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Abstract
It is rigorously shown that an appropriate quantum annealing for any finite-dimensional spin
system has no quantum first-order transition in transverse magnetization. This result can be
applied to finite-dimensional spin-glass systems, where the ground state search problem is
known to be hard to solve. Consequently, it is strongly suggested that the quantum first-
order transition in transverse magnetization is not fatal to the difficulty of combinatorial
optimization problems in quantum annealing.

Keywords Quantum annealing · Quantum first-order transition · Hard optimization
problems · Spin glass · Self-averaging

1 Introduction

Solving combinatorial optimization problems efficiently is a major topic in theoretical com-
puter science. From the viewpoint of physics, this problem can be described as energy
minimization with a given classical spin system. Inspired by this, the simulated anneal-
ing [1] and the quantum annealing (QA) [2, 3] were invented as generic heuristic methods
for solving these optimization problems. Given a classical Hamiltonian Û N :J of system size
N and for the set of quenched coupling constants J , the QA solves the energy minimization
problem as follows: we set the Hamiltonian of the quantum system as

Ĥ N :J (γ ) = Û N :J + γ D̂ , (1)

where D̂ is noncommutative with Û N :J and γ is a parameter controlled in QA. This Hamil-
tonian D̂ is called the driver Hamiltonian and has a known ground state. Starting with the
system with large γ and varying slowly to γ = 0, one would expect the ground state of
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Ĥ N :J (γ ) to change from the known ground state of D̂ to the desired solution state, the
ground state of Û N :J . The quantum adiabatic theorem [4] guarantees that the desired ground
state is attainable by taking a sufficiently long time to change γ . A natural question raised
here is whether this process is time efficient, i.e., whether it takes only polynomial time of
the system size N to reach the true ground state of Û N :J . Roughly speaking, the time cost is
proportional to the inverse square of the minimum gap between the ground-state energy and
the first excited state energy of the Hamiltonian in the annealing process [3, 5].

The first proposal of QA employed the transverse magnetic term −M̂N
x = −∑N

i=1 σ̂ x
i as

the driver Hamiltonian D̂, and argued based on numerical experiments that the QA with this
driver Hamiltonian is superior to simulated annealing [2]. On the other hand, this type of QA
was shown to fail in the p-spin model (p-body mean-field ferromagnetic model with p > 2)
[6, 7], where the gap is exponentially small and the computation time is exponentially large.
In the case of the p-spinmodel, the transversemagnetization undergoes a discontinuous jump
in the annealing process, which we call the quantum first-order transition in transverse mag-
netization (QFOT for short) analogous to the first-order transition in thermodynamics. This is
a challenging phenomenon for QA, since the sudden change in the transverse magnetization
causes an exponential collapse of the gap, implying the failure of annealing.

The fundamental origin of the failure of the QA for hard optimization problems is under
discussion in this field. One possible argument is that the failures mainly are due to the QFOT
[8], based on the observed fact that the QFOT frequently appears when the QA fails [9]. In
contrast, another argument is that the failure of the QA has origins other than the QFOT.
For example, it was reported in Ref [10–14] that QA in some models shows exponentially
small gaps at points other than the point of QFOT. However, the latter observation is based on
specific models and does not provide a general argument on the relation between the QFOT
and the failure of the QA.

To resolve this controversy, we adopt the QA with antiferromagnetic fluctuations (QA-
AFF) first proposed in Ref [7] and set the entire Hamiltonian as Ĥ N :J (γ ;α) = Û N :J −
γ M̂N

x + α
N (M̂N

x )2. The additional fluctuations term makes the QFOT more avoidable. Previ-
ous studies based on specific models show that in the ferromagnetic p-spin model (without
quenched randomness) and the Hopfield model, the QA-AFF succeeds in avoiding QFOT
under some conditions, while the QFOT appears unavoidable under others [7, 9]. In spite of
these previous investigations, the potential effectiveness of the QA-AFF in general systems
has not yet been uncovered.

In this paper, we rigorously prove that the QA-AFF for finite-dimensional spin-glass
systems avoids the QFOT. Our result applies to general finite-dimensional spin-glass systems
as long as i.i.d. quenched random variables are used. Even for systems that exhibit the
QFOT under the conventional QA with only the transverse magnetic field, the addition of the
antiferromagnetic fluctuations term always removes this singularity andmakes the transverse
magnetization in this QA continuous as a function of γ . In other words, the QFOT in QA
can be completely avoided by adding antiferromagnetic fluctuations.

We note that the search for the ground state of three-dimensional Ising spin-glass systems
is considered to be a computationally hard task since it belongs to an NP-hard problem [15],
which is a class of the most difficult combinatorial optimization problems. It is believed that
even quantum computers cannot solve NP-hard problems efficiently, which suggests that the
QA-AFF in fact fails at some point. Based on our findings, we assert that the QFOT is not
fatal to the difficulty of combinatorial optimization problems in QA.

In our proof, the self-averaging plays a pivotal role to derive the absence of singularity.
First, we show that the ground-state energy EN :J

g (γ ) is self-averaging in the conventional
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QA only with the transverse magnetic field. There remains the possibility that the func-
tion obtained by taking the average of the quenched randomness has a singularity (i.e.,
non-differentiable points). Then, it can be shown that the addition of the antiferromagnetic
fluctuations term does indeed remove the singularity for any finite-dimensional system. How-
ever, for some long-range interaction systems, this claim may not hold, which is consistent
with the previous studies showing that QFOT cannot be avoided in the mean-field models.

This paper is organized as follows. In Sect. 2, we explain our setup and main claim. In
Sect. 3, we describe the outline of the proof, presenting several key ideas in this proof. In
Sect. 4, which consists of four subsections, we prove the main theorem.We briefly review the
Legendre transformation in Sect. 4.1. Sections 4.2 and 4.3 are devoted to the investigation of
self-averaging for a fixed parameter and uniform self-averaging for a function, respectively.
We finally introduce the antiferromagnetic fluctuations in Sect. 4.4, which completes the
proof of the avoidance of the QFOT.

2 Setup andMain Claim

2.1 Setup

We deal with the energy minimization problem of a classical spin-1/2 system on a finite-
dimensional lattice with N spins. Pairs of spins σ̂ z

i and σ̂ z
j interact with each other through

the coupling constant Ji j , which is a quenched random variable. The Hamiltonian of this
classical system is thus expressed as

Û N :J = −
N∑

i=1

N∑

j=1

Ji j σ̂
z
i σ̂ z

j , (2)

where the set of coupling constants Ji j is denoted simply by J .
To solve the energyminimization problem byQA, we add a transverse magnetic field with

strength γ ∈ (−∞,∞), which leads to the following Hamiltonian for the quantum system:

Ĥ N :J (γ ) = Û N :J − γ M̂N
x = Û N :J − γ

N∑

i=1

σ̂ x
i . (3)

As discussed in detail in Sect. 4.4, dealing with the QA-AFF, Û N :J in this formula is replaced
by Û N :J + α

N (M̂N
x )2.

