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Abstract We present a novel algorithm for anomaly detection on very large datasets and
data streams. Themethod, namedEXPected Similarity Estimation (EXPoSE), is kernel-based
and able to efficiently compute the similarity between new data points and the distribution
of regular data. The estimator is formulated as an inner product with a reproducing kernel
Hilbert space embedding and makes no assumption about the type or shape of the underlying
data distribution. We show that offline (batch) learning with EXPoSE can be done in linear
time and online (incremental) learning takes constant time per instance and model update.
Furthermore, EXPoSE can make predictions in constant time, while it requires only constant
memory. In addition, we propose different methodologies for concept drift adaptation on
evolving data streams.On several real datasetswe demonstrate that our approach can compete
with state of the art algorithms for anomaly detectionwhile being an order ofmagnitude faster
than most other approaches.

Keywords Anomaly detection · Large-scale data · Kernel methods · Hilbert space
embedding · Mean map

1 Introduction

What is an anomaly? An anomaly is an element whose properties differ from the major-
ity of other elements under consideration which are called the normal data. “Anomaly
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detection refers to the problem of finding patterns in data that do not conform to
expected behavior. These non-conforming patterns are often referred to as anomalies[...]”
(Chandola et al. 2009).

Typical applications of anomaly detection are network intrusion detection, credit card
fraud detection, medical diagnosis and failure detection in industrial environments. For
example, systems which detect unusual network behavior can be used to complement or
replace traditional intrusion detection methods which are based on experts’ knowledge
in order to defeat the increasing number of attacks on computer based networks (Kumar
2005). Credit card transactions which differ significantly from the usual shopping behav-
ior of the card owner can indicate that the credit card was stolen or a compromise of data
associated with the account occurred (Aleskerov et al. 1997). The diagnosis of radiographs
can be supported by automated systems to detect breast cancers in mammographic image
analysis (Spence et al. 2001). Unplanned downtime of production lines caused by failing
components is a serious concern in many industrial environments. Here anomaly detection
can be used to detect unusual sensor information to predict possible faults and enabling
condition-based maintenance (Zhang et al. 2011). Novelty detection can be used to detect
new interesting or unusual galaxies in astronomical data such as the Sloan Digital Sky Survey
(Xiong et al. 2011).

Obtaining labeled training data for all types of anomalies is often too expensive. Imagine
the labeling has to be done by a human expert or is obtained through costly experiments
(Hodge and Austin 2004). In some applications anomalies are also very rare as in air traffic
safety or space missions. Hence, the problem of anomaly detection is typically unsupervised,
however it is implicitly assumed that the dataset contains only very few anomalies. This
assumption is reasonable since it is quite often possible to collect large amounts of data for
the normal state of a system as, for example usual credit card transactions or network traffic
of a system not under attack.

The computational complexity and memory requirements of classical algorithms become
the limiting factor when applied to large-scale datasets as they occur nowadays. To solve
this problem we propose a new anomaly detection algorithm called EXPected Similar-
ity Estimation (EXPoSE). As explained later in detail, the EXPoSE anomaly detection
classifier

η(z) = 〈φ(z), μ[P]〉
calculates a score (the likelihood of z belonging to the class of normal data) using the inner
product between a feature map φ and the kernel mean mapμ[P] of the distribution of normal
data P. We will show that this inner product can be evaluated in constant time, while μ[P]
can be estimated in linear time, has constant memory consumption and is designed to solve
very large-scale anomaly detection problems.

Moreover, we will see that the proposed EXPoSE classifier can be learned incrementally
making it applicable to online and streaming anomaly detection problems. Learning on data
streams directly is unavoidable in many applications such as network traffic monitoring,
video surveillance and document feeds as data arrives continuously in fast streams with a
volume too large or impractical to store.

Only a few anomaly detection algorithms can be applied to large-scale problems and
even less are applicable to streaming data. The proposed EXPoSE anomaly detector fills this
gap.
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Our main contributions are:

– We present an efficient anomaly detection algorithm, called EXPected Similarity Estima-
tion (EXPoSE), with O(n) training time, O(1) prediction time and only O(1) memory
requirements with respect to the dataset size n.

– We show that EXPoSE is especially suitable for parallel and distributed processingwhich
makes it scalable to very large problems.

– We demonstrate how EXPoSE can be applied to online and streaming anomaly detection,
while requiring only O(1) time for a model update, O(1) time per prediction and O(1)
memory.

– We introduce two different approaches which allow EXPoSE to be efficiently used with
the most common techniques for concept drift adaptation.

– We evaluate EXPoSE on several real datasets, including surveillance, image data and
network intrusion detection.

This paper is organised as follows: we first provide a formal problem description including
a definition of batch and streaming anomaly detection. Section 3 provides an overview of
relatedwork and a comparison of these techniques. Section 4 introduces theEXPoSE anomaly
detection algorithm along with the necessary theoretical framework. Subsequently we show
in Sect. 5 how EXPoSE can be applied to streaming anomaly detection problems. The key
to EXPoSE s computational performance is subject to Sect. 6. In Sect. 7 we empirically
compare EXPoSE with several state of the art anomaly detectors.

This is an extended and revised version of a preliminary conference report that was pre-
sented in the International Joint Conference onNeural Networks 2015 (Schneider et al. 2015).
This work reviews the EXPoSE anomaly detection algorithm and provides a derivation that
makes fewer assumptions on the input space and kernel function. It provides an online version
of EXPoSE that is applicable to large-scale and evolving data streams. The experimental sec-
tion is extended comparing more algorithms and additional datasets with a statistical analysis
of the results.

2 Problem definition

Even though there is a vast amount of literature on anomaly detection, there is no unique
definition of what anomalies are and what exactly anomaly detection is. In this section we
will state the problem of anomaly detection in batch and streaming application.

Definition 1 (Input Space) The input space for an observation X is a measurable space1

(X ,X ) containing all values that X might take.We denote the realization after measurement
of the random variable X with X = x .

We make no assumptions about the nature of the input space X which can consist of
simple numerical vectors, but also can contain images, video data or trajectories of vehicles
and people. We assume that there is a true (but unknown) distribution PX : X → [0, 1] of
the data.

Definition 2 (Output/Label Space) In anomaly detection an observation X = x can belong
to the class of normal dataCN or can be an anomalyCA. This is called label of the observation

1 A measurable space is a tuple (X ,X ), whereX is a nonempty set andX is a σ -algebra of its subsets. We
refer the reader unfamiliar with this topic to Kallenberg (2006) for an overview.
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Fig. 1 Example of two instances
(triangle) which are different
from the distribution of normal
data (circle) along with
histograms of the marginal
distributions

and denoted by the random variable Y . The collection of all labels is given by the measurable
space (Y,Y ) called label space or output space (Fig. 1).

The distribution of the observation x ∈ X is stochastic and depends on the label Y and
hence is distributed according to PX |Y .

Definition 3 (Prediction/Decision Space) Based on the outcome X = x of an observation,
the objective of an anomaly detection algorithm is to make a prediction ϑ ∈ Q, where the
measurable space (Q,Q) is called the prediction space or sometimes decision space.

The prediction space Q is not necessarily equal to label space Y . Especially in anomaly
detection and classification many algorithms calculate a probability or a score for a label.
Such a score is called anomaly score if it quantifies the likelihood of x belonging to CA and
normal score if it determines the degree of certainty to which x belongs to CN .

