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Abstract
In this work, the reliability of a residual-based error estimator for the Finite Cell method is
established. The error estimator is suitable for the application of hp-adaptive finite elements
and allows for Neumann boundary conditions on curved boundaries. The reliability proof of
the error estimator relies on standard arguments of residual-based a posteriori error control,
but includes several modifications with respect to the error contributions associated with
the volume residuals as well as the jumps across inner edges and Neumann boundary parts.
Important ingredients of the proof are Stein’s extension theorem and amodified trace theorem
which estimates the norm of the trace on (curved) boundary parts in terms of the local mesh
size and polynomial degree. The efficiency of the error estimator is also considered by
discussing an artificial example which yields an efficiency index depending on the mesh-
family parameter h. Numerical experiments on more realistic domains, however, suggest
global efficiency with the occurrence of a large overestimation on only few cut elements. In
the experiments the reliability of the error estimator is demonstrated for h- and p-uniform
as well as for hp-geometric and h-adaptive refinements driven by the error estimator. The
practical applicability of the error estimator is also studied for a 3D problem with a non-
smooth solution.

Keywords A posteriori error estimation · Finite Cell method · Residual-based · hp-FEM

1 Introduction

TheFiniteCellmethod (FCM) [12,30] is a popular immersed-boundarymethod that combines
the fictitious domain approach [16,32] with (higher-order) finite elements. Its basic idea
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consists in embedding the possibly complicated physical domain of the problem into an
enclosing domain of a simple shape, which can easily be meshed. The geometry of the
physical domain is recovered by multiplying the finite element functions defined on the
enclosing domain with an indicator function which is 1 in the domain and a small value
in the fictitious domain (the difference of the enclosing and physical domain). Obviously,
this proceeding shifts the problem of meshing a complicated domain to the problem of
integrating restrictions of functions by means of an appropriate quadrature rule. Since the
FCM enables computations on extremely complex geometries, it has been applied to a vast
number of involved problems including thermo-elasticity [40], geometrical non-linearities
[33], bio-mechanics [31,38], elasto-plasticity [1,37], and foamed materials [18,19].

While a posteriori error control is available for many standard finite element approaches,
only few publications deal with a posteriori error control for the FCM or similar cut finite ele-
ment methods [2,4]. These include recovery-based error estimates [28], goal-oriented error
estimates [8,10,11,14,15,29] and implicit error estimates [35]. An error estimate for cut cell
finite volume methods has been derived in [13]. To our knowledge, a residual-based error
estimate has only been derived for a so-called composite finite element method in [7]. How-
ever, these results are limited to domains with small holes, lowest-degree elements andmixed
boundary conditions with homogeneous Neumann boundary conditions. A posteriori esti-
mates for some immersed-finite element methods incorporating the domain-approximation
error are provided in [5,17].

In this work, we rigorously establish the reliability of a residual-based error estimator for
Poisson’s problem in the setting of the FCM. Our theoretical findings are suitable for hp-
adaptive finite elements and deal with mixed boundary conditions, where Dirichlet boundary
conditions are assumed to be homogeneous and strongly imposed on boundaries being com-
patible with edges of the underlying finite element mesh. In contrast, the Neumann boundary
conditions are allowed for curved boundaries intersecting the interior of the enclosing domain.
We refer to [5] for the application of Nitsche’smethodwhich enables weakly imposedDirich-
let conditions on boundaries in the interior of the enclosing domain. The quadrature error
is supposed to be negligible; in particular, the domain-approximation error is assumed to be
negligibly small. Further investigations would be needed to account for weakDirichlet condi-
tions as well as the domain-approximation and the quadrature error, which are not taken into
consideration in this work. We refer to [11] where the quadrature error is considered in the
context of a posteriori error estimates based on the dual-weighted residual approach. The reli-
ability proof of the error estimator relies on standard arguments of residual-based a posteriori
error control as, for instance, introduced in [27] for hp-finite elements, but includes several
modifications with respect to the error contributions associated with the volume residuals
as well as the jumps across inner edges and Neumann boundary parts. These modifications
mainly result from appropriate intersections of Neumann boundary parts with the enclosing
domain. Important ingredients of the proof are the use of Stein’s extension theorem and the
application of a trace theorem which estimates the norm of the trace on (curved) boundary
parts in terms of the local mesh size and polynomial degree. For the a posteriori error estimate
it is necessary to assume that eachmesh element near toNeumann boundary parts intersecting
the interior of the enclosing domain is completely surrounded by one layer of mesh elements.
This condition can easily be satisfied in the context of the FCM. In comparison to residual-
based a posteriori error estimators for standard finite elements, the unknown multiplicative
constant in the reliability estimate also depends on the constant used in Stein’s extension
theorem. In addition to the considerations on the reliability, we comment on the efficiency of
the error estimator by providing a rather artificial example where the efficiency index (i.e., the
ratio of the error estimator and the error) is not independent of the mesh-family parameter h.
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Therefore, we deem it unlikely that the error estimator can be proven to be efficient in the
present form. However, our numerical examples based on more realistic domains suggest
global efficiency with the occurrence of a large overestimation only on few cut elements
(i.e., mesh elements with a non-empty intersection with the physical and fictitious domain).
In the case of increasing polynomial degrees we observe the typical mild dependency of the
efficiency index on the polynomial degree as described for hp-finite elements in [27].

The outline of this paper is as follows. In Sect. 2, the setting of the Finite Cell method
with some assumptions on the configuration of the hp-FEM meshes and spaces is intro-
duced. Section 3 recalls well-known results on Stein’s extension operator and nonsmooth
hp-interpolation operators. We summarize some statements on patches of mesh elements
and prove the above-mentioned trace theorem. The main part of this section consists in the
reliability proof of the error estimator. Moreover, we discuss the artificial example which
hints at a theoretical inefficiency of the error estimator. In Sect. 4, numerical examples with
nonsmooth solutions on two domains with polygonal holes and a domain with circular holes
are provided. The 2D examples demonstrate the reliability for h- and p-uniform as well as for
hp-geometric and h-adaptive refinements and confirm the efficiency for these more realistic
examples. Although our theoretical results are presented for two-dimensional domains only,
a final example demonstrates the practical applicability of the FCM error estimator to 3D
problems as well.

2 The Finite Cell Method

In this section we introduce the Finite Cell method (FCM), where we use a similar setting as
presented in [9]. We assume that the boundary of the domain Ω ⊂ R

2 is split into a closed,
non-empty boundary part ΓD for Dirichlet boundary conditions and a boundary part ΓN for
Neumann boundary conditions. We define V := {v ∈ H1(Ω); v = 0 on ΓD} with the usual
Sobolev space H1(Ω) and assume f ∈ L2(Ω) and g ∈ L2(ΓN ). Poisson’s problem consists
in finding a solution u ∈ V such that

(∇u,∇v)Ω = ( f , v)Ω + (g, v)ΓN
(1)

for all v ∈ V . Here, (·, ·)ω denotes the L2 inner product on ω ⊂ R
2 with the induced norm

‖·‖2ω := (·, ·)ω. For the H1-norm we write ‖·‖21,ω := ‖·‖2ω + ‖∇·‖2ω.
To specify a discrete solution by means of the FCM, we assume an enclosing domain Ω̂

with Ω ⊂ Ω̂ . In the practical application of the FCM, the enclosing domain is defined to be
of simple shape, e.g. the union of (few) rectangles or triangles, so that a (finite element) mesh
of Ω̂ can easily be constructed. By {Th}h∈H , H ⊂ R+, we denote a family of meshes Th

of Ω̂ with closed triangles or parallelograms so that K ∩K ′ is empty or a vertex or edge of K
and K ′ for all K , K ′ ∈ Th and

⋃
K∈Th

K coincides with the closure of Ω̂ . In order to avoid
dealing with the weak imposition of Dirichlet boundary conditions, we assume that ΓD is a
subset of ∂Ω̂ which is compatible with Th , i.e. ΓD is the union of closed edges of Th for all
h ∈ H , so that the Dirichlet data can be imposed in a strong manner. By Γ̄N we denote the
part of ΓN whose closure is also assumed to be compatible with {Th}h∈H . Since the main
application of the FCMconsists in the treatment of domains with complicated boundaries, we
allow the boundary part Γ̂N := ΓN \ Γ̄N to have a curved shape (in contrast to the piecewise
linear boundary parts ΓD and Γ̂N ), see Fig. 1. For this purpose, we assume the existence of
functions ϕi ∈ C1([ai1, ai2])with ai1 < ai2, i = 1, . . . ,m and counterclockwise rotations with
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(a) (b)

Fig. 1 Configuration of Ω , Ω̂ , and a Finite Cell mesh

translation Ti : R
2 → R

2 such that the closure of Γ̂N coincides with
⋃m

i=1 Ti (Γi ) where Γi

is the graph of ϕi , i.e. Γi := {
(x, ϕ(x)); ai1 ≤ x ≤ ai2

}
.

