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Abstract PAC-Bayesian learning bounds are of the utmost interest to the learning commu-
nity. Their role is to connect the generalization ability of an aggregation distribution ρ to its
empirical risk and to its Kullback-Leibler divergence with respect to some prior distribution
π . Unfortunately, most of the available bounds typically rely on heavy assumptions such as
boundedness and independence of the observations. This paper aims at relaxing these con-
straints and provides PAC-Bayesian learning bounds that hold for dependent, heavy-tailed
observations (hereafter referred to as hostile data). In these bounds the Kullack-Leibler
divergence is replaced with a general version of Csiszár’s f -divergence. We prove a general
PAC-Bayesian bound, and show how to use it in various hostile settings.

Keywords PAC-Bayesian theory · Dependent and unbounded data · Oracle inequalities ·
f-divergence

1 Introduction

Learning theory can be traced back to the late 60s and has attracted a great attention since.
We refer to the monographs Devroye et al. (1996) and Vapnik (2000) for a survey. Most of
the literature addresses the simplified case of i.i.d observations coupled with bounded loss
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functions. Many bounds on the excess risk holding with large probability were provided -
these bounds are refered to as PAC learning bounds since Valiant (1984).1

In the late 90s, the PAC-Bayesian approach was pioneered by Shawe-Taylor and
Williamson (1997) and McAllester (1998, 1999). It consists of producing PAC bounds for
a specific class of Bayesian-flavored estimators. Similar to classical PAC results, most PAC-
Bayesianboundshavebeenobtainedwith bounded loss functions (seeCatoni (2007), for some
of the most accurate results). Note that Catoni (2004) provides bounds for unbouded loss, but
still under very strong exponential moment assumptions. Different types of PAC-Bayesian
bounds were proved in very various models (Seeger 2002; Langford and Shawe-Taylor 2002;
Seldin and Tishby 2010; Seldin et al. 2012, 2011; Guedj and Alquier 2013; Bégin et al. 2016;
Alquier et al. 2016; Oneto et al. 2016) but the boundedness or exponential moment assump-
tions were essentially not improved in these papers.

The relaxation of the exponential moment assumption is however a theoretical challenge,
with huge practical implications: in many applications of regression, there is no reason to
believe that the noise is bounded or sub-exponential. Actually, the belief that the noise is
sub-exponential leads to an overconfidence in the prediction that is actually very harmful
in practice, see for example the discussion in Taleb (2007) on finance. Still, thanks to the
aforementionned works, the road to obtain PAC bounds for bounded observations has now
become so nice and comfortable that it might refrain inclination to explore different settings.

Regarding PAC bounds for heavy-tailed random variables, let us mention three recent
approaches.

• Using the so-called small-ball property, Mendelson and several co-authors developed in
a striking series of papers tools to study the Empirical Risk Minimizer (ERM) and penal-
ized variants without an exponential moment assumption: we refer to their most recent
works (Mendelson 2015; Lecuè andMendelson 2016). Under a quite similar assumption,
Grünwald andMehta (2016) derived PAC-Bayesian learning bounds (“empirical witness
of badness” assumption). Other assumptions were introduced in order to derive fast rates
for unbounded losses, like the multiscale Bernstein assumption (Dinh et al. 2016).

• Another idea consists in using robust loss functions. This leads to better confidence
bounds than the previous approach, but at the price of replacing the ERM by a more
complex estimator, usually building on PAC-Bayesian approaches (Audibert and Catoni
2011; Catoni 2012; Oliveira 2013; Giulini 2015; Catoni 2016).

• Finally, Devroye et al. (2015), using median-of-means, provide bounds in probability
for the estimation of the mean without exponential moment assumption. It is possible
to extend this technique to more general learning problems (Minsker 2015; Hsu and
Sabato 2016; Lugosi and Mendelson 2016; Guillaume and Matthieu 2017; Lugosi and
Mendelson 2017).

Leaving the well-marked path of bounded variables led the authors to sophisticated and
technical mathematics, but in the end they obtained rates of convergence similar to the ones
in bounded cases: this is highly valuable for the statistical and machine learning community.

