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Abstract Continual vital sign assessment on the general

care, medical-surgical floor is expected to provide early

indication of patient deterioration and increase the effec-

tiveness of rapid response teams. However, there is concern

that continual, multi-parameter vital sign monitoring will

produce alarm fatigue. The objective of this study was the

development of a methodology to help care teams optimize

alarm settings. An on-body wireless monitoring system

was used to continually assess heart rate, respiratory rate,

SpO2 and noninvasive blood pressure in the general ward

of ten hospitals between April 1, 2014 and January 19,

2015. These data, 94,575 h for 3430 patients are contained

in a large database, accessible with cloud computing tools.

Simulation scenarios assessed the total alarm rate as a

function of threshold and annunciation delay (s). The total

alarm rate of ten alarms/patient/day predicted from the

cloud-hosted database was the same as the total alarm rate

for a 10 day evaluation (1550 h for 36 patients) in an

independent hospital. Plots of vital sign distributions in the

cloud-hosted database were similar to other large databases

published by different authors. The cloud-hosted database

can be used to run simulations for various alarm thresholds

and annunciation delays to predict the total alarm burden

experienced by nursing staff. This methodology might, in

the future, be used to help reduce alarm fatigue without

sacrificing the ability to continually monitor all vital signs.
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1 Background

In 2004 the Institute for Healthcare Improvement (IHI)

launched the ‘‘100,000 Lives Campaign’’ to significantly

reduce morbidity and mortality in the US healthcare sys-

tem. Six steps were identified, one of which was to deploy

rapid response teams at the first sign of patient decline. In

2006, with the initial goal exceeded, IHI introduced a ‘‘5

Million Lives Campaign’’ again recommending rapid

response teams as a core component recognizing that

‘failure to rescue’ events are a major cause of mortality in

American hospitals.

An international consensus conference suggested that to

reduce failure to rescue events a rapid response system

(RRS) is necessary. A RRS is composed of four compo-

nents: an afferent limb (detection and response triggers), an

‘‘efferent limb’’ (technical and human resources brought to

the bedside), a quality limb, and an administrative limb [1].

Studies investigating in-hospital mortality have shown

deterioration of vital signs 6–12 h prior to a serious clinical

event [2–4]. Yet, despite rising inpatient acuity levels, the

standard for routine physiological assessment outside the

ICU is once every 4–8 h. The conference identified a core

set of parameters which should be continually monitored

for the goal of early detection of physiological instability:

heart rate (HR), blood pressure, respiratory rate, tempera-

ture, pulse oximetry, and level of consciousness [1].

One of the concerns about implementing multi-param-

eter continual vital sign monitoring on a general medical or

medical-surgical unit is alarm fatigue. The high rate of

alarms, and their sometimes limited clinical relevance has
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been well documented in the operating room [5] and ICU

[6, 7] and the concern about alarm fatigue is real [7]. In

general medical units, the nurse to patient ratio is lower

than in the OR and ICU, so continual monitoring in this

environment has the potential for being a significant burden

on nurses.

Several methods have been evaluated to reduce the

number of non-actionable alarms during continual moni-

toring of patients. One successful approach is to combine

alarm thresholds with annunciation delays (a delay

between when an alarm threshold has been crossed and

when the alert is sounded or displayed) [8–12]. In most

cases alarm thresholds are set based upon knowledge of

and experience with the vital sign measures. Recently,

work has been done to develop evidence-based methods for

determining alarm limits. Burgess et al. [11] established a

database of HR and respiration rate (RR) measurements

from 317 patients (18,737 h) in a general care unit, with no

adverse events. Modeling was done with this database to

predict the alarm rate for different alarm limits, with the

goal of reducing the number of false positive alarms.

Welch [12] describes a method for reducing SpO2 alarms

based on creating a large database of measurements. The

database is used to predict the alarm rate based upon

combinations of alarm thresholds and annunciation delays.

The current study extends Welch’s methodology [12] to

also include HR, RR, systolic, diastolic and mean blood

pressure (SBP, DBP, MAP), by evaluating a method for

optimizing alarm rates for continual multi-parameter

monitoring in general care units.