Scoring based algorithms are more flexible than techniques which assign hard class labels
since anomalies can be ranked and prioritized according their score or a domain specific
discrimination threshold can be applied to separate anomalies from normal data. For example
we can define a mapping τ : (Q,Q) → (Y,Y ) as

τθ (ϑ) =
{
CN if ϑ > θ

CA else

based on the threshold θ . Such a domain specific threshold depends on the costs of false
positives (an anomaly is reported when the observation is normal) and false negatives (no
anomaly is reported when the observation is anomalous).

Definition 4 (Classifier/Predictor) A measurable function η : (X ,X ) → (Q,Q) is called
a classifier or predictor.

A classifier calculates a prediction for an observation X = x . In the context of anomaly
detection our goal is to find a good predictor which can distinguish normal from anomalous
data. However, the distribution PX ⊗ PY is typically unknown and hence we have to build
a classifier solely based on observations. The estimation of such a functional relationship
between the input space X and the prediction space Q is called learning or training.
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Definition 5 (Batch Anomaly Detection) In unsupervised batch learning we have access to
n ∈ N unlabeled independent realizations (x1, . . . , xn), identically distributed according to
⊗n

i=1PX which form a training set. In anomaly detectionwemake the following assumptions:

– The objective is to estimate a predictor η based on an unlabeled training set.
– The training set containsmostly normal instances fromPX |Y=CN andonly a fewanomalies

as, by definition, anomalies are rare events.
– It is assumed that the algorithm has complete access to all n elements of the dataset at

once.
– We may have access to a small labeled fraction of the training data to configure our

algorithm.

Definition 6 (Online & Streaming Anomaly Detection) In contrast to batch learning, where
the full dataset (x1, . . . , xn) is permanently available, online learning algorithms observe
each xt , (1 ≤ t ≤ n) only once and in a sequential order. Typically these algorithms have
limited memory and thus can only store a small set of previously observed samples. Hence it
is necessary to continuously update the prediction function based on the new observations

(xt , ηt ) �→ ηt+1

to build a new predictor. This can be generalized to streaming anomaly detection where data
arrives in a possible infinite sequence x1, x2, x3, . . . of observations. Moreover the input and
label space distributions may evolve over time, a problem known as concept drift. (Formally
we now have to consider the stochastic processes {Xt }t∈N, {Yt }t∈N and their corresponding
distributions). It is therefore necessary that an algorithm can adapt to the changes e.g. by for-
getting outdated information while incorporating new knowledge (Gama et al. 2014). These
classes of algorithms assume that more recent observations carry more relevant information
than older data. In summary streaming anomaly detection has the following key characteris-
tics:

– The data stream is possible infinite which requires the algorithm to learn incrementally
since it is not possible to store the whole stream.

– Most instances in the data stream belong to the class of normal data and anomalies are
rare.

– The stream can evolve over time, forcing algorithms to adapt to changes in the data
distribution.

– Only a small time frame at the beginning of the stream is available to configure the
algorithm’s parameter.

– We have to instantly make a prediction ηt (xt ) as soon as an observation xt is available.
This requires that predictions can be made fast.

3 Related work

Many approaches from statistics and machine learning can be used for anomaly detection
(Chandola et al. 2009; Gupta et al. 2014), but only a few are applicable on high-dimensional,
large-scale problems, where a vast amount of information has to be processed. We review
several algorithms with focus on their computational complexity and memory requirements.
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3.1 Distribution based models

One of the oldest, statistical methods for anomaly detection is the kernel (or Parzen) density
estimator (KDE). With O(n) time for predictions the KDE is too slow for large amounts of
data and known to be problematic in the case of increasing data dimensionality (Gretton et al.
2012). Fitting parametric distributions such as the Normal, Gamma, etc. is problematic since
in general, the underlying data distribution is unknown. Therefore, a mixture of Gaussians
is often used as a surrogate for the true distribution as, for example, done by SmartSifter
(Yamanishi et al. 2004). SmartSifter can handle multivariate data with both, continuous and
categorical observations. The main disadvantage of this approach is the high number of
parameters required for the mixture model which grows quadratically with the dimension
(Tax 2001).

3.2 Distance based models

Distance based models are popular since most of them are easy to implement and interpret.
Knorr et al. (2000) and Knorr and Ng (1998) labels an observation as a distance based outlier
(anomaly) if at least a fraction of points in the dataset have a distance of more than a threshold
(based on the fraction) to this point. The authors proposed two simple algorithms which have
both O(n2) runtime and a cell-based version which runs linear in n, but exponential with
the dimension d . Ramaswamy et al. (2000) argues that the threshold can be difficult to
determine and proposes an outlier score which is simply the distance from a query point to
its kth nearest neighbor. The algorithm is calledKNNOutlier and suffers from the problem of
efficient nearest neighbor search. If the input space is of low dimension and n is much larger
than 2d then finding 1 nearest neighbor in a k−d tree with randomly distributed points takes
O(log n) time on average. However this does not hold in high dimensions, where such a tree
is not better than an exhaustive search with O(n) (Goodman and O’Rourke 2004). Also the
algorithm proposed by Ramaswamy et al. is only used to identify the top outliers in a given
dataset. An alternative algorithm was proposed by Angiulli and Pizzuti (2002) using the sum
of distances from its k-nearest neighbors. Ott et al. (2014) simultaneously perform clustering
and anomaly detection in an integer programming optimization task.

Popular approaches from data mining for distance based novelty detection on streams
are OLINDDA (Spinosa et al. 2007) and its extension MINAS (Faria et al. 2013) which
both represent normal data as a union of spheres obtained by clustering. This representation
becomes problematic if data within one cluster exhibits high variance since then the decision
boundary becomes too large to detect novelties. Both algorithms are designed to incorpo-
rate novel classes into their model of normal data and hence barely applicable to anomaly
detection.

The STream OutlieR Miner (STORM) (Angiulli and Fassetti 2007, 2010) offers an effi-
cient solution to the problem of distance-based outlier detection over windowed data streams
using a newdata structure called Indexed StreamBuffer. ContinuousOutlierDetection (COD;
Kontaki et al. 2011) aims to further improve the efficiency of STORM by reducing the number
of range queries.

3.3 Density based models

Nearest neighbor data description (Tax 2001) approximates a local density while using only
distances to its first neighbor. The algorithm is very simple and often used as a baseline. It is
also relatively slow approachingO(n) per prediction. More sophisticated is the local density
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based approach called Local Outlier Factor (LOF; Breunig et al. 2000). It considers a point
to be an anomaly if there are only relatively few other points in its neighborhood. LOF was
extended to work on data streams (Pokrajac 2007), however both (the batch and incremental
approach) are relatively slow with training time between O(n log n) and O(n2) and O(n)

memory consumption.
The angle based outlier detection for high-dimensional data (ABOD) proposed by Kriegel

and Zimek (2008) is able to outperform LOF, however requires O(n2) time per prediction
with the exact model andO(n + k2) if the full dataset is replaced by the k-nearest neighbors
of the query point (FastAbod).

