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ABSTRACT. Two groups of agents, G| and Gy, face a moral conflict if G; has a moral
obligation and G, has a moral obligation, such that these obligations cannot both be fulfilled.
We study moral conflicts using a multi-agent deontic logic devised to represent reasoning
about sentences like ‘In the interest of group F of agents, group G of agents ought to see to
it that ¢’. We provide a formal language and a consequentialist semantics. An illustration
of our semantics with an analysis of the Prisoner’s Dilemma follows. Next, necessary and
sufficient conditions are given for (1) the possibility that a single group of agents faces a
moral conflict, for (2) the possibility that two groups of agents face a moral conflict within a
single moral code, and for (3) the possibility that two groups of agents face a moral conflict.
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1. INTRODUCTION

Moral conflicts, their existence, and the conditions for their existence are
among the divisive elements in meta-ethics. In the philosophical literature,
moral conflicts are usually studied from the standpoint of a single agent.!
From such a single-agent point of view, an agent faces a moral conflict if the
agent has two moral obligations that cannot both be fulfilled. By raising the
study of moral conflicts from a single-agent to a multi-agent perspective,
we generalize the concept of moral conflict: two groups of agents, G; and
G», face a moral conflict if G| has a moral obligation and G, has a moral
obligation, such that these obligations cannot both be fulfilled. (If the two
groups are identical and consist of a single agent, the moral conflict boils
down to a single-agent moral conflict in the usual sense.)

Given two moral obligations, one may ask whether these obligations
stem from the same moral code or not. In Sophocles’s Antigone, Creon’s
obligation not to bury the traitor Polynices stems from the civic values
of the city he represents, whereas Antigone’s obligation to bury her
brother Polynices stems from religious and family values. For reasons
of uniformity, we shall confine our present investigation to moral codes
that can be formulated in a consequentialist fashion. More specifically,
each group F of agents defines a moral code stipulating that F’s collective
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interest is to be maximized. Accordingly, the group of all agents defines the
moral code of utilitarianism: an agent has a certain utilitarian obligation if
this obligation stems from the moral code that the collective interest of the
group of all agents is to be maximized. Moreover, an agent only accepting
the moral code defined by himself is an ethical egoist, who is to maximize
his own self-interest. Henceforth, a moral obligation is indexed by two
groups of agents, G and F. G indicates the group who has the obligation.
F refers to the interest group who defines the consequentialist moral code
from which the obligation stems.

Fulfilling a moral obligation involves doing what one ought to do. Hence,
J.L. Austin hit the mark with his suggestion that “before we consider
what actions are good or bad, right or wrong, it is proper to consider first
what is meant by, and what not, (..) the expression ‘doing an action’ or
‘doing something’” (Austin, 1957, p. 178).2 In our logical analysis of moral
conflicts between groups of agents, we adopt Austin’s suggestion. On the
basis of the well established stit logics of agency developed by Nuel Belnap
and others (Belnap et al., 2001), we present a consequentialist system
of multi-agent deontic logic, which is a generalization of John Horty’s
utilitarian deontic logic (Horty, 2001). By means of our consequentialist
deontic logic, we investigate the logical interaction between (1) alethic
statements having the form ‘It is possible that ¢p* (abbreviated as ¢¢), (2)
agentive statements having the form ‘Group G of agents sees to it that ¢’
(abbreviated as [G]¢), and (3) deontic statements having the form ‘In the
interest of group F of agents, group G of agents ought to see to it that ¢’
(abbreviated as @g o).

This language enables us to give a formal definition of moral conflicts.
Two groups of agents, G; and G,, face a moral conflict if and only if there
are formulas ¢ and i, such that both @é:l'qﬁ and @éjw are true, whereas
O(¢ A ) is false. Note that if ¢ and v cannot both be true, the truth of
implies the falsity of ¢ and, hence, having a moral obligation to see to it
that v implies having a moral obligation to see to it that —¢. Therefore, any
moral conflict between G, and G, implies a basic moral conflict between
those groups: two groups of agents, G; and G,, face a basic moral conflict if
and only if there is a formula ¢, such that both @5}‘ ¢ and @522 —¢ are true.
(Obviously, non-existence of basic moral conflicts implies non-existence
of moral conflicts fout court.) Thus, formulas of the form

L A OG—

will be central to our current investigation.
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As a useful leg up to our formal results concerning moral conflicts
between groups of agents, we illustrate our deontic logic with a formal
analysis of the Prisoner’s Dilemma. We shall show that the game theoretic
dilemma can be completely translated into our model theory and that our
semantics rules that each prisoner ought to confess in his own interest, but
also that each prisoner ought not to confess in the collective interest of both
prisoners: hence, each prisoner faces a basic moral conflict. Roughly, we
shall show that a single group of agents may face a basic moral conflict if
and only if the pertinent obligations stem from different moral codes. Or
equivalently, a single group of agents cannot face a basic moral conflict if
and only if the pertinent obligations stem from a single moral code. How
about two groups? Might two groups of agents face a moral conflict of
which the pertinent obligations stem from a single moral code?

Standard deontic logic entirely rules out such moral conflicts. The non-
existence of moral conflicts within a single moral code is ensured by the
joint validity of the principles O¢ — (¢ (‘ought’ implies ‘can’) and (O¢ A
OvY) — O(¢ A ) (deontic agglomeration).* In our logic, the translates
of these principles are the following:

®§¢ — QlGle (‘ought’ implies ‘can’)
(@Z; O @5 ) — @Z; (d ANY¥) (deontic agglomeration)

Both principles are valid according to our semantics. Nevertheless, their
validity does not preclude the possibility of moral conflicts within a single
moral code.’ Roughly, we shall show that two groups of agents may face a
basic moral conflict of which the pertinent obligations stem from a single
moral code if and only if the two groups have at least one common member
and neither of the two groups is a subgroup of the other.