2 Methods

2.1 Vital sign data collection

Vital sign data were collected throughout the day and night

with the ViSi Mobile System, an on-body, multi-parameter

monitoring platform capable of continual measurement and

display of core vital signs including ECG, RR, HR, con-

tinual NIBP (cNIBP), pulse oximetry (SpO2), pulse rate,

and skin temperature (Sotera Wireless Inc., San Diego, CA,

USA) [13]. Data capture included waveforms (500 sam-

ples/s) and numeric data displayed as a 3 s moving

average.

The ViSi Mobile System transmitted patient data via the

existing wireless network in the hospital. De-identified

patient data were uploaded through a secure link to a pri-

vate cloud at the end of each patient’s monitoring session.

The numeric values in the cloud-hosted database were then

used to simulate the total alarm burden associated with

simultaneous monitoring of all key vital signs.

2.2 Alarm rate simulation and independent hospital

evaluation

A range of potential alarm thresholds were chosen by the

authors and used to model the impact of annunciation

delays on the resulting total alarm rate. Ranges for the

alarm thresholds used in the simulations were chosen

based upon the distribution of vital sign values in the

database (Supplemental Data). Adverse events in general

care units are rare, so in a large population it can be

assumed that alarm thresholds should be set near the tail

ends of each distribution. Tables were constructed for

each vital sign showing the projected number of alarms

for each combination of threshold and annunciation delay.

Specific alarm thresholds and annunciation delays were

selected for each vital sign and the total alarm rates

(number of alarms/patient/day) were calculated. A 10 day

evaluation was conducted at an independent hospital, not

included in the cloud-hosted database, over the period

January 20, 2015–January 30, 2015. Continual SpO2, HR,

RR, cNIBP data were collected for these patients and

alarm rates were calculated using the same thresholds and

annunciation delays as above. The alarm rate calculated

for the independent hospital was compared with the

simulation done with the data in the cloud-hosted

database.

2.3 Database comparisons

Since alarm threshold values were determined from the

population histograms of data in the cloud-hosted data-

base, we assessed general applicability of the method by

comparing these distributions to data from previously

published databases. One comparison was made with the

1.15 million individual vital sign determinations from

27,722 patients reported by Bleyer et al. [14], collected

intermittently for patients on all non-intensive care unit

and all non-intermediate care unit floors at a single

institution. The data to re-plot the histograms for the

comparison were obtained from the online supplement

[14]. A second comparison was made to data from

Tarassenko et al. [15]; 64,622 h of vital sign measure-

ments from 863 patients. These data were collected from

continual five-parameter monitoring in med-surg patients

at one hospital in the US and one hospital in the UK.

To re-plot the histograms the data were read digitally

from Figure 1 in the Tarassenko paper [15] using

WebPlotDigitizer Version 3.4 (A. Rohatgi 2014, http://

arohatgi.info/WebPlotDigitizer). For comparison, all his-

tograms were normalized so the total area under the

curve was 1.
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3 Results

3.1 Cloud-hosted database

The cloud-hosted database analyzed in this paper is com-

posed of 94,575 h of monitoring data for 3430 patients.

Table 1 is an example of the simulation for low SpO2

alarm. Each cell within the table shows the predicted

number of alarms for the corresponding threshold setting

and annunciation delay value. This simulation is centered

on an alarm limit of 85 % with a delay of 30 s; with this

particular setting one can expect 3.7 SpO2 alarms/pa-

tient/day. By examining all of the cells, the relative impact

of changing alarm threshold or annunciation delay can be

seen. As an example, at a threshold value of 85 %,

increasing the delay from 20 to 40 s, leads to a 44 %

reduction in the number of expected alarms. Abbreviated

tables for the other vital signs can be found online as

supplemental data.

Figure 1 shows an example of the effect of annunciation

delay on the alarm rate for the high RR alarm. The white

bars represent alarms suppressed by setting the delay at

120 s. Seventy-one percent of the alarms would last 30 s or

less; 95 % of the alarms resolve by themselves within

120 s.

Alarm threshold and annunciation delays were selected

for each vital sign and are shown in Table 2. These settings

were then applied to the cloud-hosted data to calculate the

overall alarm burden that would be experienced by a nurse

using all of the vital signs to monitor a patient. Table 3

shows the individual vital sign and total alarm rates that

can be expected if these specific alarm settings are adopted.