We assume that the family of meshes {Th}h∈H is κ-shape regular with κ > 0, i.e.

h−1
K ‖∇FK ‖ + hK ‖(∇FK )−1‖ ≤ κ (2)

for all K ∈ Th and h ∈ H . Here, FK : K̂ → K is an affine-linear element mapping
with FK (K̂ ) = K and hK denotes the diameter of K . The reference element K̂ is the unit
simplex if K is a triangle and it is the unit square if K is a parallelogram. The condition
(2) implies that the sizes of neighboring elements are comparable: there exists γ ≥ 1 such
that γ −1hK ≤ hK ′ ≤ γ hK for neighboring elements K , K ′ ∈ Th with K ∩ K ′ �= ∅ for
all h ∈ H . Moreover, from (2) we easily conclude the quasi-uniformity of {Th}h∈H for
a constant γ̂ > 0, i.e. hK ≤ γ̂ ρK for all K ∈ Th and h ∈ H , where ρK denotes the
diameter of the in-circle of K ∈ Th if K is a triangle. If K is a parallelogram, ρK is the
smallest diameter of an in-circle contained in a triangle resulting from the bisection of K
along one of the diagonals. Let ph : Th → N be a polynomial degree distribution such that
the polynomial degrees of neighboring elements are comparable in the sense that there exists
a constant γ̃ ≥ 1 such that γ̃ −1 phK ≤ phK ′ ≤ γ̃ phK . Herewith, we define the hp-finite element
space

Vh :=
{
v ∈ V̂ ; ∀K ∈ Th : v ◦ F−1

K ∈ PphK
(K̂ )

}

with V̂ :=
{
v ∈ H1(Ω̂); v = 0 on ΓD

}
, where Pp(K̂ ) = span

{
xi y j

}
i, j=0,...p if K̂ is a

rectangle and Pp(K̂ ) = span
{
xi y j

}
i+ j=p if K̂ is a triangle.

Given a parameter 0 < ε � 1, the application of the FCM consists in finding the discrete
solution uh ∈ Vh such that

(∇uh,∇vh)Ω + ε(∇uh,∇vh)Ω̂\Ω = ( f , vh)Ω + (g, vh)ΓN
(3)

for all vh ∈ Vh . It is obvious that (3) is a perturbed version of the usual discrete weak
formulation of Poisson’s problem, where ε serves as a stabilization parameter ensuring that
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the left hand side of (3) is associated with a positive definite bilinear form. The discrete
solution of the FCM uniquely exists for all ε > 0, however in computational practice, the
parameter is often chosen in the range of 10−14 up to 10−8. Clearly, ε introduces a modeling
error and it should be chosen in such a way that the modeling error and the discretization
error are properly balanced.

In the standard application of the FCM, the integrals in (3) are usually approximated by
using an appropriate (non-standard) quadrature scheme as the domain Ω may not coincide
with any union of elements of Th . Such a quadrature scheme may be based on, for instance,
smart octrees [24] or a moment-fitting method [21] as, e.g., described in Sect. 4.3. While
some of these quadrature schemes provide exact integration up to machine precision, others
introduce a quadrature error which should also be in balance with the discretization error.
In the following, we suppose that the integrals are computed exactly. Otherwise, additional
error terms resulting from the quadrature need to be taken into account [11].

When the FCM is employed, one is typically interested in the restriction uh |Ω rather
than uh . Moreover, only the error u − uh |Ω and norms thereof are relevant. The following
Lemma states that the H1 semi-norm of the discrete solution in the complement Ω̂ \ Ω can
become large as it may behave like 1/ε1/2. Consequently, the occurrence of this norm should
be avoided in error estimates for the FCM.

Lemma 1 It holds

ε ‖∇uh‖Ω̂\Ω ≤ ε1/2(‖ f ‖Ω + ‖g‖ΓN
).

Proof Poincaré’s inequality and the trace theorem imply

(∇uh,∇uh)Ω + ε(∇uh,∇uh)Ω̂\Ω = ( f , uh)Ω + (g, uh)ΓN

� (‖ f ‖Ω + ‖g‖ΓN
) ‖∇uh‖Ω

which yields ‖∇uh‖Ω ≤ ‖ f ‖Ω + ‖g‖ΓN
and, thus, ε ‖∇uh‖2Ω̂\Ω ≤ (‖ f ‖Ω + ‖g‖ΓN

)2.

Taking the square root and multiplying by ε1/2 give the assertion. ��

3 Residual-Based Error Estimates

3.1 Preliminaries

In this subsection, we summarize some basic properties of element patches, recall the quasi-
interpolation operator for the hp setting as introduced in [26] and present somemodifications
of two other ingredients of error control, which are tailored to the FCM setting, namely, a
modified Galerkin orthogonality property and a trace theorem. Some properties of Stein’s
extension operator are also recalled.We start by defining element patches for vertices v ∈ Vh ,
edges e ∈ Eh , and elements K ∈ Th by

℘h
1 (v) := {K ∈ Th | v is a vertex of K },

℘h
1 (e) := {K ∈ Th | e is an edge of K },

℘h
1 (K ) := {K }

and recursively define

℘h
j (N ) :=

{
K ∈ Th; ∃K ′ ∈ ℘h

j−1(N ) with K ′ ∩ K �= ∅

}
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for a node N ∈ Vh ∪ Eh ∪ Th and j ≥ 2. We set ℘h
j (N ) := ⋃

K∈℘h
j (N ) K , j ≥ 1. From the

shape regularity of {Th}h∈H we conclude that each K ∈ Th has at most n(γ ) neighbors.
Hence, with ν(γ ) := 1 + n(γ ) it follows by induction that

∣
∣
∣℘h


 (K )

∣
∣
∣ ≤ ν(γ )
−1. (4)

Trivially, we have
∑

K ′∈℘h

 (K )

∑

K ′′∈℘h
m (K ′)

1 ≤ ν(γ )
+m−2. (5)

Let ρh
m(K ) := minK ′∈L h

m (K ) ρK ′ be the smallest in-circle diameter of the patch-layer

L h
m(K ) := ℘h

m(K )\℘h
m−1(K ) for K ∈ Th . In the next Lemma, we observe that ρh

m(K )

is smaller than the diameter

dhm(K ) := min
{
‖x − y‖ ; x ∈ ∂℘h

m(K ), y ∈ ∂℘h
m−1(K )

}

of L h
m(K ), see Fig. 2a.

Lemma 2 Let K ∈ Th and dhm(K ) > 0, then ρh
m(K ) ≤ dhm(K ).

