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Abstract
This paper investigates various aspects of sufficient matrices, one of the most relevant
matrix classes introduced in connection with linear complementarity problems. We
summarize the most important theoretical results and properties related to sufficient
matrices. Based on these, we propose different construction rules that can be used to
generate newmatrices that belong to this class. A nonnegative number can be assigned
to each sufficient matrix, which is called its handicap and works as a measure of suf-
ficiency. The handicap plays a crucial role in proving convergence and complexity
results for interior point algorithms for linear complementarity problems. For a par-
ticular sufficient matrix, called Csizmadia’s matrix, we give the exact value of the
handicap, which is exponential in the size of the matrix. Another important topic that
we address is deciding whether a matrix is sufficient. Tseng proved in 2000 that this
decision problem is co-NPhard.We investigate three different algorithms for determin-
ing the sufficiency of a givenmatrix: Väliaho’s algorithm, a linear programming-based
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algorithm, and an algorithm that facilitates nonlinear programming reformulations of
the definition of sufficiency. We tested the efficiency of these methods on our recently
launched benchmark data set that consists of four different sets of matrices. In this
paper, we give the description and most important properties of the benchmark set,
which can be used in the future to compare the performance of different interior point
algorithms for linear complementarity problems.

Keywords Sufficient matrices · P∗(κ)-matrices · Linear complementarity problems ·
Principal pivot operations

1 Introduction

Several matrix classes have been introduced either because of the study of some
properties of linear complementarity problems (LCPs), or have becomeknownbecause
they have important, influential properties on the solvability of LCPs.

The focus of our interest is the sufficient matrix class, since an LCP with such a
coefficient matrix (sufficient LCP) can be solved with the criss-cross pivot algorithm
(CCA) in finite steps [6–8, 14] or can be solved with an interior point algorithm (IPA)
in polynomial time, see [2, 10–12, 17, 28, 35, 36, 38, 41, 48] and references in these
papers. Good surveys on IPAs for sufficient LCPs can be found in the PhD theses of
Nagy [47] and Rigó [50].

There is a need to test the practical efficiency of these solution methods. However,
there is no real benchmark for sufficient matrices. There were already some attempts
to propose sufficient matrix instances to study the numerical performance of IPAs.
Numerical studies started with Gurtuna et al. [25], and the authors used block diagonal
sufficient matrices built from sufficient matrices of size 2× 2 and 3× 3 with different
handicap values. (The handicap, usually denoted κ , is a very important parameter of
sufficient matrices, for the definition, see the next section.) They have already pointed
out the necessity of building benchmark sufficient LCPs for testing IPAs. Another
early attempt was by Kheirfam [38], who defined some very special, non-symmetric
matrices with κ = 0, namely positive semidefinite (PSD)matrices and compared three
different IPAs. All these restricted computational studies were related to the fact that
only small, structured sufficient matrices were known.

An interesting question related to sufficient matrices was how to construct such
sufficient matrices that have small bit length and very large (i.e., exponential) κ value.
Csizmadia constructed a very simple sufficient matrix with ±1 and 0 entries, which
has exponential entries after a handicap-invariant transformation (the principal pivotal
transformation). Therefore, de Klerk and E.-Nagy [13] considered it as a good can-
didate and indeed, gave a lower bound on its handicap, which exponentially depends
on the size of the matrix. In this paper, we prove that the lower bound is exactly the
handicap.

However, for a systematic study of generating sufficient matrices, we had to wait
until 2018 for the paper by Illés andMorapitiye [27]. Although the theoretical basis of
their study iswell founded, there are some pitfalls, like the small values of κ parameters
of the generated matrices and the numerical errors during constructions that caused
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the loss of the sufficiency property for a few of the constructed matrices. More precise
constructions and more careful computations would lead to a better set of sufficient
matrices even in the near future. In this paper, we collected a wider range of tools and
also completed proofs for the tools from [27] to generate sufficient matrices.

The sufficient matrices generated by Illés and Morapitiye [27] and the introduction
of Csizmadia’s matrix made it possible to study the computational performance of
newly developed IPAs for sufficient LCPs and compare those with algorithms known
from the literature. The first steps in this direction have been taken by Darvay et al.
[10–12] in a series of papers. The numerical study of IPAs for sufficient LCPs became
a standard, required section of new publications like in Illés et al. [35, 36] and E.-Nagy
and Varga [17].

In order to build a benchmark set of sufficient matrices, it is important not only
to construct such matrices but also to be able to test the sufficiency of a matrix. For
a long time, up to our knowledge, the only method to decide whether a matrix is
sufficient or not has been proposed by Väliaho in 1996 [57]. A year later, Väliaho [59]
published an algorithm for computing the handicap of a given sufficient matrix. Tseng
[56] proved that deciding whether a square matrix with rational entries is a column
sufficient matrix is a co-NP-complete problem. Thus, it is not surprising that both of
Väliaho’s algorithmshave exponential running time. In addition toVäliaho’s algorithm,
we implemented a linear programming based procedure [49], as well. We give a
simplified description of the latter one. However, it was revealed in the meantime that
the idea of the linear programming-based approachwas alreadymentioned byGuu and
Cottle [26]. Finally,we compare the running times of theseMATLAB implementations
with a third possibility: we reformulate the definition of sufficiency to a nonlinear
programming problem, and we solve it using BARON.

Finally, we would like to discuss an interesting type of result, the so-called EP-
theorems. In the setting of LCPs, EP-theorems showed up in the paper of Fukuda
et al. [22] as generalizations of the LCP alternative theorem of Fukuda and Terlaky
[23]. Shortly, the main idea of Fukuda, Tamura, and Namiki [22] was that the CCA
can be modified to handle general LCPs. Namely, the modified CCA tries to solve a
given general LCP starting from an arbitrary basis, and either (i) solves the LCP, or (ii)
solves its dual (which proves that the LCP has no solution), or (iii) gives a certificate
that the coefficient matrix is not sufficient. The three stopping criteria of the modified
CCA are called the solution of the general LCP in EP-sense. The advantage of the
modified CCA is that it can solve many general LCPs that have a solution before
identifying that its matrix is not sufficient. However, this might depend on the basis
from which the modified CCA has been started. An interesting example of LCPs with
nonsufficient matrices is related to the Arrow–Debreu market exchange model [1]. For
the connections of the Arrow–Debreu market exchange model to LCPs and IPAs, see
Ye [60]. Csizmadia et al. [8] tested the modified CCA to solve such LCPs that possess
the properties of the LCPs derived from the Arrow–Debreu market exchange model
with Leontief utilities. This preliminary computational study showed that themodified
CCA for larger size instances stops much more frequently with the certificate that the
matrix is not sufficient than computes a solution, although it is known that these LCPs
always have a solution.
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Illés, Nagy, and Terlaky [29–31] investigated the possibility of replacing the mod-
ified CCA in the proof of an EP-theorem for LCPs. It turned out that the EP-theorem
of Fukuda, Tamura, and Namiki for LCPs [22] could not be proved using IPAs. When
IPAs are applied to obtain an EP-theorem for LCPs, instead of the whole sufficient
matrix class, it should be restricted to a large, but fixed subclass of sufficient matri-
ces, namely to P∗(κ̄)-matrices, with an arbitrarily large, but given κ̄ > 0 parameter.
However, the improvement in the application of modified IPAs instead of modified
CCA was that the solution of the general LCP in EP-sense was computed in poly-
nomial time [30, 31]. Nagy [47] tested the modified IPAs on LCPs similar to those
used by Csizmadia et al. [8] in their computational studies of the modified CCA. Nagy
obtained very similar results to Csizmadia and his coauthors, namely, when the size
of the matrix is growing, it is less likely that the modified IPA for this type of problem
will stop with a solution of the general LCP than with a certificate that the matrix is
not a P∗(κ̄)-matrix. Some further research would be necessary to solve the Arrow–
Debreu market exchange model with Leontief utility functions more efficiently using
modified IPAs. This paper can be considered one of the first important steps in this
direction since we need to understand better the sufficient matrix class to achieve this
aim.

The rest of our paper is organized as follows. In Sect. 2, we summarize the prelim-
inary results about matrix classes. Known and new construction rules to get sufficient
matrices are provided in Sect. 3. Here, we also deal with lower triangular matrices as a
special case and prove the exact value of the handicap of Csizmadia’s matrix. Section4
describes three different approaches for deciding whether a given matrix is sufficient
or not. First, we recall Väliaho’s algorithm, then we propose an LP-based method, and
finally, we give nonlinear programming reformulations of the definition of sufficiency.
In Sect. 5, we provide implementation details and our numerical results.

