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Abstract With relatively short latency and rapid propa-
gation, viral diseases could be transmitted through the air
to medical personnel or the public during the incubation
period. To reduce the possibilities of spread, this research
creates an infection probability model based on the settling
velocity and concentration distribution of infectious droplets.
Then, radio frequency identification (RFID) technology is
employed to track the travel history (time, date and place)
of the infected patients. A tree structure algorithm and an
infection probability model are applied to trace the transmis-
sion routes, discover the correlations between carriers and
suspected cases, and finally calculate the infection proba-
bility on the basis of time interval. In case of an epidemic
outbreak or once an infected case is confirmed, the disease
tracking and control system could be initiated by accessing
RFID logs to plot the carriers’ time of onset and to trace
possible routes of transmission via tree diagrams. The dis-
ease tracking and control system developed in this research
can assist hospitals in assessing the risk of infection among
medical personnel, as well as in prompt implementation of
infection prevention and control measures, in order to reduce
hospital acquired infections and provide a safe health care
setting.
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Introduction

Due to a massive outbreak of severe acute respiratory syn-
drome (SARS) in Asia, the World Health Organization
(WHO) announced in April 2003 that SARS was caused by
a new variant of coronavirus, officially named the “SARS-
Cov” (Peris-Lopez et al. 2011). After the SARS epidemic,
human cases of a new influenza A (H1N1) were initially
reported in Mexico in 2009. Infection with influenza A
(H1N1) virus is defined as acute febrile respiratory ill-
ness with laboratory-confirmed positive results (Viviani et
al. 2011). Since the 2009 outbreak of the flu influenza in
North America, suspected H1N1 cases have continually been
reported in other continents. Though the H1N1 epidemic
may not lead to worse consequences than SARS (Lau et
al. 2009), in view of the fact that infectious diseases spread
rapidly in densely polluted areas, proper quarantine and
other preventive measures should be taken immediately to
curb the spread of the influenza virus. To detect potential
routes of disease transmission, the hospital can use radio fre-
quency identification (RFID) technology to develop a track-
ing and control system that monitors the infected patients.
Based on the dynamic records of patients and medical per-
sonnel inside the hospital, data analysis (Chien et al. 2007;
Hsu and Chien 2007) and a tree structure algorithm can be
applied to reconstruct the transmission routes, and then cal-
culate the infection probability by modes of transmission.
The disease control personnel can notify the hospital’s dis-
ease reporting system to have the identification data of the
suspected case entered into the tracking and control system.
Then the control personnel can determine probability vari-
ables based on the spread of infection, while accessing the
RFID data stored in the tracking and control system to know
people’s whereabouts and movements. The infection proba-
bility of all people going in and out the hospital could thus be
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calculated in no time to find out who might have been infected
and proceed with proper treatment. After identifying expo-
sure sources and suspected cases, infection control personnel
will be able to enforce isolation or quarantine and sanitize
all affected areas in hope to stop the virus infection from
spreading.

Literature review

Tree diagram

Minimum Spanning Tree algorithms, widely applied in com-
plex network design, have also been adopted to minimize risk
in solving NP-hard problems (Chen et al. 2009). Integrat-
ing tree diagrams with network nodes, a composite neigh-
borhood structure was proposed, using a dynamic program-
ming algorithm for fast and efficient proximity search on
large graphs (Ahuja et al. 2003). Besides, spanning tree and
genetic algorithms were combined to optimize the system
and tackle regional network problems (Gen et al. 2005).
Capacitated Minimum Spanning Tree and fuzzy logic rules
were also applied to develop a rapid approximate inference
algorithm that, with uncertain cost and demand parameters,
keeps each node from exceeding gross demand restrictions in
order to achieve cost minimization (Öncan 2007). Decision
tree algorithms likewise search in the format of a branch-
ing diagram that supports classification, linear regression
and association analysis. An optimal decision tree repre-
sents an effective search strategy that performs only a min-
imum number of node queries and thus involves the least
search time. Dynamic programming is often adopted to help
reduce the time complexity of the algorithm (Cicalese et
al. 2011). In supervised classification training, for instance,
decision graphs have been found to significantly enhance the
efficiency of classification models constructed for wireless
network planning (Nielsen et al. 2009). In clinical and epi-
demiological analysis, tree diagrams have also been used
to formulate classification rules that help clinical practi-
tioners to distinguish between clusters of signs and symp-
toms and quickly reach a diagnosis (Marshall 2001). The
literature review above shows that tree diagrams have been
widely applied in research on search path optimization and
data classification, and can clearly demonstrate association
rules and hierarchical structures of data. Therefore, this
research adopted a tree diagram algorithm to find connections
between virus carriers and the infected patients inside the
hospital.

