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Abstract

Stress is a common feeling in people’s day-to-day life, especially at work, being the cause
of several health problems and absenteeism. Despite the difficulty in identifying it properly,
several studies have established a correlation between stress and perceivable human features.
The problem of detecting stress has attracted significant attention in the last decade. It has
been mainly addressed through the analysis of physiological signals in the execution of
specific tasks in controlled environments. Taking advantage of technological advances that
allow to collect stress-related data in a non-invasive way, the goal of this work is to provide
an alternative approach to detect stress in the workplace without requiring specific controlled
conditions. To this end, a video-based plethysmography application that analyses the person’s
face and retrieves several physiological signals in a non-invasive way was used. Moreover, in
an initial phase, additional information that complements and labels the physiological data
was obtained through a brief questionnaire answered by the participants. The data collection
pilot took place over a period of two months, having involved 28 volunteers. Several stress
detection models were developed; the best trained model achieved an accuracy of 86.8% and
a F1 score of 87% on a binary stress/non-stress prediction.

Keywords Stress - Semi-supervised learning - Ensemble learning - Classification

1 Introduction

In recent decades, there has been an increasing focus on the quality of work as an integral
part of the quality of life. Indeed, work fulfils several functions in a person’s life (e.g.,
economic, social, psychological), and determines their quality of life. Workplace stress not
only has a detrimental impact on people but also adds expenses to the business due to high
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staff turnover, absenteeism, decreased productivity, higher risk of accidents, and a lack of
innovation (Hanula-Bobbitt & Bockuté, 2022). In a Portuguese study (Ordem dos Psicélogos
Portugueses, 2023) workers were estimated to miss work on 7.4 days a year due to stress
and psychological health problems. In 2022, absenteeism and reduced work efficiency cost
Portuguese companies €1.8 billion and €3.5 billion, respectively, resulting in a total indirect
cost of €5.3 billion per year.

According to the World Health Organization, stress is the reaction observed when people
face demands and pressures that are greater than their capacity to handle them and test
their coping mechanisms (World Health Organization, 2023). These demands are linked to
high perceived stress, a lack of social support from colleagues and supervisors and heavy
workloads. Long-term stress may be damaging since it has negative physiological effects
that can lead to both mental and physical health issues (Seiler et al., 2020).

In light of such potential harmful effects, detecting levels of stress at an early stage is
crucial. As a result, much progress has been done in the last years towards the development
of various devices to collect real-time physiological data. Nevertheless, a reliable real-time
stress detection system that is unobtrusive and completely transparent for the user has not
been created yet.

There is a study (Carolan et al., 2017) that confirms that stress-related illnesses may be
prevented and treated in the workplace, and those who do so are more likely to be more
productive. Hence, non-intrusive stress-sensing tools that continuously monitor stress levels,
with a minimal impact on workers’ daily lives, could be used to regulate or relieve stress by
providing personalized recommendations or even by just alerting the users of their current
level of stress. These applications might result in more efficient and cost-effective interven-
tions in stressful work situations, resulting in more productive work environments where
employees can better manage their workload.

Although stress is not simple to properly identify, there are several studies that have estab-
lished a correlation between stress and perceivable human features (Alberdi et al., 2016;
Panicker & Gayathri, 2019). People can sometimes identify their stress levels through the
recognition of external body manifestations. However, this is not always possible, in which
case underlying body reactions have to be analysed for stress to be detected. Hence, using
several physiological signals can be beneficial in many ways, because each signal can com-
pensate for the lack of information in the others. Given that the amount and type of information
extracted from each signal are different, and since stress is related to various factors and has
diverse symptoms, a multimodal solution is best suited for an efficient stress detection.

This paper describes a Machine Learning (ML) approach to build a stress detection model
based on two physiological signals and facial expressions collected from 28 volunteers, over
a two-month period. Our main contribution is the validation of the ML approach using a
multimodal dataset collected in a non-invasive and non-intrusive way — that is, while people
carry out their daily activities in the workplace, without changing their routines in any way.
We expect our solution to contribute to the mitigation of work-related stress in employees,
the improvement of their mental health and the reduction of the associated socioeconomic
costs.