The set-up of the paper is as follows. In the next section, we fix a formal
language for our multi-agent deontic logic and provide a consequentialist
semantics for it. We illustrate our semantics in Section 2.5.2 with an
instance of the Prisoner’s Dilemma. In Section 3.1 we give a formal
characterization of the possibility that a single group of agents faces a basic
moral conflict. In Section 3.2 we formally characterize the possibility that
two groups of agents face a basic moral conflict stemming from a single
moral code. These two formal characterizations are combined in Section 3.3
to obtain a formal characterization of the possibility that two groups of
agents face a moral conflict. We conclude the paper with a short discussion
of our results.
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2. LANGUAGE AND SEMANTICS

2.1. Language

Throughout the paper, we use a propositional modal language £ built from
a countable set B = {p;, p», ...} of atomic propositions and a finite set

A ={ay, ..., a,} of individual agents. £ is the smallest set (in terms of
set-theoretical inclusion) satisfying the conditions (i) through (v):°
i PcL

(i) Ifp e Landy € £, then (P AY) € Land (¢ — ) € £
(iii) If¢p € £,then —¢ € £ and O¢p € £

(iv) Ifp e LandG C A, then [G]p € £

(v) If¢p € Land F C Aand G C A, then ©Of¢ € L.

We leave out brackets and braces if the omission does not give rise to
ambiguities.

This formal language enables us to formalize a rather broad class of
moral obligations, because there is no necessary connection between the
group G who has a certain obligation and the group F who defines the
moral code from which the obligation stems. Two examples: a utilitarian
obligation like ‘In the interest of all agents, group G of agents ought to see
toitthat ¢’ can now be formalized as (Déqb, since A denotes the group of all
agents. An egoistic obligation like ‘In his own interest, the agent a ought
to see to it that ¢” can be rendered as ©f¢.

We shall evaluate formulas of the language £ in consequentialist models.

2.2. Consequentialist Models

DEFINITION 1. A consequentialist model 9 is an ordered pair (&, J),
where G is a choice structure and J an interpretation.

Choice structures are defined over a non-empty set W of possible worlds
and a finite set A of agents. Interpretations assign agent-relative utilities to
possible worlds and world-relative truth-values to atomic propositions.

For clarity’s sake we do not take up Horty’s branching-time models to
evaluate deontic formulas. Instead, we here adopt a rather standard possible
worlds approach.7 Hence, our models represent possibilities, group actions,
and group obligations at a single moment in time.

2.3. Choice Structures

DEFINITION 2. A choice structure G is a triple (W, A, Choice), where
W is a non-empty set of possible worlds, A a finite set of agents, and
Choice a choice function.
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2.3.1. Choice Functions

Given a non-empty set W of possible worlds and a finite set A of individual
agents, we define choice sets of individual agents by a choice function
from individual agents to sets of sets of possible worlds, i.e., Choice :
A — p (e (W)), meeting the conditions that (1) for each individual agent
a in A it holds that Choice(a) is a partition of W, and (2) for each selection
function s assigning to each individual agent a in A a set of possible worlds
s(a) such that s(a) € Choice(a) it holds that (., s(a) is non-empty.3

For example, let W = {w, wy, w3, ws} and A = {a, b}. Define
Choice(a) = {{wq, wy}, {ws, wa}} and Choice(b) = {{w;, ws}, {wa, wa}}.
Then Choice is a choice function, since it meets the two conditions: (1) both
Choice(a) and Choice(b) are partitions of W, and (2) for each of the four
selection functions s assigning to agent a an option s(a) in Choice(a) and
to agent b an option s(b) in Choice(b) it holds that s(a) N s(b) # @.°

Choice sets for groups of agents are given by a choice function from
sets of individual agents to sets of sets of possible worlds, i.e., Choice :
©(A) = o (o (W)). Just like Horty does, we define group choices in
terms of individual choices, thereby giving an affirmative answer to von
Wright’s question “whether acts attributed to collective agents could not
be regarded as ‘logical constructions’ of acts of some individual agents”
(von Wright, 1963, pp. 38-39). To be precise, given a choice function
Choice from individual agents to sets of sets of possible worlds and given
the corresponding set Select of selection functions s assigning to each
individual agent a in A an option s(a) in Choice(a), we define

Choice(G) = {ﬂ s(a):s € Select} ,
aeg

if G is non-empty. Otherwise, Choice(G) = {W}. Thus, in our present
example, Choice({a, b}) = {{w}, {wa}, (w3}, {ws}}."?

The proof of our theorem on moral conflicts within a single moral code
(Section 3.2) makes use of some facts concerning choice functions:

LEMMA 1. Let 6(= (W, A, Choice)) be a choice structure. Let Gy, G, C
A. Then

(i) If Choice(Gy) = Choice(G,), then Choice(G; — Go) ={W}
(i) If Choice(G;)={W}, then Choice(G,) = Choice(G, U G,)
(i) If Choice(G, — Gy) ={W}, then Choice(G;) = Choice(G, N G,)
(iv) If Choice(Gy)=Choice(G,), then Choice(A — G;) = Choice
(A —Gy).



6

BARTELD KOOI AND ALLARD TAMMINGA

Proof.