RFID applications

Radio frequency identification (RFID) technology, which
uses radio waves to identify and track people or objects

(Najera et al. 2011), can be encapsulated or implanted into
products to withstand harsh environments. With penetrat-
ing signals, RFID can detect position and distance. Scholars
(Akpınar and Kaptan 2010) found that RFID tags can serve as
portable databases that allow easy and quick access to infor-
mation. RFID technology is the best choice for automation
systems. Already ranked among the most important technolo-
gies in the global industries of the future, RFID finds a wide
range of applications in diverse industries, such as the high-
tech industry, localization (Zhou and Shi 2009), information
service industry (Tian et al. 2002), manufacturing sectors
(Zhang et al. 2012; Qu et al. 2012), retail sectors, healthcare
and logistics. Most RFID applications are involved in stor-
age management and the manufacturing process (Tzeng et
al. 2008; Brewer et al. 1999; Huang et al. 2008).

With the increasing emphasis on patient security and med-
ical quality in healthcare, RFID technology has also been
broadly implemented in healthcare facilities, such as medical
equipment monitoring or real-time locating systems, anti-
theft devices, identity tags for patients and medical person-
nel, drug anti-counterfeiting mechanisms (Wertheimer and
Norris 2009). Most of these RFID applications are used
for tracking and identity recognition to ensure that patients
receive needed medical care and to support disease control
(Kumar et al. 2009). Meanwhile, through visual images and
RFID tags attached to predefined objects, healthcare person-
nel could also deliver home care services to dementia patients
and have a better understanding of the patients’ behavior
(Wherton and Monk 2008). Besides, RFID could help to
deal with events involving great complexity, such as mon-
itoring and tracking patients’ body temperatures, so much so
that, in case of emergency, medical personnel could make
professional judgement decisions immediately based on col-
lected data (Yao et al. 2011). RFID can also be applied to
medical inventory management. Without incurring any extra
costs, RFID technology is capable of providing continuous
review of inventory, which has been proven superior to the
periodic review of barcode technology (Çakıcı et al. 2011).
In medication management, RFID has been used to enhance
inpatient medication safety through a wireless network sys-
tem for automated tracking of prescription drugs (Ohashi et
al. 2010). With continuous, real-time information regarding
the clinical situations and patients’ location, hospital phar-
macy personnel could differentiate batch number, dosage,
and usage of drugs to reduce dispensing errors, while nurses
could correctly identify patients, administer medication on
time, and keep track of drug delivery routes (Peris-Lopez et
al. 2011).

Disease transmission routes

Infectious disease transmission may occur either by direct
or indirect contact. Direct transmission results from having
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physical contact with an infected individual, such as that
person’s mouth, nose, and skin, or infectious droplets of
saliva and mucus from coughs and sneezes. Coughing and
sneezing are symptoms of respiratory infection, such as the
SARS and influenza A (H1N1). Both SARS and influenza
A (H1N1) are caused by newly discovered respiratory tract
viruses. The SARS virus, according to WHO’s announce-
ment in April 2003, is a novel coronavirus SARS-Cov, which
is a single-stranded RNA virus (Lau and Peiris 2005; Feng
and Gao 2007). The pathogen of influenza A (H1N1) is swine
influenza virus (SIV). SIV, classified into the Orthomyxoviri-
dae family, is a negative strand RNA virus (Leahy et al. 1997).
These pandemic-prone diseases, mainly spread by infectious
droplets or droplet nuclei, can be contracted by inhaling
small-particle aerosols (Tang et al. 2006; Buchbinder et al.
2011).

In general, droplets sprayed during talking, coughing, or
sneezing will remain suspended in the air for a brief time only
(Chao et al. 2009). These airborne droplets come in different
sizes. Whereas small droplets evaporate and disperse in the
air quickly, large droplets are subject to influences of such
external factors as the size of a space, wind speed, airflow,
temperature and humidity change. As large droplets evapo-
rate and gravitationally settle, they would attach to different
surfaces and materials (Redrow et al. 2011). Aerosols refer
to small solid and liquid particles suspended in the air. For
spherical particles of unit density, falling from a place 3 m
above the ground, the settling time is 10 s for particles with
a diameter of 100 µm; 4 min for 20 µm; 17 min for 10 µm;
62 min for 5 µm; while those with a diameter less than 3 µm
do not settle (Tellier 2006). Current research on RFID appli-
cations in the medical field rarely explores the potential for
RFID in conjunction with infection probability. Therefore,
based on the information collected with RFID tags, this study
analyzed the sequence of movements performed by carries
and suspected cases, calculated infection probabilities, and
used tree diagram principles to reconstruct disease transmis-
sion routes. The results would provide healthcare personnel

with information that helps them to quickly locate suspected
cases and implement effective isolation measures.