The remainder of this paper is organized as follows. Section 2 reviews previous works
on stress detection that follow a non-intrusive approach. The methodology adopted here is
explained in Section 3, including the data acquisition, the labelling process to complete the
missing stress labels, the derivation of features from the heart rate variability signal, the
feature selection, and the development and evaluation of models. Challenges and limitations
are discussed in Section 4. The main conclusions and prospects of future work are disclosed
in the final section.
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2 Related work

The literature on stress detection is vast and started with studies that explore data collected
from very different signals (e.g., electrodermal activity, electrocardiogram, electroencephalo-
gram, blood pressure, skin temperature and respiration features), all of them acquired through
obtrusive equipments (Alberdi et al., 2016). More recently, researchers have combined data
coming from several physiological signals, having shown the advantage of detecting stress
from various sources of stress (Alberdi et al., 2016; Panicker & Gayathri, 2019).

Furthermore, other works emphasise how crucial it is to monitor physiological signals
since they enable users to receive quick feedback during routine tasks (Gedam & Paul,
2021). However, a drawback of these methods is the need to use wearable sensors at all
times (and in specific places in the body) in order to allow for an accurate and continuous
monitoring. Other approaches have tried to remove these limitations. For example, (Hilmy
etal.,2021) propose to detect stress based on speech signal analysis techniques with machine
learning. However, this method may result in speech misunderstanding and improper stress
detection in real-life situations involving loud environments.

Sabour et al. (2021) proposes a new dataset, UBFC-Phys, collected with and without con-
tact from participants living under social stress situations. A wristband was used to measure
contact blood volume pulse (BVP) and electrodermal activity signals, while a photoplethys-
mography video recordings allowed to compute remote pulse signals and facial expression
features. Pulse rate variability (PRV) was extracted from the BVP signal. Experimental results
showed a stress state recognition accuracy of 85.48% achieved by remote PRV features.

In Park et al. (2018) the authors aimed to uncover the viability of mental stress level
prediction through the Heart Rate Variability (HRV) attained from the photoplethysmography
(PPG) sensors in wearable devices. The experiment involved the measurement of the subject’s
PPG signals for 30 seconds, three times a day, using the wearable device. At the end of the
day, the participants evaluated their own mental stress using the Perceived Stress Scale (PSS).
Results showed that the LF/HF feature was correlated with the subject’s PSS scores, and the
predicted model resulted in an average accuracy of 86.35%.

Moreover, Dalmeida and Masala (2021) presented an effective and non-invasive approach
on stress detection. One of the goals was to classify stress mainly using HRV-derived metrics,
obtained from wearable devices. The device considered was the Apple Watch. The beats
per minute were extracted using the Apple Breathe App, which allowed to calculate the RR
intervals. From the several developed models, the SVM model with the Radial Basis Function
(RBF) kernel provided the best accuracy (83.33%). Lastly, a web application was built in
order to test the developed models. The authors state that the application was able to predict
stress conditions with a 71% prediction probability, with an increased probability of 79% in
relaxed states.

Another study (Can et al., 2019) collected physiological data from 21 students in an
algorithmic programming competition over the course of nine days in order to identify stress.
They collected data through non-obstructive wearable devices that could be used daily. The
developed system contained heart activity data from a photoplethysmogram (PPG) sensor,
skin conductance from the GSR, accelerometer and temperature data. The PPG sensor was
used to measure the blood flow, thus providing the RR intervals. The authors developed
a three-class detection system that was capable of differentiating the stress levels in three
different situations: free day, lecture and contest sessions, with 90.40% accuracy.

Another relevant study (Maxhuni et al., 2016) involving 30 employees suggests mod-
eling stress levels using several behavioural characteristics acquired via smartphones, with
the caveat that the labelled data for each individual is scarce. To surpass this limitation, the
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authors chose the closest individual for knowledge transfer by selecting the most compa-
rable individual model tree. Their findings showed the stress levels of subjects for whom
less data were collected may be more accurately predicted by employing data (instances or
models) from similar workers. However, using this transfer learning approach for workers
with different backgrounds might have a negative impact on accuracy.