Regarding dependent observations, like time series or random fields, PAC and/or PAC-
Bayesian bounds were provided in various settings (Modha and Masry 1998; Steinwart and
Christmann 2009; Mohri and Rostamizadeh 2010; Ralaivola et al. 2010; Seldin et al. 2012;
Alquier and Wintenberger 2012; Alquier and Li 2012; Agarwal and Duchi 2013; Alquier
et al. 2013; Kuznetsov andMohri 2014; Giraud et al. 2015; Zimin and Lampert 2015; London
et al. 2016). However these works massively relied on concentration inequalities for or limit

1 PAC stands for Probably Approximately Correct.
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theorems for time series (Yu 1994; Doukhan 1994; Rio 2000; Kontorovich and Ramanan
2008), for which boundedness or exponential moments are crucial.

This paper shows that a proof scheme of PAC-Bayesian bounds proposed by Bégin et al.
(2016) can be extended to a very general setting, without independence nor exponential
moments assumptions. We would like to stress that this approach is not comparable to the
aforementionned work, and in particular it is technically far less sophisticated. However,
while it leads to sub-optimal rates in many cases, it allows to derive PAC-Bayesian bounds
in settings where no PAC learning bounds were available before: for example heavy-tailed
time series.

Given the simplicity of themain result, we state it in the remainder of this section. The other
sections are devoted to refinements and applications. Let � denote a generic loss function. The
observations are denoted (X1, Y1), . . . , (Xn, Yn). Note thatwe do not require the observations
to be independent, nor indentically distributed.We assume that a family of predictors ( fθ , θ ∈
�) is chosen. Let �i (θ) = �[ fθ (Xi ), Yi ], and define the (empirical) risk as

rn(θ) = 1

n

n∑

i=1

�i (θ),

R(θ) = E
[
rn(θ)

]
.

Based on the observations, the objective is to build procedures with a small risk R. While
PAC bounds focus on estimators θ̂n that are obtained as functionals of the sample, the PAC-
Bayesian approach studies an aggregation distribution ρ̂n that depends on the sample. In this
case, the objective is to choose ρ̂n such that

∫
R(θ)ρ̂n(dθ) is small. In order to do so, a crucial

point is to choose a reference probability measure π , often referred to as the prior. In Catoni
(2007), the role of π is discussed in depth: rather than reflecting a prior knowledge on the
parameter space �, it should serve as a tool to measure the complexity of �.

Let us now introduce the two following key quantities.

Definition 1 For any function g, let

Mg,n =
∫

E
[
g (|rn(θ) − R(θ)|)]π(dθ).

Definition 2 Let f be a convex function with f (1) = 0. The f -divergence between two
distributions ρ and π is defined by

D f (ρ, π) =
∫

f

(
dρ

dπ

)
dπ

when ρ is absolutely continous with respect to π , and D f (ρ, π) = +∞ otherwise.

Csiszár introduced f -divergences in the 60s, see his recentmonographCsiszàr and Shields
(2004, Chapter 4) for a survey.

We use the following notation for recurring functions: φp(x) = x p . Consequently
Mφp,n = ∫

E (|rn(θ) − R(θ)|p) π(dθ). Thus Mφp,n is a moment of order p. As for
divergences, we denote the Kullback-Leibler divergence by K(ρ, π) = D f (ρ, π) when
f (x) = x log(x), and the chi-square divergence χ2(ρ, π) = Dφ2−1(ρ, π).

Theorem 1 Fix p > 1, put q = p
p−1 and fix δ ∈ (0, 1). With probability at least 1 − δ we

have for any aggregation distribution ρ

∣∣∣∣
∫

Rdρ −
∫

rndρ

∣∣∣∣ ≤
(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p . (1)
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The main message of Theorem 1 is that we can compare
∫
rndρ (observable) to

∫
Rdρ

(unknown, the objective) in terms of two quantities: the moment Mφq ,n (which depends on
the distribution of the data) and the divergence Dφp−1(ρ, π) (which will reveal itself as a
measure of the complexity of the set �). The most important practical consequence is that
we have, with probability at least 1 − δ, for any probability measure ρ,

∫
Rdρ ≤

∫
rndρ +

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p . (2)

This is a strong incitement to define our aggregation distribution ρ̂n as the minimizer of
the right-hand side of (2). The core of the paper will discuss in details this strategy and other
consequences of Theorem 1.

