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Abstract
The group of almost Riordan arrays contains the group ofRiordan arrays as a subgroup.
In this note, we exhibit examples of pseudo-involutions, conditions under which we
define an involution, and methods of constructing quasi-involutions in the group of
almost Riordan arrays.

Keywords Riordan arrays · Almost Riordan arrays · Involution · Pseudo-involution ·
Quasi-involution · Quasi-transitional matrix · Quasi-compression

1 Introduction

Since the initial paper [14] defining the Riordan group, there has been interest in
studying involutions, pseudo-involutions and quasi-involutions [6–8,10] associated to
this group. The idea of Riordan matrices with an extra column has origins from the
expression of the LDU decomposition for certain symmetric Toeplitz-plus-Hankel
matrix [1]. In this note, we take a look at involutions, pseudo-involutions and quasi-
involutions associated to the related group of almost Riordan arrays [2].

In this first section, we recall the definition of the Riordan group, and the definition
of the group of almost Riordan arrays (of order 1, initially). We then proceed to look at
almost Riordan pseudo-involutions of order one and two, and to conditions that allow
us to define involutions in the almost Riordan group. In the last section, we present
two methods of building a form of quasi-involutions of the almost Riordan group.
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We define Fr to be the set of formal power series of order r , where

Fr = {ar xr + ar+1x
r+1 + ar+2x

r+2 + · · · |ai ∈ R}

where R is a suitable ring with unit (which we shall denote by 1). In the sequel, we
shall take R = Z. The Riordan group over R is then given by the semi-direct product

R = F0 � F1.

To an element
(
g(x), f (x)

) ∈ R we associate the R-matrix with (n, k)-th element

Tn,k = [xn]g(x) f (x)k .

This is an invertible lower-triangular matrix. For g(x) ∈ F0 and f (x) ∈ F1, we shall
also use the notation

(
g(x), f (x)

)
to represent the matrix that begins

⎛

⎜⎜
⎝

g0 0 0 0
g1 g0 f1 0 0
g2 g0 f2 + g1 f1 g0 f 21 0
g3 g0 f3 + g1 f2 + g2 f1 2g0 f1 f2 + g1 f 21 g0 f 31

⎞

⎟⎟
⎠ .

Example 1 The Riordan array
(

1
1−x , x

1−x

)
has associated matrix equal to the binomial

matrix (Pascal’s triangle) B =
((n

k

))
. We have

Tn,k = [xn] 1

1 − x

xk

(1 − x)k

= [xn−k] 1

(1 − x)k+1

= [xn−k]
(−(k + 1)

j

)
(−1) j x j

= [xn−k]
(
k + 1 + j − 1

j

)
x j

=
(
k + n − k

n − k

)

=
(
n

k

)
,
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and we write

(
1

1 − x
,

x

1 − x

)
=

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

.

We shall confine ourselves to the subgroup

R(1) = F (1)
0 � F (1)

1 ,

where

g(x) ∈ F (1)
0 ↔ g0 = 1,

and

f (x) ∈ F (1)
1 ↔ f1 = 1.

This ensures that all elements of
(
g(x), f (x)

)−1 are in R, where

(
g(x), f (x)

)−1 =
(

1

g
(
f̄ (x)

) , f̄ (x)

)

.

Here, f̄ (x) is the compositional inverse of f (x). The multiplication in the Riordan
group is specified by

(
g(x), f (x)

) · (
u(x), v(x)

) =
(
g(x)u

(
f (x)

)
, v

(
f (x)

))
.

The element I = (1, x) is the identity for multiplication. The fundamental theorem
of Riordan arrays [14] says that if h(x) ∈ R[[x]] is a column vector, then from the
product of the Riordan matrix

(
g(x), f (x)

)
and h(x), we get the column vector

(
g(x), f (x)

) · h(x) = g(x)h
(
f (x)

)
.