In summary, the majority of works rely on sensors embedded in wearables, which can be
uncomfortable or unsuitable for many daily situations. The average accuracy of the stress
detection works analysed lies between 85%-90%. An objective and reliable comparison
among different studies would be difficult to perform and very debatable because of the
distinct data used and the different experimental conditions of each work.

As mentioned in the previous section, several physiological signals are relevant to measure
various aspects of human behavior and classify different mental conditions. In this study we
will combine two physiological signals — heart rate variability (HRV) and percentage of
eye closure (PERCLOS) — with facial expressions and some demographic attributes of
users. The HRV can be used to evaluate stress because it reflects the cardiac activity and the
autonomic nervous system (ANS) response. Different stress-inducing methods were observed
to stimulate a variation in the ANS response through the changes in HRV parameters (Kim
et al., 2018). Although PERCLOS is mainly used as a measure of fatigue, Marquart et al.
(2015) demonstrated that PERCLOS is affected by mental stress, as its value decreases in
stressful situations. The facial features are used for monitoring the emotional responses due
to stress (Almeida & Rodrigues, 2021).

Combining physiological signals (HRV and PERCLOS) with facial expressions qualifies
as amultimodal data analysis, because each modality represents a distinct type of information
or sensory input. Physiological signals capture information related to the body’s physiological
responses, while facial expressions provide visual clues about emotional states. The different
modalities are expected to interact and exhibit correlations within the context of stress pre-
diction. For example, stress can affect physiological responses such as changes in HRV and
PERCLOS, which may be reflected in facial expressions. By considering these interactions
and correlations, a multimodal analysis can capture a more comprehensive understanding of
stress patterns.

Our work differs from existing studies in several points. First, to the best of our knowledge,
the combination of HRV and PERCLOS physiological signals with facial expressions and
users’ demographic data has not been explored in the literature before. Second, the data were
collected in the office, with volunteers doing their daily activities without any restrictions
imposed to them. This was possible because the physiological data and facial expressions
were collected by a video-plethysmography application that runs in the background. The
workers do not even notice that they are being monitored, which prevents them from biasing
the data collection and permits to build a non-invasive solution. Few previous works have
detected stress in a non-invasive and non-intrusive way. Finally, semi-supervised learning
is used to label physiological data, since data have been classified by the collaborators, so
labels are scarce. Feature selection combined with ensemble learning is implemented to find
the best predict stress model.

3 Methodology

In this study, we propose a ML stress detection approach that follows the CRISP-DM method-
ology (Wirth & Hipp, 2000). The corresponding end-to-end pipeline will be briefly described
next.
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Data acquisition is the first stage, where the physiological signals are collected from the
users while they are doing their regular work. In parallel, self-reported measures are collected
through a questionnaire implemented in an application that periodically retrieves the user’s
perceived stress, among other variables, to label the physiological data.

In order to deal with the scarce labeling of data, common to many real-world applications,
we apply semi-supervised learning to reduce the amount of unlabelled data. To address this
issue, we use an inductive self-training method that consists of a single supervised classifier
that is iteratively trained on both labelled data and data that has been pseudo-labelled in
previous iterations of the algorithm (Van Engelen & Hoos, 2020).

Next, given that stress is regulated by the Autonomous Nervous System, the heart rate
variability (HRV) is a reliable signal for identifying stress, because it cannot be altered by the
users. HRV may be separated into time and frequency domain measures. As demonstrated
in several studies (Alberdi et al., 2016; Cheng & Chen, 2022; Dalmeida and Masala, 2021;
Panicker & Gayathri, 2019; Reijmerink et al., 2020; Sabour et al., 2021), time and frequency
HRV characteristics are reliable stress indicators.

After data preparation, the Random Forest algorithm is used to determine the adequate
number of features to be used according to the initial data collected. This algorithm measures
the importance of the features by randomly sampling a set of features in the out-of-bag
samples and calculating the percentage increase in the misclassification rate as compared to
the out-of-bag rate with all variables intact. Then, to select the set of features that works best
to predict stress, it is good practice to use more than one algorithm, so we shall use the Relief
algorithm (Kira & Rendell, 1992) and an ensemble feature selection method based on the
combination of several Random Forest models.

