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Abstract The random drift particle swarm optimization (RDPSO) algorithm is a PSO vari-
ant inspired by the free electron model in metal conductors placed in an external electric
field. Based on the preliminary work on the RDPSO algorithm, this paper makes systemat-
ical analyses and empirical studies of the algorithm. Firstly, the motivation of the RDPSO
algorithm is presented and the design of the particle’s velocity equation is described in detail.
Secondly, a comprehensive analysis of the algorithm is made in order to gain a deep insight
into how the RDPSO algorithm works. It involves a theoretical analysis and the simulation
of the stochastic dynamical behavior of a single particle in the RDPSO algorithm. The search
behavior of the algorithm itself is also investigated in detail, by analyzing the interaction
among the particles. Then, some variants of the RDPSO algorithm are presented by incorpo-
rating different randomvelocity components with different neighborhood topologies. Finally,
empirical studies of the RDPSO algorithm are performed by using a set of benchmark func-
tions from the CEC2005 benchmark suite. Based on the theoretical analysis of the particle’s
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behavior, two methods of controlling the algorithmic parameters are employed, followed by
an experimental analysis on how to select the parameter values, in order to obtain a satisfac-
tory overall performance of the RDPSO algorithm and its variants in real-world applications.
A further performance comparison between the RDPSO algorithm and other variants of PSO
is made to prove the effectiveness of the RDPSO.

Keywords Evolutionary computation · Optimization · Particle swarm optimization ·
Random motion

1 Introduction

Optimization methods are essential in machine learning and are usually employed to find
the model parameters and appropriate structures (Sra et al. 2011; Henning and Keifel 2013;
Bull 2011; Sun et al. 2013). Among the various optimization methods available, random
search approaches are direct search techniques that incorporate stochastic strategies into the
search process to enable the algorithms to jump out of local optima with high probability,
and they are widely used in machine learning (Bergstra and Bengio 2012). Metaheuristic
methods are an important class of random search techniques. They are formally defined as an
iterative generation-based process, which guides the search by using a subordinate heuristic
and intelligently combining different concepts for exploring and exploiting the search space,
the most popular methods in this class being the evolutionary algorithms (EAs) (Fortin et al.
2012; Pelikan 2012; Fournier and Teytaud 2011; Lu et al. 2011)

Particle swarm optimization (PSO) is a metaheuristic method attributed to be originally
developed by Kennedy and Eberhart (1995), Eberhart and Kennedy (1995). It has been moti-
vated by bird flocking and fish schooling mechanisms, and the swarm theory in particular.
Unlike EAs, PSO has no evolution operators such as crossover and selection. The PSO
algorithm performs an optimization task by iteratively improving a swarm of candidate solu-
tions with respect to an objective (fitness) function. The candidate solutions, called particles,
move through the problem space according to simple mathematical formulae describing the
particles’ positions and velocities. The movement of each particle is influenced by its own
experiences, and is also guided towards the current best known position.

In the last decade, PSO has gained increasing popularity due to its effectiveness in per-
forming difficult optimization tasks. The reason why PSO is attractive is that it gets better
solutions, in a faster and cheaper way compared to other methods, whereas has fewer parame-
ters to adjust. It has been successfully used inmany research and application areas (Poli 2007,
2008; Veeramachaneni et al. 2012). The algorithm has also been found useful in machine
learning problems (Escalante et al. 2009).

To gain insights into how the algorithm works, some researchers have theoretically ana-
lyzed the PSO algorithm. These analyses mainly aimed for the behavior of the individual
particle in the PSOalgorithm,which is essential to the understanding of the searchmechanism
of the algorithm and to parameter selection (Kennedy 1998; Ozcan and Mohan 1999; Clerc
and Kennedy 2002; van den Bergh 2002; Shi and Eberhart 1998a, b; Trelea 2003; Emara
and Fattah 2004; Gavi and Passino 2003; Kadirkamanathan et al. 2006; Jiang et al. 2007;
Poli 2009; Bonyadi et al. 2014; Cleghorn and Engelbrecht 2014). For example, Kennedy
analysed a simplified particle behavior and demonstrated different particle trajectories for
a range of design choices (Kennedy 1998). Clerc and Kennedy undertook a comprehensive
analysis of the particle trajectory and its stability properties (Clerc and Kennedy 2002). As
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for the algorithm itself, Van den Bergh proved that the canonical PSO is not a global search
algorithm, even not a local one (van den Bergh 2002; Van den Bergh and Engelbrecht 2006,
2010), by using the convergence criterion provided by Solis and Wets (1981).

In addition to the analyses mentioned above, there has been a considerable amount of
work performed in improving the original version of the PSO through empirical studies.
The original PSO proposed in Kennedy and Eberhart (1995) appeared to have weak local
search ability, due to the slow convergence speed of the particles. It is universally known
that the tradeoff between the local search (exploitation) and the global search (exploration) is
vital for the performance of the algorithm. As such, the original PSO needs to accelerate the
convergence speed of the particles in order to achieve a better balance between exploitation
and exploration. The work in this area, which was first carried out by Shi and Eberhart,
involved introducing an inertia weight into the update equation for velocities, in order to
control the explosion in velocity values and partially help accelerate the convergence of
individual particles (Shi and Eberhart 1998a, b). Clerc (1999) proposed another acceleration
method by adding a constriction factor in the velocity update equation, in order to release
the restriction on the particle’s velocity during the convergence history. The acceleration
techniques were shown to work well, and the above two variants of PSO have laid the
foundation for further enhancement of the PSO algorithm.

In general, two types of neighborhood topologies are used when the PSO algorithm is
implemented. One is known as the global best topology or global best model (essentially
the star model), which is employed in the PSO with inertia weight (PSO-In) and the PSO
with constriction factor (PSO-Co). In this topology model, the search of the particles is
guided by the global best position as well as their personal best positions. Although the
algorithmwith this model is able to efficiently obtain the best approximate solutions for many
problems, some researchers argued that this model may be prone to encounter premature
convergence when solving harder problems. If the global best particle sticks to a local or
suboptimal point, it would mislead the other particles to move towards that point. In other
words, other promising search areasmight bemissed. This had led to the investigation of other
neighborhood topologies, known as the local best (lbest) models, first studied by Eberhart
and Kennedy (1995) and subsequently in depth by many other researchers (Suganthan 1999;
Kennedy 1999, 2002; Liang and Suganthan 2005; Mendes et al. 2004; Parrott and Li 2006;
Bratton andKennedy2007;Kennedy andMendes 2002; van denBergh andEngelbrecht 2004;
Lane et al. 2008; Li 2004). The objective therewas to find other possible topologies to improve
the performance of the PSO algorithm. Engelbrecht (2013) carried out a comprehensive and
elaborate empirical comparison of the gbest PSO and lbest PSO algorithms, on a suite of
60 benchmark boundary constrained optimization problems of varying complexities. The
statistics of their experimental results show that neither of the two types of algorithms can
be considered to outperform the other, not even for specific problem classes in terms of
convergence, exploration ability, and solution accuracy.