@

(ii)

(iii)

(iv)

Assume Choice(G)) = Choice(G,). Suppose Choice(Gi—G,) #
{W}. Then there are K, K’ € Choice(G; — G,) such that K N K' =
(). Take an M € Choice(G;NG,). It holds that K "M, K'N M €
Choice(Gy) and (KNM)N(K'NM)=@. By our assumption,
KNM,K' NM € Choice(Gy). Thenthereare L, L’ € Choice(G, —
G1) such that KN M=LNM and K'N"M = L' N M. Since K €
Choice(G, — G) and L’ € Choice(G, — Gy) and M € Choice(G; N
G»), it must be that K N L' N M € Choice(Gy UG,) and K N L' N
M #@. But (K "M)N(L'N M) =. Contradiction. Therefore,
for all K, K’ € Choice(G; — Q) it holds that K N K’ # @. Given
the conditions on Choice, it must be that Choice(G, — G,) = {W}.
Assume Choice(Gy) = {W}. Then it must be that Choice(G,— G,) =
{W}. (=) Suppose K € Choice(Gy). Since W € Choice(Gi— G»)
and K € Choice(G,), it must be that W N K € Choice(Gy U G,).
Hence, K € Choice(G; U G,). (<) Suppose K € Choice(G; U Gy).
Then there are L € Choice(G; — G,) and M € Choice(G,) such that
K=LNM.Then L =W and K = M. Hence, K € Choice(G,).
Assume Choice(G, — G,) = {W}. By (ii), it must be that
Choice(G; N G>) = Choice((Gy — G>) U (G N G,)). Therefore,
Choice(Gy N Gy) = Choice(Gy).

Assume Choice(Gy) = Choice(G,). By (i), it must be that
Choice(Gy—Go) ={W}=Choice(G> — Gy). Then Choice(A — G;)

= Choice((A—(G1UG,))U(G,—G1)) by elementary set theory

= Choice(A—(G1UG)) by (ii)

= Choice((A—(G1UG2)) U (G1—G2)) by (ii)

= Choice(A—G>) by elementary set theory.
Therefore, Choice(A — G) = Choice(A — Gy). o

2.3.2. G-choice Equivalence of Worlds

In choosing an option K from Choice(G), the group G of agents restricts the
total set of possible worlds to the possible worlds in the set K. A formula
of the form [G]¢, informally interpreted as ‘Group G of agents sees to it
that ¢’, is true in a world w if and only if ¢ is true in all possible worlds
that are elements of the option of G that contains w. Or, equivalently, if and



MORAL CONFLICTS BETWEEN GROUPS OF AGENTS 7

only if for all possible worlds w’ that are G-choice equivalent to world w it
holds that ¢ is true in world w’. G-choice equivalence is defined as follows:

DEFINITION 3. (G-choice Equivalence) Let &(= (W, A, Choice)) be a
choice structure. Let G € A.Letw, w' € W. Then w ~g w’ (w and w' are
G-choice equivalent) is defined to be:

w ~¢g w' iff for all K € Choice(G) with w € K it holds that w’ € K.

Thus, in our previous example, it holds that w; ~, w, and that w % w;.
After this discussion of choice structures, we must define their
interpretations.

2.4. Interpretations

DEFINITION 4. An interpretation J is an ordered pair (Utility, V'), where
Utility is a utility function and V a valuation function.

2.4.1. Utility Functions

The relation between individual utilities and group utilities is a subject
bristling with pitfalls. Without taking a definite stance on this issue, we
adopt, for the sake of the argument, John Harsanyi’s proposal and conceive
of group utility as the arithmetical mean of the individual utilities of the
agents involved.!! Obviously, the arithmetical mean of individual utilities
can only be given a clear meaning if we can make interagential comparisons
of individual utilities. To make possible such comparisons, we here start
from the assumption that all individual utilities are normalized and that
they are given by a utility function from ordered pairs consisting of an
individual agent and a possible world to the real numbers between, say,
—5and5, i.e., Utility : A x W +— [—5, 5]. Thus, if an individual agent a
assigns to a possible world w a utility of 4, we write Utility(a, w) = 4.
Group utilities are given by a utility function from ordered pairs
consisting of a set of individual agents and a possible world to real numbers
between —5 and 5, i.e., Utility : pp (A) x W — [—5, 5]. We define group
utilities in terms of individual utilities, assuming that (1) in assessing the
group utility of a given possible world, the individual utilities that are
assigned to that world by the individual agents in the group are to be
weighed equally, and (2) group utilities of groups of different sizes are to
be comparable. Hence, the group utility a group F of agents assigns to
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a possible world w is defined as the arithmetical mean of the individual
utilities the individual agents in JF assign to w:

1

Utility(F, w) = —
& 7

> utility(a, w),

aeF

if F is non-empty. Otherwise, Utility(F, w) = 0. Thus, if Utility(a, w) = 4
and Utility(b, w) = 0, then Utility({a, b}, w) = 2.

2.4.2. Valuation Functions

Valuations are given by a valuation function from ordered pairs consisting
of an atomic proposition and a possible world to the truth-values TRUE
and FALSE, ie., V : 3 x W — {TRUE, FALSE}, where TRUE # FALSE.
Thus, if an atomic proposition p is true in a possible world w, we write
V(p, w) = TRUE.

2.4.3. F-dominance between G’s Options

Roughly, a formula of the form @5 ¢, informally interpreted as ‘In the
interest of group F of agents, group G of agents ought to see to it that
¢’, is true in a world w if and only if for all options K in Choice(G)
that do not ensure ¢ there is a strictly F-better option K’ in Choice(G)
such that (1) option K’ ensures ¢, and (2) all options K” that are at
least as F-good as K’ also ensure ¢. Following (Horty, 1996) and (Horty,
2001), we interpret “F-betterness” decision-theoretically and define it as
F-dominance. Our relation of F-dominance is a generalization of Horty’s
dominance relation.'?