Wecan interpret this in terms of thematrix interpretation of (g(x), f (x)) as follows.
It says that the generating function of elements of the infinite vector produced by
multiplying the vector whose elements are given by the expansion of h(x) (that is, the
vector (h0, h1, h2, . . .) by the matrix (Tn,k) is given by g(x)h

(
f (x)

)
.
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1.1 Almost Riordan arrays

Let a(x) ∈ F0 be the generating function of the initial column of an infinite lower tri-
angular matrix that its submatrix after the second column follows the Riordan structure
we described above. Such a matrix then begins

⎛

⎜⎜
⎝

a0 0 0 0
a1 g0 0 0
a2 g1 g0 f1 0
a3 g2 g0 f2 + g1 f1 1

⎞

⎟⎟
⎠ .

These matrices are called almost Riordan arrays of the first order, and we have shown
[2] that if we define the set

aR(1) = {(
a(x)

∣∣g(x), f (x)
)∣∣a(x) ∈ F0,

(
g(x), f (x)

) ∈ R}
,

then aR(1) is also a group, called the group of almost Riordan arrays (of order 1).
We recall that the product in the group of almost Riordan arrays (of first order), for

a(x), g(x), b(x), u(x) ∈ F0 and f (x), v(x) ∈ F1, is given by

(
a(x)

∣
∣g(x), f (x)

) · (
b(x)

∣
∣u(x), v(x)

) =
((
a(x)

∣
∣g(x), f (x)

)
b(x)

∣∣
∣g(x)u

(
f (x)

)
, v

(
f (x)

))
,

where the fundamental theorem of almost Riordan arrays [2], for h(x) ∈ F0, tells us
that

(
a(x)

∣
∣g(x), f (x)

) · h(x) = h0a(x) + xg(x)h̃
(
f (x)

)
,

with

h̃(x) = h(x) − h0
x

.

The inverse in aR(1) [2] is given by

(
a(x)

∣∣g(x), f (x)
)−1 =

(

a∗(x)
∣∣∣∣

1

g
(
f̄ (x)

) , f̄ (x)

)

,

where

a∗(x) = (
1
∣∣ − g(x), f (x)

)−1
a(x),

with

(
1
∣∣g(x), f (x)

)−1 =
(

1

∣∣∣∣
1

g
(
f̄ (x)

) , f̄ (x)

)

.
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To the almost Riordan array
(
a(x)

∣∣g(x), f (x)
)
, we associate the matrix M with

Mn,k = [xn−1]g(x) f (x)k−1, n, k ≥ 1,

Mn,0 = an,

M0,k = a00
k .

Example 2 (Chebyshev polynomials of the first kind) The Chebyshev polynomials of
the first kind Tn(x) [11] are defined by T0(x) = 1, T1(x) = x , and

Tn(x) = 2xTn−1(x) − Tn−2(x), n ≥ 2.

Their generating function is given by

∞∑

n=0

Tn(x)t
n = 1 − t x

1 − 2xt + t2
.

By its form, this is not the bivariate generating function of a Riordan array. It is,
however, defined by an almost Riordan array of the first order.

Proposition 1 The coefficient array tn,k of the Chebyshev polynomials of the first kind,
where

Tn(x) =
n∑

k=0

tn,k x
k,

is the lower-triangular matrix defined by the almost Riordan array

(
1

1 + x2

∣∣
∣∣

1 − x2

(1 + x2)2
,

2x

1 + x2

)
.

This array begins

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

−1 0 2 0 0 0 0 0
0 −3 0 4 0 0 0 0
1 0 −8 0 8 0 0 0
0 5 0 −20 0 16 0 0

−1 0 18 0 −48 0 32 0
0 −7 0 56 0 −112 0 64

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Proof We use the “dummy” parameter t to define our arrays, reserving x for the
polynomial coefficient. The bivariate generating function of the almost Riordan array
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(
1

1+t2

∣∣
∣∣

1−t2

(1+t2)2
, 2t
1+t2

)
is given by

(
1

1 + t2

∣∣
∣∣

1 − t2

(1 + t2)2
,

2t

1 + t2

)
· 1

1 − t x
,

which we evaluate using the fundamental theorem of almost Riordan arrays of first
order. We let

h(x) = 2t

1 + t2
�⇒ h̃(x) = x

1 − t x
.