Proof Since ∂℘h
m(K ) and ∂℘h

m−1(K ) consist of edges of Th , we have

dhm(K ) = min
x∈e1,y∈e2

‖x − y‖

for some edges e1 and e2 of Th . This means that there exists a vertex Q of e1 or e2 such
that dhm(K ) = miny∈e ‖Q − y‖ with e ∈ {e1, e2}. Since dhm(K ) > 0 we conclude that
Q is a vertex and e is an edge of some K̃ ∈ L h

m(K ), where Q is opposite to e. Thus,
dhm(K ) ≥ ρK̃ ≥ ρh

m(K ). ��

From [27, Theorem 2.2] we recall the quasi-interpolation operator Ih : V̂ → Vh , which
has the properties (Ihz)|ΓD = z|ΓD = 0 for z ∈ V̂ and

‖z − Ihz‖℘h
1 (v) + hhv

phv
‖∇ Ihz‖℘h

1 (v) +
√

hhv
phv

‖z − Ihz‖e � hhv
phv

‖∇z‖℘h
8 (v)

(a) (b)

Fig. 2 Geometric constructions for a triangle K (marked in bold) in a mesh Th of 10 elements
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for all v ∈ Vh and all edges e ∈ Eh incident to v, where hhv := minK∈℘h
1 (v) hK and phv :=

minK∈℘h
1 (v) p

h
K . From this interpolation estimate we easily conclude the following estimates

for a K ∈ Th and an edge e ∈ Eh

‖z − Ihz‖℘h
1 (K ) � hhv

phv
‖∇z‖℘h

8 (K ) , ‖z − Ihz‖e �
√

hhv
phv

‖∇z‖℘h
8 (e)

(6)

and state the stability property

‖∇ Ihz‖℘h
1 (K ) � ‖∇z‖℘h

8 (K ) . (7)

We note that the Galerkin orthogonality does not hold in the context of the FCM.However,
subtracting (3) from (1) and using the fact that vh |Ω ∈ V for vh ∈ Vh yield the modified
Galerkin orthogonality

(∇(u − uh),∇vh)Ω = ε(∇uh,∇vh)Ω̂\Ω (8)

for all vh ∈ Vh .
One important ingredient in the subsequent section is the use of Stein’s extension operator

E : V → V̂ for the extension of H1 functions on Ω to functions on Ω̂ . The operator fulfills
(Ev)|Ω = v and

‖Ev‖1,Ω̂ � ‖v‖1,Ω (9)

for v ∈ V̂ [34]. The crucial aspect is that the increase in the norm of the extension depends
only on the geometry of Ω: For v ∈ V we have

‖Ev‖1,Ω̂ � ‖∇v‖Ω � ‖Ev‖1,Ω̂ . (10)

The second inequality in (10) is clear. The first inequality directly results from the extension
property (9) and Poincaré’s inequality, ‖Ev‖1,Ω̂ � ‖v‖1,Ω � ‖∇v‖Ω .

Finally, we state the following trace theorem for the images T (Γ ) and T (R) of the sets

Γ := {(x, ϕ(x)); a1 ≤ x ≤ a2}, (11)

Rb := {
(x, y) ∈ R

2; a1 ≤ x ≤ a2, ϕ(x) ≤ y ≤ ϕ(x) + b
}
, (12)

where T : R
2 → R

2 is a counterclockwise rotation with translation, b > 0, and ϕ ∈
C1([a1, a2]) with a1 < a2.

Lemma 3 It holds

‖v‖2T (Γ ) � b−1 ‖v‖2T (Rb)
+ b ‖∇v‖2T (Rb)

for all v ∈ H1(T (Rb)).

Proof Let v ∈ C1(T (Rb)) and a1 ≤ x ≤ a2. From the fundamental theorem of calculus and
the mean-value theorem we conclude the existence of some η ∈ (ϕ(x), ϕ(x) + b) such that

−v(T (x, ϕ(x))) = v(T (x, η)) − v(T (x, ϕ(x)) − v(T (x, η)

=
∫ η

ϕ(x)
∂y(v ◦ T )(x, y) dy − b−1

∫ ϕ(x)+b

ϕ(x)
v(T (x, y)) dy.
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Thus, Hölder’s inequality gives

v(T (x, ϕ(x))2 ≤ 2b
∫ ϕ(x)+b

ϕ(x)
(∂y(v ◦ T )(x, y))2 dy + 2b−1

∫ ϕ(x)+b

ϕ(x)
v(T (x, y))2dy

= 2b
∫ ϕ(x)+b

ϕ(x)
(−∂xv(T (x, y)) sin α + ∂yv(T (x, y)) cosα)2 dy

+ 2b−1
∫ ϕ(x)+b

ϕ(x)
v(T (x, y))2dy

≤ 4b
∫ ϕ(x)+b

ϕ(x)
‖∇v(T (x, y))‖2 dy + 2b−1

∫ ϕ(x)+b

ϕ(x)
v(T (x, y))2 dy,

where 0 ≤ α < 2π is the rotation angle of T . With M := maxx∈[a1,a2]
∥
∥ϕ′(x)

∥
∥ we have

‖v‖2T (Γ ) =
∫ a2

a1
v(T (x, ϕ(x)))2 ‖∂x (T (x, ϕ(x))‖ dx

≤
√
1 + M2

∫ a2

a1
v(T (x, ϕ(x)))2 dx

≤
√
1 + M2

(

4b
∫ a2

a1

∫ ϕ(x)+b

ϕ(x)
‖∇v(T (x, y))‖2 dydx

+2b−1
∫ a2

a1

∫ ϕ(x)+b

ϕ(x)
v(T (x, y))2 dydx

)

=
√
1 + M2

(

4b
∫

R
‖∇v(T (x, y))‖2 dydx + 2b−1

∫

R
v(T (x, y))2 dydx

)

=
√
1 + M2

(

4b
∫

T (R)

‖∇v(x̃, ỹ)‖2 d ỹdx̃ + 2b−1
∫

T (R)

v(x̃, ỹ)2 d ỹdx̃

)

.

A density argument gives the assertion. ��
Applying this trace theorem to some specific set Rb with b defined as the smallest in-circle

diameter of a certain patch-layer divided by the polynomial degree, we obtain the following
result.

Lemma 4 Let K ∈ Th, dh2 (K ) > 0 and T (Γ ) ⊂ K. It holds

‖v‖2T (Γ ) � pK
hK

‖v‖2
℘h
2 (K )

+ hK
pK

‖∇v‖2
℘h
2 (K )

for all v ∈ H1(℘h
2(K )).

Proof From the assumption dh2 (K ) > 0 and Lemma 2 we conclude that Rb ⊂ ℘h
2(K ) with

b := ρh
2 (K )

pK
, see Fig. 2b. From Lemma 3 and

γ hK ≥ hK̃ ≥ ρh
2 (K ) ≥ γ̂ −1hK̃ ≥ (γ̂ γ )−1hK

with K̃ ∈ L h
2 (K ) and ρK̃ = ρh

2 (K ), we have

‖v‖2T (Γ ) � pK
ρh
2 (K )

‖v‖2T (Rb)
+ ρh

2 (K )

pK
‖∇v‖2T (Rb)
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� pK
hK

‖v‖2T (Rb)
+ hK

pK
‖∇v‖2T (Rb)

� pK
hK

‖v‖2
℘h
2 (K )

+ hK
pK

‖∇v‖2
℘h
2 (K )

.

��

3.2 Reliability

We define the residual-based error estimator η as

η2 :=
∑

K∈Th

η2K , η2K := η2K ;Th
+ η2K ;Eh

+ η2
K ;Γ̂N

(13)

with

η2K ;Th
:= h2K

(phK )2
‖ f + Δuh‖2K∩Ω ,

η2K ;Eh
:= 1

2

∑

e∈Eh(K )

he
phe

‖[∂nuh]‖2e∩Ω +
∑

e∈Eh(K )

e⊆Γ̄N

he
phe

‖g − ∂nuh‖2e ,

η2
K ;Γ̂N

:= hK
phK

‖g − ∂nuh‖2
Γ̂N∩K

.

Here, he is the length of e ∈ Eh , phe := min{phK | e ⊂ ∂K , K ∈ Th} and n is a fixed normal
unit vector to e which coincides with the outer normal on ΓN . Furthermore, the set Eh(K )

contains the edges of K ∈ Th and [·]e denotes the jump across e.
In this subsection we prove the reliability of η, where we follow the reliability proof of the

residual-based error estimator for Poisson’s problem in the standard FEM setting [27], but
apply several modifications in order to take the non-conformity of the boundary into account.