NotationWe use the following notation throughout the paper. Scalars and indices are
denoted by lowercase Latin letters, vectors by lowercase boldface Latin letters, matri-
ces by capital Latin letters, and sets by capital calligraphic letters. LetRn⊕ (Rn+) denote
the nonnegative (positive) orthant of R

n . I and O denote the identity and the all-zero
matrix of appropriate dimension, respectively, and X is the diagonal matrix whose
diagonal elements are the coordinates of the vector x, i.e., X = diag(x). The vector
x ◦ s = Xs is the componentwise product (Hadamard product) of the vectors x and s.
The i th entry of a vector x is denoted by xi . If A ∈ R

n×n , AJK denotes the submatrix
of A with rows indexed by the index set J ⊂ {1, . . . , n} and columns by the index set
K ⊂ {1, . . . , n}. We denote the vector of ones by e and the i th standard unit vector by
ei .

2 Matrix Classes

Let us define some matrix classes that are important in the context of LCPs, where for
a given matrix M ∈ R

n×n and vector q ∈ R
n , we search for vectors u, v ∈ R

n , such
that
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−Mu + v = q, u, v ≥ 0, u ◦ v = 0.

Since we do not require symmetry in the definition of any matrix class, the definition
of positive (semi)definite matrices differs from the one known from linear algebra;
therefore, these are also stated here:

Definition 2.1 A matrix M ∈ R
n×n belongs to the class of positive definite matrices

(PD), if xT Mx > 0 holds for all x ∈ R
n\{0}. Likewise, M ∈ R

n×n belongs to the
class of positive semidefinite matrices (PSD) if xT Mx ≥ 0 holds for all x ∈ R

n .
Furthermore, M ∈ R

n×n is a skew-symmetric matrix (SS), if xT Mx = 0 for all
x ∈ R

n .

Clearly, the decision problem of whether the matrix is skew-symmetric is solvable
in polynomial time. Formatriceswith integer entries, checkingwhether amatrix is PD
or PSD belongs to the set of polynomially solvable decision problems (via Cholesky
or LU factorization, see [45]).

Definition 2.2 AmatrixM ∈ R
n×n is aP-matrix (P0-matrix) if all its principalminors

are positive (nonnegative).

The class of P- and P0-matrices were introduced and studied by Friedler and Pták
[19, 20]. The importance of the P-matrices in the theory of LCPs was observed in the
1960s, and the following result was proved:

Theorem 2.1 Let M ∈ R
n×n be given. The LCP has a unique solution for each q ∈ R

n

if and only if M is a P-matrix.

For details, see Cottle, Pang and Stone [4, 3.3.7 Theorem], or Murty [46, 3.15
Theorem]. Later in 1991, Kojima et al. [40, Lemma 4.1.] proved that the Newton-
system occurring in each iteration of an IPA for solving LCPs has a unique solution if
and only if M is a P0-matrix due to the fact that the matrix of the Newton-system is
regular if and only if M is a P0-matrix. Tseng [56] showed that the complexity of the
decision problem of whether a given matrix is P or P0, among several other matrix
classes, is co-NP-complete.

Cottle, Pang, and Venkateswaran in their paper [5] defined new matrix classes related
to LCPs.

Definition 2.3 Amatrix M ∈ R
n×n is called a column sufficient matrix (CS) if for all

x ∈ R
n

X(Mx) ≤ 0 implies X(Mx) = 0,

and row sufficient (RS) if MT is column sufficient. The matrix M is sufficient (SU )
if it is both row and column sufficient.

We call a nonzero vector u a certificate for the non column (row) sufficiency of the
matrix M if the vector UMu (UMTu) is nonpositive but not the zero vector. (Recall
that U = diag(u).)
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Cottle et al. [5, Theorem 6] showed that for every vector q ∈ R
n and matrix

M ∈ R
n×n , a feasible LCP has convex solution set if and only if the matrix M ∈ CS.

On the other hand, the solution set of a feasible LCP is identical to the set of theKarush–
Kuhn–Tucker points of the natural quadratic program associated with the given LCP
if and only if the matrix M ∈ RS [5, Theorem 4]. Furthermore, as we have already
mentioned in Introduction, the SU is the widest class of matrices where the finiteness
of the CCA for LCPs can be proved, see for details Hertog et al. [14] and Csizmadia
et al. [7, 8]. After these positive and valuable results, let us finish with a negative one.
Tseng [56] proved that the decision problem of whether a matrix is column sufficient
is co-NP-complete, as was expected from the previously stated results of Tseng.

TheP∗(κ)-matrices were introduced by Kojima et al. [40] as the matrix class where
the polynomiality of IPAs for solving LCPs can be assured, however, the complexity
depends also on κ . On the other hand, this matrix class can also be considered as a
generalization of PSD matrices.

Definition 2.4 Let κ be a nonnegative number. A matrix M ∈ R
n×n is a P∗(κ)-matrix

if for all x ∈ R
n

(1 + 4κ)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≥ 0, (1)

where I+(x) = {1 ≤ i ≤ n : xi (Mx)i > 0} and I−(x) = {1 ≤ i ≤ n :
xi (Mx)i < 0}.
Therefore, naturally, P∗(0) is the class of PSD matrices.

The smallest κ ≥ 0 for which M is P∗(κ) is called the handicap of M , and is
denoted by κ̂(M). Matrices with finite handicap are known as P∗-matrices.

For the complete picture, it is worth mentioning some further related results for
IPAs. First of all, the central path that has been introduced for the linear programming
(LP) problem independently by Sonnevend [53] and Megiddo [42] plays an important
role in defining IPAs. The existence and uniqueness of the central path for LCPs
depends on the data of the problem. In case when M is SS-, PSD- or bisymmetric
matrix (see Klafszky and Terlaky [39]), the existence and uniqueness of the central
path was already known. Kojima et al. [40], based on some deeper results and under
the assumption of the existence of a strictly feasible solution (interior point), proved
the existence and the uniqueness of the central path for LCPs with P∗(κ)-matrices.
Illés at al. (1998) in a manuscript [33] gave an elementary proof of the existence and
the uniqueness of the central path for LCPs with P∗(κ)-matrices. Nagy (2009) in her
PhD thesis (see [47, Chapter 3]) used the proof of Illés et al. to show some properties
of the central path for sufficient LCPs. Furthermore, Nagy introduced an LCP [47,
Problem (7.1)] such that the feasible set and the solution set are nonempty, but there
is no unique central path. Naturally, the matrix of this LCP is not sufficient, and not
even a P0-matrix.

IPAs for sufficient LCPs, similarly to IPAs for LPs, produce an ε-optimal solution.
Even for LP problems, many operations research experts who are not specialists in
linear optimization thought that with IPAs only ε-optimal solution could be produced
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Fig. 1 The inclusion relations
between matrix classes; CS =
column sufficient, RS = row
sufficient, SS = skew-symmetric,
PSD = positive semidefinite

P0

PSD

SS

RS CS
P

*P

for LP problems, not exact, optimal solutions. Although the rounding procedure has
been discussed in the well-known book of Roos et al. [51], still many thought that
an exact solution could not be produced by IPAs for LP problems. The paper of Illés
and Terlaky [34] helped a lot to dispel this misunderstanding. Therefore, it is not very
surprising that they participated in the delivery of a theoretically efficient rounding
procedure [32] for IPAs solving LCPs with P∗(κ)-matrices. However, de Klerk and
E.-Nagy [13] pointed out correctly that since the rounding procedure’s performance
strongly depends on the parameter κ , for sufficientmatriceswith large handicap values,
the rounding procedure practically will be inefficient; thus, finding an exact solution
for LCPs with P∗(κ)-matrices, in case of large κ , from a practical point of view, is
still a challenging question.

Note that M ∈ CS if and only if the index set I+(x) is nonempty for all x for which
the index set I−(x) is nonempty. In a sequence of papers [26, 40, 58] it was proven
that the class of P∗-matrices is equal to the class of sufficient matrices.

Figure1 summarizes the relations among the previously discussed matrix classes
[40].

According to the definitions, it is easy to see that the sets of PD, PSD, P , P∗, and
P0-matrices are cones. But while the PSD and SS matrix classes are convex, the sets
of P , P∗ and P0-matrices are not convex cones.1

2.1 Classification and Testing Sufficient Matrices

Väliaho [58] gave a full characterization of 2 × 2 matrices. Let M = (
a b
c d

)
, where

a, b, c, d ∈ R, then

M ∈ P ⇔ a > 0, d > 0, ad − bc > 0,

M ∈ PSD ⇔ a ≥ 0, d ≥ 0, (b + c)2 ≤ 4ad,

M ∈ P∗ ⇔ a ≥ 0, d ≥ 0, (ad − bc > 0 ∨
∨ (ad − bc = 0 ∧ ((a = 0 ∨ d = 0) ⇒ b = 0, c = 0))). (2)

1 Illés andWenzel [37] gave aP -matrix,

(
1 4

−1 1

)
, whose sumwith its transpose has a negative determinant,

so the sum is not even a P0-matrix.
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No similar classification of sufficient matrices of larger size is known. Furthermore,
non-trivial subclasses of P∗\P are not known. The handicap of 2 × 2-matrices M ,
κ̂(M) can be computed in the following way (for details, see [59, Theorem 4.1])

M ∈ PSD ⇒ κ̂ = 0 (by definition),

M ∈ P∗\PSD ⇒ 1 + 4̂κ = max{b2, c2}
(
√
ad + √

ad − bc)2
,

M ∈ P∗ \ (P ∪ PSD) ⇒ 1 + 4̂κ = max

{∣∣∣∣
b

c

∣∣∣∣,
∣∣∣∣
c

b

∣∣∣∣

}
.

