression, because it does not have to reverse the
operations in the lossy part of the compression algorithm.

2.9 Region interlacing

During the region detection step, additional conditions are checked when performing the
breadth-first traversal. In this subsection, the explanation is given why these conditions
are necessary. Figure 6 shows the effects of region interlacing during compression and
reconstruction of the image if no steps are taken to prevent it.

In Fig. 6a, the blue region has already been detected and saved, while the yellow region
is currently being filled with pixels using the breadth-first traversal. Pixels that have not yet
been checked, are white. The current pixel (the one where the red arrow starts) checks its
bottom-left neighbour (where the arrow points to). Their 2 × 2 sub-grid is marked with the
red border. If it is not checked whether the other pixels in this sub-grid differ less than ctol,
the pixel would be added to the yellow region to get the situation in Fig. 6b after filling it.
After that, the rest of the compression steps are performed upon the image.

During the reconstruction of the compressed image, the blue region is filled first, because
it comes first in the raster scan order. The obtained situation is shown in Fig. 6c, where the
blue region’s border is marked with the violet colour and the locked pixels are crossed. Once
a pixel has been locked, it cannot be modified any more. Figure 6d represents the situation
after the yellow region has been reconstructed. Its border and locked pixels are marked with
orange colour. The pixels marked with red dots have been assigned wrongfully to the yellow
region, because they were not locked.

The solution, that would completely remove such scenarios, would be to check all the
2 × 2 sub-grids in the image and divide the problematic regions into multiple parts. But

Fig. 6 Preventing wrong reconstruction of interlaced regions

Multimedia Tools and Applications (2020) 79:433–451440



such approach would increase the processing time of the compression significantly. Instead,
the steps described in Section 2.1 are taken to reduce the frequency of region interlacing,
but not completely remove it. When deciding whether or not to add a diagonally connected
pixel to the current region, the 2×2 sub-grid is checked (Fig. 6a), and if the other two pixels
(the blue pixels in Fig. 6a) differ less than ctol, the pixel is rejected.

3 Results

The results of the proposed 4C algorithm on a set of representative images, shown in
Appendix A, are presented in this Section. The features of the algorithm are compared with
the PNG [3], RS-LZ [9], WebP [12], SPIHT [13], the Quad-tree approach [20], as well as
with the image compression standards JPEG [23] and JPEG2000 [17]. The compression
efficiency and the time needed for compression and decompression were considered. How-
ever, as the referenced algorithms have very different characteristics, special care was given
to the fair comparison of compression results:

– Comparison with lossless methods was done by applying only the lossy parts of
4C algorithm to images and saving them. The images were then loaded and com-
pressed with the considered lossless methods. In this way, the efficiency of the lossless
approaches was compared only to the lossless parts of the 4C algorithm. Some lossless
methods could outperform the lossy algorithms in this way, because the redundancy,
existing in the images, was reduced by the lossy parts of 4C algorithm.

– Comparison with lossy methods was done according to SSIM (Structural Similarity
Index) [24], a metric for measuring the visual quality of images. The images were
compressed firstly with 4C algorithm, and their SSIM was measured. The compres-
sion parameters for other lossy methods were then determined in a way that, after the
compression, their SSIM values were as close as possible to SSIM obtained with the
proposed 4C algorithm (see Table 4).

The parameters used to compress each of the testing images with the proposed 4C algo-
rithm are given in Table 1. Different parameter values have been tested, and the ones that
produced the most visually pleasing reconstruction and good compression ratio were cho-
sen. The parameters depend on the thickness of the black borders and the amount of edge
smoothing applied to the image. The following hints are proposed for setting the parameters:

– If the image has thin borders between regions, msz ≤ 10.
– If the image has very smooth/blurred black edges, then ctol ≥ 50.
– If the neighbouring colours do not differ considerably, ctol ≤ 25 and ptol ≤ 25.

For most cartoon images, ctol = 50, msz = 20, and ptol = 100 reproduce the original
image very well.

As seen, the parameter values in the case of the image ”Ice cream” are much lower than
the parameter values used for other images. The referenced image contains very thin black
borders, and some very small important regions (see Appendix A). The compensation for
that is the lowering of the msz parameter. The ctol and ptol parameters were lowered as
well, not to treat different hues of the girl’s hair as one region, or merge the colours during
the determination of the colour palette.