When a group G performs a collective action by choosing an option K
from Choice(G), it constrains the set W of possible worlds to that set K of
possible worlds. It may be, however, that the agents who are not members of
G (and who therefore are members of the group A — G) perform a collective
action by choosing an option S from Choice(A — G), thereby constraining
the set K to the non-empty set of possible worlds K N S. (Note that the
condition of agent independence ensures that K N S is non-empty.) Hence,
G usually will not be able to fully determine the outcome of its collective
actions, since the final outcome also depends on the actions of agents in
A — G. Nevertheless, we can define an F-dominance relation, denoted by
zg ,over G’s options. If K and K’ both are in Choice(G), then, intuitively,
K ig K’ is true if and only if K promotes the utility of group F at least
as well as K’, regardless of the collective action of the agents in A — G.
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Hence, we insert an interest group JF in Horty’s Definitions 4.1 and 4.5
(Horty, 2001, p. 60 and p. 68) to define F-dominance:

DEFINITION 5. (F-dominance) Let 9(= (&, J)) be a consequentialist
model. Let F,G C A and let K, K’ € Choice(G). Then K =} K' (K
weakly F-dominates K' for G) is defined to be:

K =7 K' iff forall S € Choice(A — G) and for all w, w' € W
it holds thatif w € K N Sand w’ € K'N S, then
Utility(F, w) > Utility(F, w').

As usual, K >§ K’ (K strongly F-dominates K' for G) if and only if
K =7 K'and K’ #] K.

The proof of our theorem on moral conflicts within a single moral code
(Section 3.2) relies on the following lemmas about F-dominance:

LEMMA 2. Let 9(= (&, J)) be a consequentialist model. Let F, G,
G, € A. Then

If Choice(Gy) = Choice(G>), then K =}, K'iff K =} K.
Proof. Immediate from Lemma 1(iv). O

LEMMA 3. Let 9(= (&, 7)) be a consequentialist model. Let F, Gy,
G, €A such that GiNG, =@. Let K, K’ € Choice(G;) and L €
Choice(G). Then

F g w /
It K >g K', then K N L =(g g, K'NL.

Proof. Assume K ig K'. Take L € Choice(G,). Suppose that S e
Choice(A — (GiUG)andw e KNLNSand w € K'"NLNS. Since
G NGy =0, it holds that L NS € Choice(A — Gy). Hence, by our as-
sumption, it holds that Utility(F, w) > Utility(F, w'). O

2.5. Semantics

Having defined the notions of a consequentialist model, of G-choice
equivalence, and of F-dominance, we now give the semantical rules
stipulating the conditions under which a formula ¢ from £ is true in a
world w in a consequentialist model 9J1. Next, we list some standard deontic
formulas that are true according to this semantics. As usual, [¢]lon refers
to the set of possible worlds in 97 that validate ¢.
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2.5.1. Semantical Rules and Tautologies

DEFINITION 6. (Semantical Rules) Let 9t(= (S, J)) be a consequen-
tialist model. Let w € W and let ¢, ¥ € £. Then

i MwErp iff V(p,w) =TRUE, ifpe‘P
(i) M, w = ¢ iff M, w &P
i) MwkEdAYy iff MwEdand M, wE Y
iv) Mw =¢ — Y iff M, w = ¢ and/or M, w =
V) MwEOp iff there is a w’in W such that 9%, w’ = ¢
(vi) M, w =[Gle iff for all w'in Wwith w ~¢ w’ it holds
that 9%, w’' = ¢
(vil) M, w E Qg ¢ iff for all K in Choice(G) with K Z [¢Tlon
there is a K’ in Choice(G) with K’ C [¢]lon
such that (1)K’ =% K, and (2) for all K"
in Choice(G) with K” zg K’ it holds that
K" C [¢llom.

For the purpose of practicality, we introduce the following notational
conventions: Given a model 91, we write 9 = ¢, if for all worlds w
in W it holds that 9, w = ¢. We write = ¢, if for all models 97 it
holds that 91 = ¢. Given a choice structure &, we write G = ¢, if for
all interpretations J of & it holds that (G, J) = ¢.

LEMMA 4. Let ¢, ¢ € £. Then
(i) E=of¢— 0lGl¢ (‘ought’ implies ‘can’)
(i) Iff=¢ < ¢, then = OF¢ < Ofy

(i) If = ¢, then = OF ¢
(iv) E QL@ AY) = (OFe AOGY)

V) = (©F¢ AOFY) > OF @ Ay)  (deontic agglomeration)

Proof. The proofs of (i) through (iv) are straightforward. The proof of (v)
is analogous to the one in (Horty, 2001, pp. 166-167). O

2.5.2. An Example: the Prisoner’s Dilemma

We now fulfill the promise made in the introduction and illustrate our
consequentialist semantics for multi-agent deontic logic with an analysis of
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the Prisoner’s Dilemma. The Prisoner’s Dilemma is a two-player strategic
game, represented by the following payoff matrix (Osborne and Rubinstein,
1994, p. 17):

Don’t confess ~ Confess

Don’t confess 3,3 0,4

Confess 4,0 1,1

This payoff matrix can be translated into a consequentialist model
M(= (S, J)), where we interpret game theoretic utilities as normalized
individual utilities. The choice structure & is given by W ={w;, wy,
w3, wa}, A={a, b}, Choice(a)= {{w, w,}, {ws, ws}}, and Choice(b) =
{{wy, w3}, {wa, we}}. The interpretation J is given by

Utility(a, wy) = 3 Utility(b, wy) = 3
Utility(a, wy) =0 Utility(b, wy) = 4
Utility(a, wz) =4  Utility(b, w3) =0
Utility(a, wy) = 1 Utility(b, wy) = 1,

and V(p, w) = TRUE if and only if w € {ws, w4}, and V (g, w) = TRUE
if and only if w € {w,, wy}. We read p as ‘Agent a confesses’ and g as
‘Agent b confesses’.