Väliaho proved that the handicap is a continuous function of the elements for 2
by 2 sufficient matrices [59, Remark 4.2]. Furthermore, for any M ∈ P , κ̂(M) is a
continuous function of the elements of M [59, Remark 2.1]. However, it is an open
question whether the handicap κ̂ is a continuous function of elements of M when
M ∈ P∗ \ P [59, Remark 6.1].

The inequality (1) gives the following lower bound on κ̂(M) for any2 matrix M :

κ̂(M) ≥ κM (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if xT Mx ≥ 0,
1

4

−xT Mx∑
i∈I+ xi (Mx)i

if xT Mx < 0 and I+(x) �= ∅,

∞ otherwise.

Furthermore,

κ̂(M) = sup
x∈Rn

κM (x) = sup
‖x‖p≤1

κM (x) = sup
‖x‖p=1

κM (x),

where ‖.‖p is the p-norm. So it is enough to take the supremum on the surface of a unit
sphere. Therefore, we call a nonzero vector u for a certificate for the fact M /∈ P∗(κ̄),
if κM (u) > κ̄ .

Note that the function κM (x) is not continuous even for 2 by 2 sufficient matrices.
As we have already mentioned, Väliaho developed two tests. One to decide whether

a matrix is sufficient [58] and another to determine the handicap value of sufficient
matrices [59]. Unfortunately, both methods are exponential, and there is no known
polynomial algorithm for these problems. Tseng proved that the decision problem
of whether a matrix is column (row) sufficient is co-NP-complete [56], therefore, a
polynomial algorithm is not expected for deciding the sufficiency of a matrix. It is an
open question whether there is a polynomial time algorithm to compute the handicap
of a sufficient matrix.

All matrix classes discussed earlier, namely SS, PSD, P , P∗(κ), P∗, and P0, enjoy
the nice property that if a matrix belongs to one of these classes, then any principal
submatrix of the matrix and any principal pivotal transformation of it does, as well
[4].

2 We can extend the concept of the handicap for arbitrary matrices: let κ̂(M) be infinity if M /∈ P∗, namely
it is not sufficient.
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A principal pivotal transformation (PPT) of the matrix A =
(

AJJ AJK
AKJ AKK

)
(where

J ∪ K = I and J ∩ K = ∅ ) for nonsingular AJJ is the matrix

PJ (A) =
(

A−1
JJ −A−1

JJ AJK
AKJ A−1

JJ AKK−AKJ A−1
JJ AJK

)
.

3 Properties and Construction of Sufficient Matrices

In this section, we first collect some known results, which give basic tools to generate
sufficient matrices. Then, we prove some further properties of this matrix class which
can help to build matrices belonging to this class. Finally, we combine these basic
steps to show a few more complex ways to construct sufficient matrices. Some of the
results were already published in the paper [27], but mostly without proofs.

Basic steps to construct a sufficient matrix:

1. (Submatrix) [5] If M ∈ P∗, then its every principal submatrix is also sufficient,
namely MRR ∈ P∗for all R ⊆ I.

2. (Principal rearrangement) [3] If M ∈ P∗, then for any permutation matrix P
(in the same size as M), the rearranged matrix PT MP ∈ P∗.

3. (PPT) [3] If M ∈ P∗, then any principal pivotal transformation of Mis also
sufficient, namely PJ (M) ∈ P∗ for all J ⊆ I.

4. (Rank one matrix) [57] A rank one matrix A is sufficient if and only if it has a
nonnegative diagonal and if Aii = 0then the i th row and column of the matrix A
are all zero. In other words, A = uvT ∈ P∗ (u, v ∈ R

n)if and only if uivi > 0 or
ui = vi = 0for all i .

5. (Scaling) [40] If M ∈ P∗, then PMQ ∈ P∗ for any diagonal matrices P and Q,
where Pii Qii > 0 for all indices i . 3

6. (Block diagonal) [59] If M1, M2 ∈ P∗ (possibly with different sizes), then(
M1 O
O M2

)
∈ P∗.

7. (Blowing) [59] If M ∈ P∗, then
(
M I
−I D

)
∈ P∗ for any nonnegative diagonal

matrix D.
8. (Shifting) [59] If M ∈ P∗, then M+D ∈ P∗ for any nonnegative diagonal matrix

D.

9. (Duplication) If M ∈ P∗,then
(
M M
M M

)
∈ P∗. Indeed, if the vector (x; y) certifies

that the latter block matrix is not sufficient, then the vector x + y proves that the
matrix M cannot be sufficient by definition.

The next construction possibility is a combination of steps 9 and 1:

3 Moreover, ifM ∈ P∗(κ), then PMQ ∈ P∗(κ ′), where (1+4κ ′)mini Pii /Qii = (1+4κ)maxi Pii /Qii .
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10. (Row-column duplication) If M ∈ P∗,then
(

M mi

m(i) mii

)
∈ P∗ for any row-

column pairs, where mi and m(i) are the i thcolumn and row of the matrix
M ,respectively.

11. (Sign reverse) If the block matrix

(
M1 M2
M3 M4

)
∈ P∗,then

(
M1 −M2

−M3 M4

)
∈ P∗.

The proof of the last implication again can be done by definition. Assume that the
second matrix is not sufficient and (x; y) is a certificate. Then, (x;−y) verifies
that the initial matrix is not sufficient.

Now let M ∈ R
n×n be a sufficient matrix and use blowing (step 7) with D = O ,

then take the principal submatrix (step 1) forR = {1, . . . , n+1}. The resulting matrix(
M e1

−eT1 0

)
is sufficient. Using row-column duplication (step 10) on this matrix for

the last index (i = n + 1) and then repeating it k times, we get the sufficient matrix(
M e1eT

−eeT1 O

)
∈ R

(n+k)×(n+k), where e ∈ R
k and e1 ∈ R

n . If we choose not the first

but the j th row and column of the identity matrix after the blowing step, then in the

end, we get the following sufficient matrix:

(
M e jeT

−eeTj O

)
∈ R

(n+k)×(n+k). Finally,

we can rescale the matrix (step 5) and get the following result:

12. (Composition) If M ∈ P∗ and p,q ∈ R
k such that piqi < 0for all indices i ,then

the matrix

(
M peT

eqT O

)
∈ R

(n+k)×(n+k) is sufficient.

13. (PSD gluing) Let A, B ∈ PSD, A ∈ R
n×n , B ∈ R

m×mand take the block
diagonal matrix M = diag(A, B). Finally, let Mn,n+1 = 1 and Mn+1,n = −1.
Then M ∈ PSD, so it is sufficient.

Indeed, PSD gluing preserves the PSD property of the matrices since M + MT

is a symmetric block diagonal matrix, whose blocks are symmetric PSD matrices.
Therefore, M is also a PSD matrix by definition.

Notice that if we glue two all-one matrices in the previously described way and
apply scaling (step 5), then actually we glue two rank-one sufficient matrices with
suitable values. More precisely

14. (Rank-1 gluing) Let M = diag(pqT , rsT ), where p,q ∈ R
n , r, s ∈ R

m , piqi and
r j s j are positive (or maybe pi = qi = 0, r j = s j = 0)for all i and j , and then
modify two entries of the matrix M : Mn,n+1 = pns1 and Mn+1,n = −qnr1.Then
M ∈ P∗.
Of course, we canmake several other combinations of the aforementioned steps, for

example, using step 12 and then shifting (step 8), we can put a nonnegative diagonal
matrix in the low right corner instead of the all-zero matrix.

Based on some of these construction steps, Illés and Morapitiye [27] generated and
collected several sufficient matrices [43]. However, there are some disadvantages of
these matrices:

– During the constructions of thesematrices, several times the principal pivotal trans-
formation has been applied. The principal pivotal transformation is a numerically
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unstable transformation due to the finite digit representation of the computed num-
bers, therefore, the resulting matrix is inaccurate and the sufficient matrix property
may be lost.

– The constructions used are not suitable for paying more attention to the size of the
handicap, so the κ̂(M) of the constructed matrices is not large.

All these disadvantages still keep open the question of howwe could constructmedium
and large size sufficient matrices.