Then,

(
1

1 + t2

∣∣∣∣
1 − t2

(1 + t2)2
,

2t

1 + t2

)
· 1

1 − t x
= 1

1 + t2
+ t(1 − t2)

(1 + t2)2
h̃

(
2t

1 + t2

)

= 1 − t x

1 − 2xt + t2
.

	

We can identify the normal subgroup of elements of the form

(
a(x)

∣∣1, x
)
with F0,

and hence, we have

aR(1) = F0 � R.

For instance, we have

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
a1 1 0 0 0 0 0
a2 0 1 0 0 0 0
a3 0 0 1 0 0 0
a4 0 0 0 1 0 0
a5 0 0 0 0 1 0
a6 0 0 0 0 0 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

·

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 2 1 0 0 0 0
0 3 3 1 0 0 0
0 4 6 4 1 0 0
0 5 10 10 5 1 0
0 6 15 20 15 6 1

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0
a1 1 0 0 0 0 0
a2 2 1 0 0 0 0
a3 3 3 1 0 0 0
a4 4 6 4 1 0 0
a5 5 10 10 5 1 0
a6 6 15 20 15 6 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

While all matrices in this note are of infinite extent for n, k ≥ 0 (except for the last
section), we display only indicative truncations.
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2 Pseudo-involutions in the group of almost Riordan arrays

We let Ī = (1,−x). We have Ī 2 = I . We say that
(
g(x), f (x)

) ∈ R is an

pseudo-involution in the Riordan group if
((
g(x), f (x)

)
Ī
)2 = I [13]. The matrix

corresponding to Ī is the diagonal matrix with diagonal (1,−1, 1,−1, . . .). In the
current section, we present pseudo-involutions which are almost Riordan arrays of
order 1 and order 2.

2.1 Pseudo-involutions in the group of almost Riordan arrays of first order

We shall say that
(
a(x)

∣∣g(x), f (x)
) ∈ aR(1) is a pseudo-involution in the group of

almost Riordan arrays (of order 1) if (M Ī )2 = I , where M is the matrix associated to(
a(x)

∣∣g(x), f (x)
)
. Equivalently, we require that

Ī M Ī = M−1. (1)

We then have the following proposition.

Proposition 2 The almost Riordan matrix
(
1+x(r−1)

1−x

∣∣∣ 1
(1−x)2

, x
1−x

)
is a pseudo-

involution in the group of almost Riordan arrays.

We note that the corresponding matrix M coincides with the binomial matrix(
1

1−x , x
1−x

)
, except that the initial column (1, 1, 1, . . .)T has been replaced by

(1, r , r , r , . . .)T . For r �= 1, this is not a Riordan matrix, but an almost Riordan
matrix. It begins

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0
r 1 0 0 0 0 0
r 2 1 0 0 0 0
r 3 3 1 0 0 0
r 4 6 4 1 0 0
r 5 10 10 5 1 0
r 6 15 20 15 6 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Proof Wemust show that the initial columnof the inversematrix is (1,−r , r ,−r , . . .)T ,
with generating function 1 − r x

1+x . The “interior” elements are taken care of by the

fact that the Riordan array
(

1
(1−x)2

, x
1−x

)
is a pseudo-involution in the Riordan group.

Now since
(
a(x)

∣∣g(x), f (x)
)−1 =

(

a∗(x)
∣∣∣∣

1

g
(
f̄ (x)

) , f̄ (x)

)

, (2)

we must calculate

a∗(x) = (
1
∣∣ − g(x), f (x)

)−1
a(x),
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where

a(x) = 1 + x(r − 1)

1 − x
, g(x) = 1

(1 − x)2
, and f (x) = x

1 − x
.