Multimedia Tools and Applications (2020) 79:433–451 441



Table 1 Parameters, used to compress each of the test images with 4C algorithm

Image Width [pixels] Height [pixels] ctol ptol msz

Bee 722 800 50 100 50

Chickens 2000 1562 45 50 3

Dino 768 720 50 100 50

Doctor 538 720 60 100 5

Ice cream 960 613 5 5 3

Racer 960 576 35 100 3

Seal 1412 1920 40 100 30

Shark 1920 1426 30 100 50

Teacher 1920 1371 60 100 50

Tiger 958 626 60 100 50

Turkey 518 720 35 100 50

Zebra 673 800 60 100 40

3.1 Processing time of the algorithm

The time, needed for compressing an image relies on its dimensions, as well as the user-
selectable parameters. Larger colour tolerance generates a lower number of small regions
and, consequently, requires less processing time. Colour tolerance for the palette has the
same effect as colour tolerance for region detection. The larger value produces less colours
and shorter processing time. On the other hand, higher msz value results in more iterations
of the merging procedure, and requires more processing time. The CPU time needed for
compression and decompression of each image is given in Table 2. The measurements were
done on a personal computer with Intel Core i5-3570K CPU 3.40 GHz, 32 GB of RAM,
running the 64 bit operating system Windows 10 Education.

As seen, image Ice cream requires significantly more processing time than other images
(Bee, Racer, Tiger, Zebra) of similar size, due to the considerably lower values for ctol,
msz, and ptol.

Table 2 Average compression
and decompression times Image Compression time [s] Decompression time [s]

Bee 0.5282 0.1147

Chickens 3.4604 0.8814

Dino 0.4712 0.1091

Doctor 0.4750 0.0708

Ice cream 1.7838 0.1739

Racer 0.6957 0.1257

Seal 2.3170 0.6179

Shark 2.5910 0.4715

Teacher 2.1034 0.5213

Tiger 0.5133 0.1097

Turkey 0.3238 0.0711

Zebra 0.4999 0.1024

Average 1.3136 0.2808

Multimedia Tools and Applications (2020) 79:433–451442



3.2 Compression efficiency

The parameters also affect the compression ratio. In general, larger values produce better
compression ratio, since they result in less regions and colours. The compression efficiency
for each image from Appendix A is shown in Table 3, where the best results are marked
in bold. The quality of the images compressed with standards JPEG and JPEG2000 and
algorithms WebP and SPIHT was chosen according to the SSIM. The SSIM values used
for each image are given in Table 4, their PSNR [15] values in Table 5, and the parameters,
controlling losses of those methods, are in Table 6.

As seen, the proposed 4C algorithm outperforms the lossless methods significantly on
transformed images. The transformation, applied by the lossy steps of the proposed algo-
rithm, makes the image more cartoon-like, which allows the lossless algorithms to achieve
better compression than if they were applied on the original images. Out of the referenced
algorithms, the Quad-tree approach produced the best results. The only image the Quad-tree
method did not compress well was the image Ice cream, where very low values were used
for ctol, msz and ptol. Because of that, the quad-tree contained a lot more nodes, which
considerably worsened the compression.

The second most efficient algorithm out of the compared lossless methods was PNG,
followed by RS-LZ. The RS-LZ’s performance was worse than the performance of other
lossless algorithms because of its definition of solid colour regions. It assumes the solid
colour regions are made up of pixels that have the same colour as all eight of their neigh-
bours. It then encodes the contour of the solid regions with chain codes. The pixels, not
assigned to any solid region or its border that way, are encoded directly by storing RGB
codes. Obviously, the problem for this algorithm are thin regions, where no pixel would be
recognised as a member of the solid colour region.

The proposed 4C algorithm also produces considerably better compression than the com-
pared lossy methods with practically the same SSIM. Among all of the compared methods,
the standard JPEG produced the worst compression, while WebP was the most efficient
general-purpose compression algorithm; it was even better than the special-purpose RS-LZ.
In general, the lossless algorithms were more efficient than the lossy ones, because the loss-
less methods were run on transformed images, as explained at the beginning of this Section,
which improved their compressibility substantially.

However, two quality metrics (see Tables 4 and 5) disagree substantially, and, there-
fore, it is a question of which is more reliable. Because PSNR is inversely proportional
to MSE (Mean Squared Error), it perceives images with lower pixel difference as higher
quality. Therefore, the manner in which the image information is lost is very important.
The images compressed with JPEG, JPEG2000, WebP, and SPIHT show signs of blurring,
which produces low MSE (and higher PSNR), while the proposed 4C algorithm introduces
sharpening to the edges and reduces the number of colours, which result in higher MSE
and lower PSNR. As discussed in [8], though the PSNR and the quality of reconstruction
are correlated, this metric can be used reliably only when comparing the results of the same
method.