Sufficient matrices of smaller size have been constructed in a different way. On the
website [16], the reader can find the collection of these matrices, which are used in
the computational part of our paper.

3.1 Lower Triangular Sufficient Matrices

It is a straightforward consequence of the definitions that a lower triangular matrix is
in P (P0) if and only if its diagonal elements are positive (nonnegative). Indeed, all
principal submatrices of a lower triangular matrix are also lower triangular matrices
and the determinant of such a matrix is the product of the diagonal elements.

Furthermore, we can give a simple characterization of lower triangular sufficient
matrices as well. Since a sufficient matrix is also in P0, all of the diagonal elements
should be nonnegative. On the other hand, P is a subset of the sufficient matrix class,
thus if all of the diagonal elements are positive, then the matrix is sufficient. Namely,
we only need to investigate the case of the zero diagonal elements. For this, let us
recall the following result of Cottle [3]. We present it in a similar way as Väliaho [58,
Thm. 2.1].

Lemma 3.1 Let M ∈ R
n×n be a sufficient matrix with mkk = 0 for some k ∈

{1, . . . , n}. Then mik = mki = 0 or mikmki < 0 for all i �= k.

Based on Lemma 3.1, it follows easily that if a diagonal element is zero in a lower
triangular sufficient matrix, then the corresponding row and column should be all zero.
Summarizing the observations above:

Corollary 3.1 A lower triangular matrix is sufficient if and only if its diagonal ele-
ments are nonnegative, and if a diagonal element is zero, then all the elements of the
corresponding column and row are zero.

Using the very strong structure of lower triangular matrices, the following con-
structions lead to new larger size P- and P∗-matrices.

15. (Block structure) Let M1, M2 ∈ P (possibly with different sizes) be lower tri-

angular matrices, then M̂ =
(
M1 O
A M2

)
∈ P ,where A is an arbitrary matrix with

proper size. Therefore, M̂ ∈ P∗as well.

3.2 Csizmadia’s Matrix

In this section, we investigate a special lower triangular sufficient matrix, which was
introduced in [13].
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A natural question is how big the handicap of a matrix can be. It is easy to construct
a sequence of matrices where an element of the matrix tends to infinity, and therefore,
the handicap of the matrices tends also to infinity. But it is not trivial anymore what we
can say if the encoding size of the matrix is bounded. In other words, is there a matrix
whose handicap is exponential in its bit size? The answer was given by De Klerk and
E.-Nagy [13].

Zsolt Csizmadia suggested the following matrix as an example where the compo-
nents are small, but after a suitable principal pivotal transformation, the matrix has
components that are exponential in size of the matrix:

Cn =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
−1 1 0 · · · 0
−1 −1 1 · · · 0
...

...
...

. . .
...

−1 −1 −1 · · · 1

⎞

⎟⎟⎟⎟⎟⎠
and P{1,2,...,n−1}Cn =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 1 0 · · · 0
2 1 1 · · · 0
...

...
...

. . .
...

−2n−2 −2n−3 −2n−4 · · · 1

⎞

⎟⎟⎟⎟⎟⎠

This is a P-matrix, as we discussed at the beginning of this section, so it is a sufficient
matrix; namely, it has a finite handicap. Furthermore, the handicap is invariant under
principal pivotal transformation; therefore, this matrix is a good candidate for a matrix
with ’big’ handicap. To that end, De Klerk and E.-Nagy [13] considered this matrix
and proved that the handicap κ̂ of Csizmadia’s matrix is exponential in the size n and
the bit length L . They proved that κ̂(Cn) ≥ 22n−8 − 0.25.

We now give a constructive proof for this lower bound; moreover, we show that this
is the exact value of the handicap. For the proof, we need some observations about
parabolas:

Lemma 3.2 Let a and b be two positive numbers, and let d be an arbitrary number.
Consider the following two minimization problems

min
z

az(z − d) − b(z + d)2

z(z − d) ≤ 0

}
(P≤)

min
z

az(z − d) − b(z + d)2

z(z − d) ≥ 0

}
(P≥)

1. If 4b ≤ a, then a+2b
2(a−b)d is an optimal solution of (P≤) and d is an optimal solution

of (P≥).
2. If b < a < 4b, then d is an optimal solution of (P≤) and a+2b

2(a−b)d is an optimal
solution of (P≥).

3. If a ≤ b, then d is an optimal solution of (P≤) and the problem (P≥) is unbounded
or trivial (the case a = b and d = 0).

Proof The objective function of both problems is the same:

f (z) = az(z − d) − b(z + d)2 = (a − b)z2 − (a + 2b)dz − bd2.

This is a quadratic function of z; more precisely, it is a convex parabola if a > b, and
a concave parabola if a < b.
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Let us first consider the case when a ≥ 4b, so f is convex. Then, the minimum
point of this parabola is ẑ = a+2b

2(a−b)d. Since
1
2 < a+2b

2(a−b) ≤ 1, ẑ is feasible for the
problem (P≤) and it is closer to d than to 0, so d is an optimal solution of (P≥).

In the second case, namely if b < a < 4b, the function f is still convex, and its
minimum point is the same ẑ. However, now ẑ is not feasible for the problem (P≤),
but it is feasible for (P≥). Indeed, in this case a+2b

2(a−b) > 1, so the optimal solution of
(P≤) is d and the optimal solution of (P≥) is ẑ.

When a ≤ b, the function f is concave, so the problem (P≥) is unbounded except
in the case when a = b and d = 0. On the other hand, the minimum point of the
problem (P≤) will be one of the endpoints of the feasibility interval. Since −bd2 =
f (0) ≥ f (d) = −4bd2, the optimal solution of (P≤) is d. ��

Lemma 3.3 Csizmadia’s matrix is positive semidefinite for n ≤ 3, but it is not positive
semidefinite for n ≥ 4. Furthermore,

κ̂(Cn) =
{
0 if n ≤ 3
22n−8 − 0.25 if n ≥ 4.

Proof The positive semidefiniteness of the matrix in small dimensions can be shown
easily. Now we assume that n ≥ 4. Let the vector x̃ be the following

x̃1 = 1, x̃i = 2i−2 for i = 2, 3, . . . n − 1, x̃n = 2n−3.

Then for ỹ = Cn x̃, we have

ỹ1 = 1, ỹi = 0 for i = 2, 3, . . . , n − 1, ỹn = −2n−3.

Thus
x̃1 ỹ1 = 1, x̃n ỹn = −22n−6,

and we have x̃i ỹi = 0 for all other indices i . Namely, κCn (x̃) = 22n−8 − 0.25, which
gives a lower bound on the handicap.

In the second part of the proof, we show that Cn ∈ P∗(22n−8 − 0.25), so this value
is also an upper bound on the handicap. We demonstrate it by definition, we verify the
nonnegativity of the function h(x) = 22n−6 ∑

i∈I+(x) xi (Cnx)i + ∑
i∈I−(x) xi (Cnx)i

for all x ∈ R
n . More precisely, we show that all of the minimizers of h have the form

αx̃, where α is a nonzero number.
The function h is a weighted sum of the components of the vector

x ◦ Cnx =

⎛

⎜⎜⎜⎝

x21
x2(x2 − x1)

...

xn(xn − ∑n−1
i=1 xi )

⎞

⎟⎟⎟⎠ .
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Notice that only the last coordinate of this vector depends on xn . Therefore, x̄ mini-
mizes h if and only if x̄n = −1/2

∑n−1
i=1 x̄i . Thus,

x̄ ◦ Cn x̄ =

⎛

⎜⎜⎜⎜⎜⎜⎝

x̄21
x̄2(x̄2 − x̄1)

...

x̄n−1(x̄n−1 − ∑n−2
i=1 x̄i )

−1/4
(∑n−1

i=1 x̄i
)2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The latter vector has only two coordinates which depend on xn−1; therefore, we should
solve the following two minimization problems according to the sign of the (n − 1)th

coordinate (the last one is always nonpositive):

min
xn−1

xn−1

(
xn−1 −

n−2∑

i=1

xi

)
− 1/4

(
n−1∑

i=1

xi

)2

xn−1(xn−1 − ∑n−2
i=1 xi ) ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
(Pn−1≤ )

min
xn−1

22n−6xn−1

(
xn−1 −

n−2∑

i=1

xi

)
− 1/4

(
n−1∑

i=1

xi

)2

xn−1(xn−1 − ∑n−2
i=1 xi ) ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
(Pn−1≥ )

Based on Lemma 3.2 for problems (Pn−1≤ ) and (Pn−1≥ ) with z = xn−1 and d =∑n−2
i=1 xi , the optimal solution is z = d in both cases, namely x̄n−1 = ∑n−2

i=1 x̄i and

x̄ ◦ Cn x̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄21
x̄2(x̄2 − x̄1)

...

x̄n−2(x̄n−2 − ∑n−3
i=1 x̄i )

0

−
(∑n−2

i=1 x̄i
)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now only n − 2 variables remain and again the largest index (n − 2) appears only
in two coordinates (nth and (n − 2)th) of the vector x̄ ◦ Cn x̄. Therefore, we show by
induction that
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x̄ ◦ Cn x̄ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̄21
x̄2(x̄2 − x̄1)

...

x̄n− j (x̄n− j − ∑n− j−1
i=1 x̄i )

0
...

