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Abstract
In this work, we propose a new primal–dual algorithm with adaptive step sizes. The stochastic primal–dual hybrid gradient
(SPDHG) algorithm with constant step sizes has become widely applied in large-scale convex optimization across many
scientific fields due to its scalability. While the product of the primal and dual step sizes is subject to an upper-bound in
order to ensure convergence, the selection of the ratio of the step sizes is critical in applications. Up-to-now there is no
systematic and successful way of selecting the primal and dual step sizes for SPDHG. In this work, we propose a general
class of adaptive SPDHG (A-SPDHG) algorithms and prove their convergence under weak assumptions. We also propose
concrete parameters-updating strategieswhich satisfy the assumptions of our theory and thereby lead to convergent algorithms.
Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.

1 Introduction

The stochastic primal–dual hybrid gradient (SPDHG) algo-
rithm introduced in [8] is a stochastic version of the primal–
dual hybrid gradient (PDHG) algorithm, also known as
Chambolle–Pock algorithm [9]. SPDHG has proved more
efficient than PDHG for a variety of problems in the frame-
work of large-scale non-smooth convex inverse problems
[13, 22, 24, 27]. Indeed, SPDHG only uses a subset of the
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data at each iteration, hence reducing the computational cost
of evaluating the forward operator and its adjoint; as a result,
for the same computational burden, SPDHG attains conver-
gence faster than PDHG. This is especially relevant in the
context of medical imaging, where there is a need for algo-
rithms whose convergence speed is compatible with clinical
standards, and at the same time able to deal with convex,
non-smooth priors like total variation (TV), which are well-
suited to ill-posed imaging inverse problems, but preclude
the recourse to scalable gradient-based methods.

Like PDHG, SPDHG is provably convergent under the
assumption that the product of its primal and dual step sizes
is bounded by a constant depending on the problem to solve.
On the other hand, the ratio between the primal and dual
step sizes is a free parameter, whose value needs to be cho-
sen by the user. The value of this parameter, which can be
interpreted as a control on balance between primal and dual
convergence, can have a severe impact on the convergence
speed of PDHG, and the same also holds true for SPDHG
[12]. This leads to an important challenge in practice, as
there is no known theoretical or empirical rule to guide the
choice of the parameter. Manual tuning is computationally
expensive, as it would require running and comparing the
algorithm on a range of values, and there is no guarantee that
a value leading to fast convergence for one dataset would
keep being a good choice for another dataset. For PDHG,
[14] have proposed an online primal–dual balancing strategy
to solve the issue, where the values of the step sizes evolve
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along the iterations. More generally, adaptive step sizes have
been used for PDHG with backtracking in [14, 20], adapting
to local smoothness in [25], and are widely used for a vari-
ety of other algorithms, namely gradient methods in [19],
subgradient methods in [3] and splitting methods in [4–7,
18] to improve convergence speed and bypass the need for
explicit model constants, like Lipschitz constants or operator
norms. For SPDHG, an empirical adaptive scheme has been
used for Magnetic Particle Imaging but without convergence
proof [27].

On the theoretical side, a standard procedure to prove
the convergence of proximal-based algorithms for convex
optimization is to use the notion of Féjer monotonicity [2].
Constant step sizes lead to a fixed metric setting, while
adaptive step sizes lead to a variable metric setting. Work
[11] states the convergence of deterministic Féjer-monotone
sequences in the variable metric setting, while work [10] is
concerned by the convergence of random Féjer-monotone
sequences in the fixed metric setting.

In this work, we introduce and study an adaptive version
of SPDHG. More precisely:

• We introduce a broad class of strategies to adaptively
choose the step sizes of SPDHG. This class includes,
but is not limited to, the adaptive primal–dual balancing
strategy, where the ratio of the step sizes, which controls
the balance between convergence of the primal and dual
variable, is tuned online.

• We prove the almost-sure convergence of SPDHG under
the schemes of the class. In order to do that, we intro-
duce the concept of C-stability, which generalizes the
notion of Féjer monotonicity, and we prove the conver-
gence of random C-stable sequences in a variable metric
setting, hence generalizing results from [11] and [10].We
then show that our proposed algorithm falls within this
novel theoretical framework by following similar strate-
gies than in the almost-sure convergence proofs of [1,
16].

• We compare the performance of SPDHG for various
adaptive schemes and the known fixed step-size scheme
on large-scale imaging inverse tasks (sparse-view CT,
limited-angle CT, low-dose CT). We observe that the
primal–dual balancing adaptive strategy is always as fast
or faster than all the other strategies. In particular, it con-
sistently leads to substantial gains in convergence speed
over the fixed strategy if the fixed step sizes, while in the
theoretical convergence range, are badly chosen. This is
especially relevant as it is impossible to know whether
the fixed step sizes are well or badly chosen without
running expensive comparative tests. Even in the cases
where theSPDHG’sfixed step sizes arewell tuned,mean-
ing that they are in the range to which the adaptive step
sizes are observed to converge, we observe that our adap-

tive scheme still provides convergence acceleration over
the standard SPDHG after a certain number of iterations.
Finally, we pay special attention to the hyperparameters
used in the adaptive schemes. These hyperparameters are
essentially controlling the degree of adaptivity for the
algorithm and each of them has a clear interpretation and
is easy to choose in practice. We observe in our extensive
numerical tests that the convergence speedof our adaptive
scheme is robust to the choices of these parameterswithin
the empirical range we provide, hence can be applied
directly to the problem at hand without fine-tuning, and
solves the step-size choice challenge encountered by the
user.

The rest of the paper is organized as follows. In Sect. 2,
we introduce SPDHG with adaptive step sizes, state the con-
vergence theorem, and carry the proof. In Sect. 3, we propose
concrete schemes to implement the adaptiveness, followedby
numerical tests on CT data in Sect. 4. We conclude in Sect. 5.
Finally, Sect. 6 collects some useful lemmas and proofs.

2 Theory

2.1 Convergence Theorem

The variational problem to solve takes the form:

min
x∈X

n∑

i=1

fi (Ai x) + g(x),

where X and (Yi )i∈{1,...,n} are Hilbert spaces, Ai : X → Yi
are bounded linear operators, and fi : Yi → R ∪ {+∞}
and g : X → R ∪ {+∞} are convex functions. We define
Y = Y1 × · · · × Yn with elements y = (y1, . . . , yn) and
A : X → Y such that Ax = (A1x, . . . , Anx). The associated
saddle-point problem reads as

min
x∈X sup

y∈Y

n∑

i=1

〈Ai x, yi 〉 − f ∗
i (yi ) + g(x), (2.1)

where f ∗
i stands for the Fenchel conjugate of fi . The set of

solution to (2.1) is denoted by C, and the set of nonnega-
tive integers by N and �1, n� stands for {1, . . . , n}. Elements
(x∗, y∗) of C are called saddle points and characterized by

Ai x
∗ ∈ ∂ f ∗

i (y∗
i ), i ∈ �1, n�; −

n∑

i=1

A∗
i y

∗
i ∈ ∂g(x∗).

(2.2)

In order to solve the saddle-point problem, we intro-
duce the adaptive stochastic primal–dual hybrid gradient
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(A-SPDHG) algorithm in Algorithm 2.1. At each iteration
k ∈ N, A-SPDHG involves the following five steps:

Algorithm 2.1: A-SPDHG (variable step-sizes, serial
sampling)

1: Input: dual step-sizes (σ 0
i )i∈�1,n�, primal step-size τ 0,

update rule; probabilities (pi )i∈�1,n�; primal variable x0, dual
variable y0

2: Initialize ȳ0 = y0

3: for k ∈ �0, K − 1� do
4: Determine (σ k+1

i )i∈�1,n�, τ k+1 according to the update rule
and the values of (σ l

i )i∈�1,n�, τ l , xl and yl for l ∈ �0, k�.
5: xk+1 = proxτ k+1g(x

k − τ k+1A∗ ȳk)
6: Randomly pick i ∈ �1, n� with probability pi

7: yk+1
j =

{
prox

σ k+1
i f ∗

i
(yki + σ k+1

i Ai xk+1) if j = i

ykj if j 	= i

8: ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j 	= i
9: end for
10: return xK

• update the primal step size τ k and the dual step sizes
(σ k

i )i∈�1,n� (line 4);

• update the primal variable xk by a proximal step with
step size τ k+1 (line 5);

• randomly choose an index i with probability pi (line 6);
• update the dual variable yki by a proximal step with step
size σ k+1

i (line 7);
• compute the extrapolated dual variable (line 8).