Despite the high SSIM used in comparisons of the proposed method and the other lossy
methods, the difference in reconstructed images can still be, in some cases, detected visually.
In Fig. 7, the detail of Seal image is shown. The image contains relatively large areas of
uniform or close to uniform colours, but the colour of the neighbouring areas differs a lot.
Therefore, sharpening the edges of these areas is preferable in comparison to blurring. The
effects of losses produced by the WebP, JPEG, JPEG2000 fall into the latter category, which
visually degrades the cartoon image considerably, while the proposed algorithm sharpens

Multimedia Tools and Applications (2020) 79:433–451 443



Ta
bl
e
3

C
om

pa
ri
so
n
of

th
e
co
m
pr
es
si
on

ef
fi
ci
en
cy

fo
r
th
e
te
st
im

ag
es

(i
n
bi
ts
pe
r
pi
xe
l)

Im
ag
e

4C
4C

+
PA

Q
8L

Q
ua
d-
tr
ee

R
S-
L
Z

PN
G

JP
E
G

JP
E
G
20
00

W
eb
P

SP
IH

T

B
ee

0.
03
57

0.
03
23

0.
18
86

0.
60
35

0.
42
97

2.
03
69

1.
41
48

0.
69
12

1.
15
00

C
hi
ck
en
s

0.
03
21

0.
02
73

0.
09
51

0.
24
77

0.
23
03

0.
68
22

0.
45
08

0.
30
8

0.
43
50

D
in
o

0.
03
45

0.
03
14

0.
16
05

0.
46
38

0.
38
67

0.
98
68

0.
76
30

0.
39
31

0.
69
00

D
oc
to
r

0.
10
06

0.
09
15

0.
22
40

0.
50
79

0.
46
45

0.
69
32

0.
96
73

0.
19
06

0.
53
80

Ic
e
cr
ea
m

0.
52
58

0.
45
15

1.
79
77

1.
09
70

0.
83
70

1.
19
42

1.
00
22

0.
45
45

0.
80
30

R
ac
er

0.
12
47

0.
10
86

0.
26
54

0.
65
34

0.
44
37

1.
27
54

0.
93
26

0.
68
28

0.
83
90

Se
al

0.
01
91

0.
01
69

0.
08
25

0.
24
46

0.
25
29

0.
16
88

0.
08
86

0.
05
48

0.
12
35

Sh
ar
k

0.
02
65

0.
02
21

0.
10
04

0.
30
68

0.
29
01

0.
27
02

0.
26
28

0.
08
18

0.
15
65

Te
ac
he
r

0.
01
62

0.
01
39

0.
05
70

0.
17
30

0.
19
62

0.
15
51

0.
07
58

0.
06
07

0.
10
51

T
ig
er

0.
03
55

0.
03
19

0.
15
82

0.
45
10

0.
34
55

0.
95
57

0.
52
90

0.
55
54

0.
50
20

T
ur
ke
y

0.
04
93

0.
03
16

0.
22
61

0.
63
20

0.
53
15

1.
58
43

1.
12
93

1.
22
34

0.
98
20

Z
eb
ra

0.
04
21

0.
03
77

0.
15
51

0.
79
89

0.
54
31

0.
89
66

1.
42
41

0.
23
15

0.
62
35

A
ve
ra
ge

0.
08
68

0.
07
47

0.
29
26

0.
51
50

0.
41
26

0.
90
83

0.
75
34

0.
41
07

0.
57
90

Multimedia Tools and Applications (2020) 79:433–451444



Table 4 SSIM values used for the comparison of images obtained with the proposed 4C method, standards
JPEG and JPEG2000, and algorithms WebP and SPIHT

Image 4C JPEG JPEG2000 WebP SPIHT

Bee 98.22% 98.33% 98.44% 98.22% 98.22%

Chickens 98.96% 98.84% 98.93% 98.97% 98.96%

Dino 97.13% 97.22% 97.22% 97.24% 97.13%

Doctor 97.26% 97.25% 97.08% 97.35% 97.26%

Ice cream 97.11% 97.15% 97.10% 97.11% 97.11%

Racer 98.08% 97.97% 98.10% 98.10% 98.08%

Seal 94.36% 94.89% 94.06% 95.17% 94.36%

Shark 97.42% 97.44% 97.65% 97.40% 97.42%

Teacher 93.98% 95.06% 93.94% 93.87% 93.98%

Tiger 97.15% 97.26% 97.30% 97.16% 97.15%

Turkey 98.44% 98.24% 98.42% 98.16% 98.44%

Zebra 96.41% 96.06% 96.56% 96.44% 96.41%

Average 97.04% 97.14% 97.07% 97.10% 97.04%

the edges. After decompression, the edge smoothing can be applied to the image to reduce
the visibility of the sharpening in our case.