Throughout this paper, we consider models in finite dimension with Û N :J generated by
a shift-invariant probability distribution for quenched random variables. We here clarify the
meaning of finite dimension for later use. If the lattice is placed in R

n space and each site
interacts only with its neighbors, the notion of dimension has no confusion. The problem
may arise when distant sites also interact with forces that decay with distance. To cover these
systems, we define the finite dimensionality for D ≥ 2 with D being the spatial dimension
as follows1:

Definition 2.1.1 (Finite dimensionality) We say that a Hamiltonian Û N :J (or a system) is in
a finite dimension if the following two conditions are satisfied2:

1 In one dimension, the same argument holds but the order evaluation of the result differs.
2 Our results hold for finite-dimensional systems with general p-body interactions. For example, in three-
body interacting system Û N :J = −∑N

h=1
∑N

i=1
∑N

j=1 Jhi j σ̂
z
h σ̂ z

i σ̂ z
j , finite-dimensionality is the condition
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• For any site i , the sum of interactions with i is bounded from above as

N∑

j=1

√[
J 2i j

]
≤ cbulk , (4)

where [·] is the random average with respect to the quenched randomness (see Sect. 4.2
for details), and cbulk is a constant independent of the system size N .

• For any size A of the system, there exists a decomposition of sites into B = N/A
subsystems of size A denoted by A[1], . . . , A[B], such that the sum of interactions
between inside and outside of any subsystem A[k] is bounded from above as

∑

i∈s(A[k])

∑

j /∈s(A[k])

√[
J 2i j

]
≤ csurfaceA

1−1/D , (5)

which means that the surface energy is insignificant compared to the bulk energy for a
sufficiently large system. Here s(A[k]) is the set of the sites in A[k], and csurface is a
constant independent of the size of the system and the subsystems.

We also clarify the meaning of shift-invariant probability distribution for quenched ran-
dom variables. Let Pi j (Ji j ) be the probability distribution for the coupling constants Ji j .
This probability distribution is shift-invariant if Pi j = Pkl holds for any i, j, k, l such that
ri − r j = rk − rl , where ri is a D dimensional vector representing the lattice position of site
i . If the lattice consists of several sublattices, the above characterization further requires that i
and k belong to the same sublattice. The system without quenched randomness is considered
a special case of a shift-invariant system.

2.2 Main Result

We shall define the quantum first-order transition in transverse magnetization (QFOT) in
systems with quenched random variables. We first provide the definition of the absence
of the QFOT for a system without quenched randomness, i.e., Û N :J is deterministically
constructed depending on N . In this case, we say that the QA does not exhibit a QFOT

if the transverse magnetization density 〈g(γ )|M̂N
x |g(γ )〉
N of a ground state |g(γ )〉 of Ĥ N :J (γ )

converges uniformly to a continuous function m∗(γ ) in thermodynamic limit (N → ∞):

lim
N→∞ sup

γ∈[0,∞)

∣
∣
∣
∣
∣

〈g(γ )|M̂N
x |g(γ )〉
N

− m∗(γ )

∣
∣
∣
∣
∣
= 0 . (6)

Here, the ground state of Ĥ N :J (γ ) is implicitly assumed to be unique. If the ground state
degenerates, we regard that our condition should be satisfied for any state |g〉 in the state
space of minimum energy: G(Ĥ N :J (γ )) = arg min

|ψ〉
〈ψ |Ĥ N :J (γ )|ψ〉. Or equivalently, the

above definition can be replaced by

lim
N→∞ sup

γ∈[0,∞)

max
|g〉∈G(Ĥ N :J (γ ))

∣
∣
∣
∣
∣

〈g|M̂N
x |g〉
N

− m∗(γ )

∣
∣
∣
∣
∣
= 0 . (7)

Footnote 2 continued
that

∑N
i=1

∑N
j=1

√
[J2hi j ] ≤ cbulk instead of (4) and that

∑
h∈s(A[k])

∑
i /∈s(A[k])

∑
j /∈s(A[k])

√
[J2hi j ] ≤

csurfaceA
1−1/D instead of (5).
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In the case of spin glasses with quenched randomness, we shall define the QFOT as its typ-
ical behavior, replacing the convergence in the above definition with stochastic convergence
(especially convergence in mean square).

Definition 2.2.1 We say that a given QA shows no quantum first-order phase transition in
transverse magnetization if there exists a continuous function m∗(γ ) such that

lim
N→∞

⎡

⎣ sup
γ∈[0,∞)

(
〈g(γ )|M̂N

x |g(γ )〉
N

− m∗(γ )

)2
⎤

⎦ = 0 . (8)

Here, [·] means the average for the quenched random variable.

We remark that the functionm∗(γ ) is independent of the quenched randomvariables. Thus,
the above definition states that for almost all Û N :J the transverse magnetization density in
the ground state converges to the same function.

We prove that the QFOT in the above definition is always avoidable in finite-dimensional
spin-glass systems.

Theorem 2.2.2 For any classical Hamiltonian in finite dimension with quenched random
variables sampled from a shift-invariant probability distribution, the QA-AFF for this Hamil-
tonian does not have a QFOT.

This is the main result of this paper. Notice that this theorem only describes the absence of a
jump in the transversemagnetization density during theQAprocess, and does not evaluate the
size of the energy gap that determines the annealing time required for successful computation.

2.3 Remark

We here put two remarks related to our main result.

The first remark is on the connection to the computational hardness, in particular compu-
tational complexity. It is known that the energy minimization problem in three-dimensional
spin glass is an NP-hard problem. Thus, from the perspective of computational complexity,
the finite-dimensional spin glass with D ≥ 3 is as complex as the Sherrington-Kirkpatrick
model. Therefore, our subject is indeed the efficiency of QA for hard combinatorial opti-
mization problems.

This paper rules out the possibility that the difficulty in QA for finite-dimensional spin
glasses lies in the QFOT. Our result, however, does not state that the QA-AFF actually
succeeds as a method for solving combinatorial optimization problems and that NP ⊆ BQP
in terms of computational complexity. A more plausible scenario would be that the QA-AFF
suffers from causes other than the QFOT. We will discuss this point in detail in Sect. 5.

The second remark is on the form of Û N :J (;α) in QA-AFF. In QA-AFF, the Hamiltonian
at γ = 0 is Û N :J (;α) = Û N :J + α

N (M̂N
x )2, not the classical spin glass Hamiltonian Û N :J

we wish to solve. However, this discrepancy does not matter for the success or the failure
of the QA for the following reason: if the coupling constants do not take continuous real
numbers but discrete numbers of decimal places, by setting α smaller than the smallest unit
of energy and measuring the final state with the computational basis, we can observe one of
the true ground states with a finite probability3. Indeed, under the restriction that the coupling

3 Let |ans〉 be a classical ground state of Û N :J and d be the smallest unit of energy of Û N :J . Since we
have 〈ans|Û N :J + α

N (M̂N
x )2|ans〉 = 〈ans|Û N :J |ans〉 + α, the ground-state energy of Û N :J + α

N (M̂N
x )2 is
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constants are integers, ground-state search problem for three-dimensional spin glasses has
been proven to be NP-hard [15].

3 Outline of the Proof

Our first simple but important step is inspired by thermodynamics, where thermodynamic
functions (e.g., the Helmholtz free energy and the Gibbs free energy) are connected via the
Legendre transformation with respect to an extensive variable (e.g., volume) and an intensive
variable (e.g., pressure). We regard the ground-state energy EN :J

g (γ ) as a thermodynamic
function with an intensive variable γ . Then, its inverse Legendre transformation [16, 17]
yields the constrained minimum energy UN :J

g (Mx ) with an extensive variable Mx .