3.4 Classification and tree based models

The One-class support vector machine (OC-SVM; Schölkopf et al. 2001; Tax and Duin
2004) is a kernel based method which attempts to find a hyperplane such that most of the
observations are separated from the origin with maximum margin. This approach does not
scale very well to large datasets where predictions have to be made with high frequency. As
Steinwart (2003) showed, the number of support vectors can grow linearly with the dataset
size. There exist One-class support vector machines which can be learned incrementally
(Gretton and Desobry 2003).

Hoeffding Trees (Domingos and Hulten 2000) are anytime decision trees to mine high-
speed data streams. TheHoeffding Trees algorithm is not applicable to solve the unsupervised
anomaly detection problem considered in this work since it requires the availability of class
labels. Streaming Half-Space-Trees (HSTa; Tan et al. 2011) randomly construct a binary tree
structure without any data. It selects a dimension at random and splits it in half. Each tree then
counts the number of instances from the training set at each node referred to as “mass”. The
score for a new instance is then proportional to the mass in the leaf in which new instance hits
after passing down the tree. Obviously, an ensemble of such trees can be built-in constant
time and the training is linear in n. However, randomly splitting a very high-dimensional
space will not yield in a tree sufficiently fine-grained for anomaly detection. The RS-Forest
(Wu et al. 2014) is a modification of HSTa in which each dimension is not splitted in half, but
at a random cut-point. Also the assumption that “[...] once each instance is scored, streaming
RS-Forest will receive the true label of the instance [...]” (Wu et al. 2014) does not always
hold. The Isolation Forest (iForest) is an algorithm which uses a tree structure to isolate
instances (Liu et al. 2012). The anomaly score is based on the path length to an instance.
iForests achieve a constant training time and space complexity by sub-sampling the training
set to a fixed size. The characteristics of the most relevant anomaly detection algorithms
is summarized in Table 1. All complexities are given with respect to the dataset size n in
high-dimensional spaces.

Most methods discussed do not scale to very large problems since either the training time
is non-linear with the number of samples or the time to make a single prediction increases
with the dataset size (stream length).We nowPRESENT a novel anomaly detection algorithm
to overcome these problems.

4 Expected similarity estimation

As before, let X be a random variable taking values in a measurable space (X ,X ). We are
primarily interested in the distribution of normal data PX |Y=CN for which we will simply use
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Table 1 Comparison of anomaly detection techniques

Training Prediction Memory Batch Online Streaming Problem size

EXPoSE O(n) O(1) O(1) ✓ ✓ ✓ Large

OC-SVM O(n2) O(n) O(n) ✓ ✓ ✗ Medium

LOF O(n2) O(n) O(n) ✓ ✓ ✗ Medium

KDE O(1) O(n) O(n) ✓ ✓ ✗ Small

FastAbod O(n) O(n) O(n) ✓ ✗ ✗ Small

iForest O(1) O(1) O(1) ✓ ✗ ✗ Large

STORM O(n) O(1) O(1) ✗ ✗ ✓ Small

COD O(n) O(1) O(1) ✗ ✗ ✓ Small

HSTa O(n) O(1) O(1) ✗ ✗ ✓ Medium

the shorthand notation P in the remainder of this work. Next we introduce some definitions
which are necessary in the following.

A Hilbert space (H, 〈·, ·〉) of functions f : X → R is said to be a reproducing kernel
Hilbert space (RKHS) if the evaluation functional δ̄x : f �→ f (x) is continuous. A function
k : X × X → R which satisfies the reproducing property

〈 f, k(x, ·)〉 = f (x) and in particular

〈k(x, ·), k(y, ·)〉 = k(x, y)

is called reproducing kernel ofH (Steinwart and Christmann 2008).2 The map φ : X → H,
φ : x �→ k(x, ·) with the property that

k(x, y) = 〈φ(x), φ(y)〉
is called feature map.

Throughout this work we assume that the reproducing kernel Hilbert space (H, 〈·, ·〉)
is separable such that φ is measurable. We therefore assume that the input space X is a
separable topological space and the kernel k on X is continuous, which is sufficient forH to
be separable (Steinwart and Christmann 2008, Lemma 4.33).

As mentioned in the introduction, EXPoSE calculates a score which can be interpreted as
the likelihood of an instance z ∈ X belonging to the distribution of normal data P. It uses a
kernel function k to measure the similarity between instances of the input space X .

Definition 7 (Expected Similarity Estimation) The expected similarity of z ∈ X with respect
to the (probability) distribution P is defined as

η(z) = E [φ(z)] =
∫
X
k(z, x) dP(x),

where k : X × X → R is a reproducing kernel.

Intuitively the query point z is compared to all other points of the distribution P. We will
shown that this equation can be rewritten as an inner product between the feature map φ(z)

2 The notation k(x, ·) indicates that the second function argument is not bound to a variable.
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and the kernel mean map μ[P] of P. This reformulation is of central importance and will
enable us to efficiently compute all quantities of interest. Given a reproducing kernel k, the
kernel mean map can be used to embed a probability measure into a RKHS where it can be
manipulated efficiently. It is defined as follows.

Definition 8 (Kernel Embedding) Let P be a Borel probability measure on X . The kernel
embedding or kernel mean map μ[P] of P is defined as

μ[P] = ∫
X k(x, ·) dP(x),

where k is the associated continuous, bounded and positive-definite kernel function.

We assume that the kernel k is bounded in expectation i.e.∫
X

√
k(x, x) dP(x) < ∞,

such that μ[P] exists for all Borel probability measures P (Sejdinovic et al. 2013, Page 8).
This is a weaker assumption than k being bounded. We can now continue to formulate the
central theorem of our work.

Theorem 1 Let (H, 〈·, ·〉) be a RKHSwith reproducing kernel k : X ×X → R. The expected
similarity of z ∈ X with respect to the distribution P can be expressed as

η(z) = ∫
X k(z, x) dP(x)

= 〈φ(z), μ[P]〉,
where μ[P] is the kernel embedding of P.

This reformulation has several desirable properties. At this point we see how the EXPoSE
classifier can make prediction in constant time. After the kernel mean map μ[P] of P is
learned, EXPoSE only needs to calculate a single inner product in H to make a prediction.
However there are some crucial aspects to consider i.e. in Hilbert spaces, integrals and
continuous linear forms are not in general interchangeable. In the proof of Theorem 1 we
will thus use the weak integral and show that it coincides with the strong integral (see
Definitions 9 and 10 in the “Appendix”). A sufficient condition therefore is provided by the
following lemma.

Lemma 1 If φ is strong (Bochner) integrable then φ is weak (Pettis) integrable and the two
integrals coincide. (Aliprantis and Border 2006, Theorem 11.50)

We are now in the position to proof Theorem 1.