Regarding the choice of ML algorithms to use, we choose to use ensemble learning
algorithms since an ensemble method combines the predictions of various machine-learning-
based algorithms to provide predictions that are more accurate (Dietterich, 2000). Bagging
and boosting are the most frequently used ensemble learning methods. Both methods use
resampling techniques to construct different training sets for each classifier. Bagging manip-
ulates the original training data by randomly drawing instances with replacement. Boosting
also manipulates the original training data by drawing with replacement, but it uses the per-
formance of the previous classifier(s) to calculate the probability of selecting each instance.
Similarly to simple models, some ensemble methods work better than others in certain con-
ditions (Dietterich, 2000), so we consider four ensemble machine learning classification
algorithms to deal with the characteristics of the various datasets: two boosting methods —
AdaBoost (AB) and Gradient Boosting (GBM) — and two bagging methods — Random
Forests (RF) and Extra Trees (ET).

In order to evaluate the models’ capabilities, all the experiments were conducted using
the same metrics and making a data-stratified k-fold cross validation (with k = 10), since it
provides good results with a moderate load on the processing unit.

3.1 Data acquisition

To create the dataset to develop the stress detection models two applications were used. A
video-plethysmography application silently stores the participants’ physiological data only
using the computer video camera. This application guarantees the synchronization between
the different physiological signals collected (beat per minute (bpm) and PERCLOS) and
facial expressions, and stores them in files value format, without storing any images, thus
complying with data protection policy. At the same time, a questionnaire application is also
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being executed, the main goal of which is to collect information to be used to label the
physiological data in terms of stress. To this end, we automated this task by developing an
application that has three questionnaires that have been clinically validated to capture the
subjects perceived stress and mood states of the employees at work.

A firstquestionnaire, which is only presented the first time the user enters in the application,
and collects demographic information and some habits of the participants (e.g., number of
coffees, alcoholic beverages and cigarettes taken per day, sleep schedule, average hours of
sleep per day, average perception of sleep quality in the previous week, kind of person, such
as matinal, nocturnal) through 17 different questions. Data from 28 healthy employees of an
insurance company were collected for a period of 8 weeks. Table 1 provides a summary of
some employees’ demographics collected in this first questionnaire.

As can be seen, the employees that participated in our study had heterogeneous charac-
teristics with regard to gender, age, marital status, educational level and role in the company,
which may be advantageous for the creation of the models.

The second questionnaire collects information relevant to the working environment and
job demands of employees during working days. It consists of a bi-daily questionnaire that
is triggered 5 minutes before lunch time and before the end of business, both of which
are defined by the user. Here questions are asked about the level of stress felt by the user
during the morning/afternoon work period (period stress label), as well as the emotional
state and perception of his/her productivity and the level of difficulty of tasks performed.
The questionnaire also includes questions concerning the level of alertness, drowsiness and
tiredness in a total of 10 different questions.

The last questionnaire consists of a simple pop-up that appears in the user’s screen four
times a day, twice in the morning and twice in the afternoon. This questionnaire asks the user
about his/her stress level at the moment through a slider bar that ranges between 1 and 10,
with the respective labels (e.g., “Not stressed”, “Moderately stressed, “Extremely stressed”).
This questionnaire pops up on the user’s screen randomly, between the user’s entry time
and the scheduled lunch/leave time. The minimum difference between the generation of two
pop-ups was set to 30 minutes and it was also imposed that these pop-ups may appear up to
5 minutes before the bi-diary form.

In summary, four stress labels are collected per day for each participant during the morn-
ing/afternoon work period, in which the user answers the question: “How do you rate your
stress at this moment?” (pop-up label) and two more stress labels in which the user answers
the question “How would you rate your stress during this morning/afternoon?” (period
label). An analysis made to the values of stress pop-up labels and stress period labels (see
Fig. 1) shows that, on average, all users define stress period labels slightly higher than pop-up
stress labels. A Spearmans test between the two stress labels response shows a correlation
coefficient of 0.760.