The functional forms of EN :J
g (γ ) andUN :J

g (Mx ) depend on Û N :J . However, if the prob-
ability distribution generating Û N :J is shift-invariant, we can show that

EN :J
g (γ )

N
∼ eg(γ ) ,

UN :J
g (Nmx )

N
∼ ug(mx ) , (9)

where∼ stands for stochastic convergence (especially convergence inmean square), which is
nothing but self-averaging in terms of physics. In the conventional QA only with a transverse
magnetic field, −eg(γ ) and ug(mx ) are shown to be convex, while ug(mx ) might be not
strictly convex, which leads to a singularity as an non-differentiable point in eg(γ ) at the
QFOT.

To remove this singularity, we add the antiferromagnetic fluctuations term to the Hamil-
tonian Ĥ N :J (γ ), which results in Ĥ N :J (γ ;α) = Û N :J −γ M̂N

x + α
N (M̂N

x )2. In this case, the
corresponding ug(mx ;α) is strictly convex, since ug(mx ) is convex and the square function
αm2

x provides a small convex curve. Consequently, it follows that the QFOT does not occur
in a typical evaluation with the addition of the antiferromagnetic fluctuations term.

The effort for this proof is mainly devoted to proving self-averaging. In this paper, we use
the finite dimensionality for the proof, while some studies employ other methods [18]. To
show the self-averaging of EN :J

g (γ ), we decompose the system into B = N/A subsystems of
size A and use a version of the law of large numbers recalling that these subsystems are i.i.d.
Subsequently, we show the uniform self-averaging (uniform convergence) of EN :J

g (γ ). The
assertion of the main Theorem 2.2.2 is described as uniform self-averaging of the transverse
magnetization.

4 Proof

4.1 Preparation

We introduce two functions EN :J
g (γ ) andUN :J

g (Mx ) analogous to thermodynamic functions
and demonstrate that they are Legendre transformation and inverse Legendre transformation

Footnote 3 continued
lower than that of Û N :J plus α. Consequently, measuring the ground state of Û N :J + α

N (M̂N
x )2 with the

computational basis yields the ground state(s) of Û N :J with probability at least 1 − α/d if α < d.
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[16] of each other. For completeness, below we will describe several basic results of the
Legendre transformation in terms of EN :J

g (γ ) and UN :J
g (Mx ). Readers who are familiar

with these techniques can skip this subsection.

Definition 4.1.1 The ground-state energy of Ĥ N :J (γ ) is defined as

EN :J
g (γ ) = min|ψ〉 〈ψ |Ĥ N :J (γ )|ψ〉 . (10)

Here, |ψ〉 runs all possible pure states.
The domain of minimization in the above definition can be extended from pure states to

general mixed states.

Proposition 4.1.2 The ground-state energy EN :J
g (γ ) is also the minimum expectation energy

of general mixed states:

EN :J
g (γ ) = min

ρ̂
Trρ̂ Ĥ N :J (γ ) . (11)

Proof Fix ρ̂′ ∈ arg min
ρ̂

Trρ̂ Ĥ N :J (γ ). Decomposing this state as ρ̂′ = ∑
t pt |ψt 〉〈ψt |, we

obtain

min
ρ̂

Trρ̂ Ĥ N :J (γ ) = Trρ̂′ Ĥ N :J (γ )

=
∑

t

pt 〈ψt |Ĥ N :J (γ )|ψt 〉

≥ EN :J
g (γ ) . (12)

The inverse inequality is obvious. 
�
We next introduce the minimum energy conditioned by the transverse magnetization.

Definition 4.1.3 The minimum energy of Û N :J conditioned by x-magnetization at Mx =
〈M̂N

x 〉 is defined as
UN :J
g (Mx ) = min

ρ̂|Trρ̂ M̂N
x =Mx

Trρ̂Û N :J . (13)

Notably, EN :J
g (γ ) and UN :J

g (Mx ) are connected through the Legendre transformation.

Proposition 4.1.4 EN :J
g (γ ) is the Legendre transformation of U N :J

g (Mx ).

Proof Combining the definitions of EN :J
g (γ ) and UN :J

g (Mx ), we find

EN :J
g (γ ) = min

Mx∈[−N ,N ] min
ρ̂|Trρ̂ M̂N

x =Mx

Trρ̂(Û N :J − γ M̂N
x )

= min
Mx∈[−N ,N ](U

N :J
g (Mx ) − γ Mx ) . (14)

This means the Legendre transformation4 of UN :J
g (Mx ) in terms of Mx . 
�

Proposition 4.1.5 EN :J
g (γ ) is a concave function.

4 In the mainstream style of mathematics, EN :J
g (γ ) is minus the Legendre transformation. Our notation is

based on that widely used in thermodynamics [17].
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Proof The Legendre transformation provides a concave function. 
�
Proposition 4.1.6 UN :J

g (Mx ) is a convex function.

Proof For any λ(0 ≤ λ ≤ 1), M−, M+(M− < M+), we fix ρ̂+ ∈ arg min
ρ̂|Trρ̂ M̂N

x =M+
Û N :J and

ρ̂− ∈ arg min
ρ̂|Trρ̂ M̂N

x =M−
Û N :J , which are density matrices minimizing Û N :J under the constraint

that the x-magnetization is M±, respectively. Then, putting M(λ) := (1 − λ)M− + λM+,
we have

(1 − λ)UN :J
g (M−) + λUN :J

g (M+) = Tr((1 − λ)ρ̂− + λρ̂+)Û N :J

≥ min
ρ̂|Trρ̂ M̂N

x =M(λ)

Trρ̂Û N :J

= UN :J
g ((1 − λ)M− + λM+) , (15)

which means the convexity of UN :J
g (Mx ). 
�

Proposition 4.1.7 UN :J
g (Mx ) is the inverse Legendre transformation of EN :J

g (γ ).

Proof It is known that if a function f is the Legendre transformation of a convex function g,
then the inverse Legendre transformation of f is g [16, 19]. 
�

We remark that although the domain of Mx is a finite region [0, N ] and that of γ is a
semi-infinite region [0,∞), all the aforementioned results are valid for these domains.

4.2 Self-Averaging

In this subsection, we shall show self-averaging of the ground-state energy

EN :J
g (γ )

N
∼ eg(γ ) . (16)

with respect to quenched randomness. Namely, almost all Hamiltonians obtained by ran-
dom quench have the same ground-state energy density. Self-averaging allows us to discuss
quenched systems only by considering the averaged quantity eg(γ ), not each EN :J

g (γ ).

To this end, we divide the system with Hamiltonian Û N :J into B copies of subsystems
with equal size A as N = AB. We denote the k-th subsystem by A[k](k = 1, . . . , B =
N/A). We define the Hamiltonian of A[k] denoted by Û A[k]:J as a restriction of Û N :J to
subsystem A[k] with removing all the bonds from A[k] to outside A[k]. We introduce a
block-decomposed Hamiltonian on the same system, which is a product of Û A[k]:J denoted
by Û A#B:J := ∑B

k=1 Û
A[k]:J . The difference between Û N :J and Û A#B:J is the interaction

terms between different subsystems.
The block-decomposedHamiltonian Û A#B:J plays a central role in our proof. In particular,

an argument similar to the law of large numbers is applicable to Û A#B:J , which follows from
the fact that Û A#B:J is a product of i.i.d. random Hamiltonians; Û A[k]:J (k = 1, . . . , B).
Since Û A#B:J is close to Û N :J , we can derive several self-averaging results in systems with
Û N :J . Note that this proof idea is a standard technique in the statistical mechanics of random
systems (see Ref [20]).