Proof (Theorem 1) By definition of the feature map φ we have∫
X
k(x, z) dP(x) =

∫
X

〈φ(z), φ(x)〉 dP(x)

By the assumption that k is bounded in expectation it follows that∫
X

‖φ(x)‖ dP(x) =
∫
X

√
k(x, x) dP(x) < ∞
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and therefore φ is strongly integrable and hence weakly integrable (Lemma 1). By definition
of the weak integral we get for all z ∈ X∫

X
〈φ(z), φ(x)〉 dP(x) = 〈φ(z),

∮
X

φ(x) dP(x)〉

= 〈φ(z),
∫
X

φ(x) dP(x)〉
= 〈φ(z), μ[P]〉

for all probability measures P. ��
In anomaly detection, we cannot assume to know the distribution of normal data P. How-

ever we assume to have access to n ∈ N independent realizations (x1, . . . , xn) sampled from
P. It is common in statistics to estimate P with the empirical distribution

Pn = 1

n

n∑
i=1

δxi ,

where δx is the Dirac measure. The empirical distribution Pn can also be used to construct
an approximation μ[Pn] of μ[P] as

μ[P] ≈ μ[Pn] = 1

n

n∑
i=1

φ(xi )

which is called empirical kernel embedding (Smola et al. 2007). This is an efficient estimate
since it can be shown (Schneider 2016) that under the assumption ‖φ(X)‖ ≤ c with c > 0
the difference between μ[P] and μ[Pn] is in probability

P (‖μ[P] − μ[Pn]‖ ≥ ε) ≤ 2 exp

(
− nε2

8c2

)

for all ε > 0.
As a consequence we can substitute μ[P] with μ[Pn] whenever the distribution P is not

directly accessible yielding

η(z) = 〈φ(z), μ[Pn]〉

=
〈
φ(z),

1

n

n∑
i=1

φ(xi )

〉

as the (empirical) EXPoSE anomaly detector. The empirical kernel embedding μ[Pn] is
responsible for the linear training computational complexity of EXPoSE. We will callμ[Pn]
the EXPoSE model. One of the important observations is, that EXPoSE makes no assump-
tion about the type or shape of the data distribution P as such assumption can be wrong,
causing erroneous predictions. This is an advantage over other statistical approaches that try
to approximate the distribution directly with parametric models.

4.1 Parallel and distributed processing

Parallel and distributed data processing is the key to scalable machine learning algorithms.
The formulation of EXPoSE as η(z) = 〈φ(z), μ[Pn]〉 is especially appealing for this kind
of operations. We can use a SPMD (single program, multiple data) technique to achieve
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parallelism. One of the first programming paradigms on this line is GooglesMapReduce for
processing large data sets on a cluster (Dean and Ghemawat 2008).

Assume a partition of the dataset (x1, . . . , xn) into m ≤ n distinct collections s1, . . . , sm
which can be distributed on different computational nodes. Obviously, the feature map φ can
be applied in parallel to all instances in x1, . . . , xn . We also note that the partial sums

p(si ) =
∑
x∈si

φ(x)

can be calculated without any communication or data-sharing across concurrent computa-
tions. Solely the partial sums p(si ), which are elements of H, need to be transmitted and
combined as

μ[Pn] = 1

n

m∑
i=1

p(si )

by a central processing node.

Summary

In this section we derived the EXPoSE anomaly detection algorithm. We showed how
EXPoSE can be expressed as an inner product 〈φ(z), μ[Pn]〉 between the kernel mean map
of P and the feature mapping of a query point z ∈ X for which we need to make a prediction.
Evaluating this inner product takes constant time while estimating the model μ[Pn] can be
done in linear time and with constant memory. We will explain the calculation of φ in more
detail in Sect. 6 and will explore now how EXPoSE can be learned incrementally and applied
to large-scale data streams.

5 Online and streaming EXPoSE

In this sectionwewill showhowEXPoSE canbeused for online and streaming anomalydetec-
tion. To recap, a data stream is an often infinite sequence of observations (x1, x2, x3, . . . ),
where xt ∈ X is the instance arriving at time t . A source of such data can be, for example,
continuous sensor readings from an engine or a video stream from surveillance cameras.

Domingos andHulten (2001) identified the following requirement for algorithmsoperating
on “the high-volume, open-ended data streams we see today”.

– Require small constant time per instance.
– Use only a fixed amount of memory, independent of the number of past instances.
– Build a model using at most one scan over the data.
– Make a usable predictor available at any point in time.
– Ability to deal with concept drift.
– For streams without concept drift, produce a predictor that is equivalent (or nearly iden-

tical) to the one that would be obtained by an offline (batch) learning algorithm.

In this section we will show that the online version of EXPoSE fulfills all requirements,
starting with the last item of the list.

Proposition 1 The EXPoSE model μ[Pn] can be learned incrementally, where each model
update can be performed in O(1) time and memory.
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Fig. 2 An illustration of the difference between online (incremental) learning and model adaption to concept
drift. The eight plots represent EXPoSE predictions for the observations indicated by the black dots. Each row
displays four snapshots with increasing time from left to right as data becomes available from two clusters.
We first sampled only from the left cluster and later only from the right. In the top row we incrementally build
the model by adding more knowledge to it, whereas in the bottom row the model evolves and slowly forgets
outdated observations (the points from the left cluster)

Proof Given a stream (x1, x2, x3, . . . ) of observations and let μ[P1] = φ(x1). Whenever a
new observation xt is made at t > 1, the new model μ[Pt ] can be incrementally calculated
as

μ[Pt ] = 1

t

t∑
i=1

φ(xi )

= μ[Pt−1] + 1

t

(
φ(xt ) − μ[Pt−1]

)
using the previous model μ[Pt−1]. ��
We see that online learning of EXPoSE does neither increase the computational complexity
nor the memory requirements of EXPoSE. We also emphasize that online learning yields the
exact same model as the EXPoSE offline learning procedure.

5.1 Learning on evolving data streams

Sometimes it can be expected that the underlying distribution of the stream evolves over
time. This is a property known as concept drift (Sadik and Gruenwald 2014). For example
in environmental monitoring, the definition of “normal temperature” changes naturally with
seasons. We can also expect that human behavior changes over time which requires us to
redefinewhat anomalous actions are. InFig. 2we illustrate the difference between incremental
learning as in Proposition 1 and a model which adapts itself to changes in the underlying
distribution. In the following we will use wt to denote the EXPoSEmodel at time t since the
equationwt = μ[Pt ]will not necessarily hold when concept drift adaptation is implemented.

In this work we are not concerned with the detection of concept drift (Gama 2010), but we
will show how EXPoSE can be used efficiently with the most common approaches to concept
drift adaption which either utilize windowing or forgetting mechanisms (Gama et al. 2014).

5.1.1 Windowing

Windowing is a straight forward technique which uses a buffer (the window) of l ∈ N

previous observations. Whenever a new observation is added to the window, the oldest one
is discarded. We can efficiently implement windowing for EXPoSE as follows.
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Proposition 2 Concept drift adaption on data streams using a sliding window mechanism
can be implemented forEXPoSEwithO(1) time andO(l)memory consumption, where l ∈ N

is the window size.

Proof Given a data stream (x1, x2, x3 . . . ) and the window size l. For t < l we set wt =
1
t

∑t
i=1 φ(xi ) and use the incremental update

wt = 1

l

t∑
i=t−l+1

φ(xi )

= wt−1 + 1

l
φ(xt ) − 1

l
φ(wt−1),

whenever t ≥ l. ��
The downside of a sliding window mechanism is the requirement to keep the past l ∈ N

events in memory. Also the sudden discard of a data point can lead to abrupt changes in
predictions of the classifier which is sometimes not desirable. Another question is how to
choose the correct window size. A shorter sliding window allows the algorithm to react faster
to changes and requires less memory though the available data might not be representative
or noise has too much negative impact. On the other hand a wider window may take too long
to adapt to concept drift. The window size is therefore often dynamically adjusted (Widmer
and Kubat 1996) or multiple competing windows are used (Lazarescu et al. 2004).