4 Conclusion

In this paper, a new method, named 4C (Chain Code Cartoon Compression), is presented
for the lossy compression of cartoon images. It segments the image into free-form regions,

Table 5 PSNR values obtained with the proposed 4C method, standards JPEG and JPEG2000, and
algorithms WebP and SPIHT

Image 4C JPEG JPEG2000 WebP SPIHT

Bee 23.5553 43.3804 38.0609 38.4387 41.2454

Chickens 29.4900 40.6153 38.1208 37.1469 40.0882

Dino 25.0759 35.4936 33.0263 34.2003 35.6077

Doctor 23.0701 30.4367 30.7728 26.4377 32.4420

Ice cream 23.2215 32.2480 31.4631 29.8874 32.1415

Racer 24.8657 35.6742 32.8087 33.3063 35.9188

Seal 26.5575 29.6611 26.5015 28.3179 27.7666

Shark 30.8470 34.1215 35.0217 32.7214 35.1677

Teacher 26.3893 31.4729 27.8507 32.3562 31.7085

Tiger 23.9720 36.9331 31.7760 36.5994 36.1051

Turkey 25.1329 39.9792 36.8295 34.9539 38.5100

Zebra 21.7932 32.7884 31.7221 29.6004 33.9646

Average 25.3309 35.2337 32.8295 32.8305 35.0555

Multimedia Tools and Applications (2020) 79:433–451 445



Table 6 Quality parameters used to compress test images with JPEG, JPEG2000, WebP, and SPIHT

JPEG JPEG2000 WebP SPIHT

Image Quality (0-100) Quality (0-100) Quality (0-100) m BPP

Bee 96 43 91 6 1.1500

Chickens 90 43 90 6 0.4350

Dino 83 38 77 6 0.6900

Doctor 65 35 10 6 0.5380

Ice cream 80 37 62 6 0.8030

Racer 87 38 90 6 0.8390

Seal 20 30 1 6 0.1235

Shark 47 40 29 6 0.1565

Teacher 19 33 15 6 0.1051

Tiger 85 38 91 6 0.5020

Turkey 93 42 100 6 0.9820

Zebra 70 36 20 6 0.6235

Fig. 7 Detail of the original image (a), reconstructed image compressed with the proposed algorithm (b),
with the standard JPEG (c), with the standard JPEG2000 (d), with the algorithm WebP (e), and with the
SPIHT algorithm (f)

Multimedia Tools and Applications (2020) 79:433–451446



which are described with chain codes. The chain code symbols are then transformed using
Burrows-Wheeler and Move-to-Front transforms and compressed with Run-Length Encod-
ing, which may also be followed by an arithmetic encoder. Based on the experiments,
the presented method outperforms JPEG, JPEG2000, WebP, and SPIHT in terms of com-
pression ratio and visual degradation of the image. The lossless compression steps of the
proposed algorithm also produce better results on the transformed images than the Quad-tree
method, the PNG algorithm, and the RS-LZ algorithm.

The parameters ctol, msz, and ptol, controlling the amount of losses, are determined
experimentally at this stage. This aspect of the algorithm opens the new challenges to further
research of how to determine the parameters automatically by analysing the images first.
In addition, it would be reasonable to test the 4C method to compress I-frames on cartoon
videos or animated movies compression.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A

The original and the reconstructed cartoon images are given in this Appendix. The original
image is on the left, while the reconstructed is on the right.

Multimedia Tools and Applications (2020) 79:433–451 447

http://creativecommons.org/licenses/by/4.0/


Multimedia Tools and Applications (2020) 79:433–451448



Multimedia Tools and Applications (2020) 79:433–451 449



References

1. Adjeroh D, Bell T, Mukherjee A (2008) The Burrows-Wheeler transform: Data compression, suffix
arrays and pattern matching. Springer, New York

2. Bodden E, Clasen M, Kneis J (2007) Arithmetic Coding revealed: A guided tour from theory to praxis
Technical report. Sable Research Group, Montreal

3. Boutell T, Adler M, Bowler J et al (2003) Portable Network Graphics (PNG) Specification (Second Edi-
tion), W3C Recommendation. https://www.w3.org/TR/2003/REC-PNG-20031110/. Accessed: 15 June
2018

4. Bribiesca E (1999) A new chain code. Pattern Recogn 32:235–251
5. Elias P (1987) Interval and recency rank source coding: Two On-Line adaptive Variable-Length schemes.