Table 1 Some attributes of the participants collected through the first questionnaire

Gender Marital St. Age Weight (kg) Education Role

Male 9 Single 9 25-40 9 52-6315 < 9 years 1 Executive 1

Female 19 Married 16 41-5011 64-75 6 9-12 years 4 Manager 5
Divorced 3 >50 8 >75 7 High School 23 Collaborator 22
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Fig. 1 Stress period vs. stress pop-up by user

In Table 2 we present the overall stress responses for the whole period of 8§ weeks. Only
the users with a minimum of 10 stress period labels — which is equivalent to 5 workdays —
were included, thus leaving a remaining set of 24 users. The total number of stress labels,
period and pop-up labels, was 4291. In order to simplify the measurements of the work-
related stress, we have classified the stress-level into three classes: [1..3] as low stress, [4..6]
as moderate stress and [7..10] as high stress. Results show that, during the entire monitoring
period, 18 subjects perceived high stress at some point.

A total of six stress labels collected on each working day for each worker is undoubtedly
insufficient to catalog all the physiological data collected. In order to deal with the scarcity
of the labelled data, we apply semi-supervised learning. The data collected in the two ques-
tionnaires (bi-daily and pop-up) will only be used to develop stress prediction models to fill
the unlabelled physiological data.

The objective of this study is to predict stress levels using various behavioural character-
istics, especially given the limited availability of user labelled data. The ultimate goal is to
stop relying on subjective, self-reported data for stress assessment and instead utilize solely
objectively detected physiological data to enable continuous stress measurement.

3.2 Data labelling with semi-supervised learning

The efficiency of supervised learning is highly dependent on the volume of labelled instances.
However, having a reasonable size of labelled instances is difficult, expensive and time-
consuming to obtain since the availability and commitment of users are required. This is not
always easy in work environments, because in real work scenarios the incorrect placement
of the camera, unscheduled commitments of the collaborator and other unexpected issues

Table 2 Overall number and

percentage of stress labels Stress level Nr. responses (%) Nr. users
low 478 (11,1%) 20
medium 3505 (81,7%) 24
high 308 (7,2%) 18
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can occur and force the interruption of data collection. There are a mix of physiological data
with and without stress labels, which require the adoption of semi-supervised learning.

Since the initial data had a large portion of unlabelled data, we convert the goal attribute
to a binary label. Given the stress values distribution, and in order to have a more cautious
classification that aims to minimize false negatives, we considered “stress” to apply when the
value of the label is at least 4, in a scale from 1 to 10. This gives the following distribution
of the goal attribute: 24.5% stress, 48.2% no stress and 27.3% not classified.

Before the start of data labelling, we conducted a stratified sampling of the labelled data
into two disjoint datasets, a training dataset (80%) and a validation dataset (20%). In this
way, the validation dataset without any pre-processing (i.e., with only the original labels)
guarantees a more rigorous and unbiased final evaluation of the developed models.

To fill the missing values, several models were developed with the training dataset, using
different learning algorithms: logistic regression, two decision-tree algorithms, C5.0 and
rpart, Gaussian naive Bayes and support vector machine (SVM) with the kernel rbfdot.
These were chosen to represent a wide range of approaches. We performed a 10-fold cross
validation in all experiments with the default parameters of the algorithms. Table 3 presents
the mean (standard deviation) of accuracy and F1 measures of the three best models. The
C5.0 model clearly achieved the best performance, so it was the model chosen to predict the
labels for the portion of unclassified data.

From the predictions obtained with C5.0 algorithm we selected only those classified with
high confidence (greater than 90%) to add to the training set. Next, the classifier was re-trained
with the new classified data added to the initial dataset and the procedure was repeated. At
the end of five iterations, the majority of labels were classified, with only a residual number
remaining unclassified, giving a final distribution of 36.5% stress and 63.5% no stress.