Proof of Theorem 1 Introduce
n(θ) := |rn(θ)− R(θ)|. We follow a scheme of proof intro-
duced by Bégin et al. (2016) in the bounded setting. We adapt the proof to the general case:
∣∣∣∣
∫

Rdρ −
∫

rndρ

∣∣∣∣ ≤
∫


ndρ =
∫


n
dρ

dπ
dπ

≤
(∫



q
ndπ

) 1
q
(∫ (

dρ

dπ

)p

dπ

) 1
p

(Hölder ineq.)

≤
(
E
∫



q
ndπ

δ

) 1
q (∫ ( dρ

dπ

)p

dπ

) 1
p

(Markov ineq., w. prob. 1 − δ)

=
(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p .

��
In Sect. 2 we discuss the divergence term Dφp−1(ρ, π). In particular, we derive an explicit

bound on this term when ρ is chosen in order to concentrate around the ERM (empirical risk
minimizer) θ̂ERM = argminθ∈� rn(θ). This is meant to provide the reader some intuition
on the order of magnitude of the divergence term. In Sect. 3 we discuss how to control the
moment Mφq ,n . We derive explicit bounds in various examples: bounded and unbounded
losses, i.i.d and dependent observations. The most important result of the section is a risk
bound for auto-regression with heavy-tailed time series, something new up to our knowledge.
In Sect. 4we come back to the general case.We show that it is possible to explicitelyminimize
the right-hand side in (2). We then show that Theorem 1 leads to powerful oracle inequalities
in the various statistical settings discussed above, exhibiting explicit rates of convergence.

2 Calculation of the divergence term

The aim of this section is to provide some hints on the order of magnitude of the divergence
term Dφp−1(ρ, π). We start with the example of a finite parameter space �. The following
proposition results from straightforward calculations.

Proposition 1 Assume that Card(�) = K < ∞ and that π is uniform on �. Then

Dφp−1(ρ, π) + 1 = K p−1
∑

θ∈�

ρ(θ)p.
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A special case of interest is when ρ = δ
θ̂ERM

, the Dirac mass concentrated on the ERM. Then

Dφp−1(δθ̂ERM
, π) + 1 = K p−1.

Then (1) in Theorem 1 yields the following result.

Proposition 2 Fix p > 1, q = p
p−1 and δ ∈ (0, 1). With probability at least 1 − δ we have

R(θ̂ERM) ≤ inf
θ∈�

{
rn(θ)

}+ K 1− 1
p

(Mφq ,n

δ

) 1
q

.

Remark that Dφp−1(ρ, π) seems to be related to the complexity K of the parameter space
�. This intuition can be extended to an infinite parameter space, for example using the
empirical complexity parameter introduced in Catoni (2007).

Assumption 1 There exists d > 0 such that, for any γ > 0,

π
{
θ ∈ � : {rn(θ)

} ≤ inf
θ ′∈�

rn(θ
′) + γ

}
≥ γ d .

In many examples, d corresponds to the ambient dimension [see Catoni (2007) for a thorough
discussion). In this case, a sensible choice for ρ, as suggested by Catoni, is πγ (dθ) ∝
π(dθ)1

[
r(θ) − rn(θ̂ERM) ≤ γ

]
for γ small enough (in Sect. 4, we derive the consequences

of Assumption 1 for other aggregation distributions]. We have

Dφp−1(πγ , π) + 1 ≤ γ −d(p−1)

and
∫

rn(θ)dπγ ≤ rn(θ̂ERM) + γ

so Theorem 1 leads to

∫
Rdπγ ≤ rn(θ̂ERM) + γ + γ

− d
q

(Mφq ,n

δ

) 1
q

.

An explicit optimization with respect to γ leads to the choice

γ =
(
d

q

Mφq ,n

δ

) 1
1+ d

q

and consequently to the following result.

Proposition 3 Fix p > 1, q = p
p−1 and δ ∈ (0, 1). Under Assumption 1, with probability

at least 1 − δ we have,

∫
Rdπγ ≤ inf

θ∈�

{
rn(θ)

}
+
(Mφq ,n

δ

) 1
1+ d

q

⎧
⎪⎨

⎪⎩

(
d

q

) 1
1+ d

q +
(
d

q

) − d
q

1+ d
q

⎫
⎪⎬

⎪⎭
.