We have

a∗(x) = (
1
∣∣ − g(x), f (x)

)−1 · a(x)

=
(

1

∣
∣∣∣ − 1

g
(
f̄ (x)

) , f̄ (x)

)

· a(x)

=
(
1

∣∣∣∣ − 1

(1 + x)2
,

x

1 + x

)
1 + x(r − 1)

1 − x

= a0.1 + x

( −1

(1 + x)2

)
r

1 − x
1+x

= 1 − x

(1 + x)2
r(1 + x)

1 + x − x

= 1 − r x

1 + x
,

and the inverse matrix 2 begins

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0
−r 1 0 0 0 0 0
r −2 1 0 0 0 0

−r 3 −3 1 0 0 0
r −4 6 −4 1 0 0

−r 5 −10 10 −5 1 0
r −6 15 −20 15 −6 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

,

which satisfies Eq. (1). 	


We shall use the notation Ar =
(
1+x(r−1)

1−x

∣∣∣ 1
(1−x)2

, x
1−x

)
. We then have the follow-

ing lemma.

Lemma 1

Ap
r =

(
1 + px(r − 1)

1 − px

∣
∣∣∣

1

(1 − px)2
,

x

1 − px

)
.

Proof We deal with the Riordan array part first. Thus, we must show that

M =
(

1

(1 − x)2
,

x

1 − x

)
·
(

1

1 − (p − 1)x)2
,

x

1 − (p − 1)x

)

=
(

1

(1 − px)2
,

x

1 − px

)
.
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We have

M =
(

1

(1 − x)2
,

x

1 − x

)
·
(

1

1 − (p − 1)x)2
,

x

1 − (p − 1)x

)

=
(

1

(1 − x)2
1

(1 − (p − 1)x/(1 − x))2
,

x/(1 − x)

1 − (p − 1)x/(1 − x)

)

=
(

1

(1 − x − (p − 1)x)2
,

x

1 − x − (p − 1)x

)

=
(

1

(1 − px)2
,

1

1 − px

)
.

Next, we must show that

A(x) =
(
1 + x(r − 1)

1 − x

∣∣
∣∣

1

(1 − x)2
,

x

1 − x

)
· 1 + (p − 1)x(r − 1)

1 − (p − 1)x
= 1 + px(r − 1)

1 − px
.

We have

A(x) =
(
1 + x(r − 1)

1 − x

∣∣∣
∣

1

(1 − x)2
,

x

1 − x

)
· 1 + (p − 1)x(r − 1)

1 − (p − 1)x

= 1 + x(r − 1)

1 − x
+ x

(1 − x)2

(
1

x

(
1 + (p − 1)x(r − 1)

1 − (p − 1)x
− 1

)) (
x

1 − x

)

= 1 + x(r − 1)

1 − x
+ x

(1 − x)2

(
(p − 1)r

1 − (p − 1)x

) (
x

1 − x

)

= 1 + x(r − 1)

1 − x
+ x

(1 − x)2
(p − 1)r

1 − (p − 1)x/(1 − x)

= 1 + x(r − 1)

1 − x
+ x

1 − x

(p − 1)r

1 − x − (p − 1)x

= 1 + x(r − 1)

1 − x
+ x

1 − x

(p − 1)r

1 − p)x

= 1 + px(r − 1)

1 − px
.

This proves the Lemma. 	

Thus, Ap

r coincides with Mp, where Mp is defined as

Mp =
(

1

1 − px
,

x

1 − px

)
(3)

except that the initial column (1, p, p2, p3, . . .)T is replaced by (1, rp, rp2, rp3, . . .).
This leads us to the following proposition.

Proposition 3 Ap
r is a pseudo-involution in the group of almost Riordan matrices.
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Proof We wish to show that the initial column of (Ap
r )−1 is given by

(1,−rp, rp2,−rp3, . . .), with generating function 1 − prx
1+px . We have in this case

that

a∗(x) =
(
1

∣∣∣∣ − 1

(1 − px)2
,

x

1 − px

)−1 1 + px(r − 1)

1 − px

=
(
1

∣∣
∣∣ − 1

(1 + px)2
,

x

1 + px

)
1 + px(r − 1)

1 − px

= a0.1 + x

( −1

(1 + px)2

)

1 + 1

1 + px
(r − 1)

1 − p
1

1 + px

− 1

x

1 + px

= 1 − 1

1 + px

(
1 + px + px(r − 1) − 1

)

= 1 − prx

1 + px
.