Another way to possibly improve the PSO algorithm is to directly sample new positions
during the search. Thus, some researchers proposed several probabilistic PSO algorithms,
which simulate the particle trajectories by directly sampling according to a certain prob-
ability distribution (Kennedy 2003, 2004, 2006; Sun et al. 2012; Krohling 2004; Secrest
and Lamont 2003; Richer and Blackwell 2006). The Bare Bones PSO (BBPSO) family is
a typical class of probabilistic PSO algorithms (Kennedy 2003). In BBPSO, each particle
does not have a velocity vector, but its new position is sampled “around” a supposedly good
one, according to a certain probability distribution, such as the Gaussian distribution in the
original version (Kennedy 2003). Several other new BBPSO variants used other distributions
which seem to generate better results (Kennedy 2004, 2006). Recently, some researchers
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employed stochastic process models, such as Markov chains, to analyse the convergence of
the Bare Bone PSO (Poli and Langdon 2007; Zhang et al. 2014).

This paper is focused on the so-called random drift particle swarm optimization (RDPSO),
which is inspired by the free electron model in metal conductors in an external electric field
(Omar 1993). The basics of the original concept of the random drift model for PSO were
sketched in our previous work (Sun et al. 2010). In the limited initial version of the algorithm
(Sun et al. 2010), the velocity of the particle’s drift motion is simply expressed by the
summation of the cognition part and the social part in the velocity update equation of the
original PSO, which is not consistent with the physical meaning of the random drift model.
This paper is to use a more concise form for the drift velocity, which is more in line with
the physical meaning of the model, as well as a novel strategy for determining the random
velocity, and thus it presents a new and different version of the RDPSO algorithm. In Sun et al.
(2014a), an RDPSO version with double exponential distribution was validated by testing
the algorithm on biochemical system identification problems, while in this paper, a Gaussian
distribution is employed to sample the particles’ random velocities in the RDPSO algorithm.
In Sun et al. (2014b), this version of RDPSO, along with two improved variants, were applied
for training Hidden Markov Models for biological multiple sequence alignment, which is an
important machine learning problem in bioinformatics.

This paper presents the extension of our previous work on the RDPSO algorithm. Its
purpose is to gain an in-depth understanding of how the RDPSO works by making compre-
hensive theoretical analyses of the behavior of the individual particle in the RDPSO and the
search behavior of the algorithm, and to undertake empirical studies on the issue of parameter
selection for four RDPSO variants, which employ different random velocities and neighbor-
hood topologies. Performance comparison between the RDPSO and other PSO variants is
to be made by using fourteen benchmark functions from the CEC2005 benchmark suite in
order to verify the effectiveness of the proposed algorithms.

The remainder of the paper is organized as follows. Section 2 describes the motivation and
principle of the RDPSO algorithm. Section 3 presents the analyses of the RDPSO algorithm,
and Sect. 4 presents the four RDPSO variants. Empirical studies on the parameter selection
for the RDPSO algorithm and the performance comparison are provided in Sect. 5. Finally,
the paper is concluded in Sect. 6.

2 Random drift particle swarm optimization (RDPSO)

2.1 Basic definitions and terminology for PSO

In a PSO with M individuals, each individual is treated as a volume-less particle in the
N -dimensional space, with the current position vector and the velocity vector of particle i
(1 ≤ i ≤ M) at the nth iteration represented as Xi,n = (X1

i,n, X
2
i,n, . . . , X

N
i,n) and Vi,n =

(V 1
i,n, V

2
i,n, . . . , V

N
i,n). Each particle i also has the personal best (pbest) position vector Pi,n =

(P1
i,n, P

2
i,n, . . . , P

N
i,n) at the nth iteration, which records the position giving the best fitness

value (i.e. the objective function value) of the particle from the initialization to the current
iteration. Besides, there is a vectorGn = (G1

n,G
2
n, . . . ,G

N
n ), known as the global best (gbest)

position, recording the position with the best fitness value found by the whole particle swarm
so far. Without loss of generality, we consider the following minimization problem:

Minimize f (X) , s.t. X ∈ S ⊆ RN , (1)
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where f (X) is an objective function and S is the feasible space. Accordingly, Pi,n can be
found by

Pi,n =
{
Xi,n if f (Xi,n) < f (Pi,n−1)

Pi,n−1 if f (Xi,n) ≥ f (Pi,n−1)
, (2)

and Gn updated by

Gn = Pg,n,where g = arg min
1≤i≤M

[ f (Pi,n)]. (3)

In the basic PSO algorithm, the particle updates its velocity and position at the (n + 1)th

iteration according to the following equations:

V j
i,n+1 = V j

i,n + c1r
j
i,n

(
P j
i,n − X j

i,n

)
+ c2R

j
i,n

(
G j

n − X j
i,n

)
, (4)

X j
i,n+1 = X j

i,n + V j
i,n+1, (5)

for i = 1, 2, . . . M; j = 1, 2 . . . , N , where c1 and c2 are known as the acceleration coef-
ficients, and the parameters r j

i,n and R j
i,n are sequences of two different random numbers

distributed uniformly on (0, 1), which is denoted by r j
i,n, R

j
i,n ∼ U (0, 1). Generally, the

value of V j
i,n is restricted within the interval [−Vmax, Vmax].

2.2 The motivation of the RDPSO algorithm

It has been demonstrated that the convergence of the whole particle swarmmay be achieved if
each particle converges to its local focus, pi,n = (p1i,n, p

2
i,n, . . . p

N
i,n), defined by the following

coordinates (Clerc and Kennedy 2002):

p j
i,n = c1r

j
i,n P

j
i,n + c2R

j
i,nG

j
n

c1r
j
i,n + c2R

j
i,n

, 1 ≤ j ≤ N , (6)

or
p j
i,n = φ

j
i,n P

j
i,n +

(
1 − φ

j
i,n

)
G j

n, (7)

where φ
j
i,n = c1r

j
i,n

/
(c1r

j
i,n + c2R

j
i,n), with regard to the random numbers r j

i,n and R j
i,n

defined in Eqs. (4), (6). The acceleration coefficients c1 and c2 in the original PSO are
generally set to be equal, namely, c1 = c2, and thus, φ j

i,n is a sequence of random numbers
uniformly distributed on (0,1). As a result, Eq. (7) can be restated as

p j
i,n = φ

j
i,n P

j
i,n +

(
1 − φ

j
i,n

)
G j

n, ϕ
j
i,n ∼ U (0, 1). (8)

In fact, as the particles are converging to their own local attractors, their current positions,
pbest positions, local focuses and the gbest position are all converging to one point. Since
pi,n is a random point uniformly distributed within the hyper-rectangle with Pi,n and Gn

being the two ends of its diagonal, the particle’s directional movement towards pi,n makes
the particle search around this hyper-rectangle and improves its fitness value locally. Hence,
this directional movement essentially reflects the local search of the particle.

The motivation of the proposed RDPSO algorithm comes from the above trajectory analy-
sis of the PSO and the free electron model in metal conductors placed in an external electric
field (Omar 1993). According to this model, the movement of an electron is the superimpo-
sition of the thermal motion, which appears to be a random movement, and the drift motion
(i.e., the directional motion) caused by the electric field. That is, the velocity of the electron
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can be expressed by V = V R+ V D, where V R and V D are called the random velocity and
the drift velocity, respectively. The random motion (i.e., the thermal motion) exists even in
the absence of the external electric field, while the drift motion is a directional movement in
the opposite direction of the external electric field. The overall physical effect of the elec-
tron’s movement is that the electron careens towards the location of the minimum potential
energy. In a non-convex-shaped metal conductor in an external electric field, there may be
many locations of local minimum potential energies, which the drift motion generated by
the electric force may drive the electron to. If the electron only had the drift motion, it might
stick into a point of local minimum potential energy, just as a local optimization method
converges to a local minimum of an optimization problem. The thermal motion can make
the electron more volatile and, consequently, helps the electron to escape the trap of local
minimum potential energy, just as a certain random search strategy is introduced into the
local search technique to lead the algorithm to search globally. Therefore, the movement
of the electron is a process of minimizing its potential energy. The goal of this process is
essentially to find out the minimum solution of the minimization problem, with the position
of the electron represented as a candidate solution and the potential energy function as the
objective function of the problem.