A-SPDHG is adaptive in the sense that the step-size val-
ues are updated at each iteration according to an update rule
which takes into account the value of the primal and dual
iterates xl and yl up to the current iteration. As the iterates
are stochastic, the step sizes are themselves stochastic, which
must be carefully accounted for in the theory.

Before turning to the convergence of A-SPDHG, let us
recall some facts about the state-of-the-art SPDHG. Each
iteration of SPDHG involves the selection of a random subset
of �1, n�. In the serial sampling casewhere the random subset
is a singleton, SPDHG algorithm [8] is a special case of
Algorithm 2.1 with the update rule

{
σ k+1
i = σ k

i (= σi ), i ∈ �1, n�,

τ k+1 = τ k (= τi ),
k ∈ N.

Under the condition

τσi <
pi

‖Ai‖2 , i ∈ �1, n�, (2.3)

SPDHG iterates converge almost surely to a solution of the
saddle-point problem (2.1) [1, 16].

Let us now turn to the convergence of A-SPDHG. The
main theorem, Theorem 2.1, gives conditions on the update
rule under which A-SPDHG is provably convergent. Plainly
speaking, these conditions are threefold:

(i) the step sizes for step k + 1, (σ k+1
i )i∈�1,n� and τ k+1,

depend only on the iterates up to step k,
(ii) the step sizes satisfy a uniform version of condition

(2.3),
(iii) the step-size sequences (τ k)k≥0 and (σ k

i )k≥0 for i ∈
�1, n� do not decrease too fast. More precisely, they are
uniformly almost surely quasi-increasing in the sense
defined below.

In order to state the theorem rigorously, let us intro-
duce some useful notation and definitions. For all k ∈
N, the σ -algebra generated by the iterates up to point k,
F (

(xl , yl), l ∈ �0, k�
)
, is denoted by Fk . We say that a

sequence (uk)k∈N is
(Fk

)
k∈N-adapted if for all k ∈ N, uk

is measurable with respect to Fk .
A positive real sequence (uk)k∈N is said to be quasi-

increasing if there exists a sequence (ηk)k∈N with values in
[0, 1), called the control on (uk)k∈N, such that

∑∞
k=1 ηk < ∞

and:

uk+1 ≥ (1 − ηk)uk, k ∈ N. (2.4)

By extension, we call a random positive real sequence
(uk)k∈N uniformly almost surely quasi-increasing if there
exists a deterministic sequence (ηk)k∈N with values in [0, 1)
such that

∑∞
k=1 ηk < ∞ and equation (2.4) above holds

almost surely (a.s.).

Theorem 2.1 (Convergence of A-SPDHG) Let X and Y be
separable Hilbert spaces, Ai : X → Yi bounded linear
operators, fi : Yi → R ∪ {+∞} and g : X → R ∪ {+∞}
proper, convex and lower semi-continuous functions for all
i ∈ �1, n�. Assume that the set of saddle points C is non-
empty and the sampling is proper, that is to say pi > 0 for
all i ∈ �1, n�. If the following conditions are met:

(i) the step-size sequences (τ k+1)k∈N, (σ k+1
i )k∈N, i ∈

�1, n� are
(Fk

)
k∈N-adapted,

(ii) there existsβ ∈ (0, 1) such that for all indices i ∈ �1, n�

and iterates k ∈ N,

τ kσ k
i

‖Ai‖2
pi

≤ β < 1, (2.5)
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(iii) the initial step sizes τ 0 and σ 0
i for all indices i ∈ �1, n�

are positive and the step-size sequences (τ k)k∈N and
(σ k

i )k∈N for all indices i ∈ �1, n� are uniformly almost
surely quasi-increasing,

then the sequence of iterates (xk, yk)k∈N converges almost
surely to an element of C.

While the conditions (i)–(iii) are general enough to cover
a large range of step-size update rules, we will focus in prac-
tice on the primal–dual balancing strategy, which consists in
scaling the primal and the dual step sizes by an inverse factor
at each iteration. In that case, the update rule depends on a
random positive sequence (γ k)k∈N and reads as:

τ k+1 = τ k

γ k
, σ k+1

i = γ kσ k
i , i ∈ �1, n�. (2.6)

Lemma 2.2 (Primal–dual balancing) Let the step-size
sequences satisfy equation (2.6) and assume in addition that
(γ k)k∈N is

(Fk
)
k∈N-adapted that the initial step sizes satisfy

τ 0σ 0
i

‖Ai‖2
pi

< 1, i ∈ �1, n�,

and are positive, that there exists a deterministic sequence
(εk)k∈N with values in [0, 1) such that

∑
εk < ∞ and for

all k ∈ N and i ∈ �1, n�,

min
{
γ k, (γ k)−1

}
≥ 1 − εk . (2.7)

Then, the step-size sequences satisfy assumptions (i)–(iii) of
Theorem 2.1.

Lemma 2.2 is proved in Sect. 6.
Connection with the literature:

• The primal–dual balancing strategy has been introduced
in [14] for PDHG and indeed for n = 1 we recover with
Lemma 2.2 the non-backtracking algorithm presented in
[14]. As a consequence, our theorem also implies the
pointwise convergence of this algorithm, whose conver-
gence was established in the sense of vanishing residuals
in [14].

• Still for PDHG, [20] proposes without proof an update
rule where the ratio of the step sizes is either quasi-non-
increasing or quasi-non-decreasing. This requirement is
similar to but not directly connected with ours, where we
ask the step sizes themselves to be quasi-non-increasing.

• For SPDHG, the angular constraint step-size rule pro-
posedwithout convergenceproof in [27] satisfies assump-
tions (i)–(iii).

Outline of the proof: Theorem 2.1 is proved in the follow-
ing subsections. We first define in Sect. 2.2 metrics related
to the algorithm step sizes on the primal–dual product space.
As the step sizes are adaptive, we obtain a sequence of met-
rics. The proof of Theorem 2.1 is then similar in strategy
to those of [1] and [16] but requires novel elements to deal
with the metrics variability. In Theorem 2.5, we state conver-
gence conditions for an abstract random sequence in aHilbert
space equipped with random variable metrics. In Sects. 2.4
and 2.5, we show that A-SPDHG falls within the scope of
Theorem 2.5. We collect all elements and conclude the proof
in Sect. 2.6.

2.2 Variable Metrics

For a Hilbert space H , we call S(H) the set of bounded self-
adjoint linear operators from H to H , and for all M ∈ S(H)

we introduce the notation:

‖u‖2M = 〈Mu, u〉, u ∈ H .

By an abuse of notation, we write ‖ ·‖2α = ‖·‖2αId for a scalar
α ∈ R. Notice that ‖ · ‖M is a norm on H if M is positive
definite. Furthermore, we introduce the partial order � on
S(H) such that for M, N ∈ S(H),

N � M if ∀u ∈ H , ‖u‖N ≤ ‖u‖M .

We call Sα(H) the subset of S(H) comprised of M such
that αId � M . Furthermore, a random sequence (Mk)k∈N in
S(H) is said to be uniformly almost surely quasi-decreasing
if there exists a deterministic nonnegative sequence (ηk)k∈N
such that

∑∞
k=1 ηk < ∞ and a.s.

Mk+1 � (1 + ηk)Mk, k ∈ N.