Theorem 1 Assume that dh2 (K ) > 0 for all K ∈ Th with K ∩ Γ̂N �= ∅. Then,

‖∇u − ∇uh‖Ω � η + ε1/2.

Proof The main idea of the proof is to use the Stein extension δ∗ := Eδ of the error δ := u−
uh |Ω in order to apply the interpolation operator Ih to obtain estimates onwhole elements K ∈
Th which then can be estimated by norms on K ∩ Ω . We set w∗ := δ∗ − Ihδ∗ and note that
w∗|Ω ∈ V . Thus, by using the fact that u is a solution of (1) we obtain

‖δ‖21,Ω � (∇δ,∇δ)Ω = (∇δ,∇δ∗)
Ω

= (∇δ,∇w∗)
Ω

+ (∇δ,∇ Ihδ
∗)

Ω

= (
f , w∗)

Ω
+ (

g, w∗)
ΓN

− (∇uh,∇w∗)
Ω

+ (∇δ,∇ Ihδ
∗)

Ω
.

Note (∇δ,∇ Ihδ∗)Ω �= 0 as the Galerkin orthogonality does not hold in the FCM, see (8).
Applying integration by parts on Ω we obtain
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‖δ‖21,Ω �
(
f , w∗)

Ω
+ (

g, w∗)
ΓN

−
∑

K∈Th

((
∂nuh, w

∗)
∂(K∩Ω)

− (
Δuh, w

∗)
K∩Ω

)

+ (∇δ,∇ Ihδ
∗)

Ω
=

∑

K∈Th

(
f + Δuh, w

∗)
K∩Ω

+ (
g, w∗)

ΓN

−
∑

K∈Th

(
∂nuh, w

∗)
∂(K∩Ω)

+ (∇δ,∇ Ihδ
∗)

Ω
. (14)

For the boundary integrals we observe that
⋃

K∈Th

∂(K ∩ Ω) =
⋃

e∈Eh

(e ∩ ΓD) ∪
⋃

e∈Eh

(e ∩ Ω) ∪
⋃

e∈Eh

(e ∩ Γ̄N ) ∪
⋃

K∈Th

(K ∩ Γ̂N )

where all unions are pairwise disjoint except for sets of boundary measure zero. Exploiting
w∗|ΓD = 0 and using jumps across inner edges e ⊆ Ω we get

∑

K∈Th

(
∂nuh, w

∗)
∂(K∩Ω)

=
∑

e∈Eh

(
(
[∂nuh] , w

∗)
e∩Ω

+ (
∂nuh, w

∗)
e∩Γ̄N

)

+
∑

K∈Th

(
∂nuh, w

∗)
Γ̂N∩K . (15)

We split (g, w∗)ΓN into edge contributions on Γ̄N and on Γ̂N and combine them with the
terms in (15), which gives

(
g, w∗)

ΓN
−

∑

K∈Th

(
∂nuh, w

∗)
∂(K∩Ω)

=
∑

e∈Eh

(−(
[∂nuh] , w

∗)
e∩Ω

+ (
g − ∂nuh, w

∗)
e∩Γ̄N

) +
∑

K∈Th

(
g − ∂nuh, w

∗)
Γ̂N∩K .

(16)

Inserting (16) in (14) and using Cauchy’s inequality, we obtain

‖δ‖21,Ω �
∑

K∈Th

‖ f + Δuh‖K∩Ω

∥
∥w∗∥∥

K∩Ω

︸ ︷︷ ︸
I

+
∑

e∈Eh

‖[∂nuh]‖e∩Ω

∥
∥w∗∥∥

e∩Ω

︸ ︷︷ ︸
II

+
∑

e∈Eh

‖g − ∂nuh‖e∩Γ̄N

∥
∥w∗∥∥

e∩Γ̄N

︸ ︷︷ ︸
III

+
∑

K∈Th

‖g − ∂nuh‖Γ̂N∩K

∥
∥w∗∥∥

Γ̂N∩K

︸ ︷︷ ︸
IV

+ (∇δ,∇ Ihδ
∗)

Ω︸ ︷︷ ︸
V

.

(17)

To estimate the first, second, and third term of (17), we exploit K ∩ Ω ⊆ K , e ∩ Ω ⊆ e
and apply (6) to obtain

∥
∥w∗∥∥

K∩Ω
≤ ∥

∥w∗∥∥
K � hK

pK

∥
∥∇δ∗∥∥

℘h
8 (K )

,
∥
∥w∗∥∥

e∩Ω
≤ ∥

∥w∗∥∥
e � h1/2e

p1/2e

∥
∥∇δ∗∥∥

℘h
8 (e)

.

(18)
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Here, we omit the index h at hK , he, pK and pe to ease the notation. From (4)we conclude that
the number of patches of levelm ∈ N containing a specific K ∈ Th is bounded independently
of h, more precisely

∣
∣
∣
{
℘h
m(K ′) | K ∈ ℘h

m(K ′), K ′ ∈ Th

}∣
∣
∣ = |℘h

m(K )| ≤ ν(γ )m−1 (19)

and
∣
∣
∣
{
℘h
m(e′) | K ∈ ℘h

m(e′), e′ ∈ Eh

}∣
∣
∣ ≤ 4|℘h

m(K )| ≤ 4ν(γ )m−1.

Hence, we have
∑

K∈Th

∥
∥∇δ∗∥∥2

℘h
8 (K )

≤ ν(γ )7
∑

K∈Th

∥
∥∇δ∗∥∥2

K ≤ ν(γ )7
∥
∥δ∗∥∥2

1,Ω̂ .

Applying (18) and Cauchy’s inequality give

I �
∑

K∈Th

hK
pK

‖ fK + Δuh‖K∩Ω

∥
∥∇δ∗∥∥

℘h
8 (K )

≤
⎛

⎝
∑

K∈Th

h2K
p2K

‖ f + Δuh‖2K∩Ω

⎞

⎠

1/2⎛

⎝
∑

K∈Th

∥
∥∇δ∗∥∥2

℘h
8 (K )

⎞

⎠

1/2

�

⎛

⎝
∑

K∈Th

h2K
p2K

‖ f + Δuh‖2K∩Ω

⎞

⎠

1/2
∥
∥δ∗∥∥

1,Ω̂ .

Analogously, we derive

II �
∑

e∈Eh

h1/2e

p1/2e

‖[∂nuh]‖e∩Ω

∥
∥∇δ∗∥∥

℘h
8 (e)

�
(
∑

e∈E

he
pe

‖[∂nuh]‖2e∩Ω

)1/2
∥
∥δ∗∥∥

1,Ω̂ ,

III �
∑

e∈Eh

h1/2e

p1/2e

‖g − ∂nuh‖e∩Γ̄N

∥
∥∇δ∗∥∥

℘h
8 (e)

�

⎛

⎝
∑

e∈Eh

he
pe

‖g − ∂nuh‖2e∩Γ̄N

⎞

⎠

1/2
∥
∥δ∗∥∥

1,Ω̂ .