2.3 Description of the RDPSO algorithm

Inspired by the above facts, we assume that the particle in the RDPSO behaves like an
electron moving in a metal conductor in an external electric field. The movement of the
particle is thus the superposition of the thermal and the drift motions. The thermal motion
implements the global search of the particle, while the drift motion mainly implements the
local search. The trajectory analysis, as described in the first paragraph of this subsection,
indicates that, in the canonical PSO, the particle’s directional movement toward its local
attractor pi,n reflects the local search of the particle. In the proposed RDPSO, the drift
motion of the particle is also defined as the directional movement towards pi,n . It represents
the combination of the cognition part and the social part of the canonical PSO and, thus,
is the main inheritance of the RDPSO algorithm from the canonical PSO algorithm. In
the RDPSO algorithm, the ‘inertia part’ in the velocity equation of the canonical PSO is
replacedby the randomvelocity component,which is themaindifferencebetween theRDPSO
algorithm and the canonical PSO algorithm. Therefore, the velocity of the particle in the
RDPSO algorithm has two components, i.e., the thermal or random component, and the drift
component. Mathematically, the velocity of particle i in the j th dimension can be expressed
by V j

i,n+1 = V R j
i,n+1 + V D j

i,n+1 (1 ≤ i ≤ M, 1 ≤ j ≤ N ),where V R j
i,n+1 and V D j

i,n+1
are the random velocity component and the drift velocity component, respectively.

A further assumption is that the value of the random velocity component V R j
i,n+1 follows

the Maxwell velocity distribution law (Kittel and Kroemer 1980). Consequently, V R j
i,n+1

essentially follows a normal distribution (i.e., Gaussian distribution) whose probability den-
sity function is given by

f
V R j

i,n+1
(v) = 1√

2πσ
j
i,n+1

e

−v2

2
(
σ
j
i,n+1

)2
, (9)

where σ
j
i,n+1 is the standard deviation of the distribution. Using stochastic simulation, we

can express V R j
i,n+1 as
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V R j
i,n+1 = σ

j
i,n+1ϕ

j
i,n+1, (10)

where ϕ
j
i,n+1 is a random number with a standard normal distribution, i.e., ϕ j

i,n+1 ∼ N (0, 1).

σ
j
i,n+1 must be determined in order to calculate V R j

i,n+1. An adaptive strategy is adopted for

σ
j
i,n+1:

σ
j
i,n+1 = α

∣∣C j
n − X j

i,n

∣∣, (11)

where Cn = (C1
n ,C

2
n , . . . ,C

N
n ) is known as the mean best (mbest) position defined by the

mean of the pbest positions of all the particles, namely,

C j
n = (1/M)

∑M

i=1
P j
i,n, (1 ≤ j ≤ N ). (12)

Thus, Eq. (10) can be restated as

V R j
i,n+1 = α

∣∣C j
n − X j

i,n

∣∣ϕ j
i,n+1, (13)

where α > 0 is an algorithmic parameter called the thermal coefficient. In the next section,
where the search behavior of individual particles and the whole swarm is analyzed, we
will find that this random velocity component drives the particle away from the global best
position, so it indeed reflects the global search of the particle.

The role of the drift velocity component, V D j
i,n+1, is to implement the local search of

the particle, which can be achieved by the directional movement toward pi,n , as has been
mentioned above. In this paper we use the following simple linear expression for V D j

i,n+1:

V D j
i,n+1 = β

(
p j
i,n − X j

i,n

)
, (14)

where β > 0 is a deterministic constant and is another algorithmic parameter called the drift
coefficient. This form of V D j

i,n+1in Eq. (14) is more concise than the one in Sun et al. (2010)
and it has a clear physical meaning that it reflects the particle’s directional movement towards
pi,n . In Theorem 1 in the Appendix, it is proven that, if there is only drift motion and, i.e.,
V j
i,n+1 = V D j

i,n+1, X
j
i,n → p j

i,n as n → ∞ when 0 < β < 2, meaning that the expression

of V D j
i,n+1 in Eq. (14) can indeed guarantee the particle’s directional movement toward pi,n

as an overall result. More specifically, if 0 < β < 1, X j
i,n asymptotically converges to p j

i,n ,
which means that the sampling space of Xi,n+1 does not cover the hyper-rectangle with Pi,n
and Gn being the two ends of its diagonal. If β = 1, X j

i,n+1 is identical to p j
i,n so that the

sampling space of Xi,n+1 is exactly the hyper-rectangle. If 1 < β < 2, X j
i,n converges to

p j
i,n in oscillation and thus the sampling space of Xi,n+1 covers the hyper-rectangle and even

other neighborhoods of Gn , where points with better fitness values may exist. As such, when
we select the value of β for real application of the RDPSO algorithm, it may be desirable to
set 1 ≤ β < 2 for good local search ability of the particles.

With the above specification, a novel set of update equations can be obtained for the
particle of the RDPSO algorithm:

V j
i,n+1 = α

∣∣C j
n − X j

i,n

∣∣ϕ j
i,n+1 + β

(
p j
i,n − X j

i,n

)
, (15)

X j
i,n+1 = X j

i,n + V j
i,n+1. (16)
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The procedure of the algorithm is outlined below in Algorithm 1. Like in the canonical PSO,
the value of V j

i,n in the RDPSO is also restricted within the interval [−Vmax, Vmax] at each
iteration.

3 Analysis of the RDPSO algorithm

3.1 Dynamical behaviour of the RDPSO particle

An analysis of the behavior of an individual particle in the RDPSO is essential to understand-
ing how the RDPSO algorithm works and how to select the algorithmic parameters. Since
the particle’s velocity is the superimposition of the thermal velocity and the drift velocity, the
conditions for the particle’s position to converge or to be bounded are far more complex than
those given in Sect. 2.3 when only the drift motion exists. In this subsection, we will carry
out theoretical and empirical studies on the stochastic dynamical behavior of the particle in
the RDPSO. Since each dimension of the particle’s position is updated independently, we
only need to consider a single particle in a one-dimensional space without loss of generality.
As such, Eqs. (15) and (16) can be simplified as

Vn+1 = α|C − Xn |ϕn+1 + β(p − Xn), (17)

Xn+1 = Xn+1 + Vn+1, (18)

where Xn and Vn denote the current position and the velocity of the particle respectively at
the nth iteration, and the local focus of the particle and the mean best position are denoted by
p and C , which are treated as probabilistically bounded random variables, i.e., P{sup |p| <

∞} = 1 and P{sup |C | < ∞} = 1. In Eq. (17), {ϕn} is a sequence of independent identically
distributed random variables with ϕn ∼ N (0, 1).
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Since the probability distribution of ϕn is symmetrical with respect to the ordinate, Eq.
(17) has the following equivalence:

Vn+1 = α(Xn − C)ϕn+1 − β(Xn − p), (19)

that is, the probability distributions of Vn+1 in Eqs. (17) and (19) are the same. Based on
Eqs. (19) and (18), several theorems on the dynamical behavior of an individual particle
in RDPSO are proved in the Appendix. As shown by Theorem 2, the particle’s behavior is
related to the convergence of ρn = ∏n

i=1 λi , where λn = αϕn + (1− β) subject to a normal
distribution, namely, λn ∼ N (1 − β, α2). It is showed by Theorem 3 that if and only if

 = E(ln |λn |) ≤ 0, namely, the values of α and β satisfy the following relationship:


 = 1√
2πα

∫ +∞

−∞
ln |x |e− [x−(1−β)]2

2α2 dx ≤ 0, (20)

ρn is probabilistically bounded and, thus, the position of the particle is probabilistically
bounded too. In inequality (20), the value of 
 is an improper integral which is undefined
at x = 0. By a Dirichlet test, the improper integral in (20) is convergent if both α and β are
two finite numbers (Courant 1989).