We first introduce symbols describing an average over quenched randomness and its
fluctuation:
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Definition 4.2.1 Consider a system with quenched random variables J . Let XN :J be a
stochastic variable depending on the quenched random variables J . We denote by [XN :J ] the
average of XN :J with respect to the quenched randomness J . We also denote its root mean

square
√[(XN :J )2] by XN :J .

Note that XN :J is a norm (i.e., it satisfies the triangle inequality), which is a direct conse-
quence of Schwarz inequality.

We first bound the root mean square of operator norms of the system Hamiltonian Û N :J
and the difference between the Hamiltonian and its block-decomposed one; Û N :J −Û A#B:J .
The latter quantity can be regarded as surface energy.

Proposition 4.2.2 Suppose that Û A[k]:J (k = 1, . . . , B) are i.i.d. random Hamiltonians of
D-dimensional systems. Then, the operator norm of the bulk energy Û N :J and the surface
energy Û N :J − Û A#B:J are bounded respectively as

∥
∥
∥Û N :J

∥
∥
∥
op

≤ cbulkN ,

∥
∥
∥Û N :J − Û A#B:J

∥
∥
∥
op

≤ csurfaceA
1−1/DB , (17)

where cbulk and csurface are constants independent of N , A, and B.

Proof These bounds are direct consequences of the finite dimensionality of the system. The
bulk energy is bounded as

∥
∥
∥Û N :J

∥
∥
∥
op

≤
N∑

i=1

N∑

j=1

∣
∣Ji j

∣
∣ ≤

N∑

i=1

N∑

j=1

Ji j ≤ cbulkN , (18)

where we used the triangle inequality in the second inequality. The surface energy is bounded
as

∥
∥
∥Û N :J − Û A#B:J

∥
∥
∥
op

≤
B∑

k=1

∑

i∈s(A[k])

∑

j /∈s(A[k])

∣
∣Ji j

∣
∣

≤
B∑

k=1

∑

i∈s(A[k])

∑

j /∈s(A[k])
Ji j

≤ csurfaceA
1−1/DB , (19)

where s(A[k]) is a set of sites in subsystem A[k]. 
�

Now we shall bound the fluctuation of the ground-state energy in terms of quenched
randomness. We first show a slightly weak inequality, and then tighten the inequality by
applying the obtained inequality iteratively.

Proposition 4.2.3 The standard deviation of EN :J
g (γ ) satisfies the bound

EN :J
g (γ ) − [EN :J

g (γ )] ≤ cbulkN . (20)
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Proof For any Hamiltonian Û N :J , we have the following bound:
∣
∣
∣EN :J

g (γ ) + γ N
∣
∣
∣ =

∣
∣
∣
∣min

ρ̂
Tr[ρ̂ Ĥ N :J (γ )] − min

ρ̂
Tr[ρ̂(−γ M̂N

x )]
∣
∣
∣
∣

≤
∥
∥
∥Ĥ N :J (γ ) + γ M̂N

x

∥
∥
∥
op

=
∥
∥
∥Û N :J

∥
∥
∥
op

. (21)

Here, the second line follows from an elementary inequality
∣
∣
∣
∣min

ρ̂
Trρ̂ X̂ − min

ρ̂
Trρ̂Ŷ

∣
∣
∣
∣ ≤ max

ρ̂

∣
∣
∣Trρ̂ X̂ − Trρ̂Ŷ

∣
∣
∣ =

∥
∥
∥X̂ − Ŷ

∥
∥
∥
op

. (22)

Thus we arrive at the desired inequality:

EN :J
g (γ ) − [EN :J

g (γ )] = EN :J
g (γ ) + γ N − [EN :J

g (γ ) + γ N ]

≤ EN :J
g (γ ) + γ N ≤

∥
∥
∥Û N :J

∥
∥
∥
op

≤ cbulkN , (23)

where the first inequality follows from an elementary fact that X − x0 is minimized when
x0 = [X ], and the last inequality follows from Proposition 4.2.2. 
�

The above inequality can be tightened by applying the above result to the block-
decomposed system A#B iteratively.

Proposition 4.2.4 The fluctuation of
EN :J
g (γ )

N vanishes in the thermodynamic limit. In partic-
ular, for any positive ε > 0, we have

EN :J
g (γ ) − [EN :J

g (γ )] = O(N 1−1/D+ε) . (24)

Proof We start with

EN :J
g (γ ) − [EN :J

g (γ )] ≤ EN :J
g (γ ) − [E A#B:J

g (γ )]
≤ EN :J

g (γ ) − E A#B:J
g (γ ) + E A#B:J

g (γ ) − [E A#B:J
g (γ )] . (25)

The first inequality follows from that X − x0 is minimized when x0 = [X ], and the second
inequality follows from the triangle inequality.Wefirst evaluate the first termof the right-hand
side of (25) as

EN :J
g (γ ) − E A#B:J

g (γ ) ≤
∥
∥
∥Ĥ N :J (γ ) − Ĥ A#B:J (γ )

∥
∥
∥
op

=
∥
∥
∥Û N :J − Û A#B:J

∥
∥
∥
op

≤ csurfaceA
1−1/DB . (26)

Here, we used (22) in the first inequality, and used Proposition 4.2.2 in the last inequality. We
next bound the second term of the right-hand side of (25). Since E A[k]:J

g (k = 1, . . . , B) are
independent random variables, Proposition 4.2.3 applies to each subsystem, which yields

E A#B:J
g (γ ) − [E A#B:J

g (γ )]
2

=
B∑

k=1

E A[k]:J
g (γ ) − [E A[k]:J

g (γ )]
2
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≤ Bc2bulkA
2 . (27)

Combining these two inequalities, we obtain

EN :J
g (γ ) − [EN :J

g (γ )] ≤ csurfaceA
1−1/DB + cbulkAB

1/2 . (28)

Setting A = Na and B = N 1−a with a = D/(D + 2), we obtain

EN :J
g (γ ) − [EN :J

g (γ )] ≤ (csurface + cbulk)N
1−1/(D+2)

= O(N 1−1/(D+2)) . (29)

We notice that the above inequality (29) is stronger than (20). Therefore, by replacing (20)

in the derivation of (27) by (29) (i.e., we use E A[k]:J
g (γ ) − [E A[k]:J

g (γ )] = O(A1−1/(D+2))

instead of E A[k]:J
g (γ ) − [E A[k]:J

g (γ )] = cbulkA = O(A) in (27)), we can obtain a further

stronger inequality on EN :J
g (γ ) − [EN :J

g (γ )]. By repeating this operation5, we finally arrive
at

EN :J
g (γ ) − [EN :J

g (γ )] = O(N 1−1/D+ε) . (30)


�

In addition, the existence of the ground-state energy density in the thermodynamic limit
can be shown.

Proposition 4.2.5 The averaged ground-state energy density converges in the thermodynamic
limit

eg(γ ) := lim
N→∞

[EN :J
g (γ )]
N

. (31)

Moreover, the speed of convergence is evaluated as

[EN :J
g (γ )]
N

− eg(γ ) = O(N−1/D) . (32)

Proof Since Û A[k]:J (k = 1, . . . , B) are i.i.d. randomHamiltonians, we have [E A#B:J
g (γ )] =

B[E A[1]:J
g (γ )], which implies
∣
∣
∣
∣
∣

[EN :J
g (γ )]
N

− [E A[1]:J
g (γ )]

A

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

[EN :J
g (γ )]
N

− [E A#B:J
g (γ )]

N

∣
∣
∣
∣
∣
≤ csurfaceA

−1/D . (33)

This shows that aN := [EN :J
g (γ )]
N is a Cauchy sequence and hence converges. 
�

We finally prove the self-averaging of the ground-state energy.