Methods

RFID motion detection

The disease tracking and control system consists of three
RFID detection devices: tags, readers and antennas, as shown
in Fig. 1, all of which serve to assist with infection control.
Their functions are briefly described below:

Active tags

Worn by patients and healthcare workers, the tag comes with
a built-in battery that allows the tag to automatically send
signals to an RFID reader within communication range. The
advantage of deploying active RFID tags is that they could
track mobile users and objects in real-time.

RFID readers

An RFID reader is set up on each floor in the hospital to
receive tag signals. With 433 MHz operating frequency, the
reader has a read range of up to 100 m. After receiving RFID
tag signals, the reader sends the signals to the RFID controller
in a wired or wireless mode, where the information will be
stored in the system database.

Antennas

An RFID antenna is installed at the entrances and exits of
each floor in the hospital, such as entrances to stairs and
elevators. With 123 KHz operating frequency and a read-
ing distance up to 3.5 m, the antenna could enable/disable
the RFID tags within communication range, or update the

Active Tag Reader Antenna

Fig. 1 Equipments of RFID
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data in the tags. When a healthcare worker passes by an
antenna, it will enter a specific message into his/her RFID
tag, such as the entrance/exit code. Then message in the
RFID tag will be picked up by the reader on each floor,
and then transmitted to the system database, as shown in
Fig. 2. Because RFID antennas allow the tracking and alert
system to verify the history of locations any RFID tag
has visited, it is easy to trace the path travelled by the
infected.

Infection probability model

The U.S. Centers for Disease Control (CDC) declared that
the H1N1 virus is primarily transmitted through infectious
droplets that pass among people in close contact. H1N1
could spread rapidly in crowds or practically anywhere
infected people traveled. This study therefore focuses on
droplet transmission—the predominant route of transmission
of infectious respiratory diseases like H1N1. RFID access
control technology is adopted to track the spread of commu-
nicable diseases in the hospital. The tracking data collected
by RFID devices are in turn analyzed using tree diagrams
to search possible routes of transmission. Eventually, infec-

tion probabilities are calculated according to the infection
probability model.

Infection probability hypotheses

In general, droplet particles released during talking, cough-
ing, and sneezing would briefly stay suspended in the air,
resulting in higher indoor airborne pathogen concentration.
If droplets carrying biologically active viruses are inhaled,
virus particles might enter host cells and cause infection. This
phenomenon is called droplet infection. This study puts for-
ward three hypotheses on the probability of droplet infection:

Hypothesis 1 When the time t = 0 min, the pathogen con-
centration in droplets sneezed by carriers is the highest, so
the infection probability is 1.

Hypothesis 2 Droplet concentration is closely connected
with disease infection probability (Lin et al. 2012). For
instance, because the immune system is impaired in SARS
patients, it provides an excellent venue for SARS virus repli-
cation. Therefore, virus concentration in their sputum and
spray droplets is higher, and the virus lives longer, and is

Fig. 2 RFID motion detection
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extremely contagious (Peng 2012). Based on the above stud-
ies, we assume that infection probability is directly propor-
tional to droplet concentration.

Hypothesis 3 Droplet size is one of the major factors affect-
ing disease transmission (Chao et al. 2009). Droplets emitted
from the mouth and nose range from 1 to 2,000µm in diame-
ter, 95 % of which fall within the 2–100µm range, and most
commonly 4–8µm (Duguid 1946). Studies show that, for
a 3 m fall, the settling time for spherical particles 5µm in
diameter is 62 min. Particles with a diameter less than 3µm
do not settle (Tellier 2006). Therefore, regardless of air con-
ditioning air flow and human activities, it can be assumed that
only 5 % particles with a diameter less than 3µm will remain
suspended in the air. Therefore, at the 62nd min, the infection
probability can be set at 0.05 according to Hypothesis 2.

Infection probability

Flu viruses are often transmitted by airborne droplets. The
longer droplets coughed or sneezed by infected individuals
stay in the air, the higher the virus concentration in the air,
and the greater the infection probability. The infection prob-
ability model developed in this study, therefore, builds and
expands on a recent research by Gao et al. (2009) on droplet
residence time. In the research, indoor particle concentra-
tion is shown to rise in a few seconds as a result of particle
dispersion in sudden expansion flows. As the concentration
changes with time and airflow fluctuation, particles in air will
gradually decline. The indoor air concentration calculation
model that expresses the relation between time and droplet
particle concentration is shown in formula (1) (Gao et al.
2009):

Ct = C0 exp[−(α + κ) · �t] (1)

where

C0 initial indoor particle concentration (g/m3)

α airflow fluctuation rate (h−1)

κ deposition-caused particle loss rate coefficient (h−1)

�t time interval (s)

Since α and κ are both constants, they can be expressed
by another constant symbol C1 here instead.