0

−22( j−2)
(∑n− j

i=1 x̄i
)2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for 2 ≤ j ≤ n − 1. Above we proved this statement for j = 2. Now we assume that
it is true for a bigger index j ( j ≤ n − 2) and show that it holds for j + 1 as well.

The vector x̄ ◦ Cn x̄ depends on xn− j only in the coordinates n and (n − j). So
to solve the minimization problem of h in the variable xn− j , we should solve the
following two problems:

min
xn− j

xn− j

⎛

⎝xn− j −
n− j−1∑

i=1

xi

⎞

⎠ − 22( j−1)

⎛

⎝
n− j∑

i=1

xi

⎞

⎠
2

xn− j (xn− j − ∑n− j−1
i=1 xi ) ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
(Pn− j

≤ )

min
xn− j

22n−6xn− j

⎛

⎝xn− j −
n− j−1∑

i=1

xi

⎞

⎠ − 22( j−1)

⎛

⎝
n− j∑

i=1

xi

⎞

⎠
2

xn− j (xn− j − ∑n− j−1
i=1 xi ) ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭
(Pn− j

≥ ).

Using Lemma 3.2 for these problems with z = xn− j and d = ∑n− j−1
i=1 xi , we again

get that the optimal solution in both cases is z = d, namely x̄n− j = ∑n− j−1
i=1 x̄i and

x̄ ◦ Cn x̄ has the desired form. ��

4 Testing Sufficiency

We have already seen in Introduction that the sufficient property of the coefficient
matrix has a crucial role in analyzing algorithms for solving LCPs. This is why it
would be important to find numerically efficient methods to test the sufficiency of
arbitrary matrices. However, as we have already mentioned, Tseng proved that the
decision problem of whether a matrix is column sufficient is co-NP-complete [56];
therefore, a polynomial algorithm cannot be expected.

In the rest of the paper, we investigate the following first three approaches and only
mention the last possibility (remember, if the handicap of a matrix is finite, then the
matrix is sufficient):
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1. In 1996,Väliaho [58] proposed an exponential algorithm to examine the sufficiency
of a matrix. We implemented his algorithm in MATLAB.

2. We propose a linear programming approach from [49], which turned out to be
already a known result by Guu and Cottle [26]. However, our formulation is a bit
different and simplified and we also implemented our method.

3. Nonlinear reformulations of the definition.
4. Väliaho also developed an exponential algorithm to determine the handicap of a

sufficient matrix [59]. This is the only kind of such an algorithm in the literature.
In 2011, de Klerk and E.-Nagy proposed an approximation hierarchy to compute
the handicap [13].

4.1 Väliaho’s Exponential Algorithm to Detect Matrix Sufficiency

Väliaho’s algorithm is an iterative method. It checks the sufficiency of all of the prin-
cipal submatrices with increasing size using the information that the previous ones
are sufficient. Therefore, the core of the algorithm is the following procedure whose
input is an n-by-n matrix which is sufficient in order n − 1 (i.e. all of its principal
submatrices of size n − 1 are sufficient) and it decides whether the given matrix is
sufficient or not.

We recall in Fig. 2 this core procedure ( [57, Procedure 5.1]) keeping the original
names S1-S5 of steps, but using our notations:

Now we are ready to give the full description of Väliaho’s method, see Fig. 3.

Fig. 2 Valiaho_almost_SU(A), whereP refers to the corresponding principal pivotal transformation,
see on page 8

Fig. 3 Väliaho’s algorithm to detect sufficiency
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4.2 Linear Programming Approach to Detect Matrix Sufficiency

In this subsection, we explain in detail the approach to detect matrix sufficiency based
on solving linear programming feasibility problems.

Let M ∈ R
n×n be a given matrix and I = {1, 2, . . . , n} be the set of indices.

Suppose that we partition the index set into three (disjoint) subsets, as follows: I =
S−1 ∪ S0 ∪ S1, and k = |S1 ∪ S−1|. There are 3n such partitions of the index set.
For each partition S = S−1 ∪ S0 ∪ S1, we define the generalized orthant R

n
S in the

following way:

R
n
S = {x ∈ R

n : xi > 0 for i ∈ S1, xi < 0 for i ∈ S−1, xi = 0 for i ∈ S0}.

Let us define the matrix M̃S corresponding to a given partition S as follows:

(
M̃S)

i j
=

⎧
⎨

⎩

Mi j if i, j ∈ S1 or i, j ∈ S−1,

−Mi j if (i ∈ S1 and j ∈ S−1) or (i ∈ S−1 and j ∈ S1),

0 if i ∈ S0 or j ∈ S0.

The next step is to delete the zero rows and columns, so let us define the matrix
MS by deleting all rows and columns corresponding to the index set S0, namely
MS = M̃S0,S0

∈ R
k×k , where S0 = I\S0.

Theorem 4.1 Let M ∈ R
n×n be a given matrix and I = {1, 2, . . . , n} be the set of

indices. The following three statements are equivalent:

1. M is a column sufficient matrix.
2. There is no partition S of the index set I such that the system of linear inequalities

x ≥ e, MS x ≤ 0, eT MS x ≤ −1 (LS)

has a solution.
3. For all partitions S of the index set I the system of linear inequalities

yT MS ≥ 0, y − γ e ≥ 0, γ + yT MSe = 1, γ ≥ 0 (DS)

has a solution.

Proof The matrix M is not column sufficient if and only if there is a vector x̄ such that
the vector X̄M x̄ is nonpositive but not the zero vector. If x̄ ∈ R

n
S then it means that

(M x̄)S1 ≤ 0, (−M x̄)S−1 ≤ 0 and there is at least one nonzero coordinate. Namely,

MS1S1 x̄S1 − MS1S−1(−x̄S−1) ≤ 0 and − MS−1S1 x̄S1 + MS−1S−1(−x̄S−1) ≤ 0,

and there is at least one nonzero coordinate. Using the definition of the matrix MS
and introducing the positive vector z = (sgn(x̄) ◦ x̄)S0

, we get that MSz ≤ 0 and
there is at least one nonzero coordinate.
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Summarizing, M is not column sufficient if and only if there is a partition S and a
vector z such that

z > 0, MSz ≤ 0, MSz �= 0,

equivalently

z > 0, MSz ≤ 0, eT MSz < 0. (3)

Note that if z is a solution of system (3) then λz is also a solution for all positive λ.
Therefore, the system (3) is feasible if and only if the problem (LS) has a solution.

Finally, based on Farkas’ lemma, system (LS) has no solution if and only if (DS)

is solvable. ��

Based on the result of Theorem 4.1, we can develop a simple, but computationally
very demanding algorithm for testing if a given matrix is sufficient. It has to check
whether (LS) is feasible for all possible partitions I = S−1 ∪ S0 ∪ S1 (there are
3n of them). The infeasibility of all (LS) problems means that the given matrix M
is column sufficient. Thus, if we find an Ŝ partition of the index set I such that the
corresponding (L Ŝ) is feasible, then the given matrix M is not column sufficient, and
the feasible solution x is a certificate for it.

The linear feasibility problems (LS) could be solved using state-of-the-art solvers
like MOSEK [44], or FICO Xpress Optimizer [18].

Notice that this procedure inspects for each principal submatrix of M whether it is
column sufficient or not. We can reduce significantly the number of LP problems to
be solved based on Väliaho’s following result [57, Theorem 4.2]:

Lemma 4.1 If M ∈ R
n×n is (row, column) sufficient of order n − 1 and det M > 0,

then M is (row, column) sufficient.

It means that we need to solve the linear feasibility problem (LS) only if
det MS̄0,S̄0

= 0. Indeed, if the determinant is negative, then the matrix is not P0,
namely, it is not sufficient. On the other hand, based on Lemma 4.1, if the determinant
is positive, then the investigated partition S can give a certificate for non-column-
sufficiency if and only if there is another partition S ′ such that S0 ⊂ S ′

0 and
det MS̄ ′

0S̄ ′
0

< 0 or det MS̄ ′
0S̄ ′

0
= 0 and (LS ′) has a solution.

The algorithm based on solving a sequence of linear feasibility problems of type
(LS) is presented in Fig. 4.

The LP-B-Alg algorithm can be built in a slightly different way by using the system
of linear inequalities presented in (DS). Numerical results obtained by LP-B-Alg
method are presented in Sect. 5.5.