Comingback toA-SPDHG, let us define for every iteration
k ∈ N and every index i ∈ �1, n� two block operators of
S(X × Yi ) as:

Mk
i =

⎛

⎜⎝

1
τ k
Id − 1

pi
A∗
i

− 1
pi
Ai

1
piσ k

i
Id

⎞

⎟⎠ , Nk
i =

⎛

⎜⎝

1
τ k
Id 0

0 1
piσ k

i
Id

⎞

⎟⎠ ,
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and a block operator of S(X × Y ) as:

Nk =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
τ k
Id (0)

1
p1σ k

1
Id

. . .
1

piσ k
i
Id

. . .

(0) 1
pnσ k

n
Id

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.8)

The following lemma translates assumptions (i)–(iii) of The-
orem 2.1 on properties on the variable metric sequences.

Lemma 2.3 (Variable metric properties)

(a) Assumption (i) of Theorem 2.1 implies that (Mk+1
i )k∈N,

(Nk+1
i )k∈N, i ∈ �1, n� and (Nk+1)k∈N are

(Fk
)
k∈N-

adapted.
(b) Assumption (ii) of Theorem 2.1 is equivalent to the exis-

tence of β ∈ (0, 1) such that for all indices i ∈ �1, n�
and iterates k ∈ N,

(1 −√
β)Nk

i � Mk
i .

(c) Assumptions (ii) and (iii) of Theorem 2.1 imply that
(Mk

i )k∈N, (Nk
i )k∈N, i ∈ �1, n� and (Nk)k∈N are uni-

formly a.s. quasi-decreasing.
(d) Assumption (ii) and (iii) of Theorem 2.1 imply that the

sequences (τ k)k∈N and (σ k
i )k∈N for all i ∈ �1, n� are a.s.

bounded from above and by below by positive constants.
In particular, this implies that there exists α > 0 such
that Nk

i ∈ Sα(X × Yi ) for all i ∈ �1, n� and k ∈ N, or
equivalently that Nk ∈ Sα(X × Y ) for all k ∈ N.

Remark 2.4 (Step-size induced metrics on the primal–dual
product space) The lemma implies that Mk

i , N
k
i and Nk

are positive definite and hence induce a metric on the cor-
responding spaces. If n = 1 and for constant step sizes,
Mk

i corresponds to the metric used in [17], where PDHG is
reformulated as a proximal-point algorithm for a non-trivial
metric on the primal–dual product space.

Proof of Lemma 2.3 Assertion (a) of the lemma follows
from the fact that for all iterate k ∈ N, the operators
Mk+1

i , Nk+1
i and Nk+1 are in the σ -algebra generated by{

τ k+1, σ k+1
i , i ∈ �1, n�

}
. Assertion (b) follows from equa-

tion (6.2) of Lemma 6.1 to be found in the complementary
material. The proof of assertion (c) is a bit more involved. Let
us assume that assumption (iii) of Theorem 2.1 holds and let
(ηk0)k∈N and (ηki )k∈N be the controls of (τ k)k∈N and (σ k

i )k∈N
for i ∈ �1, n�, respectively. We define the sequence (ηk)k∈N

by:

ηk = max
{
ηki , i ∈ �0, n�

}
, k ∈ N, (2.9)

which is a common control on (τ k)k∈N and (σ k
i )k∈N for i ∈

�1, n� as the maximum of a finite number of controls. Let us
fix k ∈ N and i ∈ �1, n�. Because the intersection of a finite
number of measurable events of probability one is again a
measurable event of probability one, it holds almost surely
that for all (x, yi ) ∈ X × Yi ,

‖(x, yi )‖2Nk+1
i

= 1

τ k+1 ‖x‖2 + 1

piσ
k+1
i

‖yi‖2

≤ 1

1 − ηk

(
1

τ k
‖x‖2 + 1

piσ k
i

‖yi‖2
)

=
(
1 + ηk

1 − ηk

)
‖(x, yi )‖2Nk

i
.

Hence, the sequence (Nk
i )k∈N is uniformly quasi-decreasing

with control
(
ηk(1 − ηk)−1

)
k∈N, which is indeed a positive

sequence with bounded sum. (To see that
(
ηk(1 − ηk)−1

)
k∈N

has a bounded sum, consider that
(
ηk
)
k∈N is summable, hence

converges to 0, hence is smaller than 1/2 for all integers k
bigger than a certain K ; in turn, for all integers k bigger than
K , the term ηk(1 − ηk)−1 is bounded from below by 0 and
from above by 2ηk , hence is summable.) One can see by
a similar proof that (Nk)k∈N is uniformly quasi-decreasing
with the same control. To follow with the case of (Mk

i )k∈N,
we have, as before:

Mk+1
i =

⎛

⎜⎝

1
τ k+1 Id − 1

pi
A∗
i

− 1
pi
Ai

1
piσ

k+1
i

Id

⎞

⎟⎠ � Mk
i + ηk

1 − ηk
Nk
i

�
(
1 + ηk

1 − ηk

1

1 − √
β

)
Mk

i

thanks to (b).
Let us concludewith the proof of assertion (d).By assump-

tion (iii), the sequences (τ k)k∈N and (σ k
i )k∈N are uniformly

a.s. quasi-increasing. We define a common control (ηk)k∈N
as in (2.9). Then, the sequences (τ k)k∈N and (σ k

i )k∈N are
a.s. bounded from below by the same deterministic constant
C = min

{
τ 0, σ 0

i , i ∈ �1, n�
}∏∞

j=0(1 − η j ) which is pos-

itive as the initial step sizes are positive and (ηk)k∈N takes
values in [0, 1) and has finite sum. Furthermore, by assump-
tion (ii), the product of the sequences (τ k)k∈N and (σ k

i )k∈N is
almost surely bounded from above. As a consequence, each
sequence (τ k)k∈N and (σ k

i )k∈N is a.s. bounded from above.
The equivalence with Nk

i ∈ Sα(X × Yi ) for all i ∈ �1, n�,
and with Nk ∈ Sα(X × Y ), is straightforward. ��
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2.3 Convergence of Random C-stable Sequences in
RandomVariable Metrics

Let H be a Hilbert space and C ⊂ H a subset of H . Let
(
, σ (
),P) be a probability space. All random variables in
the following are assumed to be defined on
 andmeasurable
with respect to σ(
) unless stated otherwise. Let (Qk)k∈N
be a random sequence of S(H).

A random sequence (uk)k∈N with values in H is said to
be stable with respect to the target C relative to (Qk)k∈N
if for all u ∈ C , the sequence

(‖uk − u‖Qk

)
k∈N converges

almost surely. The following theorem then states sufficient
conditions for the convergence of such sequences.

Theorem 2.5 (Convergence ofC-stable sequences) Let H be
a separableHilbert space, C a closed non-empty subset of H,
(Qk)k∈N a random sequence of S(H), and (uk)k∈N a random
sequence of H. If the following conditions are met:

(i) (Qk)k∈N takes values in Sα(H) for a given α > 0 and
is uniformly a.s. quasi-decreasing,

(ii) (uk)k∈N is stable with respect to the target C relative to
(Qk)k∈N,

(iii) every weak sequential cluster point of (uk)k∈N is almost
surely in C, meaning that there exists 
(i i i) a mea-
surable subset of 
 of probability one such that for
all ω ∈ 
, every weak sequential cluster point of
(uk(ω))k∈N is in C.

then (uk)k∈N converges almost surely weakly to a random
variable in C.

Stability with respect to a target set C is implied by Féjer
and quasi-Féjer monotonicity with respect to C , which have
been studied either for randomsequences [10] or in the frame-
workof variablemetrics [11], but to the best of our knowledge
not both at the same time. The proof of Theorem 2.5 follows
the same lines than [10, Proposition 2.3 (iii)] and uses two
results from [11].