Let � = α + κ (2)

Then formula (1) can be rewritten as:

Ct = C0 exp − (��t) (3)

Based on Hypothesis 2 of infection probability, i.e. that
droplet particle concentration is proportional to infection, the
infection probability can be derived as follows:

P = λCt (4)

where λ = constant.
Integrate formula (3) into formula (4). Formula (3) can be

rewritten as:

P = λC0 exp − (��t) (5)

Since ν and C0 are both constants, they can be expressed by
another constant symbol ω instead. Therefore, νC0 can be
converted to ω.

Let ω = λC0

Then formula (1) can be rewritten as formula (6):

P = ω exp(−��t) (6)

According to Hypothesis 1 of infection probability, when
t = 0, the infection rate is 1:

1 = ω exp(−�0)

∴ ω = 1

According to Hypothesis 3 of infection probability, when
t = 62, the infection rate is 0.05:

0.05 = exp(−�62)

∴ � = 0.0483

Use the symbols ω and C1 in formula (6), the infection
probability between carrier (i) and affected individual ( j)
can be derived from formula (7) below:

Pi,j = exp(−0.0483 · �t) (7)

Route search algorithm

This study makes a distinction between direct and indirect
infection. However, as opposed to the standard focus on direct
and indirect contact with infected individuals, the sequence
of events at the same site, like the hospital, is underscored
here.

Direct infection is defined in this study as cases in which
viruses are spread through inhalation of infectious droplets
emitted by a carrier who is the initial or primary case in
a chain of infection. Indirect infection, on the other hand,
refers to secondary cases—i.e. people infected by the primary
case—passing on the viruses to other people (tertiary cases
and more). When a carrier is discovered, this study proposes
using the RFID database to investigate transmission routes,
so that all potentially infected personnel could be traced and
tracked for effective infection control.

According to World Health Statistics (WHO), the incuba-
tion period of most typical flu is usually 2 days, but ranges
from 1 to 4 days. Adults who have contracted Influenza A
(H1N1) may be contagious from 1 day before the onset to
3–7 days after the symptoms appear. Yet it all depends on how
the patient’s antibodies respond to the virus. The stronger
the patient’s immune system and the less the exposure to the
virus, the longer the incubation period is to be expected. On
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the contrary, the weaker the patient’s immune system and
the more the exposure to the virus, the shorter the incubation
period. Because the incubation period varies from person to
person, this study distinguishes between two tracking modes
of indirect infection: conservative and loose estimate.

Conservative estimates

The mode of conservative estimate is adopted to achieve tight
tracking and infection control. In this mode, when a person
comes into contact with an H1N1 virus carrier, the incubation
period of this person is estimated to last only 1 day, namely,
1 day before the onset. In Fig. 3, with A as an initial carrier,
both A and B pass by the same place on day 0. Then B’s
incubation period will be 1 day according to the conservative
estimate. B is considered infectious from 1 day before the
onset to 7 days following the onset. As shown in Fig. 3a, this
means that B can transmit the virus to others from day 0 to
day 8. Suppose C and B pass by the same place on day 2, C
is likely to be infected.

Loose estimates

According to the loose estimate, after coming into contact
with a H1N1 virus carrier, a person will have an incubation
period of 4 days, namely, 4 days before the onset of symp-
toms. In Fig. 3, with A as a carrier, A and B pass by the same
place on day 0. Based on the loose estimate, B’s incubation
period will last 4 days. B can transmit the virus to others from
1 day before the onset to 3 days following it. Hence in Fig. 3b,
he is shown to be infectious from day 3 to day 7. Suppose C
passes by the same location B visits on day 2, he will not be
infected.