4.3 Nonlinear Programming Approach to Detect Matrix Sufficiency

Using the definition of column sufficiency, we introduce three different nonlinear
programming models to test sufficiency using a nonlinear solver.
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Fig. 4 LP-based algorithm (LP-B-Alg) to detecting column sufficiency

As we have already discussed, a vector x is a certificate for non-column-sufficiency
of a matrix M if and only if x ◦ Mx � 0, which is equivalent to

x ◦ Mx ≤ 0 and xT Mx < 0. (4)

Since this is a homogeneous feasibility problem, we can add a norm constraint on
x. Moreover, the second constraint can be considered as the objective function of
the problem. In this way, we get the first reformulation of the definition of column
sufficiency:

1. The matrix M is column sufficient if and only if the optimal objective function
value of the following problem is 0. (Note that the optimal value is nonpositive
since the all-zero vector is always feasible.)

min xT Mx s.t. x ◦ (Mx) ≤ 0, ‖x‖p ≤ 1. (5)

We get another approach if the homogeneous feasibility problem (4) is scaled in a
different way. We can add a negative upper bound on the quadratic term xT (Mx) and
search for a feasible solutionwhere theHadamard product x◦(Mx) gives a nonpositive
vector:

2. The matrix M is column sufficient if and only if the following problem is either
infeasible or its optimal value is positive.

min t s.t. x ◦ (Mx) ≤ te, xT Mx ≤ −1. (6)

In the case of the last mentioned possibility, to analyze the feasibility problem (4),
we introduce a new variable z = x ◦ Mx and put these defining equations into the
objective function with a proper penalty parameter λ:

3. The matrix M is column sufficient if and only if the optimal objective function
value of the following problem is 0 for all positive λ. (Note that the optimal value
is again nonpositive.)

min
n∑

i=1

zi + λ

n∑

i=1

(zi − xi (Mx)i )2 s.t. z ≤ 0. (7)
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5 Implementation Details and Numerical Results

In the previous sections, we proposed three different approaches to check the suf-
ficiency of a matrix. We have performed preliminary numerical tests using these
procedures. We implemented Väliaho’s algorithm from Fig. 3 and the LP-B-Alg
method fromFig. 4 inMATLAB(version2019a), using theparallel computing toolbox.
At the very beginning of both algorithms, we check if thematrixM is positive semidef-
inite by computing the smallest eigenvalue of M + M�. Since the dimensions of M
are usually rather small in practical computations (less than 30×30), we compute this
value by symbolic computations, i.e.,we computeλmin =min(eig(sym(M+M’))).
If λmin > − 10−12, we consider the matrix M to be positive semidefinite, hence suf-
ficient.

TheNLP-based approachwas implemented by the global nonlinear solver BARON.
In the following subsections, we describe the implementation details, the data sets that
we used and explain the numerical results.

5.1 Implementation Details about Väliaho’s Algorithm

We made separate implementations for 2-by-2 and 3-by-3 matrices to increase effi-
ciency. For higher dimensions, we coded exactly the recursive algorithm from Fig.3,
butwe considered every number from the interval (−10−8, 10−8) as zero for numerical
reasons. We note that Väliaho, in his paper [57], mentioned some further possibilities
to improve the core procedure. It is future work to integrate these ideas into the code.

5.2 Implementation Details about the LP-Based Algorithm

In the sequel, we explain details about the implementation for testing the column
sufficiency of a given squarematrixM . The implementation for testing row sufficiency
follows the same steps applied to M�.

The feasibility problems (LS) considered during the algorithm were solved by the
MOSEK linear programming solver [44], which we run through MATLAB [55].

The LP-B-Alg algorithm has two types of stopping criteria: Steps 2, 3.1, and 3.2
(the matrix is not column sufficient) and Step 4 (the matrix is column sufficient). Step
4 could occur only after we check 3n linear feasibility problems (LS), where S is a
partition of the indices. We implemented it hierarchically, which means that the size
of S0 is decreasing from n − 2 to 0 and for each size |S0| < n − 2, if det MS̄0S̄0

is
zero, we perform step 3.2 for all possible sub-partitions S−1 ∪ S1.

Note that the computation of det MS̄0S̄0
is numerically very sensitive. However, it

is a more critical error if we wrongly detect det MS̄0S̄0
< 0, since this can imply the

wrong conclusion that M is not sufficient. Therefore, we make this test in two steps:
we first check if det MS̄0S̄0

< −ε, where we set ε = 10−12. If this is true, we again
compute det MS̄0S̄0

, but we use the symbolic version of MS̄0S̄0
, hence the determinant

is computed with very high precision. Now, we repeat the test with the new value of
the determinant and if it is again smaller than−ε, we conclude that M is not sufficient.
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The test whether det MS̄0S̄0
is positive is performed by using the default script for

calculating the determinant in MATLAB and verifying if det MS̄0S̄0
> ε.

Therefore,we perform step 3.2 onlywhen det MS̄0S̄0
∈ [−ε, ε]. The only remaining

situation when the LP-B-Alg algorithm may fail is when the determinant of some
MS̄0S̄0

is actually zero, but our algorithm mistakenly numerically detects that the
determinant is larger than ε and therefore skips step 3.2 and consequently fails to find
a certificate for non-sufficiency.

The inner part of the algorithm, i.e., the for-loop in step 3.2, can be parallelized. We
carried out the parallelization inMATLABusing aparfor-loop. The communication
between the parallel processes performed by parfor is very limited. In particular, if
one of the parallel processes finds a certificate that thematrix is not (column) sufficient,
we have to accomplish the whole loop (check all possible partitions S−1 ∪ S1 for a
given S0) before we can exit. This takes a bit longer than necessary, e.g., if we have
coded the algorithm using C and OpenMP or MPI, but overall, parallelization makes
a difference and increases the reach of our algorithm.

5.3 Implementation Details about the NLP Algorithm

To compare the differentmodel formulations, we implemented themodels described in
Sect. 4.3 in the AMPL modeling language [21] and used the BARON [52, 54] global
nonlinear solver with precision 10−4 to find solutions. Note that for our purposes,
it is very important to obtain the global optimal value of the NLP problems, since
otherwise, we cannot decide the sufficiency of the matrix. Therefore, we cannot use a
local solver.

After comparing the different model formulations in practice, we found that model
(5) gave the best results and chose this model to carry out the numerical tests. We
compared the results for different vector norms, and the best running times could
be achieved by limiting the infinity norm of the variable vector. This restriction is
necessary since BARON requires nonlinear expressions to be bounded in the model
descriptions.

5.4 Data Sets

We tested the algorithms on three data sets. The first was constructed by E.-Nagy
and is denoted by ENM [16], the second by Illés and Morapitiye [27] (denoted by
IM), while the third consists of 7 Csizmadia’s matrices (Csizmadia) of size n =
10, 15, 20, 22, 25, 27, 30, which are all sufficient, as described in Sect. 3.2 and in the
references therein.

The first data set (ENM) contains

– 82 sufficient matrices of sizes n = 3, 4, . . . , 10, there are 10 matrices for sizes
n = 3, . . . , 8 and 11 matrices for n = 9, 10;

– 80 non-sufficient (neither row nor column) matrices of sizes n = 3, 4, . . . , 10,
there are 10 matrices for each size.
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Table 1 The number of matrices in the second data set (IM) for each size n

Size n 10 20 50 100 200 500 700

Number of matrices 10 (1) 10 (2) 10 10 10 10 1

In parentheses, we write how many matrices out of the total are non-sufficient

The ENM data set was constructed as follows: First random matrices with integer
entries between −10 and 10 were generated. Then to get a sufficient matrix, an appro-
priately large integer multiple of the identity matrix was added to them. (In almost all
cases, these are P matrices.) Finally, some entries were modified at random (but still
kept them integer) and got different sufficient and non-sufficient matrices.

The second data set (IM) contains 61 matrices. It has been built using construc-
tions that theoretically lead to sufficient matrices, see [27]. However, they applied
principal pivotal transformation (PPT) on integer matrices, as well. After the PPT,
the resulting matrices are usually no longer integer matrices, thus the values of
the entries strongly depend on the number representation. It could happen, due to
the numerical errors, that some matrices become non-sufficient. Indeed, our numer-
ical algorithms (Väliaho’s algorithm and LP-B-Alg algorithm) have revealed and
confirmed that 3 out of these 61 matrices are non-sufficient (they are denoted by
IM_NSU_10_07, IM_NSU_20_07, IM_NSU_20_08). Current versions of our
implementations allow us to numerically check the sufficient property ofmatrices only
up to size n = 30 (Table 1).

5.5 Numerical Results

In this subsection, we report the numerical results obtained by all three algorithms on
the data sets introduced in the previous subsection. Due to the exponential worst-case
time complexity of all algorithms, we were able to run them only for matrices from
data sets ENM and IM of size n ≤ 20 for Väliaho’s and LP-B-Alg algorithms and for
n ≤ 10 in the case of the nonlinear programming algorithm, however for Csizmadia’s
matrices, all three algorithms could go up to n = 30.