So the bound is inO((Mφq ,n/δ)
1/(1+d/q)). In order to understand the order of magnitude

of the bound, it is now crucial to understand the moment term Mφq ,n . This is the object of
the next section.
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3 Bounding the moments

In this section, we show how to control Mφq ,n depending on the assumptions on the data.

3.1 The i.i.d setting

First, let us assume that the observations (Xi , Yi ) are independent and identically distributed.
In general, when the observations are possibly heavy-tailed, we recommend to use Theorem 1
with q ≤ 2 (which implies p ≥ 2).

Proposition 4 Assume that

s2 =
∫

Var[�1(θ)]π(dθ) < +∞

then

Mφq ,n ≤
(
s2

n

) q
2

.

As a conclusion for the case q ≤ 2 ≤ p, (1) in Theorem 1 becomes:

∫
Rdρ ≤

∫
rndρ +

(
Dφp−1(ρ, π) + 1

) 1
p

δ
1
q

√
s2

n
.

Without further assumptions, this bound can not be improved as a function of n (as can be
seen in the simplest case where card(�) = 1, by using the CLT).

Proof of Proposition 4

Mφq ,n =
∫

E

(
|rn(θ) − E[rn(θ)]|2 q

2

)
π(dθ)

≤
(∫

E
(|rn(θ) − E[rn(θ)]|2)π(dθ)

) q
2

≤
(∫

1

n
Var[�1(θ)]π(dθ)

) q
2 =
(
s2

n

) q
2

. ��
As an example, consider the regression setting with quadratic loss, where we use linear

predictors: Xi ∈ R
k , � = R

k and fθ (·) = 〈·, θ〉. Define a prior π on � such that

τ :=
∫

‖θ‖4π(dθ) < ∞ (3)

and assume that
κ := 8[E(Y 4

i ) + τE(‖Xi‖4)] < ∞. (4)

Then

�i (θ) = (Yi − 〈θ, Xi 〉)2 ≤ 2
[
Y 2
i + ‖θ‖2‖Xi‖2

]

and so

Var(�i (θ)) ≤ E(�i (θ)2) ≤ 8E
[
Y 4
i + ‖θ‖4‖Xi‖4

]
.
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Finally,

s2 =
∫

Var(�i (θ))π(dθ) ≤ κ < +∞.

We obtain the following corollary of (1) in Theorem 1 with p = q = 2.

Corollary 1 Fix δ ∈ (0, 1). Assume that π is chosen such that (3) holds, and assume that (4)
also holds. With probability at least 1 − δ we have for any ρ

∫
Rdρ ≤

∫
rndρ +

√
κ[1 + χ2(ρ, π)]

nδ
.

Note that a similar upper bound was proved in Honorio and Jaakkola (2014), yet only in
the case of the 0–1 loss (which is bounded). Also, note that the assumption on the moments
of order 4 is comparable to the one in Audibert and Catoni (2011) and allow heavy-tailed
distributions. Still, in our result, the dependence in δ is less good than in Audibert and Catoni
(2011). So, we end this subsection with a study of the sub-Gaussian case (wich also includes
the bounded case). In this case, we can use any q ≥ 2 in Theorem 1. The larger q , the better
will be the dependence with respect to δ.

Definition 3 A random variable U is said to be sub-Gaussian with parameter σ 2 if for any
λ > 0,

E

{
exp
[
λ(U − E(U ))

]} ≤ exp

[
λ2σ 2

2

]
.

Proposition 5 (Theorem 2.1 page 25 in Boucheron et al. (2013)) When U is sub-Gaussian
with parameter σ 2 then for any q ≥ 2,

E
[
(U − E(U ))q

] ≤ 2
(q
2

)
!(2σ 2)

q
2 ≤ 2(qσ 2)

q
2 .

A straighforward consequence is the following result.

Proposition 6 Assume that, for any θ , �i (θ) is sub-Gaussian with parameter σ 2 (that does
not depend on θ ), then 1

n

∑n
i=1 �i (θ) is sub-Gaussian with parameter σ 2/n and then, for any

q ≥ 2,

Mφq ,n ≤ 2

(
qσ 2

n

) q
2

.