5.1.2 Gradual forgetting (decay)

The problems of sliding window approaches can be avoided if a forgetting mechanism is
applied, where the influence of older data gradually vanishes. Typically a parameter can be
used to control the tradeoff between fast adaptation to newobservations and robustness against
noise in the data. We can realize such a forgetting mechanism for EXPoSE by replacing the
factor 1

t in Proposition 1 by a constant γ ∈ [0, 1) yielding

wt =
{

φ(xt ) for t = 1

γφ(xt ) + (1 − γ )wt−1, for t > 1

where, with γ = 0, no new observations are integrated into the model. This operation can
be performed in constant time as summarized in the next proposition.

Proposition 3 Concept drift adaptation on data streams using a forgetting mechanism can
be implemented for EXPoSE in O(1) time and memory.

Proof This is a direct consequence from Proposition 1. ��
In general, weightingwith a fixed γ or using a static window size is called blind adaptation

since the model does not utilize information about changes in the environment (Gama 2010).
The alternative is informed adaptation where one could, for example, use an external change
detector (Gama et al. 2014) and weight new samples more if a concept drift was detected.
We could also apply more sophisticated decay rules making γ a function of t or xt .

A summary of characteristics for each proposed online learning variant of EXPoSE is
listed in Table 2 and a general discussion can be found in literature, e.g. the work of Gama
(2010).
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Table 2 Comparison of online learning techniques for EXPoSE

Pros Cons

Prop. 1: online ✓ Equivalent to batch version ✗ No concept drift adaptation

Prop. 2: window ✓ Concept drift adaptation ✗ Possibly sudden changes in
predictions

✗ Difficult to choose window
size

✗ Increased memory
requirements for window
buffer

Prop. 3: decay ✓ Concept drift adaptation

✓ Gradual vanishing
influence of outdated
information

✓ No increased memory
requirements

5.2 Predictions on data streams

We introduced three different approaches to learn the model for EXPoSE on data streams.
One incremental (online) learning approach and two evolving techniques. In order to make
a prediction as a new observation is made we have to normalize the calculated predicted
score. This is necessary as the score would continuously change, even if exactly the same
data would be observed again. This problem is not present in the batch version of EXPoSE
since the model does not change anymore at the time we make predictions. To avoid this
problem we divide by the total volume∫

X

∫
X
k(x, y) dP(x)dP(y) = 〈μ[P]μ[P]〉

≈ 〈wtwt 〉
yielding

η(z) = 〈φ(z)wt 〉
‖wt‖2 ,

as the EXPoSE classifier. We emphasize that the calculation of the normalization constant
does not change the limiting behavior of runtime and memory we derived earlier in this
section since we have constant time access to wt anyway.

6 Approximate feature maps

We showed in the previous part how EXPoSE can be expressed as an inner product
〈φ(z), μ[Pn]〉 between the kernel mean map and the feature map of a query point z ∈ X
and derived a similar expression for the incremental and streaming variants of EXPoSE.
However, the feature map φ (and hence μ[Pn]) can not always be calculated explicitly as
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Fig. 3 A comparison between the values calculated by a Gaussian RBF kernel k(x, z) and the RKS approx-

imation
〈
φ̂(x)φ̂(z)

〉
for random images of the MNIST dataset. The individual plots show how the number of

kernel expansions r affect the approximation quality. Color indicates the density

φ(z) = k(·, z). One possible solution is to resort to approximate feature maps which we
review in this section. The key idea behind approximate feature maps is to find a function φ̂

such that

k(x, z) ≈
〈
φ̂(x)φ̂(z)

〉

and φ̂(x) ∈ R
r for some r ∈ N. We will see, that this can be done efficiently.

6.1 Random kitchen sinks

Away to efficiently create a feature map φ from a kernel k is known as random kitchen sinks
(Rahimi and Recht 2007, 2008). The random kitchen sinks (RKS) approximation is based
on Bochner’s theorem for translation invariant kernels (such as Laplace, Matérn, Gaussian
RBF, etc.) and states that such a kernel can be represented as

k(x, y) =
∫
z
φ�
z (x)φz(y)λ(z) with φz(x) = ei〈zx〉,

where φ� is the conjugate transpose of φ. A Monte Carlo approximation of this integral can
then be used to estimate the expression above as

k(x, y) ≈ 1

r

r∑
i=1

φ�
zi (x)φzi (y) =

〈
φ̂(x)φ̂(y)

〉
with zi ∼ λ.

For kernels such as the Gaussian RBF k(x, y) = exp(− 1
2‖x − y‖2/σ 2), the measure λ can

be found with the help of the inverse Fourier transform yielding

φ̂(x) = 1√
r
exp(iZx) with Zi j ∼ N (0, σ 2) and Z ∈ R

r×d

where d is the input space dimension. The parameter r ∈ N determines the number of kernel
expansions and is typically around 20,000. Larger r result in better kernel approximations
as the Monte Carlo approach becomes more accurate (Fig. 3). Recently Le et al. (2013)
proposed an approximation of Z such that the product Zx can be calculated in O(r log d)

time complexity while requiring only O(r) storage.
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6.2 Nyström’s approximation

An alternative to random kitchen sinks are Nyström methods (Williams and Seeger 2001)
which project the data into a subspaceHr ⊂ H spanned by r ≤ n randomly chosen elements
φ(x1), . . . , φ(xr ).

The Nyström feature map φ̂ is then given by φ̂(x) = (φ̂1(x), . . . , φ̂r (x)) with

φ̂i (x) = 1√
λi

r∑
j=1

u ji k(x j , x), 1 ≤ i ≤ r,

where λi and ui denote the i th eigenvalue and the i-th eigenvector of kernel matrix K ∈ R
r×r

with Ki, j = k(xi , x j ).
The Nyström approximation needs in general less basis functions, r , than the RKS

approach (typically around 1000). However the approximation is data dependent and hence
becomes erroneous if the underlying distribution changes or when we are not able to get
independent samples from the dataset. This is a problem for online learning and streaming
applications with concept drift. We therefore suggest to avoid the Nyström feature map in
this context.

Random kitchen sinks and the Nyström approximation the most common feature map
approximations.We refer to the corresponding literature for a discussion of other approximate
feature maps such as Li et al. (2010), Vedaldi and Zisserman (2012) and Kar and Karnick
(2012), which can be used as well for EXPoSE.

6.3 EXPoSE and approximate feature maps

Recall from the previous sections that EXPoSE uses the inner product 〈φ(z), μ[Pn]〉 to
calculate the score and make predictions. Using an approximate feature map φ̂, it is now
possible to explicitly represent the feature function and consequently also the mean map
μ[Pn] as

η(z) ≈
〈
φ̂(z)

1

n

n∑
i=1

φ̂(xi )

〉
(1)

for the EXPoSE classifier.
We emphasize that with an efficient approximation of φ, as showed here, the training time

of this algorithm is linear in the number of samples n and an evaluation of η(z) for predictions
takes only constant time. Moreover we need only O(r) memory to store the model which is
also independent of n and the input dimension d .

7 Experimental evaluation

In this section we show in several experiments how EXPoSE compares to other state of the
art anomaly detection techniques in prediction and runtime performances. We first explain
which statistical test are used to compare the investigated algorithms.