All the computations with Väliaho’s and LP-B-Alg algorithms were done on the
HPC system at the University of Ljubljana, Faculty of Mechanical Engineering. We
used the E5-2680 V3 (1008 hyper-cores) DP cluster, with IB QDR interconnection,
164 TB of LUSTRE storage, 4.6 TB RAM, supplemented by GPU accelerators.

Since our implementations of Väliaho’s and LP-B-Alg methods were done inMAT-
LAB, we were able to use only one compute node for a computation, which on this
cluster means that two processors with a total of 24 compute cores are available, since
scaling the MATLAB code over more than one compute node requires the use of the
MPI library and C coding, which was beyond our capacity. Therefore, we report scal-
ing of the code speed-ups by parallelization using only 24 compute cores within one
compute node, see Tables 5 and 6.

Tables 2 and 3 contain aggregated results obtained on the first two test data sets
introduced in Sect. 5.4. More precisely, we ran Väliaho’s and the LP-B-Alg algorithms
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from Fig. 4 on all instances of size n ≤ 20 from the ENM and IM data sets. For the
matrices of size n = 20 from the IM data set, we were capable of accomplishing
both algorithms in the time limit of 3h only for three out of the 10 instances: for
IM_SU_20_02, IM_NSU_20_07, and IM_NSU_20_08. Note that the last two
matrices are the only non-sufficient matrices of order n = 20 from the IM data set,
while the first matrix is PSD and this is the reason we could detect its status so
easily. For the remaining 7 matrices of size n = 20 from the IM data set, which are
all sufficient (but not PSD), Väliaho’s algorithm could detect their status, while the
LP-B-Alg procedure was run only on the leading principal submatrices for which it
could finish computations in the time frame of 3 hours, see the results in Table 4.

The first and the second columns in Tables 2 and 3 contain the size (n) and the
number of the input matrices (# mtx) aggregated in that row. The third column (# LP)
contains the average number of feasibility problems (LS) that the LP-B-Alg algorithm
needed to solve. The last two columns contain the average computing times needed by
Väliaho’s and the LP-B-Alg algorithms. When for a given dimension the table has two
rows, in the first one we aggregated the instances where the value of the third column
(# LP) is 0, namely only determinants were tested during the run (i.e., the LP-B-Alg
method ended in step 2 or 3.1). These are the easiest matrices regarding the LP-B-
Alg procedure since the hardest part (solving a large number of feasibility problems
(LS)) was skipped, i.e., for these instances, we had det MS̄0S̄0

> 0, for all S0. In the
second part of the table, we report the results where the third column is positive, so
these are aggregated results for the instances where we detected at least once a zero
principal minor, namely, we had to solve the corresponding (LS) problems. The last
two columns in both tables contain the average computing times needed by Väliaho’s
(time V ) and by the LP-B-Alg algorithms (timeLP) in seconds.

Table 2 shows that very often no feasibility problem (LS) needed to be solved.
When this was not the case, on average only a few instances of (LS) were needed to
find a certificate for non-sufficiency.

Table 3 contains the results for sufficient matrices. Väliaho’s algorithm solved all
these instances in the time frame of 3h, while for the LP-B-Alg algorithm, the situation
was different. When the status can be revealed without solving (LS) (this happens if
in the third column (#LP) we report zero), then this is done very efficiently, since in
these cases only the determinant tests are needed. However, if the matrix is sufficient
and the determinant tests are not enough, then the LP-B-Alg algorithm needs to solve
(exponentially) many instances of (LS) and for n = 20 there were too many of them,
so this algorithm could not solve them within the time limit. For example, the second
row of Table 5 shows that for the 17× 17 principal submatrix of IM_SU_20_01, the
LP-B-Alg method needed to solve more than 108 instances of (LS), which took more
than 137h.

Table 4 contains the results for the 7 sufficient matrices for which the LP-B-Alg
algorithm could not finish computations in the time frame of 3h; therefore, we con-
sidered only the leading principal submatrices, which were still sufficient. We report
in this table the largest sizes kLP, for which the LP-B-Alg method produced correct
results for the leading principal submatrices of order kLP, and the number of instances
of (LS) that the LP-B-Alg procedure had to solve. Note that all these submatrices are
column and row sufficient and the LP-B-Alg algorithm gave correct answers for all
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Table 2 Summary of numerical
results for non-sufficient
matrices from the first and the
second data sets (one 10 and two
20 dimensional non-sufficient
matrices from the data set IM
and the remaining sixty matrices
from the data set ENM)

n # mtx # LP Time V TimeLP

3 2 0 0 0.0008

4 6 0 0.0002 0.0009

5 8 0 0.0005 0.0015

6 8 0 0.0015 0.0027

7 10 0 0.0037 0.006

8 10 0 0.0076 0.0065

9 8 0 0.0035 0.0042

10 9 0 0.0090 0.0020

3 8 4.5 0.0008 0.2667

4 4 4 0.0003 0.0318

5 2 6 0.0006 0.0474

6 2 12 0.0010 0.0935

9 2 8 0.0054 0.0638

10 2 28 0.0053 0.2306

20 2 38 0.6788 2.2797

The upper part of the table contains results for instances where the
determinant tests were sufficient to decide the status of the matrix. In
the lower part of the table, we report results for the instances where
the LP-B-Alg algorithm needed to solve (very few) instances of (LS )

Table 3 Summary of numerical
results for sufficient matrices
from the data sets ENM and IM
(for n = 20 Väliaho’s algorithm
solved all instances from the
data set IM, while the LP-B-Alg
algorithm could solve only the
instance IM_SU_20_02, for
which the determinant test was
enough)

n # mtx # LP Time V TimeLP

3 10 0 0.0001 0.0047

4 10 0 0.0005 0.0034

5 10 0 0.0010 0.0040

6 10 0 0.0020 0.0036

7 10 0 0.0036 0.0030

8 10 0 0.0084 0.0070

9 11 0 0.0141 0.0056

10 12 0 0.0265 0.0097

20 8(1) 0 556.97 0.4032

10 8 31,415 0.2996 197.6019

of the examined (sub)matrices. It is interesting that for IM_SU_20_05 and k = 15,
the LP-B-Alg method did not need to solve any instance of (LS), while for k = 16,
the computing time has already exceeded the time limit. We can see that on these
matrices, Väliaho’s algorithm strongly outperforms the LP-B-Alg method, since in
the time frame of 3h it can detect their status correctly for the whole matrices (see
Table 3, while the LP-B-Alg algorithm only for the submatrices of order kLP.

Tables 5 and 6 show how the parallel versions of Väliaho’s and the LP-B-Alg algo-
rithms scale. Computations in Table 5 were performed on the sufficient matrices of
order n = 20 from the IM data set. As demonstrated in Table 4, checking sufficiency
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Table 4 Numerical results for 7
out of 10 matrices of size
n = 20, for which the LP-B-Alg
algorithm could not detect the
correct status in the time frame
of 3h, so we report for each
instance the size of the leading
principal submatrix for which
the correct status was revealed in
this time frame

Instance n kLP # LP

IM_SU_20_01 20 13 790,400

IM_SU_20_03 20 15 371,744

IM_SU_20_04 20 13 1,438,448

IM_SU_20_05 20 15 0

IM_SU_20_06 20 13 1,529,272

IM_SU_20_09 20 15 297,352

IM_SU_20_10 20 15 297,352

by the LP-B-Alg algorithm is very time consuming for 7 out of 8 sufficient matrices
from this data set, so we did these computations with the LP-B-Alg method only for
the 14×14 leading principal submatrices, and we did not impose any time limit. Addi-
tionally, we add results for 17 × 17 leading principal submatrix of IM_SU_20_01,
which demonstrates that the LP-B-Alg algorithm may need to solve a huge number
of instances of (LS) even in the case of a rather small matrix, which results in huge
computing times of the LP-B-Alg algorithm. Therefore, even the parallel version of
LP-B-Alg algorithm is not able to check the sufficiency of the 17 × 17 leading sub-
matrix of IM_SU_20_01 in 3h.

We can observe that the sequential and parallel versions of Väliaho’s algorithm
are significantly faster compared to the LP-B-Alg algorithm, which is already known
from Table 4. Both algorithms scale quite well. The average scaling factor for the
instances in Table 5 is 18.7 for Väliaho’s algorithm, which is very good, and 6.0 for
the LP-B-Alg algorithm, which is moderate. (It should be recalled that the parallel
computations were performed on computing nodes with 24 available CPU cores.)