As an illustration, consider the case of a finite parameter space, that is card(�) = K < +∞.
Following Propositions 2 and 6, we obtain for any q ≥ 2 and δ ∈ (0, 1), with probability at
least 1 − δ,

R(θ̂ERM) ≤ inf
θ∈�

{
rn(θ)

}+ σ

√
q

n

(
2K

δ

) 1
q

.

Optimization with respect to q leads to q = 2 log(2K/δ) and consequently

R(θ̂ERM) ≤ inf
θ∈�

{
rn(θ)

}+
√
2eσ 2 log

( 2K
δ

)

n
.

Without any additional assumption on the loss �, the rate on the right-hand side is optimal.
This is for example proven by Audibert (2009) for the absolute loss.
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3.2 Dependent observations

Herewe propose to analyze the harder andmore realistic casewhere the observations (Xi , Yi )
are possibly dependent. It includes the autoregressive case where Xi = Yi−1 or Xi =
(Yi−1, . . . , Yi−p). Note that in this setting, different notions of riskswere used in the literature.
The risk R(θ) considered in this paper is the same as the one used in many references given
in the introduction, Modha andMasry (1998), Steinwart and Christmann (2009), Alquier and
Wintenberger (2012) and Alquier and Li (2012) among others. Alternative notions of risk
were proposed, for example by Zimin and Lampert (2015).

We remind the following definition.

Definition 4 The α-mixing coefficients between two σ -algebras F and G are defined by

α(F,G) = sup
A∈F,B∈G

∣∣∣P(A ∩ B) − P(A)P(B)
∣∣.

We refer the reader to Doukhan (1994) and Rio (2000) (among others) for more details. We
still provide a basic interpretation of this definition. First, when F and G are independent,
then for all A ∈ F and B ∈ G, P(A ∩ B) = P(A)P(B) by definition of independence, and
so α(F,G) = 0. On the other hand, when F = G, as soon as these σ -algebras contain an
event A with P(A) = 1/2 then α(F,G) = |P(A ∩ A) − P(A)P(A)| = |1/2 − 1/4| = 1/4.
More generally, α(F,G) is a measure of the dependence of the information provided by F
and G, ranging from 0 (independance) to 1/4 (maximal dependence). We provide another
interpretation in terms of covariances.

Proposition 7 (Classical, see Doukhan (1994) for a proof)We have

α(F,G) = sup
{
Cov(U, V ), 0 ≤ U ≤ 1, 0 ≤ V ≤ 1,

U is F-measurable, V is G-measurable
}
.

For short, define

α j = α[σ(X0, Y0), σ (X j , Y j )]
where we remind that for any random variable Z , σ(Z) is the σ -algebra generated by Z . The
idea is that, when the future of the series is strongly dependent of the past, α j will remain
constant, or decay very slowly. On the other hand, when the near future is almost independent
of the past, then the α j decay very fast to 0 [examples of both kind can be found in Doukhan
(1994) and Rio (2000)]. And, indeed, we will see below that when the rate of convergence
of the α j ’s to 0 is fast enough it is possible to derive results rather similar to the ones the
independent case.

Let us first consider the bounded case.

Proposition 8 Assume that 0 ≤ � ≤ 1. Assume that (Xi , Yi )i∈Z is a stationary process, and
that it satisfies

∑
j∈Z α j < ∞. Then

Mφ2,n ≤ 1

n

∑

j∈Z
α j .

Examples of processes satisfying this assumption are discussed in Doukhan (1994) and
Rio (2000). For example, if the (Xi , Yi )’s are actually a geometrically ergodic Markov chain
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then there exist some c1, c2 > 0 such that α j ≤ c1e−c2| j |. Thus

Mφ2,n ≤ 1

n

2c1
1 − e−c2

.

Proof of Proposition 8 We have:

E

⎡

⎣
(
1

n

n∑

i=1

�i (θ) − E[�i (θ)]
)2⎤

⎦ = 1

n2

n∑

i=1

n∑

j=1

Cov[�i (θ), � j (θ)]

≤ 1

n2

n∑

i=1

∑

j∈Z
α j−i =

∑
j∈Z α j

n

that does not depend on θ , and so

Mφ2,n =
∫

E

⎡

⎣
(
1

n

n∑

i=1

�i (θ) − R(θ)

)2⎤

⎦π(dθ) ≤
∑

j∈Z α j

n
.