Inequality (20) does not give any explicit constraint relation between α and β due to the
difficulty in calculating the improper integral in the inequality. A sufficient condition for

 < 0 (i.e. limn→∞ρn = limn→∞

∏n
i=1 λi = 0) is derived in Theorems 4. It says that if the

values of α and β are subject to the constraint:

0 < α < 1, 0 < β < 2, (21)


 < 0 and ρn = ∏n
i=1 λi converges to zero, which, as a consequence, ensures the proba-

bilistic boundedness of the particle’s current position. Figure 1 traces some simulation results
for the stochastic behaviour of the particle with different values of α and β, with C fixed at
X = 0.001, p fixed at the origin and the initial position of the particle set as X0 = 1000.
Figure 1a–c show the results with α and β satisfying constraint (21). It can be observed that
the particle’s position oscillated around p and C , implying that the position is probabilisti-
cally bounded in these cases. Figure 1d–i show that the particle’s position is probabilistically
bounded in some cases when α and β do not satisfy constraint (21). This verifies that con-
straint (21) is a sufficient condition for 
 < 0 or limn→∞ρn = 0. At other values of α and β

that do not satisfy (21), the value of ln |Xn − p| reached 700 and stopped changing after a cer-
tain number of iterations, as shown in Fig. 1j–o. In such cases, the value of |Xn − p| reaches
the maximum positive value that the computer can identify, so that it can be considered to
have diverged to infinity.

Constraint (21) is of practical significance to the application of the RDPSO algorithm,
although it does not give the necessary condition for 
 ≤ 0. In practice, the values of α and
β can generally be selected within the intervals given by (21), for a satisfactory algorithmic
performance when the algorithm is applied to real-world problems. In Sect. 4, a detailed
investigation into how to select these algorithmic parameters will be undertaken by using
three widely used functions and then the algorithmic performance with these parameters
values will be further tested on a set of benchmark functions from the CEC2005 benchmark
suite.

3.2 The RDPSO’s search behavior

In the above analysis, it is assumed that each particle in the RDPSO updates its velocity and
position independently, with the mean best position C and the local focus p being treated
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as independent probabilistically bounded random variables, and thus it is revealed that the
behavior of an individual particle is related to the convergence or the boundedness of ρn .
However, the actual situation is more complex when the RDPSO algorithm runs in a real-
world landscape. During the search process, each particle is influenced not only by ρn but
also by the points Cn and pi,n , which cannot be treated as independent random variables
anymore but are dependent on the other particles. As for Cn , it is the mean of the pbest
positions of all the particles, moving with each pbest position varying in the course of search.
The local focus pi,n , is a random point associated with the pbest position of particle i(Pi,n)
and the gbest position Gn that rotates among the pbest positions of the member particles
according to their fitness values. In contrast to Cn, pi,n , as well as Pi,n and Gn , varies more
dramatically, since Cn averages the changes of all the pbest positions.

Generally, the pbest positions of all the particles converge to a single point when the
RDPSO algorithm is performing an optimization task, which implies that P{ lim

n→∞|Cn −
pi,n | = 0} = 1 as indicated in the proof of Theorem 1. Referring to Eqs. (29)–(32), we can
infer that if and only if 
 < 0, limn→∞|Xi,n − Cn | = 0 or limn→∞|Xi,n − pi,n | = 0. That
means the current positions and the pbest positions of all the particles converge to a single
point when 
 < 0. It can also be found from Theorems 2 and 3 that, when 
 = 0, the
particle’s position is probabilistically bounded and oscillates around but does not converge
to Cn or pi,n , even though P{limn→∞|Cn − pi,n | = 0} = 1. When 
 > 0, it is shown by
Theorems 2 and 3 that the particle’s current position diverges and the explosion of the whole
particle swarm happens.

In practical applications, it is always expected that the particle swarm in the RDPSO
algorithm can converge to a single point, just as in the canonical PSO. Essentially, there
are two movement trends, i.e. the random motion and the drift motion, for each particle in
the RDPSO, as has been described in the motivation of the algorithm. These two motions
reflect the global search and the local search, respectively. The drift motion, represented by
the V D j

i,n+1 in the velocity update Eq. (15), draws the particle towards the local focus and
makes the particle search in the vicinity of the gbest position and its pbest position so that
the particle’s current and pbest positions can constantly come close to the gbest position.
On the other hand, the random component V R j

i,n+1 results in a random motion, leading
the particle to be volatile so that its current position may reach a point far from the gbest
position and its pbest position. This component can certainly endue the particle a global
search ability, which in the canonical PSO algorithm is given by the velocity at the last
iteration, i.e. V j

i,n+1. Nevertheless, an important characteristic distinguishing the RDPSO
from other randomized PSO methods is that the random component of the particle’s velocity
uses an adaptive standard deviation for its distribution, i.e. α|X j

i,n − C j
n |. Such a random

component makes the random motion of the particle have a certain orientation. The effect
of V R j

i,n+1 is pulling or pushing the particle away from the gbest position by C j
n as shown

by Fig. 2, not just displacing the particle randomly as the mutation operation does in some
variants of PSO and evolutionary algorithms. Figure 2a shows that, when C j

n is at the left
side of X j

i,n and G j
n, |X j

i,n − C j
n | = X j

i,n − C j
n . The drift component β(p j

i,n − X j
i,n) draws

the particle right towards G j
n . If ϕ

j
i,n+1 > 0, α|X j

i,n −C j
n |ϕ j

i,n+1 = α(X j
i,n −C j

n )ϕ
j
i,n+1 > 0,

which makes the particle move to the right further and, thus, pushes X j
i,n away from G j

n . If

ϕ
j
i,n+1 < 0, α(X j

i,n − C j
n )ϕ

j
i,n+1 < 0, whose effect is that the particle’s position is pulled

away from G j
n . Figure 2b illustrates the case when C j

n is at the right side of X j
i,n and G j

n .

Only the effect of the sign of ϕ j
i,n+1 on the direction of the particle’s motion is opposite to that
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Fig. 2 The figure shows that the mbest position C j
n pulls or pushes the particle away from G j

n . The direction

of the particle’s movement is determined by the sign of ϕ
j
i,n+1

nG

nC

Lagged Particles

Fig. 3 The figure shows thatCn is shifted toward the lagged particles and thus far from the particles clustering
around Gn . The particles are pulled or pushed away from the neighbourhood of Gn and would search the
landscape globally

in Fig. 2a. Generally speaking, the longer the distance |X j
i,n − C j

n |, the farther the particle’s
position at next iteration X j

i,n+1 will be away from the gbest position. If the particle’s position
is close to the gbest position, the random component can help the particle escape the gbest
position easily, when the gbest position is stuck into a local optimal solution. As far as the
whole particle swarm is concerned, the overall effect is that the RDPSO has a better balance
between the global search and the local search, as illustrated below.