5 Once E A[k]:J
g (γ ) − [E A[k]:J

g (γ )] = O(A1−nm ) is shown, we can get EN :J
g (γ ) − [EN :J

g (γ )] =
O(A1−1/DB) + O(A1−nm B1/2) = O(N

1− 1
D+2−2Dnm ) for a = D

D+2−2Dnm
. The recurrence formula

nm+1 = 1
D+2−2Dnm

with the initial term n0 = 0 has a limit limm→∞ nm = 1/max (D, 2).
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Theorem 4.2.6 (Self-averaging of EN :J
g (γ )) For any γ , the ground-state energy density

EN :J
g (γ )

N converges to eg(γ ) in mean square:

EN :J
g (γ )

N
− eg(γ ) = O(N−1/D+ε) . (34)

Proof Combining Proposition 4.2.4 with Proposition 4.2.5, we easily have

EN :J
g (γ ) − Neg(γ )) ≤ EN :J

g (γ ) − [EN :J
g (γ )] + [EN :J

g (γ )] − Neg(γ )

≤ EN :J
g (γ ) − [EN :J

g (γ )] + csurfaceN
1−1/D

= O(N 1−1/D+ε) , (35)

which is equivalent to the desired result. 
�

4.3 Uniform Self-Averaging

In this subsection, we will show uniform self-averaging (i.e., self-averaging as a function of
γ ), which is a stronger condition than the self-averaging discussed in the previous subsection.
The key idea for the proof of uniform self-averaging is to put many regularity checkpoints on
the γ -axis. To demonstrate self-averaging for any γ , we employ self-averaging at the nearest
regularity checkpoint of γ and evaluate the speed of convergence at γ . Since it is not easy
to show uniform self-averaging in the half-infinite region [0,∞) directly, we set the domain
of γ in EN :J

g (γ ) as [0, γ̃ ] for γ̃ that diverges slowly as N increases.

We start by showing that EN :J
g (γ ) is Lipschitz continuous.

Proposition 4.3.1 For any γ1, γ2 and any instance, the difference between EN :J
g (γ ) (and

eg(γ )) with γ1 and γ2 is bounded as
∣
∣
∣EN :J

g (γ1) − EN :J
g (γ2)

∣
∣
∣ ≤ N |γ1 − γ2| ,

∣
∣eg(γ1) − eg(γ2)

∣
∣ ≤ |γ1 − γ2| . (36)

Proof The first inequality of (36) follows from (22) as
∣
∣
∣EN :J

g (γ1) − EN :J
g (γ2)

∣
∣
∣ ≤

∥
∥
∥Ĥ N :J (γ1) − Ĥ N :J (γ2)

∥
∥
∥
op

= N |γ1 − γ2|. The same argument holds for their mean and

under the thermodynamic limit. 
�
Theorem 4.3.2 (Uniform self-averaging of EN :J

g (γ )) The ground-state energy density
EN :J
g (γ )

N converges uniformly on [0, γ̃ ] in mean square:

max
γ∈[0,γ̃ ]

∣
∣
∣
∣
∣

EN :J
g (γ )

N
− eg(γ )

∣
∣
∣
∣
∣
= O(N−2/(5D)+ε) , (37)

where we set γ̃ = N 1/(5D).

Proof For convenience, we suppose that N 1/D+1/(5D) is an integer. Corresponding to integers
w = 1, . . . , N 1/D+1/(5D), we define the regularity checkpoints and their covering intervals
as

γw = (w − 1/2)N−1/D,
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Iw =
[
(w − 1)N−1/D, wN 1/D

]
. (38)

With noting that |γ − γw| ≤ N−1/D

2 for any γ ∈ Iw , we have
∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣

≤
∣
∣
∣EN :J

g (γ ) − EN :J
g (γw)

∣
∣
∣ +

∣
∣
∣EN :J

g (γw) − Neg(γw)

∣
∣
∣ + ∣

∣Neg(γw) − Neg(γ )
∣
∣

≤
∣
∣
∣EN :J

g (γw) − Neg(γw)

∣
∣
∣ + N 1−1/D , (39)

where we used Proposition 4.3.1 in the second inequality. Hence the maximum deviation of
ground-state energy is bounded as

max
γ∈Iw

∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣ ≤ EN :J

g (γw) − Neg(γw) + N 1−1/D . (40)

Using this relation, we arrive at the desired result:

max
γ∈[0,γ̃ ]

∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣

2

= N1/D+1/(5D)

max
w=1

max
γ∈Iw

∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣

2

≤
N1/D+1/(5D)

∑

w=1

max
γ∈Iw

∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣

2

≤
N1/D+1/(5D)

∑

w=1

(

EN :J
g (γw) − Neg(γw) + N 1−1/D

)2

= O(N 2−1/D+1/(5D)+ε) . (41)

In the first inequality we used the following simple relation for nonnegative Lw;

max
w

Lw

2 =
[
max

w
L2

w

]
≤

[
∑

w

L2
w

]

=
∑

w

Lw

2
, (42)

in the second inequality we used (40), and in the last inequality we used Proposition 4.2.6. 
�
We proceed to the uniform self-averaging of UN :J

g (Nmx ). To prove this, we introduce
the inverse Legendre transformation of eg(γ ), to which the ground-state energy density
UN :J
g (Nmx )

N converges.

Definition 4.3.3 The inverse Legendre transformation of eg(γ ) is defined as

ug(mx ) = sup
γ∈(−∞,∞)

(eg(γ ) + γmx ) . (43)

Theorem 4.3.4 (Uniform self-averaging of U N :J
g (Nmx ))

U N :J
g (Nmx )

N converges uniformly on
[
0, m̃N :J

x

]
in mean square:

max
mx∈[0,m̃N :J

x ]

∣
∣
∣UN :J

g (Nmx ) − Nug(mx )

∣
∣
∣ = O(N 1−2/(5D)+ε) , (44)

where m̃N :J
x = 1 − 2

N1+1/(5D)

∥
∥
∥Û N :J

∥
∥
∥
op
.
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12 Page 14 of 22 M. Yamaguchi et al.