��

Remark 1 Other assumptions thanα-mixing can be used. Actually, we see from the proof that
the only requirement to get a bound onMφ2,n is to control the covariance Cov[�i (θ), � j (θ)];
α-mixing is very stringent as it imposes that we can control this for any function �i (θ). In the
case of a Lipschitz loss, we could actually consider more general conditions like the weak
dependence conditions in Dedecker et al. (2007) and Alquier and Wintenberger (2012).

We now turn to the unbounded case.

Proposition 9 Assume that (Xi , Yi )i∈Z is a stationary process. Let r ≥ 1 and s ≥ 2 be any
numbers with 1/r + 2/s = 1 and assume that

∑

j∈Z
α
1/r
j < ∞

and
∫ {

E
[
�si (θ)

]} 2
s π(dθ) < ∞.

Then

Mφ2,n ≤ 1

n

(∫ {
E
[
�si (θ)

]} 2
s π(dθ)

)⎛

⎝
∑

j∈Z
α

1
r
j

⎞

⎠ .

Proof of Proposition 9 The proof relies on the following property. ��

Proposition 10 (Doukhan 1994) For any random variables U and V , resp. F and G-
mesurable, we have

|Cov(U, V )| ≤ 8α
1
r (F,G)‖U‖s‖V ‖t

where 1/r + 1/s + 1/t = 1.
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We use this with U = �i (θ), V = � j (θ) and s = t . Then

E

[(
1

n

n∑

i=1

�i (θ) − E[�i (θ)]
)2]

= 1

n2

n∑

i=1

n∑

j=1

Cov[�i (θ), � j (θ)]

≤ 8

n2

n∑

i=1

∑

j∈Z
α

1
r
j−i‖�i (θ)‖s‖� j (θ)‖s

≤ 8
{
E
[
�si (θ)

]} 2
s
∑

j∈Z α
1
r
j

n
. ��

As an example, consider auto-regression with quadratic loss, where we use linear predictors:
Xi = (1, Yi−1) ∈ R

2, � = R
2 and fθ (·) = 〈θ, ·〉. Then

|�i (θ)|3 ≤ 32[Y 6
i + 4‖θ‖6(1 + Y 6

i−1)]
and so

E
(|�i (θ)|3) ≤ 32(1 + 4‖θ‖6)E (Y 6

i

)
.

Taking s = r = 3 in Proposition 9 leads to the following result.

Corollary 2 Fix δ ∈ (0, 1). Assume that π is chosen such that
∫

‖θ‖6π(dθ) < +∞,

E
(
Y 6
i

)
< ∞ and

∑
j∈Z α

1
3
j < +∞. Put

ν = 32E
(
Y 6
i

) 2
3
∑

j∈Z
α

1
3
j

(
1 + 4

∫
‖θ‖6π(dθ)

)
.

With probability at least 1 − δ we have for any ρ

∫
Rdρ ≤

∫
rndρ +

√
ν[1 + χ2(ρ, π)]

nδ
.

This is, up to our knowledge, the first PAC(-Bayesian) bound in the case of a time series
without any boundedess nor exponential moment assumption.

4 Optimal aggregation distribution and oracle inequalities

We have now gone through the way to control the different terms in our PAC-Bayesian
inequality (Theorem 1).We now come back to this result to derive which predictor minimizes
the bound, and which statistical guarantees can be achieved by this predictor.

We startwith a reminder of two consequences ofTheorem1: for p > 1, andq = p/(p−1),
with probability at least 1 − δ we have for any ρ

∫
Rdρ ≤

∫
rndρ +

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p (5)
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and ∫
rndρ ≤

∫
Rdρ +

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p . (6)

In this section we focus on theminimizer ρ̂n of the right-hand side of (5) , and on its statistical
properties.

Definition 5 We define rn = rn(δ, p) as

rn = min

{
u ∈ R,

∫
[u − rn(θ)]q+ π(dθ) = Mφq ,n

δ

}
.

Note that such a minimum always exists as the integral is a continuous function of u, is equal
to 0 when u = 0 and → ∞ when u → ∞. We then define

dρ̂n
dπ

(θ) = [rn − rn(θ)]
1

p−1
+

∫
[rn − rn]

1
p−1
+ dπ

. (7)

The following proposition states that ρ̂n is actually the minimizer of the right-hand side
in inequality (5).