The bound of ‖w∗‖
Γ̂N∩K in the fourth term of (17) is the most delicate. It holds for each

K ∈ Th that K ∩ Γ̂N = ⋃mK
i=1 T

K
i (Γ K

i ) for some mK ∈ N and graphs Γ K
i as defined in (11)

and some counterclockwise rotations with translation T K
i : R

2 → R
2. From Lemma 4 we

conclude

∥
∥w∗∥∥2

T K
i (Γ K

i )
� pK

hK

∥
∥w∗∥∥2

℘h
2 (K )

+ hK
pK

∥
∥∇w∗∥∥2

℘h
2 (K )

� pK
hK

∑

K ′∈℘h
2 (K )

h2K ′

p2K ′

∥
∥∇δ∗∥∥2

℘h
8 (K

′) + hK
pK

∑

K ′∈℘h
2 (K )

∥
∥∇δ∗∥∥2

℘h
8 (K

′)
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� hK
pK

∑

K ′∈℘h
2 (K )

∥
∥∇δ∗∥∥2

℘h
8 (K

′) (20)

where we apply the stability property (7) to estimate ‖∇w∗‖℘h
2 (K ) and exploit the γ -shape

regularity and the comparability of the polynomial degrees yielding

hK ′

pK ′
≤ γ γ̃ −1 hK

pK

for all K ′ ∈ ℘h
2 (K ). Using Lemma 5 gives

∑

K ′∈℘h
2 (K )

∥
∥∇δ∗∥∥2

℘h
8 (K ′) =

∑

K ′∈℘h
2 (K )

∑

K ′′∈℘h
8 (K ′)

∥
∥∇δ∗∥∥2

K ′′ ≤ ν(γ )8
∥
∥∇δ∗∥∥2

℘h
10(K )

.

Hence, we obtain from (20)

∥
∥w∗∥∥2

T K
i (Γ K

i )
� hK

pK

∥
∥∇δ∗∥∥2

℘h
10(K )

.

Since mK is bounded by the total number of segments of Γ̂N , we have

∥
∥w∗∥∥2

Γ̂N∩K =
mK∑

i=1

∥
∥w∗∥∥2

T K
i (Γ K

i )
� hK

pK

∥
∥∇δ∗∥∥2

℘h
10(K )

and, therefore,

IV �
∑

K∈Th

‖g − ∂nuh‖Γ̂N∩K

h1/2K

p1/2K

∥
∥∇δ∗∥∥

℘h
10(K )

�

⎛

⎝
∑

K∈Th

hK
pK

‖g − ∂nuh‖2
Γ̂N∩K

⎞

⎠

1/2
∥
∥δ∗∥∥

1,Ω̂ ,

where we use Cauchy’s inequality and
∑

K∈Th

∥
∥∇δ∗∥∥2

℘h
10(K )

≤ ν(γ )9
∑

K∈Th

∥
∥∇δ∗∥∥2

K ≤ ν(γ )9
∥
∥δ∗∥∥2

1,Ω̂

which results from (19). To estimate the fifth term in (17) we again use (19) to obtain
∑

K∈Th

∥
∥∇δ∗∥∥2

℘8(K )
≤ ν(γ )7

∥
∥δ∗∥∥2

1,Ω̂ .

The stability property (7) then yields
∥
∥∇ Ihδ

∗∥∥2
Ω̂

=
∑

K∈Th

∥
∥∇ Ihδ

∗∥∥2
K ≤

∑

K∈Th

∥
∥∇ Ihδ

∗∥∥2
℘1(K )

�
∑

K∈Th

∥
∥∇δ∗∥∥2

℘8(K )
�

∥
∥δ∗∥∥2

1,Ω̂

so that exploiting the modified Galerkin orthogonality (8) and applying Lemma 1 give

V = ε
(∇uh,∇ Ihδ

∗)
Ω̂\Ω

≤ ε ‖∇uh‖Ω̂\Ω
∥
∥∇ Ihδ

∗∥∥
Ω̂\Ω

≤ ε1/2(‖ f ‖Ω + ‖g‖ΓN
)
∥
∥∇ Ihδ

∗∥∥
Ω̂

� ε1/2
∥
∥δ∗∥∥

1,Ω̂ .

(21)
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Finally, inserting the estimates for I, II, III, IV, and V in (17) and using the extension property
(9) we obtain

‖δ‖21,Ω � (η + ε1/2)
∥
∥δ∗∥∥

1,Ω̂ � (η + ε1/2) ‖δ‖1,Ω ,

which gives the assertion. ��
Remark 1 The assumption on the diameter of patch-layers in Theorem 1 means that all
K ∈ Th with K ∩ Γ̂K �= ∅ have to be completely enclosed by the patch-layer L h

2 (K ). This
can be ensured by a sufficiently fine mesh in combination with a sufficiently large enclosing
domain Ω̂ in the neighborhood of K ∩ Γ̂N �= ∅.

3.3 Some Remarks on Efficiency and Overestimation

The derivation of the error estimates in Sect. 3.2 are based on the use of a Clément- or
Scott-Zhang-type interpolation operator which typically ignores the possibly complicated
geometry of cut elements K ∩ Ω . Hence, the estimates contain factors hK instead of factors
which are adapted to the size of the cut elements. To show the efficiency of a residual-based
error estimator, inverse estimates such as

‖∇uh‖K � h−1
K p2K ‖uh‖K

are typically applied. However, they cannot be utilized on K ∩Ω . Instead, ifΩ is for instance
polygonal, one may use a subtriangulation TK of K ∩ Ω with K ∩ Ω = ⋃

T∈TK
T . Then,

for any T ∈ TK we would have

‖∇uh‖T ≤ CKh
−1
T p2K ‖uh‖T ,

where CK depends on the shape of K ∩ Ω . For standard finite element approximations, the
proof of efficiency exploits the fact that the factor hK gained by the interpolation estimate
cancels out the factor h−1

K incurred by the inverse estimate. In the FCMsituation the factor h−1
T

resulting from the subtriangulation could be significantly larger than the factor hK . Clearly,
this may not be a problem if a subtriangulation with comparable element diameters fulfilling
c−1hT ≤ hK ≤ chT is available for some constant c ≥ 1 independent of h ∈ H . However,
elements could be very thinly cut so that each subtriangulation will admit triangles of a
very small diameter hT � hK and it is not clear whether a subtriangulation with comparable
element diameters exists for each possible cut of elements withΩ . In summary, the mismatch
between the factors introduced by the interpolation operator and the factor incurred by the
inverse estimate may lead to inefficient error estimates or to extremely large overestimations,
respectively. The situation may be remedied if more localized interpolation estimates are
available.

In order to illustrate that the estimator (13) may lead to large overestimation or may even
be inefficient, we study Poisson’s problem on the rectangular domain Ω := (−2,−1) ×
(0, 1) with the solution u(x, y) := (x + 2)2 ∈ V . The Dirichlet boundary is set to ΓD :=
{−2} × [0, 1], see Fig. 3. The Neumann boundary is given by ΓN := Γ1 ∪ Γ2 ∪ Γ3 with
Γ1 := (0, 1] × {0}, Γ2 := {1} × [0, 1] and Γ3 := (0, 1] × {1}.

With f := −Δu = −2 and ∇u(x, y) = (2(x + 2), 0) the weak formulation reads

(∇u,∇v)Ω = (−2, v)Ω + (2(x + 2), v)Γ2

for all v ∈ V . The enclosing domain Ω̂ := (−2, 0) × (0, 1) is bisected into a family
of meshes {Th}0<h<1/2 with Th := {Kh

1 , Kh
2 }, where Kh

1 := [−2,−1 − h] × [0, 1] and

123



12 Page 14 of 28 Journal of Scientific Computing (2021) 87 :12

Fig. 3 Setup of an artificial
example. The
domain Ω = (−2, −1) × (0, 1)
is shaded

Kh
2 := [−1 − h, 0] × [0, 1]. It is easy to see that {Th}0<h<1/2 fulfills the shape regularity

condition (2). As a finite element space on Th , we choose Vh := span
{
ϕh
1 , ϕh

2 , ϕh
3 , ϕh

4

}

where ϕh
i , i = 1, 2, 3, 4, are the piecewise bilinear functions associated to the vertices

outside of ΓD . Since the basis functions are linearly independent on Ω , we set ε := 0 in the
FCM discretization given by (3). In particular, no conditioning issues occur if we solve the
resulting linear system exactly. Denoting the discrete solution by uh , we compute the local
error on K2, where we have to take only the part of K2 into account which is associated
with Ω , i.e. K2 ∩ Ω = [−1 − h,−1) × (0, 1), see “Appendix A” for the details of this
computation. We eventually obtain