Proof The setC is a subset of the separable Hilbert space H ,
hence is separable.AsC is a closed and separable, there exists
{cn, n ∈ N} a countable subset of C whose closure is equal
to C . Thanks to assumption (ii), there exists for all n ∈ N

a measurable subset 
n
(i i) of 
 with probability one such

that the sequence (‖uk(ω) − cn‖Qk (ω))k∈N converges for all
ω ∈ 
n

(i i). Furthermore, let
(i) be a measurable subset of

of probability one corresponding to the almost-sure property
for assumption (i). Let


̃ =
⎛

⎝
⋂

n≥0


n
(i i)

⎞

⎠
⋂


(i)

⋂

(i i i).

As the intersection of a countable number ofmeasurable sub-
sets of probability one, 
̃ is itself a measurable set of 
 with
P(
̃) = 1. Fix ω ∈ 
̃ for the rest of the proof.

The sequence (Qk(ω))k∈N takes values in Sα(H) for
α > 0 and is quasi-decreasing with control (ηk(ω))k∈N. Fur-
thermore, for all k ∈ N,

‖Qk(ω)‖ ≤
⎛

⎝
k−1∏

j=0

(
1 + η j

)
⎞

⎠ ‖Q0(ω)‖

≤
⎛

⎝
∞∏

j=0

(
1 + η j

)
⎞

⎠ ‖Q0(ω)‖,

where the product
∏∞

j=0

(
1 + η j

)
is finite because (ηk)k∈N

is positive and summable. By [11, Lemma 2.3], (Qk(ω))k∈N
converges pointwise strongly to some Q(ω) ∈ Sα(H).

Furthermore, for all x ∈ C , there exists a sequence
(xn)n∈N with values in {cn, n ∈ N} converging strongly to
x . By assumption, for all n ∈ N, the sequence (‖uk(ω) −
xn‖Qk (ω))k∈N converges to a limit which shall be called
ln(ω). For all n ∈ N and k ∈ N, we can write thanks to
the triangular inequality:

−‖xn − x‖Qk (ω) ≤ ‖uk(ω) − x‖Qk (ω) − ‖uk(ω)

− xn‖Qk (ω) ≤ ‖xn − x‖Qk (ω).

By taking the limit k → +∞, it follows that:

−‖xn − x‖Q(ω) ≤ lim inf
k→∞ ‖uk(ω) − x‖Qk (ω) − ln(ω)

≤ lim sup
k→∞

‖uk(ω) − x‖Qk (ω) − ln(ω)

≤ ‖xn − x‖Q(ω).

Taking now the limit n → +∞ shows that the sequence
(‖uk(ω) − x‖Qk (ω))k∈N converges for all x ∈ C . On the
other hand, because ω ∈ 
(i i i), the weak cluster points
of (uk(ω))k∈N lie in C . Hence, by [11, Theorem 3.3], the
sequence (uk(ω))k∈N converges almost surely to a point
u(ω) ∈ C . ��

We are now equipped to prove Theorem 2.1. We show
in Sects. 2.4 and 2.5 that A-SPDHG satisfies points (ii) and
(iii) of Theorem 2.5, respectively, and conclude the proof in
Sect. 2.6. Interestingly, the proofs of point (ii) and of point
(iii) rely on two different ways of apprehending A-SPDHG.
Point (ii) relies on a convex optimization argument: By tak-
ing advantage of the measurability of the primal variable at
step k + 1 with respect to Fk , one can write a contraction-
type inequality relating the conditional expectation of the
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iterates’ norm at step k + 1 to the iterates’ norm at step k.
Point (iii) relies onmonotone operator theory:We use the fact
that the update from the half-shifted iterations (yk, xk+1) to
(yk+1, xk+2) can be interpreted as a step of a proximal-point
algorithm on X × Yi conditionally to i being the index ran-
domly selected at step k.

2.4 A-SPDHG is Stable with Respect to the Set of
Saddle Points

In this section,we show that (xk, yk)k∈N is stablewith respect
toC relative to the variablemetrics sequence (Nk)k∈N defined
in equation (2.8) above.We introduce the operators P ∈ S(Y )

and �k ∈ S(Y ) defined, respectively, by

(Py)i = pi yi , (�k y)i = σ k
i yi , i ∈ �1, n�,

and the functionals (Uk)k∈N, (V k)k∈N defined for all (x, y) ∈
X × Y as:

Uk(y) = ‖y‖2
(P�k )−1,

V k(x, y) = ‖x‖2
(τ k )−1 − 2〈P−1Ax, y〉 + ‖y‖2

(P�k )−1 .

We begin by recalling the cornerstone inequality satisfied
by the iterates of SPDHG stated first in [8] and reformulated
in [1].

Lemma 2.6 ([1], Lemma4.1)For every saddle-point (x∗, y∗),
it a.s. stands that for all k ∈ N\ {0},

E

[
V k+1(xk+1 − x∗, yk+1 − yk) +Uk+1(yk+1 − y∗)|Fk

]

≤ V k+1(xk − x∗, yk − yk−1) +Uk+1(yk − y∗)
(2.10)

− V k+1(xk+1 − xk, yk − yk−1).

The second step is to relate the assumptions of Theorem
2.1 to properties of the functionals appearing in (2.10). Let
us introduce Ysparse ⊂ Y the set of elements (y1, . . . , yn)
having at most one non-vanishing component.

Lemma 2.7 (Properties of functionals of interest) Under the
assumptions of Theorem 2.1, there exists a nonnegative,
summable sequence (ηk)k∈N such that a.s. for every iterate
k ∈ N and x ∈ X , y ∈ Y , z ∈ Ysparse:

Uk+1(y) ≤ (1 + ηk)Uk(y), (2.11a)

V k+1(x, z) ≤ (1 + ηk)V k(x, z), (2.11b)

‖(x, z)‖2Nk ≥ α‖(x, z)‖2, (2.11c)

V k(x, z) ≥ (1 − β)‖(x, z)‖2Nk , (2.11d)
∣∣∣
〈
P−1Ax, z

〉∣∣∣ ≤ √
β‖x‖(τ k )−1‖z‖(P�k )−1 . (2.11e)

Proof Let (ηki )k∈N and (η̃ki )k∈N be the controls of (Mk
i )k∈N

and (Nk
i )k∈N, respectively, for all i ∈ �1, n�. We define the

common control (ηk)k∈N by:

ηk = max
{
max

{
ηki , η̃

k
i

}
, i ∈ �1, n�

}
, k ∈ N. (2.12)

For all y ∈ Y , we can write

Uk+1(y) =
n∑

i=1

‖(0, yi )‖2Nk+1
i

≤ (1 + ηk)

n∑

i=1

‖(0, yi )‖2Nk
i

= (1 + ηk)Uk(y),

which proves (2.11a). Let us now fix x ∈ X , z ∈ Ysparse and
k ∈ N. By definition, there exists i ∈ �1, n� such that z j = 0
for all j 	= i . We obtain the inequalities (2.11b)–(2.11d) by
writing:

V k+1(x, z) = ‖(x, zi )‖2Mk+1
i

≤ (1 + ηk)‖(x, zi )‖2Mk
i

= (1 + ηk)V k(x, z),

‖(x, z)‖2Nk = ‖(x, zi )‖2Nk
i

≥ α‖(x, zi )‖2 = α‖(x, z)‖2,
V k(x, z) = ‖(x, zi )‖2Mk

i
≥ (1 − β)‖(x, zi )‖2Nk

i

= (1 − β)‖(x, z)‖2Nk .

Finally, we obtain inequality (2.11e) by writing:

∣∣∣
〈
P−1Ax, z

〉∣∣∣ = 1

pi
|〈Ai x, zi 〉|

≤ ‖Ai‖
pi

‖x‖‖zi‖

= ‖Ai‖
pi

∗
(
τ kσ k

i pi
)1/2 ‖x‖(τ k )−1‖z‖(P�k )−1

≤ √
β‖x‖(τ k )−1‖z‖(P�k )−1 ,

where the last inequality is a consequence of (2.5). ��
Lemma 2.8 (A-SPDHG is C-stable) Under the assumptions
of Theorem 2.1,

(i) The sequence (xk, yk)k∈N of Algorithm 2.1 is stable with
respect to C relative to (Nk)k∈N,

(ii) the following results hold:

E

[ ∞∑

k=1

∥∥∥(xk+1 − xk, yk − yk−1)

∥∥∥
2
]

< ∞ and a.s.
∥∥∥xk+1 − xk

∥∥∥ → 0.