In this model 971, each individual agent faces a basic moral conflict. Both
statements ‘In the interest of agent a, agent a ought to see to it that p’ and
‘In the interest of the group of agents consisting of a and b, agent a ought
to see to it that —p’ are true in 91. The situation for b is analogous. Hence,
I gives rise to two single-agent basic moral conflicts:

M= O%p A Q%P=p and M = OLg A L —q.

Let us see why this follows from our semantics. We show that forallw € W
it holds that (i) 9, w = ©f p and (i) M, w = @Z’b—'p. Letw € W.

Ad (1). M, w = Of p if and only if for each K € Choice(a) with K &
[pllon there is a K’ € Choice(a) with K" C [pllon, such that K’ >¢ K,
and foreach K" € Choice(a) with K” =% K’ itholds that K” C [ pllon. By
definition of 91, itholds that Choice(a) = {{w;, w,}, {ws, w4}}. Moreover,
it holds that {w;, wy} € [pllon and {ws3, ws}  [pllon. Hence, we only
need to check {ws, wa} >4 {wy, wa}.

Notice that {wsz, wa} >4 {wy, wy} if and only if {ws3, wa} >4 {wy, wo}
and {w, wa} #4 {ws, ws}. The first conjunct holds if and only if for all
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S € Choice(b) and for all w, w € W it holds that if w € {wz, w4} NS
and w’ € {wy, wy} NS, then Utility(a, w) > Utility(a, w’). By definition
of 9, it holds that Choice(b) = {{w;, w3}, {wz, wya}} and Utility(a, w3) >
Utility(a, w) and Utility(a, ws) > Utility(a, w,). Hence, the first conjunct
holds. The second conjunct holds if and only if there is an S € Choice(b)
and there are w, w' € W such that w € {wy, wo} N S and w’ € {ws, wa} N
S and Utility(a, w) < Utility(a, w'). Any S € Choice(b) suffices. Hence,
the second conjunct holds.

Ad (ii). M, w = O%’=p can be shown analogously. Note that
Utility({a, b}, wy) > Utility({a, b}, ws) and Utility({a, b}, wp) > Utility
({a, b}, wq)."

Two additional remarks are in order. First, both statements ‘In the interest
of the group of agents consisting of a and b, the group of agents consisting
of a and b ought to see to it that —p’ and ‘In the interest of the group of
agents consisting of a and b, the group of agents consisting of @ and b ought
to see to it that —¢g’ are true in 9. Hence, 9T gives rise to two multi-agent
basic moral conflicts:

M E=OLp A @Z:I,;—'p and M = Ohg A @Z:i—-q.

Second, notice that the agent a cannot see to it that agent b confesses and
that the agent b cannot see to it that agent a confesses. Accordingly, both
statements ‘In the interest of the group of agents consisting of a and b,
agent a ought to see to it that =p A —¢’ and ‘In the interest of the group
of agents consisting of a and b, agent b ought to see to it that —=p A —¢g’
are false in 9. Hence, it holds that

M W OLP(—p A —g) and M = QL (—p A —q).

In sum, our consequentialist semantics for multi-agent deontic logic
provides a formal and fairly accurate account of some important senses of
“moral obligation” in the Prisoner’s Dilemma. Our logic does not, of course,
solve the Prisoner’s Dilemma, since it does not prescribe individual agents
a and b to further the interest of the group {a, b} rather than to advance
their individual interest, nor the other way round.

3. THREE CHARACTERIZATIONS OF MORAL CONFLICTS

Let us now address the problem of basic moral conflicts from a metalogical
viewpoint. We take up Johan van Benthem’s notion of a modal formula
characterizing a frame property and adapt it to the present situation.'# By
proving that certain deontic formulas characterize certain properties of
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choice structures, we give necessary and sufficient conditions for (1) the
possibility that a single group of agents faces a basic moral conflict, for (2)
the possibility that two groups of agents face a basic moral conflict within
a single moral code, and for (3) the possibility that two groups of agents
face a basic moral conflict.

DEFINITION 7. (Characterization) Let € be a class of choice structures
andlet ¢ € £. Then ¢ characterizes €, if for all choice structures & it holds
that S € ¢ if and only if & |= ¢.

3.1. Moral Conflicts of Type @glp A @gz—‘p

We show that a moral conflict of type @jgrl pA ngﬁ p might occur in a
choice structure & if and only if there are groups Fi, F3, G of agents in &
such that 7 is non-empty, F, is non-empty, F; and JF; are not identical,
and G has at least two non-identical options for acting:

THEOREM 1. Let € be the class of choice structures & such that for all
Fi1,F2,G C Aitholds that F; = @ or F, = W or F; = F, or Choice(G) =
{W}. Let p € B. Then

F F
F1,.F2,.GSA

characterizes €.

Proof. We show that (i) for all & € € it holds that & &= /\ Fl.FGCA T
(@g‘p A @gz—'p) and (ii) for all & ¢ C it holds that & & /\ £, 7 gea —
(Og'p A Og =p)-

Ad(i). Suppose & € €.Suppose & = A £ gea —'(lep A @gz—'p)-
Then there is an interpretation J of & such that the model 9 = (S, J)
falsifies /\fl,fz,ggA —-(Qg‘p A @?—-p). Then there are F,, F»,,G C A
andaw in W,suchthat 9T, w = @é‘pandi)ﬁ, w = @jgrz—rp. Since G € €,
it must be that 7; = ¥ or F, = @ or F| = F, or Choice(G) = {W}.

[Case 1]. Suppose F; = . Then, since M, w = G)gp, it must be
that 9%, w = 0p and, hence, [—pllosn = 0. By MM, w = @“;2—';7 and
Lemma 4(i), it must be that 9T, w = O[G]—p. Then there must be a (non-
empty) K in Choice(G) such that K C [—p]lsn. Contradiction.