In the RDPSO method, the swarm could not gather around the gbest position without
waiting for the lagged particles. Figure 3 depicts the concept where the pbest positions of
several particles, known as the lagged particles, are located far away from the rest of the
particles and the gbest position Gn , while the rest of the particles are nearer to the global best
position, with their pbest positions located within a neighbourhood of the gbest position. The
mbest position Cn would be shifted towards the lagged particles and be located outside the
neighbourhood. When the lagged particles chase after their colleagues, that is, converge to
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Gn,Cn approachesGn slowly.The current positions of the particleswithin the neighbourhood
would be pulled or pushed outside the neighbourhood byCn , and the particles would explore
the landscape globally around Gn so that the current Gn could skip out onto a better solution.
As Cn careens toward the neighbourhood, the exploration scope of the particle becomes
narrower. After the lagged particles move into the neighbourhood of the gbest position,
Cn also enters the neighbourhood and the particles then perform the same search process
based on a smaller neighbourhood of the gbest position. In the canonical PSO, each particle
converges to the gbest position independently and has less opportunity to escape from the
neighbourhood of the gbest position. When the speed of the particle is small, it is impossible
for the particleswithin the neighbourhood to jump out of the neighbourhood.As a result, these
particles would perform local search around the gbest position and only the lagged particles
could search globally. Evident from the above analysis, the RDPSO algorithm generally has
a better balance between exploration and exploitation than the canonical PSO.

Moreover, different from mutation operations that play minor roles in some variants of
PSOand evolutionary algorithms, the randommotion has an equally important role as the drift
motion in the RDPSO. Owing to the random motion oriented by Cn , the RDPSO achieves
a good balance between the local and global searches during the search process. By the
influences of both Cn and its local focus, each particle in the RDPSO have two movement
trends, convergence and divergence, but the overall effect is their convergence to a common
point of all the particles if 
 < 0. The convergence rate of the algorithm depends on the
values of α and β, which can be tuned to balance the local and global search, when the
algorithm is used for a practical problem.

4 Four variants of RDPSO

In order to investigate the RDPSO in depth, some variants of the algorithm are proposed in
this paper. Twomethods are used for determining the random component of the velocity. One
employs Eq. (13) for this component and the other replaces the mbest position in Eq. (13)
by thepbest position of a randomly selected particle in the population at each iteration. For
convenience, we denote the randomly selected pbest position by C ′

n . For each particle, the
probability for its pbest position to be selected as C ′

n is 1/M . Consequently, the expected
value of C ′

n equals to Cn , that is,

E(C ′
n) =

M∑
i=1

1

M
Pi,n = Cn . (22)

However, as the C ′
n appears to be more changeful than Cn , the current position of each

particle at each iteration shows to be more volatile than that of the particle with Eq. (13),
which diversifies the particle swarm and in turn enhances the global search ability of the
algorithm.

In addition to the global best model, the local best model is also examined for the RDPSO,
in order to make a comprehensive empirical analysis of the RDPSO algorithm in different
neighborhood topologies. The ring topology is a widely used neighborhood topology for the
local best model (Li 2010; Engelbrecht 2013), in which each particle connects exactly to
two neighbors. The standard PSO (SPSO) in Bratton and Kennedy (2007) is defined by the
integration of the PSO-Co with the ring topology. Although there are various neighborhood
topologies, we chose the ring topology for the RDPSO with the local best model. Thus, the
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combination of the two topologies with the two strategies for the random velocity component
produces the four resulting RDPSO variations:

RDPSO-Gbest: TheRDPSOalgorithmwith the global bestmodel and the randomvelocity
component described by Eq. (13).

RDPSO-Gbest-RP: The RDPSO algorithm using the global best model and employing a
randomly selected pbest position to determine the random velocity component.

RDPSO-Lbest: The RDPSO algorithm with the ring neighborhood topology and the ran-
dom velocity component in Eq. (13), where, however, the mbest position is the mean of the
pbest positions of the neighbors of each particle and the particle itself, instead of the mean
of the pbest positions of all the particles in the swarm.

RDPSO-Lbest-RP: The RDPSO algorithm using the ring neighborhood topology and
employing the pbest position of a particle randomly selected from the neighbors of each
particle and the particle itself.

5 Experimental results and discussion

5.1 Benchmark problems

The previous analysis of theRDPSOprovides uswith a deep insight into themechanismof the
algorithm. However, it is not sufficient to evaluate the effectiveness of the algorithm without
comparing it with other methods on a set of benchmark problems. To evaluate the RDPSO
in an empirical manner, the first fourteen functions from the CEC2005 benchmark suite
(Suganthan et al. 2005) were employed for this purpose. Functions F1 to F5 are unimodal,
functions F6 to F12 are multi-modal, and F13 and F14 are two expanded functions. The
mathematical expressions and properties of the functions are described in detail in (Suganthan
et al. 2005). The codes in Matlab, C and Java for the functions can be found at http://
www.ntu.edu.sg/home/EPNSugan/. The dimension of each tested benchmark function in
our experiments is 30.

5.2 Empirical studies on the parameter selection of the RDPSO variants

Parameter selection is the major concern when a stochastic optimization algorithm is
employed to solve a given problem. For the RDPSO, the algorithmic parameters include
the swarm size, the maximum number of iterations, the thermal coefficient α and the drift
coefficient β. As in the canonical PSO, the swarm size in the RDPSO is recommended to be
set from 20 to 100. The selection of the maximum number of iterations depends on the prob-
lem to be solved. In the canonical PSO, the acceleration coefficients and the inertia weight
(or the constriction factor) have been studied extensively and in depth since these parameters
are very important for the convergence of the algorithm. For the RDPSO algorithm, α and β

play the same roles as the inertia weight and the acceleration coefficients for the canonical
PSO. In Sect. 3, it was shown that it is sufficient to set α and β according to (21), such that

 < 0, to prevent the individual particle from divergence and guarantee the convergence
of the particle swarm. However, this does not mean that such values of α and β can lead to
a satisfactory performance of the RDPSO algorithm in practical applications. This section
intends to find out, through empirical studies, suitable settings of α and β so that the RDPSO
may yield satisfactory algorithmic performance in general.

There are various control methods for the parameters α and β when the RDPSO is applied
to practical problems. A simple approach is to set them as fixed values when the algorithm
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is executed. Another method is to decrease the value of the parameter linearly during the
course of the search process. In this work, we fixed the value of β in all the experiments and
employed the two control methods for α, respectively.

To specify the value of α and β for real applications of the RDPSO, we tested the RDPSO-
Gbest, RDPSO-Gbest-RP, RDPSO-Lbest, and RDPSO-Lbest-RP with different parameter
settings on three frequently used functions from the CEC2005 benchmark suite: Shifted
Rosenbrock Function (F6), Shifted Rotated Griewank’s Function (F7), and Shifted Rastri-
gin’s Function (F9), using the two methods for controlling α with β fixed at 1.5 or 1.45. The
initial position of each particle was determined randomly within the initialization range. One
reason why only three functions were used for parameter selection is that we want to show
that the RDPSO algorithm is not very sensitive to the parameter values, and parameter values
found by optimizing these three functions can lead to good performance when optimizing
other functions in general. Another reason is that these three functions are widely used in the
existing literature and that the optimal parameter values for each function are very different,
that is, the optimal parameter values for a function may have a poor performance when used
for another function.