Proposition 11 Under the assumptions of Theorem 1, with probability at least 1 − δ,

rn =
∫

rndρ̂n +
(Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n, π) + 1
) 1
p

= min
ρ

{∫
rndρ +

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p

}

where the minimum holds for any probability distribution ρ over �.

Proof of Proposition 11 For any ρ we have

rn −
∫

rndρ =
∫

[rn − rn] dρ

=
∫

[rn − rn]+ dρ −
∫

[rn − rn]− dρ

≤
∫

[rn − rn]+ dρ =
∫

[rn − rn]+
dρ

dπ
dπ

≤
(∫

[rn − rn]
q
+ dπ

) 1
q
(∫ (

dρ

dπ

)p

dπ

) 1
p

≤
(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p

where we used Hölder’s inequality and then the definition of rn in the last line. Moreover,
we can check that the two inequalities above become equalities when ρ = ρ̂n : from (7),

rn −
∫

rndρ̂n =
∫

[rn − rn] dρ̂n =
∫

[rn − rn]+ dρ̂n

=
∫
[rn − rn]+ [rn − rn]

1
p−1
+ dπ

∫
[rn − rn]

1
p−1
+ dπ

=
∫
[rn − rn]

q
+ dπ

∫
[rn − rn]

1
p−1
+ dπ
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=
(∫

[rn − rn]
q
+ dπ
) 1
p + 1

q

∫
[rn − rn]

1
p−1
+ dπ

=
(∫

[rn − rn]
q
+ dπ

) 1
q

(∫
[rn − rn]

p
p−1
+ dπ

) 1
p

∫
[rn − rn]

1
p−1
+ dπ

=
(Mφq ,n

δ

) 1
q
(∫ (

dρ̂n
dπ

)p

dπ

) 1
p

=
(Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n, π) + 1
) 1
p .

��
A direct consequence of (5) and (6) is the following result, which provides theoretical

guarantees for ρ̂n .

Proposition 12 Under the assumptions of Theorem 1, with probability at least 1 − δ,

∫
Rdρ̂n ≤ rn ≤ inf

ρ

{∫
Rdρ + 2

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p

}
. (8)

Proof of Proposition 12 First, (5) brings:

∫
Rdρ̂n ≤

∫
rndρ̂n +

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ̂n, π) + 1
) 1
p

= inf
ρ

{∫
rndρ +

(Mφq ,n

δ

) 1
q (

Dφp−1(ρ, π) + 1
) 1
p

}
(9)

by definition of ρ̂n , and Proposition 11 shows that the right-hand side is r̄n . Plug (6) into (9)
to get the desired result. ��
Example 1 As an example of an application of Proposition 12, we come back to the setting
of a possibly heavy-tailed time series. More precisely, we assume that we are under the
assumptions of Corollary 2. In particular, Xi = (1, Yi−1) ∈ R

2 and fθ (·) = 〈θ, ·〉 and
p = q = 2. For the sake of simplicity, assume that the parameter space is � = [−1, 1]2. Let
us fix π as uniform on [−1, 1]2. The empirical bound stated that, with probability at least
1 − δ, for any ρ,

∫
Rdρ ≤

∫
rndρ +

√
ν[1 + χ2(ρ, π)]

nδ

where we remind that

ν = 32E
(
Y 6
i

) 2
3
∑

j∈Z
α

1
3
j

(
1 + 4

∫
‖θ‖6π(dθ)

)

≤ 1056E
(
Y 6
i

) 2
3
∑

j∈Z
α

1
3
j .

In this context the minimizer of the right-hand side is

dρ̂n
dπ

(θ) = [rn − rn(θ)]+∫
[rn − rn]+ dπ

where

rn = min

{
u ∈ R,

∫
[u − rn(θ)]+ π(dθ) = ν

nδ

}
.
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The application of Proposition 12 leads to, with probability at least 1 − δ,

∫
Rdρ̂n ≤ inf

ρ

⎧
⎨

⎩

∫
Rdρ + 2

√
ν[1 + χ2(ρ, π)]

nδ

⎫
⎬

⎭ .