3.3 Feature derivation from heart rate variability signal

Due to the several distinct user profiles that take part in the pilot, we see a significant variation
in the data made accessible per user. There are many comma-separated BPM files for each
user, each of which refers to a distinct time of day. This required going through a laborious
data processing procedure that began with looking for empty folders and looking for missing
files. Following this, it was discovered that each user had a varied amount of data, which
might have led to some incoherence because some files included measurements for longer
time periods than others. For shorter time periods, less precise readings will be obtained
when using this information to infer HRV features. To obtain a more uniform analysis of the
data, an algorithm was created to divide each csv file into 5-minute files.

Heart rate variability (HRV) is a measure of the variation in time between consecutive heart
beats, whereas beats per minute (BPM) is a measure of the heart rate or the number of heart
beats per minute (Kim et al., 2018). Therefore, it is not possible to obtain HRV directly from

Table 3 Performance of models 5.0 SVM

rt
to populate unlabelled data pa

accuracy 0.973 (0.0027) 0.858 (0.0178) 0.916 (0.0056)
Fl 0.963 (0.0032) 0.815 (0.0197) 0.884 (0.0072)
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BPM. However, HRV can be derived from the time intervals between consecutive heartbeats
— also known as interbeat intervals (IBI) —, which can be calculated from BPM. The formula
to convert BPM to IBlis / BI = 60, 000/ B P M (Reijmerink et al., 2020). After obtaining IBI
we perform some pre-processing operations that include filtering to remove high-frequency
noise, interpolation to fill missing data points, and detrending to remove baseline trends.
Next, time-domain HRV measures, which include measures of the variation in the interval
between consecutive heartbeats, were calculated directly from the IBI data. Frequency-
domain HRV measures, which refer to the rate of oscillations in the heart rate signal, were
obtained by applying spectral analysis to the IBI data. The following time and frequency
HRYV characteristics were calculated using the python package pyHRV (Gomes et al., 2019):

e HRYV time domain features: Normal-to-Normal intervals (NN), heart rate average values
(AVNN), standard deviations of NN intervals (SDNN), square root of the mean squared
difference of successive NN intervals (RMSSD), the SDNN/RMSSD ratio, standard
deviation of successive differences (SDSD), number of pairs of successive NN intervals
that differ by more than 50 ms (NN50), the ratio of NN50 to the total number of NN
intervals (PNN50), the same as the two last metrics but for NN intervals that differ more
than 25 ms (NN25, PNN25) and 20 ms (NN20, PNN20).

e HRV frequency domain features: Power spectral density (PSD) at each of the three
frequency bands, VLF (0 - 0.04 Hz), LF (0.04 - 0.15 Hz) and HF (0.15 - 0.4 Hz), peak of
each frequency band (VLF peak, LF peak, HF peak), total signal power and the LF/HF
ratio.

3.4 Feature selection

The training dataset has 17 attributes from the demographic questionnaire, 20 time and fre-
quency features derived from HRYV, 7 facial expressions and the PERCLOS signal. Choosing
an optimal feature set is important to speed up the training process and make learnt classifiers
simpler, thus being easier to interpret and to deploy.

In order to obtain the most representative features, first we determined the adequate num-
ber of features to use as input to the feature selection algorithms. This was accomplished using
the RF algorithm with a backward elimination method. We calculated the cross-validation
prediction error of models with sequentially reduced number of predictors (ranked by impor-
tance of the variable) via a nested cross-validation procedure. As Fig. 2 shows, 25 features

0.30
|

0.20
|

cross validation error

—9
—®

T TT T T 1 T T
1 5 8 11 19 25 34 45

Number of features

Fig.2 Classification error rate using different numbers of features
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give the minimum cross validation error (0.158), so we considered 25 as the number of
features to define by each feature selection algorithm.

The Relief algorithm estimates the relevance of features according to how well their
values distinguish between the instances of the same and other classes that are near each
other. Given randomly selected instances, the algorithm searches for the k-nearest-neighbours
from the same class and k-nearest-neighbours from each of the other possible classes.
Based on which class the neighbours belong to, the algorithm updates the feature qual-
ity information by increasing its value if the feature separates instances with different
classes well and by decreasing its value in the opposite scenario. The process of random
instance selection is repeated several times, the number being pre-chosen by the user. We
ran the Relief algorithm with k = 5 over 1000 iterations and selected the 25 top features:
PNN25, Total.Power, RMSSD, happy, fear, angry, disgust, sad, perclos, avgSleepingHours,
typeOfSchedule, weight, alcohol, AVNN, SDNN, PNN50, LF.Relative, sleepingHours, sleep-
Quality, wakeupHours, HF.Peak, LF.Peak, bestDisposition, ULF.Absolute, Lf.Normalized.