[Case 2]. Suppose F, = . Analogous to Case 1.

[Case 3]. Suppose F; =F,. Then 9, w = @é:‘p A @{;' —p. By
Lemma 4(v), it must be that 9, w &= @? (p A —p). By Lemma 4(i), it
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must be that 91, w &= O[G](p A —p). Then there must be a (non-empty)
K in Choice(G) such that K C [[p A = pllon. Contradiction.

[Case 4]. Suppose Choice(G) = {W}. Then it must be that W < [ pllon,
since M, w = ®§‘p, and it must be that W C [—p]lon, since M, w =

ng_. p. Note that W is non-empty. Contradiction.

Ad (ii). Suppose & ¢ €. Then there must be F;, F», G C A such that
Fi1 # @ and F, # () and F| # F, and Choice(G) # {W}. To prove that
G~ /\fl, F.GCA —|(®“gf‘ P A G)(];Z—-p), it suffices to construct a model
M = (S, J) in which there is a w such that 9, w = Gg‘p A @gz—'p.
Without loss of generality, we may conclude from the four properties that
there is an agent a with a € F, thereis anagent b withb € Fjand b € F,
and there are at least two non-identical options K| and K, in Choice(G).
We now define a suitable interpretation J = (Utility, V'). First, Utility is
defined as follows:

N 1, ifwek
Utility(a, w) = {0 ({therwisel
N 2, ifwek
Utility(b, w) = {O ({the;wisez

and for all agents ¢ in A — {a, b} and for all worlds w in W, we fix
Utility(c, w) = 0. Second, we stipulate that V (p, w) = TRUE if and only
ifw e K.

Let 91 = (G, J) and let w € W. Now it is easy to show that (1) for all
K € Choice(G) with K # K it holds that K >§‘ K and (2) forall K €

Choice(G) with K # K it holds that K, =7* K. Hence, M, w = Q' p
and M, w = (Dgz—'p. Therefore, M, w = @glp A ®§2—'p- O

3.2. Moral Conflicts of Type lep A @g; —-p

Some authors have claimed that axiological approaches to moral obliga-
tions leave no room for moral conflicts.!> A common argument for this
claim runs as follows: “For suppose that A and B are incompatible. Then
if it ought to be the case that A, higher values attach to some outcomes
satisfying A than to any satisfying not A. But, because of the assumed
incompatibility, all outcomes that satisfy B satisfy not A. Hence it is better
to opt for A than for B. So, whenever A and B are mutually incompatible, it
cannot be that both ought to be the case” (van Fraassen, 1973, p. 8). Things
are different in our consequentialist multi-agent deontic logic.

We show that a moral conflict of type @5} P A (952 —p might occur in a
choice structure & if and only if there are groups F, G;, G, of agents in &
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such that F is non-empty, G; — G, has at least two non-identical options
for acting, G, — G has at least two non-identical options for acting, and
G NG, has at least two non-identical options for acting.'® Since there
is only one interest group involved, the theorem also applies to Horty’s
original system. Note also that the proof is independent from our definition
of group utility as the mean of the individual utilities concerned.

THEOREM 2. Let ¢’ be the class of choice structures & such that for
all 7,G,G, C A it holds that F = or Choice(G, — Gp) = {W} or
Choice(G, — Gy) = {W} or Choice(G1 N G,) = {W}. Let p € P. Then

N\ (&% prcL-p)
F.,G1,G,CA

characterizes ¢'.

Proof. We show that (i) for all & € ¢’ it holds that S = /\ F.G.GocA
(0%, p A, —1p) and (ii) for all & ¢ ¢ it holds that & = Az g g.ca
(©F,p A OL,—p).

Ad(1) SupposeG € ¢'.Suppose S (= /\J-‘,Ql,ngA —-(@Jgflp A @“gi—'p).
Then there is an interpretation J of G such that the model I = (G, J)
falsifies /\ 7 g, g,ca —'((Dg]p A ng—-p).Then thereare 7, G, G, € Aand
aw in W, such that 9, w &= @élp and 9, w &= @éz—-p. Since & € ¢/, it
must be that F = @) or Choice(G; — Gy) = {W}or Choice(G, — Gy) = {W}
or Choice(G; N Gy) = {W}.

[Case 1]. Suppose F = @. Then, since M, w = lep and 9, w &=
@22—'17, it must be that 91, w = Op and M, w = C—p. Contradiction.

[Case 2]. Suppose Choice(G; — G) = {W}. Then, by Lemma 1(iii),
it must be that Choice(G,) = Choice(G; N G,). Suppose for all M with
M € Choice(Gy) it holds that M C [—pllon. Then W C [—pllon. Then
M, w = @51 p. Contradiction. Hence, there is an M € Choice(G,) with
M Z [—plion.

Hence, since M, w &= @é —p, there is a (non-empty) M’ € Choice(G,)
with M’ C [—p]lgn, such that M’ >g M andforall M" € Choice(G,) with
M" =] M'itholdsthat M" C [=pJlon. Notethat M' = K' N L' with K’ €
Chozce(gl N G,) and L’ € Choice(G, — Gp). Hence, K’ € Choice(Gy). It
must be that K’ € [ pllon. Hence, since 9, w = @ép, there is a K" €
Choice(Gy) with K” C [pllsn and K” >JgT1 K'.Hence, K" € Choice(G; N
G») and, by Lemma 2, it must be that K" >£ ng, K ’.Obviously, K" N L' e
Choice(G) and K" N L' # . By Lemma 3, it must be that K" N L' =7
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K’'NL'. Note that K" N L" C [pllon. Finally, by substituting K" N L’
for M”, we find that K” N L" C [—pJlsn. Contradiction.

[Case 3]. Suppose Choice(G, — G1) = {W}. Analogous to Case 2.