Simulation

Direct infection

The incubation period varies from disease to disease and
depending on personal physique. This study uses the H1N1
virus as an example to illustrate the method of transmission
route search. The empirical research was conducted in a hos-
pital where 30 medical personnel and patients were asked to
wear active tags on them from 2011/9/10 to 2011/9/15. Eigh-
teen antennas were installed in the lobby and at the elevator
and stairway entrances on four floors in the hospital. Each
subject’s movements in the hospital were recorded by the
tracking and control database. This research simulates a sit-
uation in which a patient is tested positive for H1N1 infection.
When the simulated scenario occurs, the control personnel
will activate the tracking and control system right away, and
then, based on the RFID records, use the infection probabil-
ity model to infer potential risks of infection. A carrier of
the flu virus is potentially infectious from 1 day before the
onset of symptoms to 3–7 days following the onset. As shown
in Table 1, carrier C3’s onset occurs on 2011/9/11 and then
C3 passes by three RFID access control entry points: ID206,
ID110, ID202. Yet because an H1N1 virus carrier is con-
tagious 1 day before the onset, people who pass by ID107
on 2011/9/10 must be taken into consideration as well. In
the end, the infection probability can be derived from for-
mula (7) by entering the time interval of each person pass-
ing by. For example, in Table 1, C2’s infection probability
is P3,2 = exp(−0.0483 · 14.617) = 0.494. Diagnostic cri-
teria for infection can be adjusted by healthcare personnel
according to the epidemic situation. During the peak of the
influenza season, the parameter of infection risk must be low-
ered to enforce stricter disease controls. When it is not peak

Fig. 3 Estimates of the
incubation period
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Table 1 Direct infection
probability Infected person C3

passing time t1
RFID
codes

Passing
person

Passing time t2 Time interval �t
= t2 − t1 (min)

Infection
risk P3,i

Infection
probability

2011/9/10 17:18:11 ID107 C2 17:32:48 14.617 0.494 Y

C8 18:22:47 64.600 0.044 N

2011/9/11 08:10:21 ID206 C5 08:25:11 14.833 0.488 Y

C1 09:09:47 59.783 0.056 N

C4 09:13:50 63.483 0.047 N

2011/9/11 15:31:25 ID110 C6 15:57:30 26.083 0.284 Y

C12 16:06:24 34.983 0.185 N

C8 16:36:43 65.300 0.043 N

C7 16:42:17 70.867 0.033 N

2011/9/11 18:39:25 ID202 C6 18:46:28 7.050 0.711 Y

C10 19:12:17 32.867 0.204 Y

C1 20:15:32 96.117 0.010 N

season, the parameter of infection risk could be raised to
focus on high risk groups, eschewing the need to track a
great number of people. In the sample case, the infection risk
parameter is set at 0.2. In Table 1, those people with a risk
value equal to or greater than 0.2 are marked in boldface in
the column “Person Passing by” and with a “Y” in “Infec-
tion Possibility”. With these people identified as potential
carriers, further investigation could be conducted on patients
indirectly infected. However, if the risk value is less than 0.2,
the column of “Infection Possibility” will be marked with an
”N”, which means it signifies end of search.

According to the carrier tracking and control records in
Table 1, after the onset of disease on 2011/9/11, carrier
C3 passes by four access control entry points, respectively
ID107, ID206, ID110, ID202. The relationship between C3
and other people that pass by the same spots can be repre-
sented with a tree diagram, as shown in Fig. 4. The diagram
can clearly show the sequence of contacts between carriers
and other people to quickly find out the routes of transmis-
sion and suspected cases. The symbol “��” stands for each
access control entry point, “©” for uninfected people, “�
for suspected cases, “→” for the transmission routes, and
(Ti, Pi) above each “→” for the time interval (Ti) of con-
tact and infection probability (Pi) between a carrier and an
affected individual.

Indirect infection

Conservative estimate Figure 4 shows that at ID206 carrier
C3 comes into contact with C5, C1, C4. Among them C5’s
infection probability is greater than the standard value of
0.2. C5, therefore, is listed as a suspected case that requires
further transmission route search.

According to the conservative estimate, C5 might have
onset of symptoms on 2011/9/12. Therefore, by accessing

C1

(14, 0.488)

C4

(59, 0.056)

(63, 0.047)

C7

C8

(26, 0.284)

(70, 0.033)

(34, 0.185)

(65, 0.043)

C1 (96, 0.010)
(32, 0.204)

(7, 0.711)

C3ID110 ID206

ID202

C12

ID107

C8

(14, 0.494)

(64, 0.044)

C2

C6

C10

C6 C5

Fig. 4 Correlations of direct infection

all the RFID detection data related to C5’s activities from
2011/9/11 to 2011/9/19, the infection probability of his con-
tacts can be derived from formula (7), which, multiplied by
C5’s infection probability of 0.488, is the probability of indi-
rect infection. For example in Table 2, the probability of C13
being infected is P5,13 = P3,5 · exp(−0.0483 · 22.117) =
0.168. In order to clearly indicate the transmission routes,
the infection correlations between C5 and all his contacts are
represented in the tree diagram of Fig. 5.