The ensemble feature selection method built is based on the combination of several Ran-
dom Forest feature selection models (Ens-RF). Ensembles outperform the individual models
that form the ensemble, because they are based on some form of diversity among the individ-
ual models. The ensembles herein developed used different samples of observations to obtain
each model. This approach works better if the data from which we obtain the different mod-
els are highly redundant. We assumed that the necessary degree of redundancy is achieved
with the k-fold method. We split the data into 10-folds to build 10 different feature selectors.
For each feature the number of times it has been selected by all the feature selectors was
counted and the 25 features with greater counts were chosen: PNN20, surprise, VLF.Absolute,
avgSleepingHours, happy, typeOfSchedule, weight, alcohol, AVNN, PNN25, Total.Power,
RMSSD, PNN50, fear, SDNN, angry, disgust, sad, perclos, firstHalfHour, HF.Absolute,
Hf Lf, Hf Normalized, HFE.Relative, LF.Absolute.

3.5 Stress modeling

This section presents the results of applying the different algorithms to the training dataset
to predict the stress.

In the first experiment we develop the stress prediction models with the four ensemble
algorithms using the features selected by the Relief algorithm and by the Ens-RF algorithm.
However, because the accuracy of the models, with both set of features, is very similar and
since the number of common features selected by both algorithms is quite high (16 features),
we also ran the ensemble algorithms with the 16 features common to both: avgSleepingHours,
typeOfSchedule, weight, alcohol, AVNN, SDNN, PNN50, PNN25, Total.Power, RMSSD,
happy, fear, angry, disgust, sad and PERCLOS. Table 4 presents the accuracy of the models
with the different sets of features.

Table 4 Accuracy of ensemble models with different sets of features

Boosting Bagging
Feature selection AB GBM RF ET
Relief (25 attrib.) 0.784 (0.023) 0.812 (0.022) 0.848 (0.016) 0.833 (0.020)
Ens-RF (25 attrib) 0.774 (0.021) 0.810 (0.021) 0.848 (0.015) 0.837 (0.017)
Intersection (16 attrib) 0.778 (0.027) 0.813 (0.019) 0.853 (0.019) 0.844 (0.016))
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As can be seen, the results of the boosting algorithms with the features from the intersection
of both initial feature sets are quite similar to the results achieved with both initial feature sets.
They are also slightly higher for the bagging algorithms and, because a smallest prediction
set is preferable to deploy the model, we will consider this subset of features.

Table 5 shows the mean (standard deviation) of accuracy, F1 weighted and ROC AUC
of the four ensemble algorithms with their default parameters and using the 16 intersection
features.

From the results obtained it is clear that the bagging algorithms outperform the boosting
algorithms. Both bagging algorithms provide better scores with default configurations.

Tran et al. (2017) show that the combination of bagging and feature selection not only
helps to improve classification accuracy of bagging, but also helps to reduce the complexity
of the learnt classifiers compared with the standard bagging method. Hence, we also searched
for a feature subset with bagging. We ran both bagging algorithms multiple times, combining
each one of the attributes with the rest of them. We used subsets comprising from two up to
all the attributes. Therefore, all possible combinations among the attributes were performed.
The purpose was to see how relevant the features were to the stress prediction and which
minimal subset of features and method yielded the best results.

Both algorithms, RF and ET, achieved the best results with the same 16 initial features.
This leads us to conclude that the initial set of 16 features selected by both feature selection
algorithms is minimal.

Concerning the models performance, RF algorithm achieved a mean accuracy of 85.3%
(stdev=1.9%) and the ET algorithm a mean accuracy of 84.4% (stdev=1.6%). The accuracy
of the RF algorithm is therefore slightly higher.