For each parameter configuration, each algorithm, using 40 particles, was tested for 100
runs on every benchmark function. To determine the effectiveness of each algorithm for the
α setting under a control method with a fixed value of β on each problem, the best objective
function value (i.e., the best fitness value) found after 5000 iterations was averaged over 100
runs of tests for that parameter setting and the same benchmark function. The results (i.e., the
mean best fitness values) obtained by the parameter settings with the same control method for
α were compared across the three benchmarks. The best parameter setting with each control
method for α was selected by ranking the averaged best objective function values for each
problem, summing the ranks, and taking the value that had the lowest summed (or average)
rank, provided that the performance is acceptable (in the top half of the rankings) in all the
tests for a particular parameter configuration.

The rankings of the results for the RDPSO-Gbest are plotted in Fig. 4. When the fixed
value method was used for α, it was set to a range of values subject to constraint (21), with β

fixed at 1.5 or 1.45 in each case. Results obtained for other parameter settings were very poor
and are not considered for ranking. The best average rank among all the tested parameter
configurations occurs when α = 0.7 and β = 1.5. When linearly varying α was used, its
initial value α1 and final value α2 (α1 > α2) were selected from a series of different values
subject to constraint (21), with β set at 1.5 or 1.45. Only acceptable results are ranked and
plotted in Fig. 4. It was found that with β = 1.45, decreasing α linearly from 0.9 to 0.3 leads
to the best performance among all the tested parameter settings.

The rankings of the results for the RDPSO-Gbest-RP are visualized in Fig. 5. It is clear
from these results that the value of α, whether it used the fixed value or time-varying method,
should be set relatively small, so that the algorithm is comparable in performance with the
RDPSO-Gbest, when β was given. Results obtained with α outside the range [0.38, 0.58]
were of poor quality and were not used for ranking. As shown in Fig. 5, when the fixed value
method for α was used, the best average ranks among all tested parameter settings were
obtained by setting α = 0.5 and β = 1.45. On the other hand, the algorithm exhibited the
average best performance when β = 1.45 and α was decreasing linearly from 0.6 to 0.2, for
the method of linearly varying α.

Figure 6 shows the rankings of the results for the RDPSO-Lbest. For the fixed α method,
the results of the algorithm obtained with α outside the range [0.6, 0.78] did not participate
in ranking because of their poor qualities. The best average ranking among all the tested
parameter configurations in this case occur when α = 0.7 and β = 1.5. For the linearly
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varying α method, it was identified that decreasing α linearly from 0.9 to 0.3 with β = 1.45
could yield the average best quality results among all the tested parameter configurations.

Figure 7 plots the rankings of the results for the RDPSO-Lbest-RP. For fixed α, the best
average ranking among all the tested parameter settings could be obtained when α = 0.7 and
β = 1.45. For time-varying α, the algorithm obtained the average best performance among
all the tested parameter configurations when α was decreasing linearly from 0.9 to 0.3 with
β = 1.45.

5.3 Performance comparisons among the RDPSO variants and other PSO
variants

To explore the generalizability of the parameter selection methods for α used for the RDPSO
in the last subsection, and to the determine whether RDPSO can be as effective as other vari-
ants of PSO, a further performance comparisonusing thefirst fourteenbenchmark functions of
the CEC2005 benchmark suite was made among the RDPSO algorithms (i.e., the RDPSO-
Gbest, RDPSO-Gbest-RP, RDPSO-Lbest and RDPSO-Lbest-RP) and other PSO variants,
including the PSO with inertia weight (PSO-In) (Shi and Eberhart 1998a, b, 1999), the PSO
with constriction factor (PSO-Co) (Clerc and Kennedy 2002; Clerc 1999), the PSO-In with
local best model (PSO-In-Lbest) (Liang et al. 2006), the standard PSO (SPSO) (i.e. PSO-
Co-Lbest) (Bratton and Kennedy 2007), the Gaussian bare bones PSO (GBBPSO) (Kennedy
2003, 2004), the comprehensive learning PSO (CLPSO) (Liang et al. 2006), the dynamic
multiple swarm PSO (DMS-PSO) (Liang and Suganthan 2005), and the fully-informed parti-
cle swarm (FIPS) (Mendes et al. 2004). Each algorithmwas run 100 times for each benchmark
function, using 40 particles to search the global optimal fitness value. At each run, the parti-
cles in the algorithms started in new and randomly-generated positions, which are uniformly
distributed within the search bounds. Each run of every algorithm lasted for 5000 iterations,
and the best fitness value (objective function value) for each run was recorded.

For the fourRDPSOvariants, itwas shown in the last subsection that the linearly decreasing
α with fixed β was stable in the search performance, although fixing both α and β had better
results in some cases. Thus, in this group of experiments for performance comparison, the
linearly decreasing α with fixed β was used for the RDPSO variants, and the parameters
for each case were set as those indentified and recommended by the previous experiments
on the three benchmark functions. These parameter configurations were selected from the
experiments on the three functions, so they are far fromoptimal. The parameter configurations
for other PSO variants were the same as those recommended by the existing publications.
For the PSO-In, the inertia weight linearly decreased from 0.9 to 0.4 in the course of the
run and we fixed the acceleration coefficients (c1 and c2) at 2.0, as in the empirical study
performed by Shi and Eberhart (1999). For the PSO-Co, the constriction factor was set to
be χ = 0.7298, and the acceleration coefficients c1 = c2 = 2.05, as recommended by
Clerc and Kennedy (2002). Eberhart and Shi also used these values of the parameters when
comparing the performance of the PSO-Co with that of the PSO-In (Eberhart and Shi 2000).
For the SPSO, the ring topology was used and other parameters were set as those in the
PSO-Co (Bratton and Kennedy 2007). Parameter configurations for the GBBPSO, FIPS,
DMS-PSO and CLPSO were the same as those in Kennedy (2003), Mendes et al. (2004),
Liang and Suganthan (2005), Liang et al. (2006), respectively. The justification for using the
recommended parameter settings for these PSO variants is that in their related papers, the
parameter configurations for these algorithms were tested on different benchmark functions,
including those three functions used in our experiments for the RDPSO. The performance of
these parameter settings were satisfactory and, thus, were recommended by the authors.
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Tables 1 and 2 record the mean and the standard deviation of the best fitness values out of
100 runs of each algorithm on each benchmark function. The bold in the tables corresponds
to the smallest ones among the mean best fitness values and the standard deviations obtained
for each function by all the compared algorithms. To investigate whether the differences in
the mean best fitness values among the algorithms were significant, a statistical multiple
comparison procedure was implemented to determine the algorithmic performance ranking
for each problem in a statistical manner. The procedure employed in this work is known as
the “stepdown” procedure (Day and Quinn 1989). The algorithms that were not statistically
different to each other were given the same rank; those that were not statistically different
to more than one other groups of algorithms were ranked with the best-performing of these
groups. For each algorithm, the resulting rank for each problem and the average rank across
all the tested fourteen benchmark problems are shown in Table 3.