7.1 Statistical comparison of algorithms

When comparing multiple (anomaly detection) algorithms over multiple datasets one cannot
simply compare the raw numbers obtained from the area under receiver operating char-
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acteristic (AUC) or precision-recall curves. Webb (2000) warns against averaging these
numbers: “It is debatable whether error rates in different domains are commensurable, and
hence whether averaging error rates across domains is very meaningful” (Webb 2000).

As Demšar (2006) points out, it is also dangerous to use tests which are designed to
compare a pair of algorithms for more than two: “A common example of such questionable
procedure would be comparing seven algorithms by conducting all 21 paired t-tests [...].
When so many tests are made, a certain proportion of the null hypotheses is rejected due to
random chance, so listing them makes little sense.” (Demšar 2006)

Demšar suggests to use the Friedman test with the corresponding post-hoc Nemenyi test
for comparison of more classifiers over multiple data sets. A methodology we summarize in
the following.

7.1.1 The Friedman test

The Friedman test (Friedman 1937) is a non-parametric statistical test which ranks algo-
rithms for each dataset individually starting from 1 as the best rank. Its purpose is to examine
whether there is a significant difference between the performances of the individual algo-
rithms. Assume we compare k algorithms on m datasets and let ri j be the rank of the j th
algorithm on the i th dataset. We use r̄ j to denote the average rank of algorithm j given by
r̄ j = m−1 ∑

i ri j . The Friedman statistic

χ2
F = 12m

k(k + 1)

( k∑
j=1

r̄2j − k(k + 1)2

4

)

is undesirably conservative and therefore Iman and Davenport (1980) suggest to use

FF = (m − 1)χ2
F

m(k − 1) − χ2
F

which is distributed according to the F-distribution with k − 1 and (k − 1)(m − 1) degrees
of freedom. If the null-hypothesis (all algorithms are equivalent) is rejected one can proceed
with a post-hoc test.

7.1.2 The Nemenyi test

The Nemenyi test (Nemenyi 1963) is a post-hoc test to compare all (anomaly detection) algo-
rithms with each other. Hereby the performance of two algorithms is significantly different
if their average ranks differ by at least

CD = qα

√
k(k + 1)

6m
,

called the critical difference. Here qα is the Studentised range statistic divided by
√
2.

Demšar (2006) also suggests to visually represent the results of the Nemenyi test in a
critical difference diagram as in Fig. 4. In this diagram we compare 5 algorithms on 20
datasets against each other. Algorithms not connected by a bar have a significantly different
performance.
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Fig. 4 Visualization of the post-hoc Nemenyi test in form of a critical difference diagram. The position on
the line indicates the algorithms’s average rank. Algorithms which are significantly different (at p < 0.05)
are not connected with a bar. The critical difference (CD) is given by the double arrow in the top left

7.2 Batch anomaly detection

The aim of this experiment is to compare EXPoSE against iForest,OC-SVM, LOF,KDE and
FastAbod in terms of anomaly detection performance and processing time in a learning task
without concept drift. In order to be comparable, we follow Liu et al. (2012) and perform an
outlier selection task with the objective to identify anomalies in a given dataset.

7.2.1 Datasets

For performance analysis and evaluation we take the following datasets which are often used
in literature for comparison of anomaly detection algorithms as for example in Schölkopf
et al. (2001), Tax and Duin (2004), and Liu et al. (2012). We use several smaller benchmark
datasetswith known anomaly classes such as Ionosphere,Arrhythmia,Pima, Satellite, Shuttle
(Lichman2013),Biomed andWisconsinBreastCancer (Breastw) (Tax andDuin 2004). These
datasets are set up as described in Liu et al. (2012) where all nominal and binary attributes
are removed.

The larger datasets are the Kdd Cup 99 network intrusion data (KddCup) and Forest
Cover Type (ForestCover). For KddCup instances we follow the setup of (Yu et al. 2003) and
obtain a total of 127 attributes. Furthermore, we add two high-dimensional image datasets
MNIST and the Google Street View House Numbers (SVHN) ( Netzer et al. 2011). We use
the scaled version of MNIST (Chang and Lin 2011) and createHOG features (Vondrick et al.
2013) for SVHN. The methodology suggested by Schölkopf et al. (2001) and Tax (2001) is
used to create anomaly detection datasets fromMNIST and SVHN in the following way. We
take all images of digit 1 from MNIST as normal instances. The images of the remaining
digits (2, 3, . . . , 9) are used as anomalies. We then create a dataset comprising all normal
instances and a random subset anomalies such that anomalies account for 1% of the elements
in the set. We repeat this process for MNIST images of digits 2, 3, . . . , 9 and do the same
with the 9 digit classes of SVHN to create 18 anomaly detection datasets. The subset of
anomalies is independently sampled for each repetition of an experiment. Table 3 provides
an overview of the dataset properties and how the anomaly classes are defined.

In the experiment we provide a dedicated labeled random subset of 1% or 2000 instances
(whichever is smaller) to configure the algorithms parameters. We emphasize that this subset
is not used to evaluate the predictive performance. The parameter configuration is done by
a pattern search (Torczon 1997) using cross-validation. Examples of parameters being opti-
mized are the number of nearest neighbors in LOF and FastAbod, the kernel bandwidth of
EXPoSE,KDE andOC-SVM or the number of trees for iForest (see Table 8 for a complete list
of parameters which are optimized). We do not optimize over different distance metrics and
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Table 3 Batch dataset properties

Size (n) Dim. (d) CA (anomaly class) CA proportion (%)

KddCup 1,036,241 127 “Attack” 0.3

ForestCover 286,048 10 Class 4 vs. 2 9

MNIST 1 101,968 784 2,3,4,5,6,7,8,9 1

MNIST 2 90,196 784 1,3,4,5,6,7,8,9 1

MNIST 3 92,763 784 1,2,4,5,6,7,8,9 1

MNIST 4 88,417 784 1,2,3,5,6,7,8,9 1

MNIST 5 82,062 784 1,2,3,4,6,7,8,9 1

MNIST 6 89,536 784 1,2,3,4,5,7,8,9 1

MNIST 7 94,771 784 1,2,3,4,5,6,8,9 1

MNIST 8 88,568 784 1,2,3,4,5,6,7,9 1

MNIST 9 90,034 784 1,2,3,4,5,6,7,8 1

SVHN 1 91,475 2592 2,3,4,5,6,7,8,9 1

SVHN 2 75,466 2592 1,3,4,5,6,7,8,9 1

SVHN 3 61,376 2592 1,2,4,5,6,7,8,9 1

SVHN 4 51,135 2592 1,2,3,5,6,7,8,9 1

SVHN 5 54,034 2592 1,2,3,4,6,7,8,9 1

SVHN 6 41,965 2592 1,2,3,4,5,7,8,9 1

SVHN 7 44,438 2592 1,2,3,4,5,6,8,9 1

SVHN 8 35,709 2592 1,2,3,4,5,6,7,9 1

SVHN 9 34,793 2592 1,2,3,4,5,6,7,8 1

Shuttle 58,000 9 Classes 2,3,4,5,7 6

Satellite 6435 36 Classes 2,4,5 32

Pima 768 8 “Pos” 35

Breastw 683 9 “Malignant” 35

Arrhythmia 452 274 Classes 3,4,5,7,8,9,14,15 14

Ionosphere 351 32 “Bad” 36

Biomed 194 5 “Carrier” 34

various kernels functions, but use themost commonEuclidean distance and squared exponen-
tial kernel, respectively.However,we remark that the choice of these functions pose a possibil-
ity to include domain and expert knowledge into the system. Each experiment is repeated five
times and their AUC scores are used to perform the Friedman test. Since iForest is a random-
ized algorithm we conduct five trials in each repetition to get an average results. If not stated
otherwise we use EXPoSE in combination with Nyström’s approximation for batch anomaly
detection and random kitchen sinks in the streaming experiments as discussed in Sect. 6.
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Table 4 Batch anomaly detection performances [AUC]