Proof Let us begin with the proof of point (i). By definition
of A-SPDHG with serial sampling, the difference between
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two consecutive dual iterates is almost surely sparse:

a.s. ∀ k ∈ N \ {0} , yk − yk−1 ∈ Ysparse.

Let us define the sequences

ak = V k(xk − x∗, yk − yk−1) +Uk(yk − y∗), bk

= V k+1(xk+1 − xk, yk − yk−1),

which are a.s. nonnegative thanks to (2.11c) and (2.11d).
Notice that the primal iterates xl from l = 0 up to l = k + 1
are measurable with respect to Fk , whereas the dual iterates
yl from l = 0 up to l = k are measurable with respect to
Fk . Hence, ak and bk are measurable with respect to Fk .
Furthermore, inequalities (2.10), (2.11a) and (2.11b) imply
that almost surely for all k ∈ N\ {0},

E

[
ak+1|Fk

]
≤ (1 + ηk)ak − bk .

By Robbins–Siegmund lemma [23], (ak) converges almost
surely, supk E

[
ak
]

< ∞ and
∑∞

k=1 E
[
bk
]

< ∞. From the
last point in particular, we can write thanks to (2.11d) and
the monotone convergence theorem:

E

[ ∞∑

k=1

∥∥∥yk − yk−1
∥∥∥
2

(P�k+1)−1

]

≤ E

[ ∞∑

k=1

∥∥∥(xk+1 − xk, yk − yk−1)

∥∥∥
2

Nk+1

]

≤ (1 − β)−1
E

[ ∞∑

k=1

bk
]

= (1 − β)−1
∞∑

k=1

E

[
bk
]

< ∞,

hence
∑∞

k=1 ‖yk − yk−1‖2
(P�k+1)−1 is almost surely finite,

thus
(
‖yk − yk−1‖2

(P�k+1)−1

)
k∈N\{0}, and in turn

(‖yk −
yk−1‖(P�k+1)−1

)
k∈N\{0}, converge almost surely to 0. Fur-

thermore, supk E
[
ak
]

< ∞ hence supk ‖xk − x∗‖2
(τ k )−1 , and

in turn supk ‖xk − x∗‖(τ k )−1 , are finite, and by (2.11e), one
can write that for k ∈ N\ {0},
∣∣∣
〈
P−1A(xk − x∗), yk − yk−1

〉∣∣∣

≤ √
β‖xk − x∗‖(τ k+1)−1‖yk − yk−1‖(P�k+1)−1

≤
√

β(1 + ηk)‖xk − x∗‖(τ k )−1‖yk − yk−1‖(P�k+1)−1 .

We know that (ηk)k∈N is summable hence converges to 0.
As a consequence,

|〈P−1A(xk − x∗), yk − yk−1〉| → 0 almost surely.

To conclude with, thanks to the identity

ak = ‖(xk − x∗, yk − y∗)‖2Nk

+ 〈P−1A(xk − x∗), yk − yk−1〉, k ∈ N \ {0} ,

the almost-sure convergence of (ak)k∈N implies in turn that
of (‖(xk − x∗, yk − y∗)‖2

Nk )k∈N.
Let us now turn to point (ii). Thefirst assertion is a straight-

forward consequence of

E

[ ∞∑

k=1

bk
]

=
∞∑

k=1

E

[
bk
]

< ∞

and bounds (2.11c) and (2.11d). Furthermore, it implies

that
∑∞

k=1

∥∥(xk+1 − xk, yk − yk−1)
∥∥2 is a.s. finite, hence(∥∥(xk+1 − xk, yk − yk−1)

∥∥) a.s. converges to 0, and so does(∥∥xk+1 − xk
∥∥). ��

2.5 Weak Cluster Points of A-SPDHG are Saddle
Points

The goal of this section is to prove that A-SPDHG satisfies
point (iii) of Theorem 2.5. On the event

{
I k = i

}
, A-SPDHG

update procedure can be rewritten as

yk+1
i = prox

σ k+1
i f ∗

i
(yki + σ k+1

i Ai x
k+1), ȳk+1

i = yk+1
i

+ 1

pi

(
yk+1
i − yki

)
, ȳk+1

j = ykj , j 	= i

xk+2 = proxτ k+2g(x
k+1 − τ k+2A∗ ȳk+1).

We define T σ,τ
i : (x, y) �→ (x̂, ŷi ) by:

ŷi = proxσi f ∗
i
(yi + σi Ai x), x̂

= proxτg

(
x − τ A∗y − τ

1 + pi
pi

A∗
i (ŷi − yi )

)
,

so that (xk+2, yk+1
i ) = T

σ k+1
i ,τ k+2

i (xk+1, yk) on the event
{I k = i} (and yk+1

j = ykj for j 	= i).

Lemma 2.9 (Cluster points of A-SPDHG are saddle points)
Let (x̄, ȳ) a.s. be a weak cluster point of (xk, yk)k∈N (mean-
ing that there exists ameasurable subset 
̄ of
 of probability
one such that for all ω ∈ 
̄, (x̄(ω), ȳ(ω)) is a weak sequen-
tial cluster point of (xk(ω), yk(ω))k∈N) and assume that the
assumptions of Theorem 2.1 hold. Then, (x̄, ȳ) is a.s. in C.
Proof Thanks to Lemma 2.8-(ii) and the monotone conver-
gence theorem,

∞∑

k=1

E

[∥∥∥(xk+1 − xk, yk − yk−1)

∥∥∥
2
]
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= E

[ ∞∑

k=1

∥∥∥(xk+1 − xk, yk − yk−1)

∥∥∥
2
]

< ∞.

Now,

∞∑

k=1

E

[∥∥∥(xk+1 − xk , yk − yk−1)

∥∥∥
2
]

=
∞∑

k=1

E

[
E

[
‖(xk+1 − xk , yk − yk−1)‖2|I k−1

]]

=
∞∑

k=1

n∑

i=1

P(I k−1 = i)E

[∥∥∥∥T
σ k
i ,τ k+1

i (xk , yk−1
i ) − (xk , yk−1

i )

∥∥∥∥
2
]

= E

[
n∑

i=1

pi

∞∑

k=1

∥∥∥∥T
σ k
i ,τ k+1

i (xk , yk−1) − (xk , yk−1
i )

∥∥∥∥
2
]

.

Hence, we can deduce that

E

[ ∞∑

k=1

n∑

i=1

pi

∥∥∥∥T
σ k
i ,τ k+1

i (xk, yk−1) − (xk, yk−1
i )

∥∥∥∥
2
]

< ∞.