Note that it is possible to derive an oracle inequality from this. Let us denote by θ̄ = (θ̄1, θ̄2)

the minimizer of R. Consider the following posteriors, for 1 ≤ i, j ≤ N :

ρ(i, j),N is uniform on

[
−1 + 2(i − 1)

N
,−1 + 2i

N

]
×
[
−1 + 2( j − 1)

N
,−1 + 2 j

N

]
.

For N fixed, there is always a pair (i, j) such that θ̄ belongs to the support of ρ(i, j),N .
Elementary calculus shows that, for any θ in the support of ρ(i, j),N then

R(θ) − R(θ̄) ≤ 2

N

(
1 + 4E(|Yi |) + 3E(Y 2

i )
) =: ν′

N
.

Moreover,

1 + χ2(ρ(i, j),N , π) = N 2

2
.

So the bound becomes
∫

Rdρ̂n ≤ inf
θ∈[−1,1]2

R(θ) + inf
N∈N∗

{
ν′

N
+ N

√
2ν

nδ

}

and in particular, the choice N =
⌈√

ν′√nδ/(2ν)
⌉
leads to

∫
Rdρ̂n ≤ inf

θ∈[−1,1]2
R(θ) + 3

(
2νν′2

nδ

) 1
4

at least for n large enough to ensure
( nδ
2ν

) 1
4 ≥ √

ν′.

The last example shows that it is possible in some cases to deduce from Proposition 12
an oracle inequality, that is, a comparison to the performance of the optimal parameter. The
end of this section is devoted to a systematic derivation of such oracle inequalities, using
the complexity parameter introduced in Sect. 3, first in its empirical version, and then in its
theoretical form.

Theorem 2 Under the assumptions of Theorem 1 together with Assumption 1, with proba-
bility at least 1 − δ,

∫
Rdρ̂n ≤ rn ≤ inf

θ∈�

{
rn(θ)

}+ 2

(Mφq ,n

δ

) 1
q+d

. (10)

Proof of Theorem 2 Put

γ = rn − inf
θ∈�

{
rn(θ)

}
.

Note that γ ≥ 0. Then:
(γ
2

)q
π
{
rn(θ) ≤ γ

2
+ inf rn

}
≤
∫

[rn − rn]
q
+ dπ

︸ ︷︷ ︸
=Mφq ,n

δ

≤ γ qπ
{
rn(θ) ≤ γ + inf rn

}
.
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So:
(γ
2

)q
π
{
rn(θ) ≤ γ

2
+ inf rn

}
≤ Mφq ,n

δ

and, using Assumption 1,

(γ
2

)q (γ
2

)d ≤ Mφq ,n

δ

which yields:

γ ≤ 2

(Mφq ,n

δ

) 1
q+d

. ��

We can also perform an explicit minimization of the oracle-type bound (8), which leads
to a variant of Theorem 2 under a non-empirical complexity assumption.

Definition 6 Put

Rn = min

{
u ∈ R :

∫
[u − R(θ)]q+ π(dθ) = 2qMφq

δ

}
.

Assumption 2 There exists d > 0 such that, for any γ > 0,

π
{
θ ∈ � : R(θ) ≤ inf

θ ′∈�

{
R(θ ′)

}+ γ
}

≥ γ d .

Theorem 3 Under the assumptions of Theorem 1 together with Assumption 2, with proba-
bility at least 1 − δ,

∫
Rdρ̂n ≤ Rn ≤ inf

θ∈�
R(θ) + 2

q
q+d

(Mφq ,n

δ

) 1
q+d

.

The proof is a direct adaptation of the proofs of Propostion 11 and Theorem 2.

5 Discussion and perspectives

Weproposed anew typeofPAC-Bayesianbounds,whichmakes use ofCsiszár’s f -divergence
to generalize theKullback-Leibler divergence. This is an extension of the results inBégin et al.
(2016). In favourable contexts, there exists sophisticated approaches to get better bounds,
as discussed in the introduction. However, the major contribution of our work is that our
bounds hold in hostile situations where no PAC bounds at all were available, such as heavy-
tailed time series. We plan to study the connections between our PAC-Bayesian bounds and
aforementionned approaches byMendelson (2015) andGrünwald andMehta (2016) in future
works.
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