To compare the difference between classification models more rigorously, a statistical test
suite was carried out on the experimental results to validate their results further and determine
whether there exists a significant difference among them. We checked normality by applying
the Shapiro test to the difference of cross-validation accuracy of both models. Since p-value
= 0.1532 is greater than the 0.05 significance level, we can assume normality and apply the
t-Student test. The p-value = 0.0048 of the t-Student test is also less than the significance
level alpha = 0.05, therefore we can conclude that the difference beyween the accuracies
of the models is slight but statistically significant, being the RF algorithm the most suitable
algorithm to predict stress with this dataset.

In our last approach, hyper-parameter optimization was performed with GridSearch strat-
egy on the RF algorithm to determine the best choice of parameters that would yield the
highest performance. Table 6 presents the parameter grid used.

We finalize the model by training it on the entire training dataset and make predictions
for the hold-out validation dataset to confirm our findings. We achieve an accuracy of 86.8%
and F1 score of 87.0% on the hold-out validation dataset. A slight increase of these metrics is
the result of parameters optimization of RF algorithm. With this experiment, it is possible to

Table 5 Performance of ensemble models to predict stress

Boosting Bagging

AB GBM RF ET
accuracy 0.778 (0.028) 0.813 (0.019) 0.853 (0.019) 0.844 (0.016)
F1 weighted 0.775 (0.028) 0.810 (0.019) 0.852 (0.017) 0.841 (0.019)
ROC AUC 0.847 (0.014) 0.888 (0.012) 0.924 (0.010) 0.921 (0.006)
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Table 6 Parameter grid for RF

optimization Parameter Values
n_estimators [100, 800, 1200]
max_features [’sqrt’,’log2’]
min_samples_split [2,5,10]
min_samples_leaf [1,2,5]

draw the conclusion that some participant characteristics, such as weight, average sleeping
hours, type of schedule practiced by the worker, alcoholic beverages taken per day, combined
with some HRV features, facial expressions and PERCLOS, are good indicators of the stress
level of participants.

4 Challenges and limitations

Using a multimodal dataset for monitoring behaviour patterns of individuals in their work-
ing environment has the potential to provide valuable insights concerning their stress. This
research aimed to combine data from different sources, such as physiological data (from a
video-plethysmography application) and demographic data (from a self-reported question-
naire). The challenges that we faced in the study arose from the integration of multiple
sources of data, since data were collected in a real-life environment from heterogeneous
sources. Another challenge was related to acquiring sufficient labelled data. This is often
very difficult and expensive to obtain because workers are required to fill self-reported ques-
tionnaires. Finally, another limitation in our study is the large number of missing values
acquired from the video-plethysmography application because workers temporarily leave
their desk, e.g., due to meetings.

5 Conclusions and future work

Stress at work is common to many professions. Being aware of one’s own stress level is
an important step towards the prevention of diseases and increasing the productivity. This
paper presented a ML approach to develop a novel classification model to help workers
cope with their daily stress in the workplace. Data were collected from workers carrying
out their professional activities in an uncontrolled environment. The dataset comprising
measurements of heart beats per minute (BPM), percentage of eye closure (PERCLOS)
and facial expressions, was entirely built from scratch, using a video-based plethysmography
application. This dataset was complemented with a questionnaire answered through a desktop
application, specifically developed to collect some demographic data of workers and also for
the initial labelling of the physiological data collected.

Due to insufficient labelled data, semi-supervised learning was used to reduce the amount
of unlabelled data. Then, we developed four different models based on ensemble learning to
predict stress. The results of the experiments show that combining some HRV features, facial
expressions, and demographic data along with the PERCLOS, the RF algorithm provided
the best performing stress model with 86.8% accuracy, 80% recall and 87% F1 Score.

As future work, we plan to use multi-label classifiers in order to make a more assertive
stress prediction, with at least three classes. We also started to develop a stress recommenda-
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tion system that will integrate the stress detection model. With the help of the stress detection
model, the recommendation system will provide stress-easing recommendations that adapt to
the workers by considering their ratings from past recommendations, as well as their profiles.
The goal is to prevent future stress episodes and, most importantly, mitigate long-term stress.
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