For the Shifted Sphere Function (F1), the RDPSO-Lbest-RP generated better results than
the other methods. The results for the Shifted Schwefel’s Problem 1.2 (F2) show that the
PSO-Co and the GBBPSO performed better than the others, but the performance of the
CLPSO seems to be inferior to those of other competitors due to its slow convergence speed.
For the Shifted Rotated High Conditioned Elliptic Function (F3), the RDPSO-Gbest-RP
outperformed the other methods in a statistical significance manner. The SPSO was the
second best performing method for this function. The RDPSO-Gbest-RP showed to be the
winner among all the tested algorithms for the Shifted Schwefel’s Problem 1.2 with Noise
in Fitness (F4), and the RDPSO-Gbest was the second best performing for this problem. F5
is the Schwefel’s Problem 2.6 with Global Optimum on the Bounds. For this benchmark,
the RDPSO-Gbest-RP occupied the first place from the perspective of the statistical test. For
benchmark F6, the Shifted Rosenbrock Function, both the RDPSOs with the ring topology
outperformed the other algorithms. The results for the Shifted Rotated Griewank’s Function
without Bounds (F7) suggest that both the RDPSOs with local best model and the SPSO
were able to find the solution to the function with better quality compared to the other
methods. Benchmark F8 is the Shifted Rotated Ackley’s Function with Global Optimum
on the Bounds. The SPSO and the PSO-In-Lbest yielded better results for this problem
than the others. The Shifted Rastrigin’s Function (F9) is a separable function, which the
CLPSO algorithm was good at solving and obtained remarkably better results for. It can
also be observed that the RPDOS-Gbest yielded a better result than the remainders. F10
is the Shifted Rotated Rastrigrin’s Function, which appears to be a more difficult problem
than F9. For this benchmark, both the RDPSO-Lbest and RDPSO-Lbest-RP outperformed
the other competitors in a statistically significant manner. The best result for the Shifted
Rotated Weierstrass Function (F11) was obtained by the RDPSO-Gbest-RP. The RDPSO-
Gbest yielded the second best result which shows no statistical significance with that of
the RDPSO-Gbest-RP. When searching the optima of Schewefel’s Problem 2.13 (F12), the
RDPSO-Gbest-RP was found to rank first in algorithmic performance from a statistical point
of view.

F13 is the Shifted ExpandGriewank’s plus Rosenbrock’s Function, for which the RDPSO-
Lbest-RP, RDPSO-Lbest, and RDPSO-Gbest yielded better results than their competitors.
There are no statistically significant differences in algorithmic performance between the
three RDPSO variants. For the Shifted Rotated Expanded Scaffer’s F6 Function (F14), all
the RDPSO variants showed better performance than the others in a statistically significant
manner.

The average ranks listed in Table 3 reveal that the RDPSO-Gbest-RP had the best overall
performance for the fourteen benchmark functions among all the tested algorithms. Across
the whole suite of benchmark functions, it had fairly stable performance with the worst
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rank being 6 for F9. The second best-performing was the RPDSO-Lbest. For seven of the
benchmark functions, the algorithm had the first performance ranks. However, its result for
F2 is unsatisfactory due to its slow convergence speed. The RDPSO-Gbest had the third
best overall performance. Compared to the RDPSO-Gbest-RP, the RDPSO-Gbest performed
somewhat unstable, with the resulting ranks for F1 being only 8. The fourth best performing
was the RDPSO-Lbest-RP, which did not show satisfactory performance on F2 and F4.
Nevertheless, it had a significant advantage over the SPSO, the next best performing one.
Between random velocity components determined by the mbest position and the random
selected pbest position, the two versions of the RDPSO with the mbest position obtained the
total average rank of 2.79, while the two with the randomly selected pbest position had the
total average rank of 2.90. This means that there is no remarkable performance difference
for the tested functions between the two different methods for determining random velocity
components. What can be found from the total average ranks is that the RDPSO algorithms
were able to perform better by using the global best model (with the total average rank of
2.53) than the local best model (with the total average ranks of 3.00) for the first fourteen
CEC2005 benchmark functions. In addition, the total average rank over all the versions of the
RDPSO is 2.84, which implies that the RDPSOs with the linearly varying α and fixed β had
a satisfactory overall performance. Therefore, it is recommended that the linearly varying
α method with fixed β should be employed when the RDPSO is used for real applications
with the values of the parameters tuned finely around the values used in the experiments in
this work. More specifically, for the RDPSO-Gbest, RDPSO-Lbest and RDPSO-Lbest-RP,
the initial and final values of α can be selected from the intervals [0.8, 1.0] and [0.2, 0.4],
respectively, depending on the problem to be solved. For the RDPSO-Gbest-RP, the initial
and final values of α can be selected from the intervals [0.5, 0.7] and [0.1, 0.3], respectively.
The drift coefficient β can be valued on the interval [1.45, 1.5] for all he RDPSO variants.

Except the RDPSO algorithms, the best-performing algorithm was the SPSO, i.e. the
PSO-Co-Lbdest, which yielded the best results for F7 and F8. The next best algorithm was
DMS-PSO, obtaining the first performance rank for F3 and the worst rank for F6. The
GBBPSO was the next best-performing method. This is an important probabilistic PSO
variant and had good performance for unimodal functions. The FIPS, which also employs
the ring topology, ranked the firstwhen optimizing F2. From the total average ranks in Table 3,
it is conclusive that incorporating the ring topology into the PSO-In and the PSO-Co could
enhance the overall performance of the two PSO variants on the tested benchmark functions.
What should be noticed is that the CLPSO is very effective in solving separable functions
such as F9, but not in the rotated functions and unimodal ones due to its slower convergence
speed, as has been indicated in the related publication (Liang et al. 2006).

6 Conclusion

In this paper, based on our preliminary previous work, we made a comprehensive study
on the RDPSO algorithm, by analyzing the particle behavior and the search mechanism of
the algorithm and empirically investigating the four newly proposed variants of the RDPSO
algorithm.

A comprehensive analysis of the RDPSO algorithm and its variants was made in order to
have a better understanding of the mechanism behind the algorithm. Firstly, the stochastic
dynamical behavior of a single particle in the RDPSOwas analyzed theoretically.We derived
the sufficient and necessary condition as well as a sufficient condition for the particle’s
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current position to be probabilistically bounded. Secondly, the search behavior of the RDPSO
algorithm itself was investigated by analyzing the interaction between the particles, and it
was found that the RDPSOmay have a good balance between the global and the local search,
due to the designed random component of the particle’s velocity. In addition, four variants of
the RDPSO algorithm were proposed by combining different random velocity components
with different neighborhood topologies.

Empirical studies on the RDPSO algorithm were carried out on the first fourteen bench-
mark functions of thewell-knownCEC2005 benchmark suite. Twomethods of controlling the
algorithmic parameters were employed, and each RDPSO variant, with each control method,
was first tested on three of the benchmark functions in order to identify the parameter val-
ues that can generate satisfactory algorithmic performance. Then, the RDPSO variants with
linearly decreasing thermal coefficients and fixed drift coefficients, which were identified to
have stable algorithmic performance, were further compared with other forms of PSO on the
fourteen functions. The experimental results show that the RDPSO algorithm is comparable
with, or even better, than the other compared PSO variants in finding the optimal solutions
of the tested benchmark functions.
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Appendix

Theorem 1 If there is only drift motion for the particle, i.e. V j
i,n+1 = V D j

i,n+1 a sufficient

condition for X j
i,n+1 to converge to p j

i,n is 0 < β < 2.