Loose estimates According to the loose estimate, C5 might
have onset of symptoms on 2011/9/15. Therefore, by access-
ing all the RFID detection data related to C5’s activities from
2011/9/14 to 2011/9/18, the infection probability of his con-
tacts can be derived from formula (7), which, multiplied by
C5’s infection probability of 0.488, is the probability of indi-
rect infection. For example in Table 2, the probability of C17
being infected is P5,17 = P3,5 · exp(−0.0483 · 3.283) =
0.417. In order to clearly indicate the transmission routes,
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Table 2 Conservative estimates
of infection probability Infected person, C5,

Passing time t1 (min)
RFID
codes

Passing
person

Passing time
t2 (min)

Time interval
�t = t2 − t1

Infection
risk P5,i

Infection
probability

2011/9/11 06:06:07 ID107 C13 06:28:14 22.117 0.168 N

C21 06:45:26 39.317 0.073 N

C9 07:08:27 62.333 0.024 N

2011/9/12 08:10:30 ID206 C14 08:21:14 10.733 0.291 Y

C12 08:59:25 48.917 0.046 N

2011/9/12 16:46:11 ID113 C10 16:52:03 5.867 0.368 Y

C6 17:03:44 17.550 0.209 Y

C15 17:21:45 35.567 0.088 N

C1

C4

(59, 0.056)

(14, 0.488)

(63, 0.047)

C3 ID206

C12

(10, 0.291)

(48, 0.046)

ID202

(5, 0.368)

(17, 0.209)

ID113

9/11

ID1079/10

C8

(14, 0.509)

(64, 0.045)

C21(39, 0.073)

(22, 0.168)

ID110

C9(62, 0.024)

9/12

9/11

C15(35, 0.088)

C2

C14

C10

C6

C5

C13

Fig. 5 Conservative estimates of transmission routes

the infection correlations between C5 and all his contacts are
represented in the tree diagram of Fig. 6.

Disease tracking and control system

Based on the search method of transmission routes outlined
above, this study develops a disease tracking and control sys-
tem, as shown in Fig. 7. When an epidemic occurs, control
personnel could key in parameters in accordance with the
disease category, such as carrier, time/date of onset, incuba-
tion period, high risk period, risk of infection, etc. The high
risk period refers to the time during which an infected patient
has the ability to transmit the virus to others. For instance,
H1N1 carriers are contagious from 1 day before onset to

C1

C4

(59, 0.056)

(14, 0.488)

(63, 0.047)

C3 ID2069/11

ID1079/10

C8

(14, 0.494)

(64, 0.044)

9/15

9/14 (3, 0.417)

C20(21, 0.176)

ID318

C6

(34, 0.092)

(2, 0.442)

(55, 0.034)

C22(61, 0.025)

C2
ID204

C2

C5

C11

C17

Fig. 6 Loose estimates of transmission routes

3–7 days after symptoms appear. Adopting the mode of either
conservative estimate or loose estimate, infection control per-
sonnel could key in the corresponding duration of the high
risk period. By integrating these parameters into the RFID
location records, the tracking and control system could find
out those who might have been infected and indentify all
possible transmission routes, serving as an effective tool in
assisting the effort to curb the spread of infection in the hos-
pital. The loose estimates of infection probability are shown
in Table 3.

Conclusions

A review of related literature on transmission routes of res-
piratory diseases shows that droplet transmission is one
of the main causes of hospital-acquired infections. This
study presents the hypothesis of a direct proportion between

Table 3 Loose estimates of
infection probability Infected person

passing time t1
RFID
codes

Passing
person

Passing
time t2

Time interval �t
= t2 − t1 (min)

Infection
risk P5,i

Infection
probability

2011/9/14 09:14:02 ID206 C17 09:17:19 3.283 0.417 Y

C20 09:35:11 21.150 0.176 N

2011/9/15 20:47:18 ID107 C11 20:49:22 2.067 0.442 Y

C2 21:21:52 34.567 0.092 N

C6 21:42:41 55.383 0.034 N

C22 21:49:04 61.767 0.025 N
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Fig. 7 Interface of the disease tracking and control system

infection probability and droplet concentration based on
Gao’s and Lin’s experiments on aerosol transmission and on
Peng’s research on virus survival time (Gao et al. 2009; Lin
et al. 2012; Peng 2012). In addition, an infection probability
model is developed in this study on the basis of Duguid’s and
Tellier’s research on the residence time of droplets (Duguid
1946; Tellier 2006). To facilitate the search of disease trans-
mission routes, healthcare personnel, patients and visitors in
the hospital should wear RFID tags, so that their location and
time data could be recorded. In case of an epidemic outbreak
or once an infected case is confirmed, the disease tracking and
control system could be initiated by accessing RFID logs to
plot the carriers’ time of onset and to trace possible routes of
transmission via tree diagrams. With the information, infec-
tion control personnel can conduct a prompt search of those
who might have been infected, and take immediate protec-
tion and quarantine measures to prevent the epidemic from
spreading any further. This empirical study is restricted by
the resources available at the hospital where the experiment
was conducted. Due to the high cost of active tags, only a lim-
ited number of subjects were studied. Future research could
consider adopting passive tags, which, being of a much lower
price, could allow all medical personnel, patients and visitors
to be included to build a more comprehensive disease control
system.