[Case 4]. Suppose Choice(Gi N Gy) = {W}. By M, w = @5 p, there
must be a K in Choice(G) such that K € [pllan. By M, w = ©F —p,
there must be an L in Choice(G,) such that L C [[—p]lon. Note that there
must be an M € Choice(G; — G>) and an S € Choice(G; N G,) such that
K = M N S.Moreover, there mustbe an N € Choice(G, — Gy)andan S’ €
Choice(Gy N Gy) such that L = N N S’. By our supposition, it holds that
S =8 = Wand, hence, K € Choice(G; — G>) and L € Choice(G, — G}).
By the condition of agent independence, it must be that K N L # @, since
(G1 — G2) N (Gy — G1) = V. Contradiction.

Ad (ii). Suppose & ¢ ¢'. Then there must be F, Gy, G, € A such
that F # ¢ and Choice(G, — G,) # {W} and Choice(G, — G) # {W}
and Choice(Gi N G>) # {W}. To prove that & f& Ay g g,ca ~(OF p A

G)g'2 = p), it suffices to construct a model 2 = (&, J) in which there is a w

such that M, w = @5’1 P A @JQTZ —p. We conclude from the four properties
that there are at least two non-identical options K| and K, in Choice(G; —
G»), at least two non-identical options L; and L, in Choice(G, — G)),
and at least two non-identical options M and M, in Choice(G; N G,),
and that there is an agent a in F. Note that if K € Choice(G; — G,) and
M € Choice(G; N G,), then K N M # @ and K N M € Choice(G;). Note
that if L € Choice(G, — Gy) and M € Choice(G; N G,), then LN M # ()
and L N M € Choice(G,). We now define a suitable interpretation J =
(Utility, V). First, Utility is defined as follows:

l,l'waKlmMzorl,UELzﬂM]
0, otherwise,

Utility(a, w) = {

and for all agents » in A — {a} and for all worlds w in W, we fix
Utility(b, w) = 0. Second, we stipulate V(p, w) = TRUE if and only if
we Ky N M.

Let 91 = (&, J) and let w € W. Now it is easy to show that (1) for
all R € Choice(Gy) with R # (K; N M,) it holds that (K; N M>) >§1
R and (2) for all S € Choice(G,) with S # (L, N My) it holds that
(L, " My) >“gT2 S.Hence, I, w &= @“gflp and N, w = @f;z—'p.Therefore,

M, w = OF p A OF,—p. O

Let us take a closer look at the countermodel of part (ii) to interpret
it properly. The group G; N G, of agents cannot make a principled choice
from Choice(G; N G,) to maximize the interest of group F. If Gy N G, is
taken to belong to group G, it has to choose option M, to maximize F’s
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interest. On the other hand, if G; N G, is seen as a subgroup of group G,, it
must rather choose option M to maximize F’s interest. Obviously, G; N G,
cannot choose both options. The group G; N G, of agents is wearing two
hats here.

Earl Conee contends that in cases “where competing moral consider-
ations have exactly the same force (..) [w]e have the familiar option of
holding that (..) each act is permitted and none is absolutely obligatory”
(Conee, 1982, p. 92). Unfortunately, this advice does not free G; N G, from
its precarious predicament. In our example, only two of G; N G,’s possible
courses of action maximize F-utility. Clearly, in order to maximize F-
utility, G; N G, must perform one of these two F-maximizing options.
Conee’s recommendation just to waive the obligatory character of both
F-maximizing options simply does not wash. The existence of a moral
conflict does not relieve G; N G, of the obligation to do the best it can.'’

Hence, an additional decision procedure must be invoked to enforce
a unique F-maximizing course of action. Ruth B. Marcus suggests that
“[i]n the unlikely cases where in fact two conflicting courses of action have
the same utility, it is open to the act utilitarian to adopt a procedure for
deciding, such as tossing a coin” (Marcus, 1980, p. 126). If G| N G, consists
of a single individual agent and if this single agent has identified the F-
maximizing options, Marcus’s suggestion would indeed save Buridan’s ass
from starvation. Does it also solve the decision problem if G; N G, consists
of two (or more) individual agents?

In his simile of the soul as a chariot driven by reason and pulled by
two horses embodying the spirited and the appetitive element, Plato notes
that “the task of our charioteer is difficult and troublesome”.'8 If G; N G,
consists of two (or more) individual agents, the situation is even worse:
a team of Buridan’s asses has to co-ordinate its actions even without the
whip of reason. Such a co-ordinated collective action entails at least the
following four steps. First, the agents in G; N G, must collectively identify
the F-maximizing options in Choice(G; N Gy). Second, they have to agree
upon which F-maximizing option M in Choice(G, N G,) is going to be
realized. (Here, they might indeed agree to flip a coin.) Third, each agent
a in Gy N G, must identify the unique option in Choice(a) required for
realizing M. Fourth, each agent a in G; N G, has to perform this unique
course of action. Obviously, at each step a slip is easily made.

3.3. Moral Conflicts of Type @“gfl‘p A @é? —p

To conclude, we show that a moral conflict of type @é}‘ P A @Sﬂ p might
occur in a choice structure & if and only if there are groups Fi, 73, G1, G»
of agents in & such that F; is non-empty, F; is non-empty, G; N G, has
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at least two non-identical options for acting, and, finally, if 7, and JF, are
identical, then both G; — G, and G, — G; have at least two non-identical
options for acting:

THEOREM 3. Let ¢” be the class of choice structures & such that for
all 71, F2,G1, Go € A it holds that F; =@ or F, =@ or Choice(G; N
Gr) = {W} or (Fi = F> and Choice(Gy — G,) = {W}) or (F; = F;, and
Choice(Gy — G1) = {W}). Let p € B. Then

F F
A - (@gfp A Ggfﬁp>
F1.72,.G1,5:CA

characterizes ¢”.