Proof From Eqs. (14) and (16), we can find that

X j
i,n+1 − p j

i,n+1 = (1 − β)
(
X j
i,n − p j

i,n

)
+ p j

i,n − p j
i,n+1, (23)

When the RDPSO algorithm is running, the personal best positions of all the particles
converge to the same point. Consequently, {p j

i,n} is a convergent Cauchy sequence such that
lim
n→∞|p j

i,n − p j
i,n+1| = 0. Since 0 < β < 2, 1 − |1 − β| > 0. Thus, it holds that

lim
n→∞

[∣∣p j
i,n − p j

i,n+1

∣∣/(1 − |1 − β|)
]

= 0,

which means that for any ε > 0, there exists an integer K > 0 such that whenever n ≥ K ,∣∣p j
i,n − p j

i,n+1

∣∣ < ε · (1 − |1 − β|). (24)

Therefore, from inequality (24), we have
∣∣X j

i,n+1 − p j
i,n+1

∣∣ − ε ≤ ∣∣1 − β
∣∣ (∣∣X j

i,n − p j
i,n

∣∣ − ε
)

. (25)

This implies that for any n > K ,

∣∣X j
i,n − p j

i,n

∣∣ ≤ ε +
(

n−1∏
k=K

|1 − β|
) ∣∣X j

i,K − p j
i,K

∣∣. (26)
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Since 0 ≤ |1 − β| < 1, lim
n→∞

∏n−1
k=K |1 − β| = limn→∞|1 − β|n−K = 0. Hence

lim
n→∞ sup

∣∣X j
i,n − p j

i,n

∣∣ ≤ ε. (27)

As ε is arbitrary and |X j
i,n − p j

i,n | ≥ 0, therefore

lim
n→∞

∣∣X j
i,n − p j

i,n

∣∣ = 0. (28)

This completes the proof of the theorem. ��
Theorem 2 The necessary and sufficient condition for the position sequence of the particle
{Xn} to be probabilistically bounded is that ρn = ∏n

i=1 λi does not diverge, namely, ρn is

probabilistically bounded (i.e. P

{
sup
n≥1

ρn < ∞
}

= 1.

Proof From Eqs. (17) and (18), the update equation of the particle’s position is given by

Xn+1 = α(Xn − C)ϕn+1 − β(Xn − p) + Xn, (29)

from which we immediately have

Xn+1 − C = α(Xn − C)ϕn+1 − β(Xn − p) + Xn − C

= [αϕn+1 + (1 − β)](Xn − C) + β(p − C)

= λn+1(Xn − C) + β(p − C). (30)

Since λn+1 is a continuous randomvariable, P{λn+1 = 1} = 0. Considering thatβ(p−C)

is probabilistically bounded, we have that r = β(p−C)
1−λn+1

is also a probabilistically bounded
random variable. From (30), we can obtain

Xn+1 − C − r = λn+1(Xn − C − r), (31)

From which we can recursively derive the following formula

Xn = (X0 − C − r)
n∏

i=1

λi + C + r. (32)

Since X0 − C − r is probabilistically bounded, Xn is probabilistically bounded if and only
if ρn = ∏n

i=1 λi is probabilistically bounded. This completes the proof of the theorem. ��

Theorem 3 Let 
 = E(ξn) = 1√
2πα

∫ +∞
−∞ ln |x |e− [x−(1−β)]2

2α2 dx, where ξn = ln |λn | and
λn ∼ N (1−β, α2). (1) The necessary and sufficient condition for ρn = ∏n

i=1 λi to converge
to zero with probability 1 is 
 < 0. (2) The necessary and sufficient condition for ρn to be
probabilistically bounded, i.e. P{sup ρn < ∞} = 1, is 
 ≤ 0.

Proof By Kolmogorov’s strong law of large numbers (Shiryayev 1984), it holds that

P

{
lim
n→∞

1

n

n∑
i=1

ξi = E(ξ1) = 


}
= 1, (33)

which is equivalent to the proposition that ∀m ∈ Z+, ∃K1 ∈ Z+ such that whenever k ≥ K1,


 − 1

m
<

1

k

∑k

i=1
ln |λi | < 
 + 1

m
. (34)
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(1) Proof of the necessity. If P{limn→∞ ρn = 0} = 1, we have that P{limn→∞ ln |ρn | =
limn→∞

∑n
i=1 ln |λi | = −∞} = 1, that is, ∀m ∈ Z+, ∃K2 ∈ Z+, such that whenever

k ≥ K2
∑k

i=1 ln |λi | < −m and thus

1

k

k∑
i=1

ln |λi | < −m

k
. (35)

Therefore, ∀m ∈ Z+, there exists K = max(K1, K2) such that whenever k ≥ K , both
inequalities (34) and (35) holds, from which we have, 
 − 1/m < −m/k, namely, 
 <

1/m − m/k. Let k → ∞, and considering the artibrariness of 1/m, we obtain 
 < 0.
Proof of the sufficiency. If
 < 0, from (33) we have P{limn→∞(1/n)

∑n
i=1 ξi < 0} = 1,

which implies that ∃δ > 0, ∃K ∈ Z+, such that whenever k ≥ K , (1/k)
∑k

i=1 ln |λi | < −δ,
that is

k∑
i=1

ln |λi | < −kδ. (36)

Due to the arbitrariness of δ, we find that limn→∞
∑k

i= ln |λi | = −∞, which means that
P{limn→∞ρn = limn→∞

∏n
i=1 λi = 0} = 1. This completes the proof of the sufficiency.

(2) From (33), we have the following equivalent propositions:


 = 0 ⇔ P

{
lim
n→∞

1

n

∑n

i=1
ξi = 0

}
= 1

⇔ ∀ε > 0, ∃K ∈ Z+, such that whenever k ≥ K , P

{∣∣∣∣1k
∑k

i=1
ξi

∣∣∣∣ < ε

}
= 1

⇔ ∀ε > 0, ∃K ∈ Z+, such that whenever k ≥ K , P{−kε <
∑k

i=1
ξi < kε} = 1

⇔ P{−∞ < limn→∞ ln ρn < ∞} ⇔ P{0 < limn→∞ ρn < ∞}. (37)

Thus, considering the case for 
 < 0 in (1) and the case for 
 = 0, we find that the first
proposition in (1) holds.

Similarly,


 > 0 ⇔ P

{
lim
n→∞

1

n

n∑
i=1

ξi > 0

}
= 1

⇔ ∃δ > 0, ∃K ∈ Z+, such that whenever k ≥ K , P

{
1

k

k∑
i=1

ζi > δ

}

= 1, i.e. P

{
k∑

i=1

ζi > kδ

}
= 1

⇔ P

{
lim
n→∞

k∑
i=1

ξi = ∞
}

= 1 ⇔ P
{
lim
n→∞ ln ρn = +∞

}
= 1 (38)

Thus the second proposition in (2) holds.
This completes the proof of the second part of the theorem.

Theorem 4 A sufficient condition for ρn = ∏n
i=1 λi to be probabilistically bounded is that

0 < α < 1 and 0 < β < 2.
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Proof Since {λn} is a sequence of independent identically distributed (i.i.d.) randomvariables
with each λn subject to the same normal distribution, i.e., λn ∼ N (1−β, α2), the expectation
and the variance of ρn = ∏n

i=1 λi can be given by

E[ρn] = E

[
n∏

i=1

λi

]
= [E[λn]]n = (1 − β)n, (39)

and

Var [ρn]=E[(ρn)2] − E[ρn]2=E

[
n∏

i=1

λ2i

]n

− E[ρn]2 = [α2 + (1 − β)2]n−(1 − β)2n .

(40)

A sufficient condition for ρn to converge is E[ρn] → 0 and Var [ρn] → 0 (i.e., mean square
convergence of ρn), which implies that 0 < β < 2 and 0 < α < 1. This completes the proof
of the theorem. ��
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