References

Ahuja, R. K., Orlin, J. B., & Sharma, D. (2003). A composite very large-
scale neighborhood structure for the capacitated minimum spanning
tree problem. Operations Research Letters, 31(3), 185–194.

Akpınar, S., & Kaptan, H. (2010). Computer aided school administra-
tion system using RFID technology. Procedia Social and Behavioral
Sciences, 2(2), 4392–4397.

Brewer, A., Sloan, N., & Landers, T. L. (1999). Intelligent tracking in
manufacturing. Journal of Intelligent Manufacturing, 10(3/4), 245–
250.

Buchbinder, N., Dumesnil, C., Pinquier, D., Merle, V., Filhon, B.,
Schneider, P., et al. (2011). Pandemic A/H1N1/2009 influenza
in a paediatric haematology and oncology unit: Successful man-
agement of a sudden outbreak. Journal of Hospital Infection,
79(2), 155–160.

Çakıcı, Ö. E., Groenevelt, H., & Seidmann, A. (2011). Using RFID
for the management of pharmaceutical inventory—System optimiza-
tion and shrinkage control. Decision Support Systems, 51(4), 842
–852.

Chao, C. Y. H., Wan, M. P., Morawska, L., Johnson, G. R., Ristovski, Z.
D., Hargreaves, M., et al. (2009). Characterization of expiration air
jets and droplet size distributions immediately at the mouth opening.
Aerosol Science, 40(2), 122–133.

Chen, X., Hu, J., & Hu, X. (2009). A polynomial solvable minimum
risk spanning tree problem with interval data. European Journal of
Operational Research, 198, 43–46.

Chien, C. F., Wang, J. C., & Cheng, J. C. (2007). Data mining for
yield enhancement in semiconductor manufacturing and an empirical
study. Expert Systems with Applications, 33(1), 192–198.

Cicalese, F., Jacobs, T., Laber, E., & Molinaro, M. (2011). On the com-
plexity of searching in trees and partially ordered structures. Theo-
retical Computer Science, 412, 6879–6896.

Duguid, J. P. (1946). The Size and the Duration of Air-carriage of Res-
piratory Droplets and Droplet-nuclei. Journal of Hygiene, 44, 471–
479.

Feng, Y., & Gao, G. F. (2007). Towards our understanding of SARS-
CoV, an emerging and devastating but quickly conquered virus.
Comparative Immunology, Microbiology and Infectious Diseases,
30, 309–327.

Gao, N. P., Niu, J. L., Perino, M., & Heiselberg, P. (2009). The airborne
transmission of infection between flats in high-rise residential build-
ings: Particle simulation. Building and Environment, 44, 402–410.

123



992 J Intell Manuf (2014) 25:983–992

Gen, M., Kumar, A., & Kim, J. R. (2005). Recent network design tech-
niques using evolutionary algorithms. International Journal of Pro-
duction Economics, 98, 251–261.

Hsu, S. C., & Chien, C. F. (2007). Hybrid data mining approach for pat-
tern extraction from wafer bin map to improve yield in semiconduc-
tor manufacturing. International Journal of Production Economics,
107(1), 88–103.

Huang, G. Q., Zhang, Y. F., Chen, X., & Newman, S. T. (2008). RFID-
enabled real-time wireless manufacturing for adaptive assembly
planning and control. Journal of Intelligent Manufacturing, 19(6),
701–713.

Kumar, S., Swanson, E., & Tran, T. (2009). RFID in the healthcare
supply chain: Usage and application. International Journal of Health
Care Quality Assurance, 22(1), 67–81.

Lau, Y. L., & Peiris, J. S. M. (2005). Pathogenesis of severe acute
respiratory syndrome. Current Opinion in Immunology, 17(4), 404–
410.

Lau, J. T. F., Griffiths, S., Choi, K. C., & Tsui, H. Y. (2009). Widespread
public misconception in the early phase of the H1N1 influenza epi-
demic. Journal of Infection, 59(2), 122–127.

Leahy, M. B., Dessens, J. T., Weber, F., Kochs, G., & Nuttall, P. A.
(1997). The fourth genus in the Orthomyxoviridae: Sequence analy-
ses of two Thogoto virus polymerase proteins and comparison with
influenza viruses. Virus Research, 50(2), 215–224.