Proof Consider a pair (mx , γ ) satisfying

UN :J
g (Nmx ) = EN :J

g (γ ) + γ Nmx . (45)

Since EN :J
g (γ ) is the Legendre transformation of UN :J

g (Nmx ) and its minimum is achieved
at Mx = Nmx , we have

UN :J
g (Nmx ) − γ Nmx ≤ UN :J

g (N ) − γ N , (46)

and thus

γ (1 − mx ) ≤ UN :J
g (N ) −UN :J

g (Nmx )

N
≤

2
∥
∥
∥Û N :J

∥
∥
∥
op

N
(47)

holds. It follows that mx ≤ m̃N :J
x , then the corresponding γ with (45) satisfies γ ≤ γ̃ =

N 1/5D . Hence, the domain of γ in the maximization in the Legendre transformation of
EN :J
g (γ ) and eg(γ ) can be narrowed to [0, γ̃ ]:

UN :J
g (Nmx ) = max

γ∈[0,γ̃ ]
(EN :J

g (γ ) + γ Nmx ) ,

ug(mx ) = max
γ∈[0,γ̃ ]

(eg(γ ) + γmx ) . (48)

Then, the difference between energy of a single instance and its average after taking the
thermodynamic limit is evaluated as

∣
∣
∣UN :J

g (Nmx ) − Nug(mx )

∣
∣
∣

=
∣
∣
∣
∣ max
γ∈[0,γ̃ ]

(EN :J
g (γ ) + γ Nmx ) − Nug(mx )

∣
∣
∣
∣

≤
∣
∣
∣
∣ max
γ∈[0,γ̃ ]

(Neg(γ ) + γ Nmx ) − Nug(mx )

∣
∣
∣
∣ +

∣
∣
∣
∣ max
γ∈[0,γ̃ ]

(EN :J
g (γ ) − Neg(γ ))

∣
∣
∣
∣

≤ max
γ∈[0,γ̃ ]

∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣ . (49)

Plugging Proposition 4.3.2 into the above inequality, we have the desired result:

max
mx∈[0,m̃N :J

x ]

∣
∣
∣UN :J

g (Nmx ) − Nug(mx )

∣
∣
∣ ≤ max

γ∈[0,γ̃ ]

∣
∣
∣EN :J

g (γ ) − Neg(γ )

∣
∣
∣

= O(N 1−2/(5D)+ε) . (50)


�

4.4 Antiferromagnetic Fluctuations

Suppose that the x-magnetization Mx shows a first-order phase transition (i.e., discontinuous
jump) at some γ . At this point eg(γ ) is no longer differentiable, and ug(mx ) is convex but not
strictly convex. Our idea to avoid the first-order phase transition in Mx , based on the above
observation, is adding a strictly convex function to ug(mx ). By construction, the modified
ug(mx ) is strictly convex, and eg(γ ) has no singularity.

In particular,we add aquantumantiferromagnetic fluctuations term α
N (M̂N

x )2 to theHamil-

tonian, which we denote by Ĥ N :J (γ ;α). Correspondingly, we denote the minimum energy
conditioned by Mx by UN :J

g (Mx ;α). Then, Theorem 4.3.4 suggests
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UN :J
g (Nmx ;α)

N
∼ ug(mx ;α) := ug(mx ) + αm2

x . (51)

Since ug(mx ;α) is a strictly convex function, quantum first-order phase transition in Mx

does not occur.
A nontrivial step in the aforementioned proof outline is connecting 〈(M̂N

x )2〉 and 〈M̂N
x 〉2,

since these twoare in general not equal; 〈(M̂N
x )2〉 �= 〈M̂N

x 〉2. In fact, these twoare inequivalent
in some long-range interacting systems (e.g., p-spin model with large p, discussed in [7]).
On the other hand, we can prove 〈(M̂N

x )2〉 � 〈M̂N
x 〉2 in short-range interacting systems. This

is the main task in this subsection. We note that our argument does not hold for α < 0.

Definition 4.4.1 For α ∈ (0,∞), we introduce Hamiltonians and related quantities corre-
sponding to QA-AFF denoted by

Ĥ N :J (γ ;α) = Ĥ N :J (γ ) + α

N
(M̂N

x )2 ,

Û N :J (;α) = Û N :J + α

N
(M̂N

x )2 ,

UN :J
g (Mx ;α) = min

ρ̂|Trρ̂ M̂N
x =Mx

Trρ̂Û N :J (;α) ,

ug(mx ;α) = ug(mx ) + αm2
x . (52)

We first prove the uniform self-averaging of UN :J
g (Nmx ;α).

Proposition 4.4.2 The ground-state energy density
UN :J
g (Nmx ;α)

N converges uniformly to
ug(mx ;α) on [0, m̃N :J

x ] in mean square:

max
mx∈[0,m̃N :J

x ]

∣
∣
∣
∣
∣

UN :J
g (Nmx ;α)

N
− ug(mx ;α)

∣
∣
∣
∣
∣
= O(N−2/(5D)+ε) . (53)

Proof We first derive the following bound:
∣
∣
∣U A#B:J

g (Nmx ;α) −U A#B:J
g (Nmx ) − αNm2

x

∣
∣
∣ ≤ αA . (54)

The elementary inequality Trρ̂(M̂N
x )2 − (Trρ̂ M̂N

x )2 ≥ 0 implies

U A#B:J
g (Nmx ;α) ≥ U A#B:J

g (Nmx ) + αNm2
x . (55)

Fix ρ̂′ ∈ arg min
ρ̂|Trρ̂ M̂N

x =Nmx

Trρ̂Û A#B:J , which has x-magnetization Nmx and minimizes the

energy Û A#B:J . We construct a state from ρ̂′ by removing all the correlation between sub-
systems:

ρ̂k = Tri /∈s(A[k])ρ̂′ ,

ρ̂⊗ =
B⊗

k=1

ρ̂k . (56)

By construction, ρ̂⊗ is separable into subsystems, and ρ̂⊗ also minimizes Û A#B:J with x-
magnetization equal to Nmx : ρ̂⊗ ∈ arg min

ρ̂|Trρ̂ M̂N
x =Nmx

Trρ̂Û A#B:J . The AFF term in ρ̂⊗ can be

directly estimated as follows:
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Trρ̂⊗(M̂N
x )2

=
B∑

k=1

B∑

l=1

Trρ̂⊗M̂ A[k]
x M̂ A[l]

x

=
B∑

k=1

B∑

l=1

Trρ̂⊗M̂ A[k]
x Trρ̂⊗M̂ A[l]

x +
B∑

k=1

(

Tr
[
ρ̂⊗(M̂ A[k]

x )2
]

−
(
Trρ̂⊗(M̂ A[k]

x )
)2

)

≤ N 2m2
x + BA2 , (57)

which implies a relation evaluating the difference betweenU A#B:J
g with and without the AFF

term:

U A#B:J
g (Nmx ) = Trρ̂⊗Û A#B:J

= Trρ̂⊗Û A#B:J (Nmx ;α) − α

N
Tr

[
ρ̂⊗(M̂N

x )2
]

≥ U A#B:J
g (Nmx ;α) − αNm2

x − αA . (58)

Using the two inequalities (55) and (58), we arrive at (54).
Now we fix A = Na′

with a′ = 1/(D + 1) in (54). Combining (54), Propositions 4.2.2
and 4.3.4 with recalling Nug(mx ;α) = Nug(mx ) + αNm2

x , we obtain the desired result:

max
mx∈[0,m̃N :J

x ]

∣
∣
∣UN :J

g (Nmx ;α) − Nug(mx ;α)

∣
∣
∣

≤ max
mx∈[0,m̃N :J

x ]

∣
∣
∣UN :J

g (Nmx ;α) −U A#B:J
g (Nmx ;α)

∣
∣
∣

+ max
mx∈[0,m̃N :J

x ]

∣
∣
∣U A#B:J

g (Nmx ;α) −U A#B:J
g (Nmx ) − αNm2

x

∣
∣
∣

+ max
mx∈[0,m̃N :J

x ]

∣
∣
∣U A#B:J

g (Nmx ) −UN :J
g (Nmx )

∣
∣
∣

+ max
mx∈[0,m̃N :J

x ]

∣
∣
∣UN :J

g (Nmx ) − Nug(mx )

∣
∣
∣

≤ max
mx∈[0,m̃N :J

x ]

∣
∣
∣UN :J

g (Nmx ) − Nug(mx )

∣
∣
∣ + αA + 2csurfaceA

1−1/DB

= O(N 1−2/(5D)+ε) . (59)

Here, the first inequality follows from the triangle inequality. 
�

Definition 4.4.3 We denote by m∗(γ ;α) the unique argument that minimizes ug(mx ;α) −
γmx . We also define MN :J∗ (γ ;α) as the expectation value of M̂N

x in a ground state of
Ĥ N :J (γ ;α) (i.e., 〈g|M̂N

x |g〉, where |g〉 is a ground state of Ĥ N :J (γ ;α)). For brevity, we
sometimes drop the arguments γ and α in m∗(γ ;α) and MN :J∗ (γ ;α), and simply write m∗
and MN :J∗ .
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Since ug(mx ;α) is a strictly convex function, m∗(γ ;α) is a continuous function6 with

respect to γ for any α > 0. We shall show that MN :J∗
N converges to a continuous function

m∗(γ ;α), which completes the proof of our main result.