It follows that the series in the expectation is a.s. finite, and
since pi > 0 we deduce that almost surely,

∥∥∥∥T
σ k
i ,τ k+1

i (xk, yk−1) − (xk, yk−1
i )

∥∥∥∥
k→∞−→ 0 (2.13)

for all i = 1, . . . n. We consider a sample (xk, yk) which
is bounded and such that (2.13) holds. We let for each i ,

(x̂ i,k+1, ŷi,ki ) = T
σ k
i ,τ k+1

i (xk, yk−1), so that ‖(x̂ i,k+1, ŷi,ki )−
(xk, yk−1

i )‖ → 0 for i = 1, . . . , n. Then, one has

∂ f ∗
i (ŷi,ki ) � yk−1

i − ŷi,ki

σ k
i

+ Ai x
k =: Ai x

k + δi,ky

∂g(x̂ i,k+1) � xk − x̂ i,k+1

τ k+1 − A∗yk−1

− 1 + pi
pi

A∗
i (ŷ

i,k
i − yk−1

i )

=: −A∗yk−1 + δi,kx

where δ
i,k
x,y → 0 as k → ∞. Given a test point (x, y), one

may write for any k:

f ∗
i (yi ) ≥ f ∗

i (ŷi,ki ) + 〈Ai x
k , yi − yk−1

i 〉 + 〈Ai x
k , yk−1

i − ŷi,ki 〉
+ 〈δi,ky , yi − ŷi,ki 〉, i = 1, . . . , n

g(x) ≥ g(x̂1,k+1) − 〈A∗yk−1, x − xk〉
− 〈A∗yk−1, xk − x̂1,k+1〉 + 〈δi,kx , x − x̂1,k+1〉

and summing all these inequalities, we obtain:

g(x) +
n∑

i=1

f ∗
i (yi ) ≥ g(x̂1,k+1) +

n∑

i=1

(
f ∗
i (ŷi,ki ) + 〈Ai x

k , yi 〉
)

−〈A∗yk−1, x〉 + δk

where δk → 0 as k → ∞. We deduce that if (x̄, ȳ) is
the weak limit of a subsequence (xkl , ykl−1) (as well as, of
course, (xkl , ykl )), then:

g(x) +
n∑

i=1

f ∗
i (yi ) ≥ g(x̄)

+
n∑

i=1

(
f ∗
i (ȳi ) + 〈Ai x̄, yi 〉

)− 〈A∗ ȳ, x〉.

Since (x, y) is arbitrary, we find that (2.2) holds for (x̄, ȳ).
��

2.6 Proof of Theorem 2.1

Under the assumptions of Theorem 2.1, the set C of saddle
points is closed and non-empty and X × Y is a separable
Hilbert space. By Lemma 2.3, the variable metrics sequence
(Nk)k∈N defined in (2.8) satisfies condition (i) of Theorem
2.5. Furthermore, the iterates of Algorithm 2.1 comply with
condition (ii) and (iii) of Theorem 2.5 by Lemma 2.8 and
Lemma 2.9, respectively, and hence converge almost surely
to a point in C.

3 Algorithmic Design and Practical
Implementations

In this section, we present practical instances of our A-
SPDHG algorithm, where we specify a step-size adjustment
rule which satisfies our assumptions in convergence proof.
We extend the adaptive step-size balancing rule for determin-
istic PDHG, which is proposed by [14], into our stochastic
setting, with minibatch approximation to minimize the com-
putational overhead.

3.1 A-SPDHG Rule (a)—Tracking and Balancing the
Primal–Dual Progress

Let’s first briefly introduce the foundation of our first numer-
ical scheme, which is built upon the deterministic adaptive
PDHG algorithm proposed by Goldstein et al [14], with the
iterates:

xk+1 = proxτ k+1g(x
k − τ k+1A∗yk), yk+1

= proxσ k+1 f ∗(yk + σ k+1A(2xk+1 − xk))
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In this foundational work of Goldstein et al [14], they pro-
posed to evaluate two sequences in order to track and balance
the progresses of the primal and dual iterates of deterministic
PDHG (denoted here as v∗

k and d∗
k ):

v∗
k := ‖(xk − xk+1)/τ k+1 − A∗(yk − yk+1)‖1, d∗

k

:= ‖(yk − yk+1)/σ k+1 − A(xk − xk+1)‖1. (3.1)

These two sequences measure the lengths of the primal and
dual subgradients for the objective minx∈X maxy∈Y g(x) +
〈Ax, y〉− f ∗(y), which can be demonstrated by the definition
of proximal operators. The primal update of deterministic
PDHG can be written as:

xk+1 = argmin
x

1

2
‖x − (xk − τ k+1A∗yk)‖22 + τ k+1g(x).

(3.2)

The optimality condition of the above objective declares:

0 ∈ ∂g(xk+1) + A∗yk + 1

τ k+1 (xk+1 − xk). (3.3)

By adding−A∗yk+1 on both sides and rearranging the terms,
one can derive:

(xk − xk+1)/τ k+1−A∗(yk − yk+1) ∈ ∂g(xk+1)+A∗yk+1

(3.4)

and similarly for the dual update one can also derive:

(yk−yk+1)/σ k+1−A(xk−xk+1) ∈ ∂ f ∗(yk+1)−Axk+1,

(3.5)

Algorithm 3.1: A-SPDHG, rule (a)
Input: dual step-size σ 0, primal step-size τ 0, α0∈(0, 1), η∈(0, 1),
δ>1, probabilities (pi )1≤i≤n ; primal variable x0, dual variable y0

Initialize ȳ0 = y0, v0 = d0 = 0, s = ‖A‖
for k ∈ �0, K − 1� do
If vk > sdkδ then τ k+1 = τ k

1−αk , σ
k+1 = σ k(1 − αk),

αk+1 = αkη

If vk < sdk/δ then τ k+1 = τ k(1 − αk), σ k+1 = σ k

1−αk ,

αk+1 = αkη

If sdk/δ≤vk ≤sdkδ then τ k+1 = τ k , σ k+1 = σ k , αk+1 = αk

xk+1 = proxτ k+1g(x
k − τ k+1A∗ ȳk)

Randomly pick i ∈ �1, n� with probability pi

yk+1
j =

{
proxσ k+1 f ∗

i
(yki + σ k+1Ai xk+1) if j = i

ykj if j 	= i

ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j 	= i

vk+1 = ‖(xk − xk+1)/τ k+1 − 1
pi
A∗
i (y

k
i − yk+1

i )‖1
dk+1 = 1

pi
‖(yki − yk+1

i )/σ k+1 − Ai (xk − xk+1)‖1 – or
approximate this step by (3.7)

end for
return xK

which indicates that the sequences v∗
k and d∗

k given by (3.1)
should effectively track the primal progress and dual progress
of deterministic PDHG, and hence, Goldstein et al [14] pro-
pose to utilize these as the basis of balancing the primal and
dual step sizes for PDHG.

In light of this, we propose our first practical implemen-
tation of A-SPDHG in Algorithm 3.1 as our rule-(a), where
we use a unique dual step-size σ k = σ k

j for all iterates k
and indices j and where we estimate the progress of achiev-
ing optimality on the primal and dual variables via the two
sequences vk and dk defined at each iteration k with I k = i
as:

vk+1 := ‖(xk − xk+1)/τ k+1 − 1

pi
A∗
i (y

k
i − yk+1

i )‖1, dk+1

:= 1

pi
‖(yki − yk+1

i )/σ k+1 − Ai (x
k − xk+1)‖1, (3.6)

which are minibatch extension of (3.1) tailored for our
stochastic setting. By making them balanced on the fly via
adjusting the primal–dual step-size ratio when appropriate,
we can enforce the algorithm to achieve similar progress
in both primal and dual steps and hence improve the con-
vergence. To be more specific, as shown in Algorithm 3.1,
in each iteration the values of vk and dk are evaluated and
compared. If the value of vk (which tracks the primal sub-
gradients) is significantly larger than dk (which tracks the
dual subgradients), then we know that the primal progress is
slower than the dual progress, and hence, the algorithmwould
boost the primal step size while shrinking the dual step size.
If vk is noticeably smaller than dk , then the algorithm would
do the opposite.

Note that herewe adopt the choice of �1-normas the length
measure for vk and dk as done by Goldstein et al [14, 15],
since we also observe numerically the benefit over the more
intuitive choice of �2-norm.