The total alarm rate based upon that particular group of

settings is projected to be 10.3 alarms/patient/day, with

SpO2 and HR each contributing about 40 % of the alerts.

3.2 Independent hospital evaluation

A total of 1550 h of monitoring data were collected for 36

patients during a 10 day evaluation in an independent

hospital whose data were not included in the cloud-hosted

database. The total alarm rate (10.6 alarms/patient/day) for

the patients in the independent hospital was calculated

using the same settings and is comparable to the total alarm

rate calculated from the full database (Table 3), however,

for the independent hospital data, cNIBP contributes to the

largest number of alarms to the total.

3.3 Database comparisons

Figure 2 shows the comparison of the cloud-hosted data-

base to the other two published studies [14, 15] for HR,

RR, SpO2 and SBP. Data for RR of 14 in the cloud-hosted

database and SBP between 100 and 160 mmHg in the

Bleyer data were missing and not included in figure.

Table 4 reports the mean and 95 % confidence intervals

for the three datasets. Because the data consist of repeated

measures on fewer patients than the number of measure-

ments and the correlation between repeated measures is

unknown, we conservatively used the number of patients as

the degrees of freedom in confidence interval calculations.

Differences between the means for each of the parameters

are small and clinically insignificant. Table 4 also shows

the 1, 5, 10, 90, 95 and 99 % percentile values where

available. The distribution extremes (1, 5, 95 and 99 %)

have been used by others to identify patients at risk for the

development of early warning scoring systems [15]. The

extreme values determined from the cloud database agree

Table 1 Projected alarm rates (number of alarms/patient/day) for a

low SpO2 alarm as a function of SpO2 threshold and annunciation

delay

Threshold—low SpO2

81 83 85 87 89

Annunciation delay (s)

20 0.9 1.9 4.8 12.3 28.8

25 0.8 1.6 4.0 10.4 24.5

30 0.7 1.5 3.7 9.6 22.8

35 0.6 1.3 3.1 8.3 19.8

40 0.6 1.1 2.7 7.2 17.5

Tables for the other vital signs are shown in the data supplement
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Fig. 1 Example of the effect of annunciation delay on the alarm rate

for the high respiration rate threshold; 63,074 h of data from 1919

patients at a single hospital over 1 year. White bars represent alarms

suppressed by setting the delay at 120 s
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well with both databases for SpO2 and with Tarassenko’s

results [15] for HR, RR and SBP.

4 Discussion

This study demonstrated the use of a large database for

simulating the effect of alarm thresholds and annunciation

delays on the total alarm burden we anticipate might be

experienced by nurses doing multi-parameter patient

monitoring in a general care unit. The cloud-hosted data-

base was used to perform numerous simulations over a

large range of alarm thresholds and annunciation delays.

When the total alarm burden was estimated using specific

threshold and annunciation delays for each vital sign the

same total alarm rate was found for both the large database

and the independent test hospital, indicating that the cloud-

hosted database is a good representation of the patient

population in a general care unit.

Low alarm rates can be achieved by selecting thresholds

that represent the lowest and highest 0.5–1.0 % of each vital

sign distribution (Table 4) and choosing annunciation delays

that suppress alerts that resolve themselves quickly (Table 2;

Fig. 1). We did not assess if the suppressed alarms were

indeed actionable clinical events, but including an annun-

ciation delay is known to eliminate transient and motion

artifacts which can be a major source of false alarms [10].

It has been estimated that there are between 100 and

200 alarms/patient/day in the ICU [6, 7]. Patients in

general care units are presumed to be more stable, and

therefore would be expected to have a lower alarm rate.

Taenzer et al. [10] report four alarms/patient/day using a

SpO2-only system. Our results, using a different pulse

oximeter demonstrated similar results (3.7 alarms/pa-

tient/day for SpO2). In our study we demonstrate that it is

feasible, though not necessarily sufficient, to use population

data to assess the impact of alarm thresholds and annunci-

ation delays for all vital signs, giving clinicians control over

the number of alerts generated by monitoring systems.