‖∇e‖2
Kh
2 ∩Ω

=
∫ −1

−1−h

∫ 1

0
|∇u(x, y) − ∇uh(x, y)|2 = 1

3
h3. (22)

The error estimator terms related to Kh
2 are

h2
Kh
2

p2
‖ f + Δuh‖2K2∩Ω = h2

Kh
2

∫ −1

−1−h

∫ 1

0
(−2)2 = h2

Kh
2
4h, (23)

hKh
2

p
‖g − ∂nuh‖2ΓN∩Kh

2
= h2

Kh
2
h2 (24)

where we exploit Δuh = 0 and p = 1. Since hKh
2

= √
(1 + h)2 + 1 ∈ (

√
2,

√
13
2 ] we obtain

a factor of 1/h2 for the inner term (23) and 1/h for the Neumann boundary term (24) when
we relate these terms with the exact error (22). This means that the error estimator (13) does
not yield a lower bound with a constant independent of h in this example and is therefore
not efficient. Moreover, the error is largely overestimated by the error estimator for small h.
We emphasize that we consider this artificial counter example to demonstrate the possible
overestimation and inefficiency of the error estimator. Indeed, the numerical examples of
Sect. 4 show that the estimator seems to be efficient with a moderate overestimation in
practical applications (at least in the h-version of the FCM). In the p- and hp-version of the
FCM we observe the typical p-dependency of the efficiency index.

4 Numerical Examples

In this section, we illustrate the reliability of the residual-based error estimator of Sect. 3.2.
For this purpose we study Poisson’s problem with non-smooth solutions in 2D and 3D. We
adapt two classical problems so that an application of the Finite Cell method is convenient.

First, we consider a modified version of the L-shaped domain problem where the L-shape
domain is equipped with some additional holes. We study the behavior of the error estimator
applied to various configurations including h-uniform, p-uniform, hp-geometric, and h-
adaptive refinements. As the exact solution is known for the L-shaped domain problem, we
are able to compute the exact error (up to machine precision) and check the overestimation of
the error by the error estimator η from (13). In particular, we study the efficiency index eff :=
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η/ ‖∇u − ∇uh‖Ω . To study the local overestimation and the efficiency of the error estimator,
we introduce a (maximum) local efficiency index loc := maxK∈Th ηK / ‖∇u − ∇uh‖K∩Ω .
In light of the considerations of Sect. 3.3, we check whether a large local overestimation
occurs and whether it disturbs global efficiency. Note that a large local overestimation may
mainly occur on cut cells or elements in the neighborhood of a cut cell. If we apply only
p-refinements with increasing polynomial degree, we expect the estimator to be efficient up
to a factor O(p), see [27]. In the second example, we consider the L-shaped domain problem
from the first example but replace the polygonal holes by circular ones. In particular, we
deal with curved boundaries. In the third example, we apply the estimator to drive h-adaptive
refinements for the 3D example of Fichera’s corner with holes. In all examples, we aim to
examine whether optimal algebraic convergence rates can be recovered by the application of
h-refinements driven by the error estimator.

4.1 L-Shape with Polygonal Holes

The first example is given by Poisson’s problem on a domain Ω with several holes. It is
obtained by removing 11 polygonal holes ω1, . . . , ω11 of various sizes and shapes from the
standard L-shaped domain, which serves as the enclosing domain Ω̂ , see Fig. 4. In accordance
with the compatibility requirements on ΓD and ΓN as introduced in Sect. 2, the holes neither
touch the outer boundary nor do they touch each other. The weak formulation of the problem
reads: Find u ∈ V such that

(∇u,∇v)Ω = (g, v)ΓN

for all v ∈ V with Dirichlet boundary ΓD := ({0} × [0, 1]) ∪ ([0, 1] × {0}) and Neumann
boundaries Γ̄N := ∂Ω̂ \ΓD and Γ̂N := ⋃11

i=1 ∂ωi . The data g is derived from the nonsmooth
solution u(r , ϕ) := r2/3(sin(2ϕ − π)/3) given in polar coordinates, which yields a corner
singularity in the origin. The FCM discretization consists in seeking uh ∈ Vh such that

(∇uh,∇vh)Ω + ε(∇uh,∇vh)Ω̂\Ω = (g, vh)ΓN

for all vh ∈ Vh where ε := 10−12 and Vh is a FEM space based on a mesh Th of Ω̂ . Let
the set of cut cells be defined as T̃h := {K ; K ∈ Th, K ∩ Ω �= K }. To obtain a suitable
quadrature on a cut K ∩ Ω with K ∈ T̃h , we perform a Delaunay triangulation of K ∩ Ω

using the well-known computational geometry library CGAL [39] and apply an appropriate
quadrature rule on each triangle of this triangulation.

We test the error estimator in four configurations. In all cases, we start with an initial
mesh consisting of three quad elements with edge length 1. In the first configuration, we
perform uniform h-refinements of the initial mesh, i.e. each element is repeatedly bisected
into four congruent quads. The influence of the polynomial degree on the estimation is studied

Fig. 4 Domain Ω resulting from
the removal of 11 polygonal
holes from the L-shaped
domain Ω̂ with initial mesh
consisting of three quad elements
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for p = 1 and p = 2. Figure 5a shows the decay of the exact error and the reliable error
estimator (13). It can be seen that the convergence order of O(DOF−1/3) = O(h2/3) is
attained for p = 1 as well as p = 2 which is expected due to u ∈ H5/3−ε(Ω), ε > 0 [22].
The global efficiency index is depicted in Fig. 5b and suggests that the estimator captures the
error with acceptable indices between 3 and 6. In particular, we observe that the indices lie
in a more constricted range for smaller h. In contrast, the local efficiency indices as shown

(a)

(b)

(c)

Fig. 5 L-shaped domain problem: h-uniform refinements
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Fig. 6 L-shaped domain
problem: overestimation of the
error by the estimator
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(a) (b)

Fig. 7 L-shaped domain problem: p-uniform refinements

in Fig. 5c exhibit a more fluctuating behavior. Indeed, the large factors of approx. 80 hint at
the large local overestimation. However, taking into account the moderate global efficiency
index, the overestimation only occurs on elements that bear a small portion of the global error,
so that the overestimation has little impact on the overall estimate. In Fig. 6a, a colormap
indicates the local overestimation. Obviously, the overestimation is moderate on elements
which are not cut by the holes. The largest overestimation of 76.8 occurs on an element K
in the lower-left. Zooming into K in Fig. 6b and c, we see that only a very small portion of
the element is contained in Ω . Indeed, the exact error on K ∩ Ω is approx. 2.7 × 10−7 and
the estimation is 2.1× 10−5. However, the average estimator value per element is computed
to be approx. 1.6 × 10−4 meaning that the estimation on K ∩ Ω is well below average and
hence has no detrimental effect on the overall estimation.

In the second configuration, we keep the mesh fixed at three elements and perform p-
refinements only. Here, we make use of a spline-based finite element space Vh ⊂ C1

described in [23]. The differentiable discrete functions of Vh have the advantage that the
jump terms ‖[∂nuh]‖e∩Ω across inner edges disappear. In the context of the FCM, the use of
these functions greatly simplifies the evaluation of the estimator since it avoids the generation
of inner edge cuts e ∩ Ω which are actually not needed during the solution of the discrete
problem. Figure 7a shows the errors and estimates resulting from p = 3, . . . , 20 indicating
that the convergence order of O(DOF−2/3) = O(p−4/3) is attained [36]. To assess the effi-
ciency of the estimation, we study the global and local efficiency indices which are shown
in Fig. 7b. We expect global and local efficiency that may depend on a factor O(p), see
[27]. Indeed, both eff and loc exhibit a p-dependent growth. Therefore, we also plot eff /p,
loc /p. Since the scaled indices appear to be constant, we conclude that the multiplicative
factor of O(p) does occur in this example.