For full-batch case (n = 1), it reduces to the adaptive
PDHG proposed by [14, 15]. We adjust the ratio between
primal and dual step sizes according to the ratio between
vk and dk , and whenever the step-size change, we shrink α

(which controls the amplitude of the changes) by a factor η ∈
(0, 1)—we typically choose η = 0.995 in our experiments.
For the choice of s, we choose s = ‖A‖ as our default.1

3.1.1 Reducing the Overhead with Subsampling

Noting that unlike the deterministic case which does not
have the need of extra matrix–vector multiplication since
A∗yk and Axk can be memorized, our stochastic extension

1 The choice of s is crucial for the convergence behavior of rule (a), and
we found numerically that it is better to scale with the operator norm
‖A‖ instead of depending on the range of pixel values as suggested in
[15].
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will require the computation of Ai xk since we will sam-
ple different subsets between back-to-back iterations with
high probability. When using this strategy, we will only
have a maximum 50% overhead in terms of FLOP counts,
which is numerically negligible compared to the significant
acceleration it will bring toward SPDHG especially when
the primal–dual step-size ratio is suboptimal, as we will
demonstrate later in the experiments. Moreover, we found
numerically that we can significantly reduce this overhead
by approximation tricks such as subsampling:

dk+1 ≈ ρ

pi
‖Sk(yki − yk+1

i )/σ k+1 − Sk Ai (x
k − xk+1)‖1

(3.7)

with Sk being a random subsampling operator such that
E[(Sk)T Sk] = 1

ρ
Id. In our experiments, we choose 10%

subsampling for this approximation and hence the overhead
is reduced from 50% to only 5%which is negligible, without
compromising the convergence rates in practice.

3.2 A-SPDHG Rule (b)—Exploiting Angle Alignments

More recently, Yokota and Hontani [26] propose a variant of
adaptive step-size balancing scheme for PDHG, utilizing the
angles between the subgradients ∂g(xk+1)+ A∗yk+1 and the
difference of the updates xk − xk+1.

If these two directions are highly aligned, then the primal
step size can be increased for bigger step. If these two direc-
tions have a large angle, then the primal step size should be
shrunken. By extending this scheme to stochastic setting, we
obtain another choice of adaptive scheme for SPDHG.

Algorithm 3.2: A-SPDHG, rule (b)
Input: dual step-size σ 0, primal step-size τ 0, η ∈ (0, 1),
probabilities (pi )1≤i≤n ; primal variable x0, dual variable y0

Initialize ȳ0 = y0, w0 = 0, α0 = 1
for k ∈ �0, K − 1� do
If wk <0 then τ k+1= τ k

1+αk , σ
k+1=σ k(1 + αk), αk+1 = αkη

If wk ≥c then τ k+1=τ k(1 + αk), σ k+1 = σ k

1+αk , α
k+1 = αkη

If 0 ≤ wk < c then τ k+1 = τ k , σ k+1 = σ k , αk+1 = αk

xk+1 = proxτ k+1g(x
k − τ k+1A∗ ȳk)

Randomly pick i ∈ �1, n� with probability pi

yk+1
j =

{
proxσ k+1 f ∗

i
(yki + σ k+1Ai xk+1) if j = i

ykj if j 	= i

ȳk+1
j =

{
yk+1
i + 1

pi

(
yk+1
i − yki

)
if j = i

ykj if j 	= i

qk+1 = (xk − xk+1)/τ k+1 − 1
pi
A∗
i (y

k
i − yk+1

i )

wk+1 = 〈xk − xk+1, qk+1〉/(‖xk − xk+1‖2‖qk+1‖2)
end for
return xK

We present this scheme in Algorithm 3.2 as our rule (b).
At iteration k with I k = i , compute:

qk+1 = (xk − xk+1)/τ k+1 − 1

pi
A∗
i (y

k
i − yk+1

i ), (3.8)

as an estimate of ∂g(xk+1)+A∗yk+1, thenmeasure the cosine
of the angle between this and xk − xk+1:

wk+1 = 〈xk − xk+1, qk+1〉
(‖xk − xk+1‖2‖qk+1‖2) . (3.9)

The threshold c for the cosine value (which triggers the
increase of the primal step size) typically needs to be very
close to 1 (we use c = 0.999) due to the fact that we mostly
apply these type of algorithms in high-dimensional problems,
following the choice in [26] which was for deterministic
PDHG.

Recently, Zdun et al [27] proposed a heuristic similar to
our rule (b), but they choose qk+1 to be the approximation
for an element of ∂g(xk+1) instead of ∂g(xk+1) + A∗yk+1.
Our choice follows more closely to the original scheme of
Yokota and Hontani [26]. We numerically found that their
scheme is not competitive in our settings.

4 Numerical Experiments

In this section, we present numerical studies of the proposed
scheme in solving one of the most typical imaging inverse
problems, the computed tomography (CT). We compare A-
SPDHG algorithm with the original SPDHG, on different
choices of starting ratio of the primal and dual step sizes.

In our CT imaging example, we seek to reconstruct the
tomography images from fanbeam X-ray measurement data,
by solving the following TV-regularized objective:

x� ∈ arg min
x∈Rd

1

2
‖Ax − b‖22 + λ‖Dx‖1 (4.1)

where D denotes the 2D differential operator, A ∈ R
m×d and

x ∈ R
d . We consider three fanbeam CT imaging modalities:

sparse-view CT, low-dose CT and limited-angle CT. We test
the A-SPDHG and SPDHG on two images of different sizes
(Example 1 on a phantom image sized 1024 × 1024, while
Example 2 being an image from the Mayo Clinic Dataset
[21] sized 512 × 512.), on 4 different starting ratios (10−3,
10−5, 10−7 and 10−9). We interleave partitioned the mea-
surement data and operator into n = 10 minibatches for both
algorithms. To be more specific, we first collect all the X-ray
measurement data and list them consecutively from 0 degree
to 360 degree to form the full A and b, and then interleavingly
group every 10-th of the measurements into one minibatch,
to form the partition {Ai }10i=1 and {bi }10i=1.
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Fig. 1 Comparison between SPDHG and A-SPDHG on sparse-view
CT (Example 1), with a variety of starting primal–dual step size ratios.
Here, the forward operator is A ∈ R

m×d with dimensionsm = 368640,
d = 1048576. We include the images reconstructed by the algorithms

at termination (50th epoch). In the first plot of each subfigure, the black
circle indicates the starting step-size ratio for all the algorithms, same
for the following figures

For A-SPDHG, we choose to use the approximation step
for dk presented in (3.7) with 10% subsampling and hence
the computational overhead is negligible in this experiment.
We initialize all algorithms from a zero image.

We present our numerical results in Figs. 1, 2, 3 and 6. In
these plots, we compare the convergence rates of the algo-
rithms in terms of number of iterations (the execution time
per iteration for the algorithms are almost the same, as the

overhead of A-SPDHG is trivial numerically). Among these,
Figs. 1 and 2 report the results for large-scale sparse-viewCT
experiments on a phantom image and a lung CT image from
Mayo Clinic dataset [21], while Fig. 3 reports the results for
low-dose CT experiments where we simulate a large number
ofmeasurements corruptedwith a significant amount Poisson
noise, and then, in Fig. 6 we report the results for limited-
angle CT which only a range of 0-degree to 150-degree of
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Fig. 2 Comparison between SPDHG and A-SPDHG on sparse-view CT (Example 2), with a variety of starting primal–dual step-size ratios. Here,
the forward operator is A ∈ R

m×d with dimensionsm = 92160, d = 262144. We include the images reconstructed by the algorithms at termination
(50th epoch)

measurement angles are present, while the measurements
from the rest [150, 360] degrees of angles are all missing. In
all these examples,we can consistently observe that nomatter
how we initialize the primal–dual step-size ratio, A-SPDHG
can automatically and consistently adjust the step-size ratio
to the optimal choice which is around either 10−5 or 10−7

for these four different CT problems and significantly out-
perform the vanilla SPDHG for the cases where the starting
ratio is away from the optimal range. Meanwhile, even for
the cases where the starting ratio of SPDHG algorithm is

near-optimal, we can observe consistently frommost of these
examples that our scheme outperforms the vanilla SPDHG
algorithm locally after a certain number of iterations (high-
lighted by the vertical dash lines in relevant subfigures),
which further indicates the benefit of adaptivity for this class
of algorithms2. Note that throughout all these different exam-

2 The most typical example here would be Fig. 1b where the optimal
step-size ratio selected by the adaptive scheme at convergence is almost
exactly 10−5, where we have set SPDHG to run with this ratio. We
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Fig. 3 Comparison between SPDHG and A-SPDHG on low-dose CT
(where we use a large number of highly-noisy X-ray measurements),
with a variety of starting primal–dual step-size ratios. Here, the for-

ward operator is A ∈ R
m×d with dimensionsm = 184320, d = 65536.