EXPoSE iForest OC-SVM LOF KDE FastAbod

KddCup 1.00 0.99 1.00 a b b

ForestCover 0.83 0.87 0.89 0.56 b b

MNIST 1 1.00 0.99 1.00 0.97 b b

MNIST 2 0.79 0.70 0.80 0.85 b b

MNIST 3 0.86 0.70 0.80 0.88 b b

MNIST 4 0.88 0.81 0.93 0.87 b b

MNIST 5 0.89 0.69 0.82 0.89 b b

MNIST 6 0.94 0.86 0.94 0.89 b b

MNIST 7 0.92 0.88 0.92 0.89 b b

MNIST 8 0.78 0.64 0.79 0.84 b b

MNIST 9 0.89 0.82 0.90 0.90 b b

SVHN 1 0.90 0.88 0.91 0.85 b b

SVHN 2 0.88 0.76 0.78 0.78 b b

SVHN 3 0.72 0.58 0.59 0.71 b b

SVHN 4 0.85 0.74 0.75 0.83 b b

SVHN 5 0.83 0.74 0.73 0.74 b b

SVHN 6 0.84 0.79 0.80 0.87 b b

SVHN 7 0.89 0.86 0.86 0.87 b b

SVHN 8 0.83 0.76 0.75 0.88 b b

SVHN 9 0.85 0.79 0.80 0.87 b b

Shuttle 0.99 1.00 0.91 0.55 b b

Satellite 0.79 0.70 0.62 0.57 0.78 0.74

Pima 0.68 0.68 0.62 0.59 0.67 0.65

Breastw 0.99 0.99 0.81 0.45 0.99 0.99

Arrythmia 0.79 0.80 0.71 0.68 0.74 0.79

Ionosphere 0.92 0.85 0.66 0.89 0.81 0.93

Biomed 0.87 0.83 0.76 0.69 0.88 0.88

Average rank 1.85 3.48 2.90 3.06 4.93 4.77

The underlined values indicate the best AUC/average rank
aOut of memory
bExecution time takes more than 2days

7.2.2 Evaluation

The average scores for each experiment are reported in Table 4, whereas the runtimes are
provided in Table 5. Some algorithms failed on the larger datasets. For example LOFwas not
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Table 5 Batch anomaly detection runtimes [t] = s

EXPoSE iForest OC-SVM LOF KDE FastAbod

KddCup 44 70 22213 a b b

ForestCover 29 24 25901 47 b b

MNIST 1 12 7 1976 23760 b b

MNIST 2 11 9 2773 18717 b b

MNIST 3 11 8 1991 20109 b b

MNIST 4 11 8 1159 17412 b b

MNIST 5 10 8 1892 15324 b b

MNIST 6 10 8 3091 18208 b b

MNIST 7 11 8 2727 20153 b b

MNIST 8 11 8 1607 18217 b b

MNIST 9 10 7 2383 18542 b b

SVHN 1 24 11 9311 18192 b b

SVHN 2 20 10 10371 18144 b b

SVHN 3 16 9 14122 28508 b b

SVHN 4 13 10 4044 19247 b b

SVHN 5 14 11 10348 22359 b b

SVHN 6 11 7 5389 13166 b b

SVHN 7 11 8 6790 14906 b b

SVHN 8 9 7 4210 9741 b b

SVHN 9 9 6 3831 9290 b b

Shuttle 3 7 38 24 b b

Satellite 0 3 3 4 1 55

Pima 1 2 0 0 0 9

Breastw 1 3 0 0 0 4

Arrythmia 1 1 0 0 0 4

Ionosphere 1 3 0 0 0 0

Biomed 0 2 0 0 0 0

aOut of memory
bExecution time takes more than 2days

able to process the KddCup dataset due to the high memory requirements of the tree data
structure. However the advantage of a tree data structure for nearest neighbor lookup in low
dimensions can be seen when comparing the runtime of LOF on ForestCover and MNIST.
Even though the ForestCover dataset has more than 2.5 times the size of MNIST, it takes only
a fraction of the time to be processed. This advantage vanishes in higher dimensions. KDE
and FastAbod exhibit a good anomaly detection performance on small datasets, however fail
as soon as we apply them to medium-sized problems.
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Fig. 5 Critical difference diagram of the batch anomaly detection performance. Algorithms which are not
significantly different (at p < 0.05) are connected with a bar

With the AUC values we can perform the Friedman and post-hoc Nemenyi tests. The
Friedman test confirms a statistical significant difference between the performances of the
individual algorithms at a p value of 0.05. From the critical difference diagram in Fig. 5 we
observe that EXPoSE performs significant better than iForest, FastAbod and KDE. While
no significant difference in terms of anomaly detection between EXPoSE, OC-SVM and
LOF can be confirmed, EXPoSE is several orders of magnitude faster on large-scale, high-
dimensional datasets.

7.3 Streaming anomaly detection

In this set of experiments we compare the streaming variants of EXPoSE against HSTa,
STORM and COD. All of these algorithms are blind methods as they adapt their model at
regular intervals without knowing if a concept drift occurred or not. They can be combined
with a concept drift detector to make the adaptation informed (Gama 2010).

The evaluation of streaming algorithms is not as straightforward as the rating of batch
learning techniques. There are two accepted techniques proposed in literature.

– Using a dedicated subset of the data (holdout) and evaluate the algorithm at regular time
intervals. The holdout set must reflect the respective stream properties and therefore has
to evolve with the stream in case of a concept drift.

– Making a prediction as the instance becomes available (prequential).3 A performance
metric can then be applied based on the prediction and the actual label of the instance.
Since predictions are made on the stream directly there are no special actions which have
to be taken in case of concept drift.

If possible, the holdout method is preferable since it is an unbiased risk estimator and we
can use a balanced test set with the same number of normal instances and anomalies. This is
a disadvantage of the prequential method since, by definition, the data stream contains only a
few anomalies. This is problematic since STORM and COD assign hard class labels and, in
contrast to AUC, the classification accuracy is highly sensitive to unbalanced data. We will
therefore use the balanced accuracy defined as

0.5 · true positives
true positives + false negatives

+ 0.5 · true negatives
true negatives + false positives

,

which compensates the unequal class distribution.