Theorem 4.4.4 (Absence of the QFOT) MN :J∗
N (as a function of γ ) converges uniformly on

[0,∞) in mean square:

sup
γ∈[0,∞)

max
|g〉∈G(Ĥ N :J (γ ;α))

∣
∣
∣
∣
∣

〈g|M̂N
x |g〉
N

− m∗(γ ;α)

∣
∣
∣
∣
∣
= O(N−1/(5D)+ε) . (60)

Proof Note that

1 − m̃N :J
x =

2
∥
∥
∥Û N :J

∥
∥
∥
op

N 1+1/(5D)
≤ 2cbulk

N 1/(5D)
. (61)

We decompose the domain of Mx , [0, N ], into two regions, I1 := [0, Nm̃N :J
x ] and I2 :=

[Nm̃N :J
x , N ]. Promising sup∅ = 0 for convenience, we evaluate the square of the left-hand

side of (60) (multiplied by N ) as

sup
γ∈[0,∞)

max
|g〉∈G(Ĥ N :J (γ ;α))

∣
∣
∣〈g|M̂N

x |g〉 − Nm∗(γ ;α)

∣
∣
∣

2

≤ sup
γ,|g〉 s.t.

Nm∗∈I1,MN :J∗ ∈I1

∣
∣MN :J∗ − Nm∗

∣
∣
2
+ sup

γ,|g〉 s.t.
Nm∗∈I1,MN :J∗ ∈I2

∣
∣MN :J∗ − Nm∗

∣
∣
2

+ sup
γ,|g〉 s.t.

Nm∗∈I2,MN :J∗ ∈I1

∣
∣MN :J∗ − Nm∗

∣
∣
2
+ sup

γ,|g〉 s.t.
Nm∗∈I2,MN :J∗ ∈I2

∣
∣MN :J∗ − Nm∗

∣
∣
2

. (62)

Here, we used (42). We shall evaluate these four terms.
Before going to the evaluation, we introduce a useful relation that if functions

P, Q, R, S, T satisfy P ≤ Q and S + T 2 ≤ R, then

max |T |2 ≤ max |P − R| + max |Q − S| (63)

is satisfied. This relation is easily confirmed as

max |T |2 ≤ [max |R − S|]
≤ [max(|P − R| + |Q − S|)]
≤ [max |P − R|] + [max |Q − S|]
≤ max |P − R| + max |Q − S| . (64)

Now we evaluate the four terms in (62). To evaluate the first term of (62), we consider

P = UN :J
g (MN :J∗ ;α) − γ MN :J∗ ,

Q = UN :J
g (Nm∗;α) − γ Nm∗ ,

6 In fact, m∗(γ ;α) is Lipschitz continuous with constant 1/(2α), which means that there is no quantum
second-order transition in transverse magnetization either.
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R = Nug

(
MN :J∗
N

;α

)

− γ MN :J∗ ,

S = Nug(m∗;α) − γ Nm∗ ,

T =
( α

N

)1/2 ∣
∣
∣MN :J∗ − Nm∗

∣
∣
∣ . (65)

Here, P ≤ Q follows from the fact that MN :J∗ is the minimizer of UN :J
g (Mx ;α) − γ Mx .

Also, S + T 2 ≤ R follows from the fact that m∗ is the minimizer of ug(mx ;α) − γmx and
that the second derivative of ug(mx ;α) is at least 2α. Thus, it follows from (63) that

sup
γ,|g〉 s.t.

Nm∗∈I1,MN :J∗ ∈I1

∣
∣MN :J∗ − Nm∗

∣
∣
2

≤ N

α
sup

γ,|g〉 s.t.
Nm∗∈I1,MN :J∗ ∈I1

∣
∣
∣
∣U

N :J
g (MN :J∗ ;α) − Nug

(
MN :J∗
N

;α

)∣
∣
∣
∣

+N

α
sup

γ,|g〉 s.t.
Nm∗∈I1,MN :J∗ ∈I1

∣
∣
∣UN :J

g (Nm∗;α) − Nug(m∗;α)

∣
∣
∣

≤ N

α
sup

γ,|g〉|MN :J∗ ∈I1

∣
∣
∣
∣U

N :J
g (MN :J∗ ;α) − Nug

(
MN :J∗
N

;α

)∣
∣
∣
∣

+N

α
sup

γ,|g〉|Nm∗∈I1

∣
∣
∣UN :J

g (Nm∗;α) − Nug(m∗;α)

∣
∣
∣

= O(N 2−2/(5D)+ε) . (66)

In the last line, we used Proposition 4.3.4.
To evaluate the second term of (62), we use (63) with

P = UN :J
g (Nm̃N :J

x ;α) − γ Nm̃N :J
x ,

Q = UN :J
g (Nm∗;α) − γ Nm∗ ,

R = Nug(m̃
N :J
x ;α) − γ Nm̃N :J

x ,

S = Nug(m∗;α) − γ Nm∗ ,

T =
( α

N

)1/2 ∣
∣
∣Nm̃N :J

x − Nm∗
∣
∣
∣ . (67)

Here, P ≤ Q follows from (i) the fact thatMN :J∗ is theminimizer ofUN :J
g (Mx ;α)−γ Mx , (ii)

the convexity of UN :J
g (Mx ;α) − γ Mx , and (iii) an assumption that Nm∗ ≤ Nm̃N :J

x ≤ M∗.
Also, S+ T 2 ≤ R holds by the same argument as in the first term. Thus, it follows from (63)
that

sup
γ,|g〉 s.t.

Nm∗∈I1,MN :J∗ ∈I2

∣
∣Nm̃N :J

x − Nm∗
∣
∣
2

≤ N

α

∣
∣
∣UN :J

g (Nm̃N :J
x ;α) − Nug(m̃N :J

x ;α)

∣
∣
∣
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+N

α
sup

γ,|g〉|Nm∗∈I1

∣
∣
∣UN :J

g (Nm∗;α) − Nug(m∗;α)

∣
∣
∣

= O(N 2−2/(5D)+ε) . (68)

In the last line, we used Proposition 4.3.2 and the fact that Nm̃N :J
x ∈ I1. Using this inequality

and (61), we have

sup
γ,|g〉 s.t.

Nm∗∈I1,MN :J∗ ∈I2

∣
∣MN :J∗ − Nm∗

∣
∣

≤ sup
γ,|g〉 s.t.