In the third configuration, we perform hp-geometric refinements in which the degree as
well as the mesh size are decreased towards the corner singularity, see Fig. 8a. To this end,
we utilize the C1-conforming finite element space from [23] as well, which allows for multi-
level hanging nodes and arbitrary degree distributions. It is well-known that the geometric
refinements lead to an exponential convergence of the error of the form O(exp(−bDOF1/3)),
b > 0 [36]. Indeed, the straight lines in the semilogarithmic plot in Fig. 8b confirm this type
of convergence. The global and local efficiency indices are visualized in Fig. 8c. We observe
that the indices increase in the beginning, but after a certain number of refinements, the
indices seem to become constant. The reason for this may be the fact that only the elements
touching the reentrant corner are refined. Hence, the geometry of the cuts K ∩Ω only varies
during the first few refinements where the new elements intersect the holes.

123



Journal of Scientific Computing (2021) 87 :12 Page 19 of 28 12

(a)

(b) (c)

Fig. 8 L-shaped domain problem: geometric refinements

In the fourth configuration, we test h-adaptive refinements driven by the estimator based
on C0 elements of degree p = 1 and p = 2, respectively. Figure 10a shows the decay of the
exact error and the reliable estimation (13). We observe that optimal algebraic convergence
rate of O(DOF−p/2) is recovered. The convergence rates computed using two consecutive
errors are listed in the Tables 1 and 2. The resulting meshes are visualized in Fig. 9. We see
a high resolution of the corner singularity by the refinements. The meshes exhibit only very
few unnecessary refinements near the boundaries of the holes. The global efficiency index
is depicted in Fig. 10b. As the index ranges between 2 and 6, the overestimation seems to
be acceptable. The large local efficiency indices of up to 60 in Fig. 10c hint at a large local
overestimation. However, the overestimation seems to occur on elements with a small portion
of the overall error since the global efficiency index is small and the optimal convergence
rate is attained.

4.2 L-Shape with Circular Holes

In this example, we assess the error estimator in the presence of curved boundaries and
study the influence of the parameter ε on the estimator. To this end, the problem setup from
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Fig. 9 L-shaped domain problem: h-adaptive refinements, meshes for p = 1, 2

(a)

(b) (c)

Fig. 10 L-shaped domain problem: h-adaptive refinements

Sect. 4.1 is used, where the polygonal holes are replaced by circular holes ω1, . . . , ω11. The
domain Ω , the holes, and an initial mesh are displayed in Fig. 11.

Recall that, in the FCM, the problem of constructing a mesh for Ω is shifted to the
numerical integration. In particular, the domain-approximation error is negligibly small if
integrals onΩ are computed with machine precision. For the computation of the integrals on
a cut K ∩ Ω for K ∈ T̃h up to machine precision, we employ the moment-fitting approach
from [20], in which a customized quadrature rule for each cut is determined. Since the
computation of the integrals on cuts is one of the crucial issues in the FCM, we will discuss
the moment-fitting approach in more detail. The quadrature rule obtained by moment fitting
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Table 1 L-shaped domain
problem: h-adaptive refinements,
errors and convergence rates,
p = 1

DOF Exact error Rate

5 2.52 · 10−1

16 1.78 · 10−1 − 0.30

19 1.52 · 10−1 − 0.89

26 1.08 · 10−1 − 1.09

41 8.41 · 10−2 − 0.56

70 5.63 · 10−2 − 0.75

126 4.03 · 10−2 − 0.57

277 2.64 · 10−2 − 0.54

541 1.77 · 10−2 − 0.60

1205 1.16 · 10−2 − 0.52

2493 7.85 · 10−3 − 0.54

5478 5.11 · 10−3 − 0.55

11,572 3.42 · 10−3 − 0.54

25,734 2.25 · 10−3 − 0.52

54,404 1.50 · 10−3 − 0.54

121,975 9.98 · 10−4 − 0.51

261,080 6.65 · 10−4 − 0.53

Table 2 L-shaped domain
problem: h-adaptive refinements,
errors and convergence rates,
p = 2

DOF Exact error Rate

16 1.34 · 10−1

28 1.30 · 10−1 − 0.06

50 1.06 · 10−1 − 0.34

100 5.46 · 10−2 − 0.96

194 1.34 · 10−2 − 2.12

334 6.26 · 10−3 − 1.40

698 2.47 · 10−3 − 1.26

1276 1.26 · 10−3 − 1.11

2340 6.50 · 10−4 − 1.10

5246 2.83 · 10−4 − 1.03

11,292 1.24 · 10−4 − 1.08

20,884 6.73 · 10−5 − 0.99

44,914 2.98 · 10−5 − 1.06

223,632 6.14 · 10−6 − 0.98

900,624 1.57 · 10−6 − 0.98

3,614,688 4.35 · 10−7 − 0.92

is constructed such that a set of polynomial basis functions ϕ1, . . . , ϕm is integrated exactly.
This is done by solving the linear system

m∑

j=1

α jϕi (x j ) =
∫

K∩Ω

ϕi dx, i = 1, . . . ,m
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Fig. 11 Domain Ω resulting
from the removal of 11 circular
holes from the L-shaped
domain Ω̂ with initial mesh
consisting of three quad elements

for the unknown coefficients α1, . . . , αm with some fixed (transformed) Gauss points x1, . . . ,
xm ∈ K . The unknown integral on the right-hand side can be computed by applying integration
by parts, which gives

∫

K∩Ω

ϕi dx =
∫

∂(K∩Ω)

Φi · n ds (25)

for a function Φi : R
d → R

d with divΦi = ϕi . For a tensor-product polynomial func-
tion ϕi with ϕi (x) = ∏d

k=1 ϕi,k(xk), the function Φi can easily be obtained by computing
the antiderivative of one of the functions ϕi,k . The computation of the surface integral in (25)
is much simpler and computationally cheaper than the computation of the volume integral
since only parameterizations of surfaces are involved. In this example, the integrals on parts
of circles have the form

∫ t2
t1

ϕi (cos(t), sin(t)) dt and, thus, the integrand is a univariate poly-
nomial in cos(t) and sin(t). To obtain a sufficiently accurate quadrature rule, we distribute
p + 60 Gauss points on (t1, t2), where p is the degree of the polynomial ϕi . Note that the
increased number of Gauss points is only used for the computation of the surface integral
in (25) and, hence, the number of Gauss points used for the assembly is (p+1)2 per element
as expected.

In this numerical example, we use C0 finite elements of degree p := 10 and perform
mesh adaptivity using the error estimator. In order to additionally assess the influence of ε,
we discuss four configurations with the parameter ε ∈ {

10−1, 10−2, 10−4, 10−6
}
. The decay

of the error and the estimator is displayed in Fig. 12.
The upper bound ‖∇u − ∇uh‖Ω � η + ε1/2 from (13) suggests that the error may

be as large as O(ε1/2). Thus, the error may become stationary after reaching the magnitude
ofO(ε1/2), i.e., no further reductionof the error canbe achieved even if theDOF are increased.
However, in this example,we notice that the error becomes stationarywhen ‖∇u − ∇uh‖Ω ≈
O(ε). This is considerably better than the worst-case bound O(ε1/2) that results from the
use of the bound ε ‖∇uh‖Ω̂\Ω � ε1/2(‖ f ‖Ω + ‖g‖ΓN

) in (21). Here, f = 0 gives

ε ‖∇uh‖Ω̂\Ω ≈ 0.86ε � ε1/2 ‖g‖ΓN
≈ √

2ε1/2

which explains the improved behavior in this example.
The experiment confirms that ε should be small in order to obtain a sufficiently accurate

solution. In fact, the errors are much larger for ε ∈ {
10−1, 10−2

}
than for ε ∈ {

10−4, 10−6
}
,

see Fig. 12. In the latter case, the errors are even quite similar (until the error for ε = 10−4

becomes stationary). We see that the estimator has approximately the same value for each ε

until its decay rate reduces. The dependencies of the error and the estimator on ε seem to
differ. At a certain number of DOF the error becomes stationary whereas the decay rate of
the estimator is only reduced. However, the numbers of DOF at which the behavior of the
error and the estimator changes are quite similar for small ε. This may also be seen in Fig. 13
where the efficiency indices are depicted.
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Fig. 12 L-shaped domain problem with circular holes: decay of error and estimate for h-adaptive refinements
(p = 10)