Lin, Z., Wang, J., Yao, T., & Chow, T. T. (2012). Investigation into anti-
airborne infection performance of stratum ventilation. Building and
Environment, 54, 29–38.

Marshall, R. J. (2001). The use of classification and regression trees in
clinical epidemiology. Journal of Clinical Epidemiology, 54, 603–
609.

Najera, P., Lopez, J., & Roman, R. (2011). Real-time location and inpa-
tient care systems based on passive RFID. Journal of Network and
Computer Applications, 34, 980–989.

Nielsen, J. D., Rumí, R., & Salmerón, A. (2009). Supervised classifi-
cation using probabilistic decision graphs. Computational Statistics
and Data Analysis, 53, 1299–1311.

Ohashi, K., Ota, S., Ohno-Machado, L., & Tanaka, H. (2010). Smart
medical environment at the point of care: Auto-tracking clinical inter-
ventions at the bed side using RFID technology. Computers in Biol-
ogy and Medicine, 40, 545–554.

Öncan, T. (2007). Design of capacitated minimum spanning tree with
uncertain cost and demand parameters. Information Sciences, 177,
4354–4367.

Peng, M. Handbook on prevention of SARS and transmission route
analysis. Accessed April 18, 2012 from http://sars.bamboo.hc.edu.
tw.

Peris-Lopez, P., Orfila, A., Mitrokotsa, A., & Lubbe, J. C. A. (2011).
A comprehensive RFID solution to enhance inpatient medication
safety. International Journal of Medical Informatics, 80, 13–24.

Qu, T., Yang, H. D., Huang, G. Q., Zhang, Y. F., Luo, H., & Qin, W.
(2012). A case of implementing RFID-based real-time shop-floor
material management for household electrical appliance manufac-
turers. Journal of Intelligent Manufacturing, 23(6), 2343–2356.

Redrow, J., Mao, S., Celik, I., Posada, J. A., & Feng, Z. (2011). Modeling
the evaporation and dispersion of airborne sputum droplets expelled
from a human cough. Building and Environment, 46, 2042–2051.

Tang, J. W., Li, Y., Eames, I., Chan, P. K. S., & Ridgway, G. L. (2006).
Factors involved in the aerosol transmission of infection and control
of ventilation in healthcare premises. Journal of Hospital Infection,
64, 100–114.

Tellier, R. (2006). Review of aerosol transmission of influenza a virus.
Emerging Infectious Diseases, 11(12), 1657–1662.

Tian, G. Y., Yin, G., & Taylor, D. (2002). Internet-based manufacturing:
A review and a new infrastructure for distributed intelligent manu-
facturing. Journal of Intelligent Manufacturing, 13(5), 323–338.

Tzeng, S. F., Chen, W. H., & Pai, F. Y. (2008). Evaluating the busi-
ness value of RFID: Evidence from five case studies. International
Journal of Production Economics, 112, 601–613.

Viviani, L., Assael, B. M., & Kerem, E. (2011). Impact of the A (H1N1)
pandemic influenza (season 2009–2010) on patients. Journal of Cys-
tic Fibrosis, 10, 370–376.

Wertheimer, A. I., & Norris, J. (2009). Safeguarding against sub-
standard/counterfeit drugs: Mitigating a macroeconomic pandemic.
Research in Social and Administrative Pharmacy, 5, 4–16.

Wherton, J. P., & Monk, A. F. (2008). Technological opportunities for
supporting people with dementia who are living at home. Interna-
tional Journal of Human-Computer Studies, 66, 571–586.

Yao, W., Chu, C. H., & Li, Z. (2011). Leveraging complex event process-
ing for smart hospitals using RFID. Journal of Network and Com-
puter Applications, 34, 799–810.

Zhang, Y., Jiang, P., Huang, G., Qu, T., Zhou, G., & Hong, J.
(2012). RFID-enabled real-time manufacturing information tracking
infrastructure for extended enterprises. Journal of Intelligent Manu-
facturing, 23(6), 2357–2366.

Zhou, J., & Shi, J. (2009). RFID localization algorithms and
applications—A review. Journal of Intelligent Manufacturing, 20(6),
695–707.

123

http://sars.bamboo.hc.edu.tw
http://sars.bamboo.hc.edu.tw

	The construction of a hospital disease tracking and control system with a disease infection probability model
	Abstract 
	Introduction
	Literature review
	Tree diagram
	RFID applications
	Disease transmission routes

	Methods
	RFID motion detection
	Active tags
	RFID readers
	Antennas

	Infection probability model
	Infection probability hypotheses
	Infection probability

	Route search algorithm
	Conservative estimates
	Loose estimates


	Simulation
	Direct infection
	Indirect infection
	Disease tracking and control system


	Conclusions
	References