Table 6 contains the results for Csizmadia’s matrices of sizes 10, 15, 20, 25, 30,
which are quite different compared to results in Table 5. These matrices are sufficient
and both algorithms detect this correctly, the LP-B-Alg algorithm evenwithout solving
any instance of (LS). This is not surprising since these matrices are P-matrices (see
Sect. 3.2), so all of their principal minors are positive. We can see that the computing
times for the LP-B-Alg method are significantly smaller, compared to Väliaho’s algo-
rithm. Table 5 additionally demonstrates that for small n and short computation times,
there is not much difference between the sequential and parallel versions of the two
algorithms. In some cases, the parallel version may even require slightly more time.
The reason behind this is the fact that setting up the parallel environment takes some
time. If the computation time is very short, which means that the status of the matrix
was revealed without starting the parallel part of the code, then parallelization is not
worth it.

For larger values of n, we can observe from Table 6 that the parallel version of
Väliaho’s algorithm again scales well with the average scaling factor of 10.9, while
the LP-B-Alg algorithm shows no scaling. The reasons for this lies again in the fact
that we parallelized only one part of each algorithm:

– for Väliaho’s algorithm, we parallelized only the search for a certificate for non-
sufficiency over all possible submatrices of given order s ∈ {3, . . . , n}, which
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Table 6 Results of Väliaho’s and the LP-B-Alg algorithms on Csizmadia’s matrices

n Seq.-timeV Par.-timeV Seq.-timeLP Par.-timeLP # LP

10 0.117 1.018 0.117 0.013 0

15 0.601 1.343 0.105 0.101 0

20 18.018 2.444 3.207 3.236 0

25 682.370 33.784 117.2567 118.855 0

30 12803.490 1203.770 4882.666 4982.708 0

The LP-B-Alg algorithm never needed to solve any instance of (LS )

means that we parallelized the internal for-loop using parfor option fromMAT-
LAB;

– for the LP-B-Alg algorithm, we parallelized only the internal for-loop, i.e., step
3.2, using again the parfor option from MATLAB.

In the case of Csizmadia’s matrices, the parallelized part of Väliaho’s algorithm was
activated and made the difference, while in the case of the LP-B-Alg method, the
parallelized part was skipped since no instance of (LS) had to be solved.

In general, parallelization brings a difference when these internal for-loops contain
many computations, otherwise not. Themost difficult cases are exactly thosewhere the
internal for-loops are computationally demanding, so it makes no sense to parallelize
also the outer loops as long as we work only on one compute node, regardless of how
many compute cores it has, since this compute node is already fully utilized with this
variant of parallelization (intra-node parallelization). However, it would beworthwhile
to also implement inter-node parallelization in combination with GPUs, but this would
require rewriting some parts of the code in C, using MPI and CUDA. This is beyond
the scope and capacity of this current research.

5.6 Numerical Results for the NLP Approach

To test the efficiency of the NLP-based approach, we used the NEOS server [9, 15,
24], where BARON is available for scientific purposes. The proposed models are
suitable for deciding whether a matrix is column sufficient or not. Since a matrix is
sufficient if it is both row and column sufficient, we would have to solve the nonlinear
programming problems twice (for both M and MT ) to test the sufficiency of a matrix.
The numerical results presented in this section only show the time needed for deciding
whether the given matrix is column sufficient or not.

For the numerical test, we first used the 3×3 to 10×10 sufficient and non-sufficient
matrices from the first data set, and the 10× 10 sufficient instances of the second data
set, described in Sect. 5.4.

We also tried to solve the 20×20 problems from the second data set, but the running
times exceeded the 8-hour time limit of the NEOS server, except for the second 20×20
matrix where the total solving time was only 0.4 s. (This instance is indeed an easy
one since it is a positive semidefinite matrix.)

123



Journal of Optimization Theory and Applications (2024) 202:204–236 231

Table 7 Average running times
of BARON for sufficient
matrices

Data set n # mtx Time

ENM 3 10 0.194

ENM 4 10 1.520

ENM 5 10 4.265

ENM 6 10 27.223

ENM 7 10 114.688

ENM 8 10 434.841

ENM 9 10 950.340

ENM 10 11 5640.118

IM 10 9 1797.335

Table 8 Average running times
of BARON for non-sufficient
matrices

n # mtx Time

3 10 0.230

4 10 0.332

5 10 1.145

6 10 5.749

7 10 7.740

8 10 36.350

9 10 40.561

10 10 297.689

The average running times in seconds for the sufficient matrices are shown in Table
7, and the results for the non-sufficient instances can be seen in Table 8. The first 8
rows describe the results for the first data set in both tables, and the ninth row of the
first table shows the average time for the 10 × 10 instances of the second data set.

For the 10× 10 ENM sufficient instances, the average running time was more than
1.5h; in the worst case, it almost reached 3h. The average running time for the IM
data set was more than half an hour. However, the results for the particular problems
show a considerable variation in this latter case. Six out of the 10 × 10 IM problems
could be solved in less than 0.03 seconds, one in 0.5 seconds, but for one instance,
the solution time was more than 4 hours.

The running times for the non-sufficient instances were significantly lower than
for the sufficient instances. Based on these results, a possible application of the NLP
approach is to run it with a time limit in the hope of finding a certificate for non-
sufficiency.

We also tested the sufficiency of Csizmadia’s matrices with BARON. These
instances are P-matrices; therefore, in this case the nonlinear programming problem
(5) has only one feasible solution, the all-zero vector (meaning that this is the optimal
solution as well). As can be seen in Table 9, BARON could solve these optimization
problems very efficiently for smaller dimensions. The all-zero optimal solution vector
was found in all cases shown in the table in less than 0.06 s.
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Table 9 Running times of
BARON for Csizmadia’s
matrices

n 10 15 20 22 25 27 30

Time 0.016 0.026 0.039 0.037 0.051 0.057 0.061

However, when we increased the dimension, numerical errors occurred. The small-
est size where the exact solution is not found is 35 × 35. If we further increase the
dimension, BARON converges to an infeasible solution.

6 Conclusion

In this paper, we discussed different results related to sufficient matrices. One of our
main goals was to construct benchmark data sets with matrices for which we know
whether they are sufficient or not. For this purpose, we collected already known con-
struction rules for sufficient matrices and proposed new transformations that preserve
sufficiency. We presented three data sets that can be used in the future to test the effi-
ciency of IPAs proposed for sufficient LCPs by the operations research community.
The data sets can be downloaded from the website [16]. In the future, we plan to
extend our benchmark with further sufficient matrices using these construction rules
and even adding right-hand side vectors of the LCPs since this choice can also affect
the difficulty of solving the problem with IPAs.

Csizmadia’s matrix is a good example of a sufficient matrix with a small encoding
size but an exponentially big handicap. One of our research plans is to construct other
such matrices. Moreover, it is still an open question what is the smallest encoding size
of a given matrix that can be realized using only PPT transformations on the matrix.
This result could also help answer the question raised in [13]: whether the handicap
can be doubly exponential in the encoding size.

We also investigated three different algorithms to detect whether a given matrix
is sufficient or not: Väliaho’s algorithm, the LP-B-Alg algorithm, and a method that
facilitates nonlinear programming reformulations of the definition of sufficiency. We
implemented the first two algorithms in MATLAB, and in the third case, we used
BARON to solve the nonlinear programming reformulations. We reported the details
of their implementation and the obtained numerical results.

The numerical results demonstrate that Väliaho’s algorithm is often the best choice.
Usually, we can process the largest matrices with this algorithm, and when this is not
the case, like for Csizmadia’s matrices, then parallelization of Väliaho’s algorithm
gives very good speed-up factors. The LP-B-Alg algorithm is competitive when it
can make the decision without solving too many linear programming subproblems
(LS), which is the case for the non-sufficient instances or the instances where the
determinant tests are enough. However, this algorithm takes large computing times
for the sufficient instances where we need to process a very large (exponential) number
of instances of (LS). In such situations, parallelization makes sense.We demonstrated
how the intra-node parallelization speeds up the computations. It would also be worth
implementing inter-node parallelization in combination with GPUs. This was beyond
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the scope and capacity of our current research sincewewould need to partially re-write
the code into C, using MPI and CUDA. However, to further our research, we would
like to investigate the effect of these modifications.

As a summary of our numerical studies leaves a number of challenging open ques-
tions left for future research, we cannot provide a clear answer to a practitioner who
needs a tool to decide whether his matrices are sufficient or not. The approaches
applied in this work are complementary in the sense that some very hard instances
for one algorithm were easily decided by another one. Therefore, in a situation where
we have no additional information on the matrices, the best strategy based on current
knowledge would be to apply all the algorithms in parallel and grasp the result that is
obtained first.

Finally, the numerical results of the nonlinear approach prove that deciding whether
a matrix is sufficient is a difficult nonconvex quadratic problem. The other two investi-
gated algorithms have better performance because they take advantage of the structure
of the problem. It would be valuable to investigate whether it is also possible to do so
in the case of using a nonlinear solver.
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