Fig. 13 L-shaped domain
problem with circular holes:
efficiency indices (p = 10)

4.3 Fichera’s Corner with Polyhedral Holes

The error estimator (13) is stated for the 2D case. The extension of the individual error
contributions to 3D is straight forward. However, it is not clear whether the arguments for
proving reliability can easily be transfered from the two-dimensional case. Nevertheless,
we study the 3D extension of the error estimator (13) in a numerical experiment. For this
purpose, we consider Fichera’s corner which results from removing the unit cube [0, 1]3
from the cube (−1, 1)3 and take it as the embedding domain, i.e. Ω̂ := (−1, 1)3 \ [0, 1]3.
The domain of interest Ω is

Ω = Ω̂ \
⋃

{ω1, . . . , ω7},

where each ωi is a polyhedral hole with a triangular surface in one of the seven subcubes Ω̂

of equal size, see Fig. 14.
We solve Poisson’s problem with homogeneous Dirichlet conditions and inhomogeneous

Neumann conditions

Δu = 0 in Ω, u|ΓD = 0, ∂nu|ΓN = ∂nũ|ΓN

where ΓD := ({0} × [0, 1]2) ∪ ([0, 1] × {0} × [0, 1]) ∪ ([0, 1]2 × {0}) are the faces of
Fichera’s corner at the origin and ΓN := ∂Ω \ ΓD is the union of the remaining faces
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Fig. 14 Initial mesh T1 of seven
cubes. Ω is obtained by
removing seven polyhedrons
from Fichera’s corner

and all boundaries of the holes ωi . The weak formulation of the problem consists in finding
u ∈ V such that

(∇u,∇v)Ω = (∂nũ, v)ΓN

for all v ∈ V , where the data ũ is derived from the superposition of three solutions of the
L-shape domain problem as suggested in [6,25], i.e.

ũ(x, y, z) := h(x, y) + h(y, z) + h(x, z),

h(w1, w2) := r(w1, w2) sin ((2ϕ(w1, w2) − π)/3),

with the polar coordinates (r(w1, w2), ϕ(w1, w2)) ∈ R+ × [0, 2π) of (w1, w2) ∈ R
2. The

exact solution of the problem is unknown. It features edge singularities at the edges emanating
from the origin and a corner singularity at the origin. The discrete formulation in the FCM
version reads: Find uh ∈ Vh such that

(∇uh,∇vh)Ω + ε(∇uh,∇vh)Ω̂\Ω = (∂nũ, vh)ΓN

for all vh ∈ Vh , where Vh is a finite element space based on tensor-product hexahedral
elements of fixed degree p = 1 or p = 2. Furthermore, we set ε := 10−12. The initial coarse
mesh consists of the seven cubes as introduced above.

In order to compute the integrals on a cut K∩Ω for some K ∈ T̃h up tomachine precision,
we employ the moment-fitting approach described in Sect. 4.2. Here, the computation of the
surface integrals is much cheaper than the computation of a volume integral since only
surface meshes are involved which essentially amounts to the intersection of 3D triangle
meshes (e.g. implemented in CGAL [3]), while a volume mesher is needed to obtain a
tetrahedralization of K ∩ Ω . Moreover, the number of tetrahedrons in a volume mesh is
usually much larger than the number of triangles on the surface.

As the exact solution is unknown, we only study the convergence of the estimated error,
which is shown in Fig. 15 for h-adaptive refinements with p = 1 and p = 2. It can be seen
that the optimal algebraic convergence rate of O(DOF−p/2) is obtained in both cases. The
adaptive mesh and a parallel cut through the mesh are shown in Fig. 16. Refinements occur
in the neighborhood of the corner and edge singularities. Moreover, there are no refinements
inside the holes and only few refinements appear on the boundaries of the holes. The optimal
convergence rate indicates that a large overestimation of the error on cut cells which also
cause a large global overestimation does not occur.
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Fig. 15 Estimate of the energy
error ‖∇u − ∇uh‖Ω

Fig. 16 Adaptive mesh and a parallel cut (elements of degree p = 1)

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Auxiliary Computations

The explicit representation of the basis of Vh used in Sect. 3.3 is

ϕh
1 (x, y) = (1 − h)−1(x + 2)(1 − y)1[−2,−1−h](x) + (1 + h)−1(−x)(1 − y)1(−1−h,0](x),

ϕh
2 (x, y) = (1 − h)−1(x + 2)y1[−2,−1−h](x) + (1 + h)−1(−x)y1(−1−h,0](x),

ϕh
3 (x, y) = (1 + h)−1(x − (−1 − h))(1 − y)1[−1−h,0](x),

ϕh
4 (x, y) = (1 + h)−1(x − (−1 − h))y1[−1−h,0](x),

where (x, y) ∈ [−2, 0] × [0, 1] and 1M (x) := 1 if x ∈ M and 1M (x) := 0 otherwise for
M ⊂ R. The stiffness matrix A defined as

Ai, j :=
∫

Ω

∇ϕh
i · ∇ϕh

j

and the right-hand side vector b defined as

bi :=
∫

Ω

f ϕh
i +

∫

ΓN

(2(x + 2), 0) · nϕh
i
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are

A = 1

(1 + h)2

⎛

⎜
⎜
⎜
⎜
⎝

2
(
h3+h2−3h−1

)

3(h−1)
−4h3−4h2+3h+1

6(h−1)
1
6 h

(
h2 + 3h − 2

) − 1
6 h

(
h2 + 3h + 1

)

−4h3−4h2+3h+1
6(h−1)

2
(
h3+h2−3h−1

)

3(h−1) − 1
6 h

(
h2 + 3h + 1

) 1
6 h

(
h2 + 3h − 2

)

1
6 h

(
h2 + 3h − 2

) − 1
6 h

(
h2 + 3h + 1

) 1
3

(
h3 + h

) 1
6

(
h − 2h3

)

− 1
6 h

(
h2 + 3h + 1

) 1
6 h

(
h2 + 3h − 2

) 1
6

(
h − 2h3

) 1
3

(
h3 + h

)

⎞

⎟
⎟
⎟
⎟
⎠

,

b = 1

1 + h

(
1

2
− h,

1

2
− h,− 1

2
(h − 2)h,− 1

2
(h − 2)h

)ᵀ
.

The solution of the linear system Aû = b is

û = A−1b = ((1 − h)2, (1 − h)2, 3 − h, 3 − h)ᵀ.

Hence, the discrete FCM solution is given by

uh(x, y) = ûᵀ · (ϕh
1 (x, y), . . . , ϕh

4 (x, y))ᵀ

= (−(−1 + h)(2 + x))1−2≤x≤−1−h(x) + (3 + 2x − h(1 + x))1−1−h<x≤0(x).

From

∇u(x, y) − ∇uh(x, y) = ((2x + 4) − (2 − h), 0) = (2x + 2 + h, 0)

for x > −1 − h we eventually compute
∫ −1

−1−h

∫ 1

0
|∇u(x, y) − ∇uh(x, y)|2 =

∫ −1

−1−h
(2x + 2 + h)2 = h3/3.

In order to cross-check this computation with the finite element case, we consider the limit
case with h = 0, where only the basis functions ϕ0

1 and ϕ0
2 have support onΩ . We obtain û =

(1, 1, s1, s2) for s1, s2 ∈ R as solutions. A simple computation shows that the restrictions of
any such solution toΩ = K 0

1 = [−1, 0]×[0, 1] is u0(x, y)|K1 = 2+x , which coincideswith
the discrete solution obtained by means of the standard finite element space span

{
ϕ0
1 , ϕ

0
2

}

on the single element K 0
1 .
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