Nm∗∈I1,MN :J∗ ∈I2

∣
∣Nm̃N :J

x − Nm∗
∣
∣ + N (1 − m̃N :J

x )

= O(N 1−1/(5D)+ε) . (69)

To evaluate the third term of (62), we use (63) with

P = UN :J
g (MN :J∗ ;α) − γ MN :J∗ ,

Q = UN :J
g (Nm̃N :J

x ;α) − γ Nm̃N :J
x ,

R = Nug(M
N :J∗ /N ;α) − γ MN :J∗ ,

S = Nug(m̃
N :J
x ;α) − γ Nm̃N :J

x ,

T =
( α

N

)1/2 ∣
∣
∣MN :J∗ − Nm̃N :J

x

∣
∣
∣ . (70)

Here, P ≤ Q holds by the same argument as in the first term. Also, S + T 2 ≤ R follows
from (i) the fact that m∗ is the minimizer of ug(mx ;α) − γmx , (ii) the fact that the second
derivative of ug(mx ;α) is at least 2α and (iii) an assumption that M∗ ≤ Nm̃N :J

x ≤ Nm∗.
Thus, it follows from (63) that

sup
γ,|g〉 s.t.

Nm∗∈I2,MN :J∗ ∈I1

∣
∣MN :J∗ − Nm̃N :J

x

∣
∣
2

≤ N

α
sup

γ,|g〉|MN :J∗ ∈I1

∣
∣
∣
∣U

N :J
g (MN :J∗ ;α) − Nug

(
MN :J∗
N

;α

)∣
∣
∣
∣

+N

α

∣
∣
∣UN :J

g (Nm̃N :J
x ;α) − Nug(m̃N :J

x ;α)

∣
∣
∣

= O(N 2−2/(5D)+ε) . (71)

Consequently, we have

sup
γ,|g〉 s.t.

Nm∗∈I2,MN :J∗ ∈I1

∣
∣MN :J∗ − Nm∗

∣
∣

≤ sup
γ,|g〉 s.t.

Nm∗∈I2,MN :J∗ ∈I1

∣
∣MN :J∗ − Nm̃N :J

x

∣
∣ + N (1 − m̃N :J

x )

= O(N 1−1/(5D)+ε) . (72)
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The last term of (62) is simply bounded as

sup
γ,|g〉 s.t.

Nm∗∈I2,MN :J∗ ∈I2

∣
∣MN :J∗ − Nm∗

∣
∣ ≤ N (1 − m̃N :J

x ) = O(N 1−1/(5D)) . (73)

Combining these four inequalities, we complete the proof of Theorem 2.2.2. 
�

5 Discussion

We have proved that the quantum annealing (QA) for finite-dimensional spin-glass systems
does not show a quantum first-order transition in transverse magnetization (QFOT) by adding
the antiferromagnetic fluctuations (AFF) term. This result holds for any spin-glass system
as long as the system is in finite dimensions and its quenched randomness is sampled from
a shift-invariant probability distribution. For simplicity of explanation, we assume that the
interaction in Û N :J is two-body and the boundary is an open boundary condition, but our
result applies to more general systems. In fact, our proof relies only on Proposition 4.2.2
(finite dimensionality) and the fact that subsystems are i.i.d. Thus, if these two conditions are
satisfied, our result also applies to systems with the periodic and closed boundary conditions
as well as those with local fields and short-range p-body interactions.

Key ideas in our proof
Wefirst elucidate the power of uniform self-averaging.Uniformself-averaging is an important
concept for discussing the absence of phase transitions. Applying an argument analogous to

Chebyshev’s inequality, we show that the function MN :J∗ (γ )

N is in the sup-norm neighborhood
of the functionm∗(γ ) for almost all J . Conventional self-averaging alone, which corresponds
to pointwise convergence, cannot eliminate the possibility that there is a discontinuous jump
in each instance with different transition points depending on instances. On the other hand,
uniform self-averaging indeed prohibits this unwanted possibility.

Next, we discuss the role of the AFF term. Thanks to the description with UN :J
g (Mx ),

our approach makes the meaning of the AFF term ((M̂N
x )2 term) much clearer than in the

original paper of QA-AFF [7]. Namely, the AFF term strengthens the convexity in ug(mx )

and ensures that it is strictly convex, not merely convex, and this fact shows that the transverse
magnetization is continuous with respect to γ . Similar arguments can be seen in some papers
in statistical mechanics [21, 22], where the difficulties associated with first-order phase
transitions are solved by devising the shape of the ensemble. However, we should notice the
discrepancy 〈(M̂N

x )2〉 �= 〈M̂N
x 〉2, which prevents a direct analogous argument. In particular,

the procedure to obtain a narrowly convex function ug(mx ;α) as presented in Sect. 4.4 does
not always work well for long-range interacting systems, e.g., p-spin model with large p [7].

Implications to the hardness of QA
It is numerically well known that the QA for hard combinatorial optimization problems fails
at some point in the QA process. As explained in the Introduction, the role of the QFOT
in the failure of the QA is controversial. Our result says that the QFOT in QA for finite-
dimensional spin glasses can be removed by adding the AFF term. We expect that the QFOT
in any extensive sum of local observables Â is avoidable by a slight modification of QA. If
the observable Â does not contain z-magnetization σ̂ z , a slight extension of our argument

leads to the desired consequence by simply adding the fluctuations term Â2

N . On the other

123



Proof of Avoidability of the Quantum First-Order... Page 21 of 22 12

hand, if Â contains z-magnetization, our estimation 〈 Â2〉 = O(1) for the optimal solution
no longer holds, and some additional ideas are necessary, which is left for future research.

We emphasize that our result does not claim that the QA in finite-dimensional spin glasses
succeeds and that the corresponding ground-state search problem can be efficiently solved.
A more plausible scenario suggested by our result is that the QA in finite-dimensional spin
glasses fails for different reasons from the QFOT. One candidate is the glassy bottlenecks,
which are undetectable by the usual macroscopic observables. It is shown in Ref [13] that
some models with a transverse magnetic field have exponentially small gaps in the glass
phase rather than at the phase transition point. The arrangement of the ground state from
one glassy state to another glassy state can make QA less efficient. Our result supports this
picture.

However, it should be clarified that two statements can be reconciled: (i) the ground-state
search problem for finite-dimensional spin glasses is efficiently solvable by QA-AFF, and (ii)
no quantum computer can solve NP-hard problems efficiently. This apparent contradiction is
resolved for the following reason: Statement (i) concerns the average-case hardness, which
means that almost all instances of spin glasses can be solved efficiently. In contrast, statement
(ii) concerns the worst-case hardness, claiming that for any quantum computer, there exists
at least one instance that cannot be solved efficiently. Hence, it is possible that the ground
state search problem for finite-dimensional spin glasses, which is an NP-hard problem, is
typically easy and rarely has hard instances.

Future works
Note that it is difficult to simulate a QA-AFF classically because the AFF term is non-
stoquastic [23] and gives rise to a negative sign problem. It is an open question whether we
can avoid quantum first-order phase transition only by adding stoquastic terms to a QA.

Also, the exact minimization problem for finite-dimensional spin glass for D ≥ 3 is
NP-hard, though it is easy to solve the minimization problem that allows any errors propor-
tional to the system size N . On the other hand, the PCP theorem [24–26] implies that there
are problems for which even approximate minimization is NP-hard. It is an open question
whether there exist QA-AFF or other extensions of QA for such problems where no quantum
first-order phase transitions occur.
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