Proof. Use the proofs of Theorem 1 and Theorem 2. O

4. CONCLUSION

In the present paper, we studied three different types of moral conflicts.
On such conflicts we proved three theorems, the third of which is a
generalization of the other two. Theorem 1 implies that if a single group of
agents faces a moral conflict, this group must have obligations with respect
to different non-empty interest groups. Hence, such a single-group moral
conflict includes at least two agents. From Theorem 2 it follows that if
two groups of agents face a moral conflict within a single moral code, then
there must be at least three agents involved. Apparently, some deontological
properties which are central to meta-ethics can only emerge in multi-agent
settings, thereby establishing, or so it seems, multi-agent deontic logic as
a proper field of study.'”

NOTES

I'Notable exceptions are (Hamblin, 1972; Marcus, 1980) and (McConnell, 1988).

2In the same vein G.H. von Wright deems a logic of action a necessary requirement for
deontic logic. See (von Wright, 1963, p. vii) and (von Wright, 1966, p. 134).

3 Compare (Goble, 2005, pp. 462-463).

4 The proof is straightforward and familiar: suppose that O¢ and O—¢ are simultaneously
true. Then, by deontic agglomeration and modus ponens, it must be that O(¢ A —¢). Hence,
by ‘ought’ implies ‘can’ and modus ponens, it must be that ¢(¢p A —¢), which is absurd.
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To clear the way for moral dilemmas in deontic logic, E.J. Lemmon proposes to reject
the principle that ‘ought’ implies ‘can’ (see (Lemmon, 1962, p. 150, n. 8) and (Lemmon,
1965, pp. 47-50)), whereas Bas van Fraassen and Bernard Williams suggest to dismiss the
principle of deontic agglomeration (see (van Fraassen, 1973, p. 15) and (Williams, 1973,
pp. 181-182)). For a recent discussion of moral conflicts in standard deontic logic, see
(Goble, 2005).

5 Terrance McConnell writes: “[T]he existence of single-agent dilemmas forces us to
give up either the principle that ‘ought’ implies ‘can’ or the [agglomeration] principle
of deontic logic; but the reality of interpersonal moral conflicts forces no such concessions”
(McConnell, 1988, p. 32).

% Logical rigour would demand that we draw a sharp distinction between (1) the names of
(sets of ) agents and (2) the objects that are being named, i.e., the (sets of ) agents themselves.
We waive this distinction and thereby avoid unnecessary complications, as our present aims
can be reached without it.

7 Definitions of branching-time models for stif logics can be found in (Belnap et al., 2001)
and (Horty, 2001).

8 The latter requirement is the condition of agent independence. It ensures that there is a
possible world in which each individual agent performs the action of his choice, regardless
of the courses of action adopted by all other individual agents. Hence, Choice is defined so
that at a single moment in time no individual agent can prevent any other individual agent
from performing an action. See, for instance, (Belnap et al., 2001, pp. 217-218 and
p- 283), and (Horty, 2001, pp. 30-31).

9 The four selection functions are s, s2, s3, and s4, where s1(a) = {wy, wa}, s1(b) =
{wr, w3}; s2(a) ={wr, wa}, 52(0) ={w2, wa}; s3(a) ={ws, wa}, s3(b) = {wy, w3}; and
s4(a) = {w3, w4}, s4(b) = {w2, wa}.

10 Given the four selection functions of footnote 9, it holds that {w} = s1(a) N s1(b),
{wa2} = s2(a) N 52(b), {w3} = s3(a) Ns3(b), and {ws} = s4(a) N s4(D).

n Harsanyi contends: “[T]he more complete our factual information and the more com-
pletely individualistic our ethics, the more the different individuals’ social welfare
functions will converge toward the same objective quantity, namely, the unweighted sum
(or rather the unweighted arithmetic mean) of all individual utilities” (Harsanyi, 1955,
p. 320).

12Horty’s deontic logic aims to model utilitarian obligations only. Therefore, Horty
assumes that all obligations stem from the single moral code of utilitarianism, which he
defines in terms of agent-neutral utilities. Compare (Horty, 2001, pp. 36-37 and
41-42). Our consequentialist multi-agent deontic logic requires utility functions based on
normalized agent-dependent utilities.

13 Observe that our analysis is sensitive to a theory of group utility. If we had defined group
utility in terms of, for example, Amartya Sen’s leximin rule which maximizes the utility of
the worst-off individual (Sen, 1970, p. 138), rather than via Harsanyi’s arithmetical mean,
we would obtain neither 9 = ©%?—p nor M = @Z'b—'q.

14 See (van Benthem, 1984) and (Blackburn et al., 2001, p. 126).

15 Compare (Feldman, 1986, p. 209).

16 As Choice(#) = {W}, these conditions imply that G| — G», Go — Gy, and G| N G, are
all non-empty. Thus, any moral conflict within a single moral code involves at least three
individual agents. Consequently, the present system of consequentialist logic throws doubts
upon Terrance McConnell’s claim that as regards multi-agent moral conflicts generated by
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the same moral code “the two-person case may be taken as typical” (McConnell, 1988,
p. 25).

17 Compare (Lemmon, 1962, p. 151) and (McConnell, 1988, p. 31).

18 Plato, Phaedrus, translated by R. Hackforth (in E. Hamilton & H. Cairn (eds.), The
Collected Dialogues of Plato, Princeton: Princeton University Press, 1963), 246b4.

19We wish to thank John Horty, Erik Krabbe, Martin van Hees, the members of the
Groningen research colloquium in theoretical philosophy, and an anonymous referee of
this journal for their critical comments on earlier versions of this paper.
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