3 Prequential originates from predictive and sequential (Dawid 1984).
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Fig. 6 The sigmoid function used to introduce a smooth drift from one concept to another. We use a Bernoulli
distribution, where p is the probability to sample an instance from concept 1 and (1− p) is the probability to
sample from concept 2. The drift occurs at t0 and w defines the duration during which both concepts are valid

7.3.1 Datasets

There exist only a few non-synthetic datasets for anomaly detection with concept drift. Most
of them are based on multi-class datasets, where each class represents a single concept. For
example we use the SVHN dataset and stream 9000 randomly sampled instances of the digits
1–9 in sequence, such that the 1000 instances of digit 1 appear first, then 1000 instances of
digit 2 until digit 9 (see Fig. 7). Every 25 time steps we calculate the accuracy using the
holdout method for a dedicated random test set which contains 500 instances of the normal
class and 500 instances of anomalies. Here, the normal class is the digit which is streamed
at time step t and anomalies are all other classes. Likewise we proceed with the Satellite and
Shuttle datasets.

Similar, Ho (2005) proposed the three digit data stream (TDDS) which contains four
different concepts. Each concept consists of three digits of the USPS handwritten digits
dataset as described.4 After all instances of concept 1 are processed, the stream switches to
the second concept and so on until concept 4. We randomly induce 1% anomalies to each
concept and use the prequential method for evaluation to calculate the balanced accuracy.

All datasets presented so far contain one or more sudden (abrupt) concept drifts. Bifet
et al. (2009) proposed a methodology to introduce a smooth (incremental) drift between two
concepts. The instances of the concepts from two classes under consideration are sampled
according to a Bernoulli distribution where the class probability smoothly changes from one
class to the other according to a sigmoid function (Fig. 6). The concept drift occurs at t0 and
w is the length of the drift interval. During this interval the instances of both concepts belong
to the class of normal data. We apply this methodology to USPS and create the smooth digit
drift (SDD) dataset. We start with digit 1 and then smoothly change to digit 2 at t0 = 500
using w = 100. The next drift to digit 3 occurs at t0 = 1000 and we repeat this until digit 9.
As before, we randomly add 1% anomalies to each concept and use the prequential method
for evaluation. We summarized the dataset characteristics in Table 6.

7.3.2 Evaluation

In the following we will denote EXPoSE with a sliding window (Sect. 5.1.1) and EXPoSE
with gradual forgetting (Sect. 5.1.2) by w-EXPoSE and γ -EXPoSE, respectively.

A sliding window of length 100 demonstrated to obey an appropriate trade off between
drift adaptation and model accuracy. We therefore use this length for all algorithms and
all datasets except γ -EXPoSE. A change of the window length affects w-EXPoSE, COD,

4 See Ho (2005) for a detailed description of the TDDS dataset.
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Table 6 Streaming dataset properties

#concepts Concept drift type Evaluation method

SVHN 9 Sudden Holdout

Satellite 3 Sudden Holdout

Shuttle 2 Sudden Holdout

TDDS 4 Sudden Prequential

SDD 9 Smooth Prequential

Fig. 7 The streaming SVHN experiment. A comparison of prediction accuracy under concept drift averaged
over 5 repetitions

STORM and HSTa in the same way. This is not unexpected as the window size determines
the number of instances available to the algorithm. The first 100 instances of each stream are
used to configure algorithm parameters (see Table 8 in the “Appendix”) via cross-validation
using pattern search.

A detailed illustration of the SVHN experiment is shown in Fig. 7. The predictive perfor-
mance of all algorithms is relatively similar. It can be observed that, as the stream changes
from one digit to another, the accuracy suddenly drops which indicates that the current model
is not valid anymore. After a short period of time, themodel adapts and the accuracy recovers.
EXPoSE performs on average better thanCOD, STORM andHSTa. A possible interpretation
of this result is the sound foundation in probability theory of our approach. The suboptimal
performance of HSTa indicates the random binary trees constructed by HSTa are not suf-
ficiently fine-grained for this high-dimensional datasets. This interpretation is supported by
the experiments with the low-dimensional Shuttle and Satellite data, where HSTa performs
better.

The average over all accuracies of the individual experiments can be found in Table 7.
The only statistical significance (at p < 0.05) is observed between γ -EXPoSE and COD.
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Table 7 Streaming anomaly detection performance [accuracy]

w-EXPoSE γ -EXPoSE STORM COD HSTa

Shuttle 0.88 0.88 0.75 0.74 0.89

Satellite 0.89 0.88 0.78 0.79 0.88

SVHN 0.71 0.73 0.68 0.68 0.66

TDDS 0.71 0.71 0.67 0.64 0.67

SDD 0.83 0.85 0.79 0.76 0.77

Average rank 1.80 1.70 3.80 4.50 3.20

The underlined values indicate the best AUC/average rank

Fig. 8 Critical difference diagram of the stream anomaly detection performance. Algorithms which are not
significantly different (at p < 0.05) are connected with a bar

We could not confirm a significant difference between the other algorithms as illustrated in
the critical difference diagram (Fig. 8).

Although these results are promising we recommend to combine the techniques presented
here with a concept drift detection technique to make informed model updates (Gama 2010).

8 Conclusion

We proposed a new algorithm, EXPoSE, to perform anomaly detection on very large-scale
datasets and streams with concept drift. Although anomaly detection is a problem of central
importance in many applications, only a few algorithms are scalable to the vast amount of
data we are often confronted with.

The EXPoSE anomaly detection classifier calculates a score (the likelihood of a query
point belonging to the class of normal data) using the inner product between a featuremap and
the kernel embedding of probability measures. The kernel embedding technique provides an
efficient way to work with probability measures without the necessity to make assumptions
about the underlying distributions.

Despite its simplicity EXPoSE obeys a linear computational complexity for learning
and can make predictions in constant time while it requires only constant memory. When
applied incrementally or online, a model update can also be performed in constant time. We
demonstrated that EXPoSE can be used as an efficient anomaly detection algorithm with the
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same predictive performance as the best state of the art methods while being significant faster
than techniques with the same discriminant power.

Appendix

Definition 9 (Strong Integral) Let (X ,X ,P) be a σ -finitemeasure space and letφ : X → H
be measurable. Then φ is strong integrable (Bochner integrable) over a set D ∈ X if and
only if its norm ‖φ‖ is Lebesgue integrable over D, that is,∫

D
‖φ‖ dP(x) < ∞.

If φ is strong integrable over each D ∈ X we say that φ is strong integrable (Aliprantis and
Border 2006, Theorem 11.44).

Definition 10 (Weak Integral) Let (X ,X ,P) be a σ -finite measure space. A function
φ : X → H is weakly integrable over a set D ∈ X if there exists some λ ∈ H satisfy-
ing

〈 f, λ〉 =
∫
D

〈 f, φ(x)〉 dP(x)

for each f ∈ H. The weak integral is denoted by

λ =
∮
D

φ dP(x)

and the unique element λ ∈ H is called weak integral of φ over D. If the integral exists for
each D ∈ X we say that φ is weakly integrable (Aliprantis and Border 2006, Section 11.10;
Table 8).

Table 8 Algorithms and Parameters

Optimized parameters

EXPoSE Kernel bandwidth

iForest Number of trees, sub-sampling size

OC-SVM Kernel bandwidth, anomaly fraction

LOF Number of nearest neighbors

KDE Kernel bandwidth

FastAbod Number of nearest neighbors

STORM Number of nearest neighbors, neighborhood radius

COD Number of nearest neighbors, neighborhood radius

HSTa Number of trees
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