Figure 2 and Table 4 demonstrate that the distribution

of vital signs for the general care unit is independent of the

monitoring equipment used to make the measurement.

Comparison of individual patient values to the distribution

may provide guidance to the nurse and aid in their decision

making process. Values significantly outside the expected

distribution could indicate patient deterioration, equipment

malfunction or a patient with unusual physiology. Further

patient assessment might lead to the appropriate action:

therapy, equipment adjustments (replace dislodged nasal

cannula, for example) or individualized alarm settings,

respectively for the causes listed above.

4.1 Limitations

This study demonstrated a data-driven methodology for

managing the number of alarms when multi-parameter

monitoring is done in general care units. While the

methodology is generalizable, the results in Fig. 2 and

Table 2 The alarm settings used to simulate total alarm burden

High threshold Annunciation delay

for high threshold

Low threshold Annunciation delay

for low threshold

Heart rate 150 beats/min 5 s 30 beats/min 5 s

Respiration rate 35 breaths/min 120 s 4 breaths/min 120 s

SpO2 N/A N/A 85 % 30 s

Systolic BP 190 mmHg 60 s N/A N/A

Diastolic BP N/A N/A N/A N/A

Mean arterial pressure N/A N/A 60 mmHg 60 s

N/A not used in calculating total alarm rate

Table 3 Total alarm burden projected from the cloud-hosted database and the independent test hospital 10 day evaluation for each vital sign and

the aggregate

Cloud-hosted database alarm rate

(alarms/patient/day)

Independent hospital alarm rate

(alarms/patient/day)

Heart rate 4.2 1.2

Respiration rate 0.6 0.6

SpO2 3.7 1.3

cNIBP 1.9 7.6

Total 10.3 10.6
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Table 4 and the supplement are specific to general care units

and would not be applicable for continual monitoring in the

ICU or the OR. The specific values for alarm thresholds and

annunciation delays have been determined for continual

vital sign monitoring and may not be appropriate for spot

check monitoring for general care units, where intermittent

monitoring may require higher sensitivity.

The cloud-hosted database represents ten hospitals with

data collection over a 9 month period. cNIBP data became

more prevalent during the later periods of data collection,

hence the percentage of patients with cNIBP measurements

in the independent hospital was higher than in the overall

database. It is likely that this observation explains the higher

rate of cNIBP alarms in the test hospital data. The database

continues to grow and is expected in the future to be more

representative in predicting the number of cNIBP alarms.

Similarly, during the course of the study we made algorithm

improvements to the pulse oximeter sensor which lowered

the alarm rate for SpO2 and HR for the independent hospital.

This study described one way data can be used to

manage alarms and alerts during continual multi-parameter

monitoring in general care units. This is in contrast to the

ICU setting where there are a large number of patient

adverse events and alarm thresholds are optimized for

enhanced sensitivity to these events. The work described

here was not designed to demonstrate sensitivity of the

alarm settings to actionable clinical events, nor was it

designed to compare this methodology to other methods of

using vital sign data to alert nurses to patient deterioration.

5 Conclusions

This study produced a large cloud-hosted database docu-

menting the distribution of all standard vital sign mea-

surements for 94,575 h of continual patient monitoring in

general care units. The cloud-hosted database was used to

demonstrate a methodology for selecting alarm thresholds

and annunciation delays based on simulations of the total

alarm burden that might be expected. The approach was

validated with an independent dataset, demonstrating

applicability to a new hospital. Similarities in the distri-

bution of vital sign data in the cloud-hosted database with
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bFig. 2 Comparison of cloud-hosted vital sign data with previously

published data collected from general care and medical-surgical units.

Cloud-hosted database: continual data collection; 94,575 h, 3430

patients. Tarassenko database (14): continual data collection;

64,622 h, 863 patients; Bleyer database (13): intermittent data

collection; 1.15 million individual determinations from 27,722

patients. Total area under each curve was normalized to 1
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vital sign distributions previously published, suggests that

this methodology could also be applied to data collected

using other multi-parameter vital sign monitors. This effort

is consistent with and directly supportive of the US Joint

Commission National Patient Safety Goal 06.01.01.
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