We resized the phantom image to 256 by 256. We include the images
reconstructed by the algorithms at termination (50th epoch)

ples, we use only one fixed set of parameters for A-SPDHG
suggested in the previous section, which again indicates the
strong practicality of our scheme.

For the low-dose CT example, we run two extra sets
of experiments, regarding a larger number of partitioning
of minibatches (40) in Fig. 4, and warm-start from a bet-
ter initialization image obtained via filter backprojection in

can still observe benefit of local convergence acceleration given by our
adaptive scheme.

Fig. 5. We found that in all these extra examples we con-
sistently observe superior performances of A-SPDHG over
the vanilla SPDHG especially when the primal–dual step-
size ratios are suboptimal. Interestingly, we found that the
warm-start’s effect does not have noticeable impact of the
comparative performances between SPDHG andA-SPDHG.
This is mainly due to the fact that the SPDHG with subopti-
mal primal–dual step-size ratio will converge very slowly in
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Fig. 4 Comparison between SPDHG and A-SPDHGwith the data being split to 40 minibatches on low-dose CT. Comparing to the results presented
in Fig. 3 which used 10 minibatches, we obtain similar results and our A-SPDHG continues to perform more favorably comparing to SPDHG.

high accuracy regimes (see Fig. 5d for example) in practice
hence the warm-start won’t help much here.

We should also note that conceptually all the hyperparam-
eters in our adaptive schemes are basically the controllers of
the adaptivity of the algorithm (while for extreme choices
we recover the vanilla SPDHG). In Figs. 7 and 9, we present
some numerical studies on the choices of hyperparameters
of rule (a) and rule (b) of A-SPDHG algorithm. We choose
the fixed starting ratio of 10−7 for primal–dual step sizes in
these experiments. For rule (a), we found that it is robust to
the choice of the starting shrinking rate α0, shrinking speed η

and the gap δ. Overall, we found that these parameters have
weak impact of the convergence performance of our rule (a)
and easy to choose.

For rule (b), we found that the performance is more sensi-
tive to the choice of parameter c and η comparing to rule (a),
although the dependence is still weak. Our numerical stud-
ies suggest that rule (a) is a better-performing choice than
rule (b), but each of them have certain mild weaknesses (the
first rule has a slight computational overhead which can be
partially addressed with subsampling scheme, while the sec-
ond rule seems often being slower than the first rule), which
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Fig. 5 Comparison between SPDHG and A-SPDHG with warm-start
using a FBP (filtered backprojection) on low-dose CT. Comparing to
the results shown in Fig. 3 which are without warm-start, actually our
methods seem to compare even more favorably with warm-start. Please

also note that the early jump in terms of function value is within our
expectation due to the stochasticity of the algorithms. We include the
images reconstructed by the algorithms at termination (50th epoch)

require further studies and improvements. Nevertheless, we
need to emphasis that all these parameters are essentially con-
trolling the degree of adaptivity of the algorithms and fairly
easy to choose, noting that for all these CT experiments with
varying sizes/dimensions and modalities we only use one
fixed set of the hyperparameters in A-SPDHG, and we are
already able to consistently observe numerical improvements
over vanilla SPDHG.

5 Conclusion

In this work, we propose a new framework (A-SPDHG) for
adaptive step-size balancing in stochastic primal–dual hybrid
gradientmethods.We first derive theoretically sufficient con-
ditions on the adaptive primal and dual step sizes for ensuring
convergence in the stochastic setting. We then propose a
number of practical schemes which satisfy the condition for
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Fig. 6 Comparison between SPDHG and A-SPDHG on limited-angle CT (Example 2), with a variety of starting primal–dual step-size ratios. Here,
the forward operator is A ∈ R

m×d with dimensionsm = 92160, d = 262144. We include the images reconstructed by the algorithms at termination
(50th epoch)

convergence, and our numerical results on imaging inverse
problems support the effectiveness of the proposed approach.

To our knowledge, this work constitutes the first theoreti-
cal analysis of adaptive step sizes for a stochastic primal–dual
algorithm. Our ongoing work includes the theoretical anal-
ysis and algorithmic design of further accelerated stochastic
primal–dual methods with line-search schemes for even
faster convergence rates.

6 Complementary Material for Sect. 2

We begin by a useful lemma.

Lemma 6.1 Let a, b be positive scalars, β ∈ (0, 1), and P a
bounded linear operator from a Hilbert space X to a Hilbert
space Y . Then,

(ab)−1/2‖P‖ ≤ 1 ⇔
(
a Id P∗
P b Id

)
� 0. (6.1)
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Fig. 7 Test on different choices of parameters of A-SPDHG (rule-a) on X-ray low-dose fanbeam CT example, starting ratio of primal–dual step
sizes: 10−7. We can observe that the performance of A-SPDHG has only minor dependence on these parameter choices
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Fig. 8 Test on the default choice s = ‖A‖ of A-SPDHG (rule-a) on X-
ray low-dose fanbeamCT example. Left figure: starting ratio of primal–
dual step sizes: 10−7. Right figure: starting ratio of primal–dual step
sizes: 10−5. We can observe that our default choice of s is indeed a
reasonable choice (at least near-optimal) in practice, andwhen deviating
from it may lead to slower convergence
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Fig. 9 Test on different choices of parameters of A-SPDHG (rule-b)
on X-ray low-dose fanbeam CT example, starting ratio of primal–dual
step sizes: 10−7

(ab)−1/2‖P‖ ≤ β ⇔
(
a Id P∗
P b Id

)
� (1 − β)

(
a Id 0
0 b Id

)
.

(6.2)

Proof Let us call

M =
(
a Id P∗
P b Id

)
.

For all (x, y) ∈ X × Y ,

‖(x, y)‖2M ≥ a‖x‖2 + b‖y‖2 − 2‖P‖‖x‖‖y‖
= ‖x‖2a + ‖y‖2b − 2(ab)−1/2‖P‖‖x‖a‖y‖b,

which proves the direct implication of (6.1). For the converse
implication, consider x ∈ X\ {0} such that ‖Px‖ = ‖P‖‖x‖
and y = −λPx for a scalar λ. Then, the nonnegativity of the
polynomial

‖(x, y)‖2M
‖x‖2 = b‖P‖2λ2 − 2‖P‖2λ + a

for all λ ∈ R implies that ‖P‖4 − ab‖P‖2 ≤ 0, which is
equivalent to the desired conclusion (ab)−1/2‖P‖ ≤ 1.
Equivalence (6.2) is straightforward by noticing that

(
a Id P∗
P b Id

)
� (1 − β)

(
a Id 0
0 b Id

)
⇔

(
βa Id P∗
P βb Id

)
� 0.

��
Let us now turn to the proof of Lemma 2.2.

Proof of Lemma 2.2 Let us assume that the step sizes sat-
isfy the assumptions of the lemma. Then, Assumption (i)
of Theorem 2.1 is straightforwardly satisfied. Moreover, for
i ∈ �1, n�, the product sequence (τ kσ k

i )k∈N is constant along
the iterations by equation (2.6) and satisfies equation (2.5)
for iterate k = 0 and thus satisfies (2.5) for all k ∈ N for
β = maxi

{
τ 0σ 0

i ‖Ai‖2/pi
}
, which proves Assumption (ii).

Finally, equation (2.7) implies that Assumption (iii) is satis-
fied. ��
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