IEEE Trans Inf Theory 33:3–10
6. Freeman H (1961) On the encoding of arbitrary geometric configurations. IRE Trans Electron Comput

EC10:260–268
7. Howard PG, Vitter JS (1992) Practical implementations of arithmetic coding. In: Storer JA (ed) Image

and text compression. Kluwer Academic Publishers, Norwell, pp 85–112
8. Huynh-Thu Q, Ghanbari M (2008) Scope of validity of PSNR in image/video quality assessment.

Electron Lett 44(13):800–801
9. Li ZL, Xia QX, Jiang LJ, Wang SZ (2009) Full Color Cartoon Image Lossless Compression based on

Region Segment. In: 2009 World Congress on Computer Science and Information Engineering. IEEE,
pp 545–548

10. López-Valdes HH, Sánchez-Cruz H, Mascorro-Pantoja MC (2016) Single chains to represent groups of
objects. Digit Signal Process 51:73–81

11. Mahoney M Data Compression Programs. Web page, available at: http://mattmahoney.net/dc/
12. Rabbat R (2010) WebP, a new image format for the Web. Chromium Blog, web page, available at: https://

blog.chromium.org/2010/09/webp-new-image-format-for-web.html Accessed: 10 June 2019
13. Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in

hierarchical trees. IEEE Trans Circ Syst Video Technol 6(3):243–250
14. Said A (2002) Introduction to arithmetic coding - theory and practice. In: Sayood K (ed) Loss-

less compression handbook. Academic Press - Elsevier Inc., Cambridge Massachusetts, pp 101–
152

15. Salomon D, Motta G (2010) Data compression: The complete reference, 5th edn. Springer, New York
16. Sánchez-Cruz H, Rodrı́guez-Dagnino M (2005) Compressing bi-level images by means of a 3-bit chain

code. SPIE Opt Eng 44(9):1–8
17. Skodras A, Christopoulos C, Ebrahimi T (2001) The JPEG 2000 still image compression standard. IEEE

Signal Proc Mag 18(5):36–58
18. Taylor T (2011) Compression of cartoon images. Masters thesis, Case Western Reserve University
19. Torbert S (2016) Applied computer science. Springer, New York, p 2
20. Tsai YC, Lee MS, Shen M, Kuo CCJ (2006) A Quad-Tree Decomposition Approach to Cartoon Image

Compression. In: IEEE Workshop on Multimedia Signal Processing. IEEE, pp 456–460
21. Žalik B, Mongus D, Liu YK, Lukač N (2016) Unsigned Manhattan chain code. J Vis Commun Image

Represent 38:186–194

Multimedia Tools and Applications (2020) 79:433–451450

https://www.w3.org/TR/2003/REC-PNG-20031110/
http://mattmahoney.net/dc/
https://blog.chromium.org/2010/09/webp-new-image-format-for-web.html
https://blog.chromium.org/2010/09/webp-new-image-format-for-web.html


22. Žalik B, Mongus D, Rizman Žalik K, Lukač N (2016) Chain code compression using string transforma-
tion techniques. Digit Signal Process 53:1–10

23. Wallace GK (1992) The JPEG still picture compression standard. IEEE Trans Consum Electron
38(1):xviii–xxxiv

24. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to
structural similarity. IEEE Trans Image Process 13(4):600–612

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Aljaž Jeromel is a Technical Assistant of Computer Science at University of Maribor, Slovenia. He obtained
B. Sc. In Computer Science in 2017. His areas of interest include data compression and computer graphics.

Borut Žalik is a Professor of Computer Science at University of Maribor, Slovenia. He obtained B.Sc. in Elec-
trical Engineering in 1985, M.Sc. and Ph.D. in Computer Science in 1989 and 1993, respectively. He is the
head of the Laboratory for Geometric Modelling and Multimedia Algorithms at Faculty of Electrical Engi-
neering and Computer Science, University of Maribor. His research interests are in processing of multimedia
data, data compression, and computational geometry. He published over 100 papers in refereed journals and
almost 100 papers on scientific conferences. Currently, he is the Chair of Slovene Chapter of ACM.

Multimedia Tools and Applications (2020) 79:433–451 451


	An efficient lossy cartoon image compression method
	Abstract
	Introduction
	The algorithm
	Region detection
	Region reduction
	Generating palette
	Determining chain codes
	Chain code transformations
	The storage format
	Arithmetic encoding
	Decompression
	Region interlacing

	Results
	Processing time of the algorithm
	Compression efficiency

	Conclusion
	Appendix A 
	References