	


Corollary 1 For each r �= 1, the matrix Ar generates a subgroup of pseudo-involutions
in the group of almost Riordan arrays of first order.

We note that we have

Ap
r · Aq

s =
(
1 + prx

1 − px
+ sx

(
1

1 − (p + q)x
− 1

1 − px

) ∣∣∣
∣

1

(1 − (p + q)x)2
,

x

1 − (p + q)x

)
.

Thus, Ap
r · Aq

s �= Aq
s · Ap

r in general.
We end this section by noting that if

(
g(x), f (x)

)
is a pseudo-involution in the

Riordan group, then
(
1
∣∣g(x), f (x)

)
is a pseudo-involution in the group of almost

Riordan arrays. We have

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0
r 1 0 0 0 0
r 2 1 0 0 0
r 3 3 1 0 0
r 4 6 4 1 0
r 5 10 10 5 1

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0
r 1 0 0 0 0
r 0 1 0 0 0
r 0 0 1 0 0
r 0 0 0 1 0
r 0 0 0 0 1

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

·

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 2 1 0 0 0
0 3 3 1 0 0
0 4 6 4 1 0
0 5 10 10 5 1

⎞

⎟⎟⎟
⎟⎟
⎟
⎠

,
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where the last matrix
(
1
∣∣
∣ 1
(1−x)2

, x
1−x

)
is a pseudo-involution. Taking inverses, we

obtain

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
−r 1 0 0 0 0
r −2 1 0 0 0

−r 3 −3 1 0 0
r −4 6 −4 1 0

−r 5 −10 10 −5 1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 −2 1 0 0 0
0 3 −3 1 0 0
0 −4 6 −4 1 0
0 5 −10 10 −5 1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

·

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
−r 1 0 0 0 0
−r 0 1 0 0 0
−r 0 0 1 0 0
−r 0 0 0 1 0
−r 0 0 0 0 1

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

.

2.2 Pseudo-involutions in the group of almost Riordan arrays of the second order

It is possible [2] to extend the definition of aR(1) to derive the group aR(2) of almost
Riordan arrays of order 2. The elements of this group are of the form

(
a(x), b(x)

∣
∣g(x), f (x)

)

where a0 = 1, b0 = 1, g0 = 1 and f0 = 0, f1 = 1. The fundamental theorem for this
group states that

(
a(x), b(x)

∣∣g(x), f (x)
) · h(x) = h0a(x) + h1xb(x) + x2g(x) ˜̃h(

f (x)
)
,

where

˜̃h(x) = h(x) − h0 − h1x

x2
.

Following [2], we can define the inverse of a 4-tuple as follows.

(
a(x), b(x)

∣∣g(x), f (x)
)−1 =

(

a∗∗(x), b∗(x)
∣∣∣∣

1

g
(
f̄ (x)

) , f̄ (x)

)

, (4)

where

b∗(x) = (
1
∣∣ − g(x), f (x)

)−1 · b(x) =
(

1

∣∣∣
∣ − 1

g
(
f̄ (x)

) , f̄ (x)

)

· b(x), (5)

and

a∗∗(x) = (
1,−b(x)

∣
∣−g(x), f (x)

)−1·a(x) =
(

1,−b∗(x)
∣∣
∣∣ − 1

g
(
f̄ (x)

) , f̄ (x)

)

·a(x).

(6)
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Example 3 We define an element of aR(2) by
(
1+x
1−x , 1+x

1−x

∣∣
∣ 1
(1−x)2

, x
1−x

)
. The corre-

sponding matrix M is then defined by

Mn,k = [xn]xk 1 + x

1 − x
, k < 2;

Mn,k = [xn] xk

(1 − x)k
, k ≥ 2.

Thus, the matrix M begins

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
2 1 0 0 0 0 0
2 2 1 0 0 0 0
2 2 2 1 0 0 0
2 2 3 3 1 0 0
2 2 4 6 4 1 0
2 2 5 10 10 5 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

The inverse of this matrix then begins

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0
−2 1 0 0 0 0 0
2 −2 1 0 0 0 0

−2 2 −2 1 0 0 0
2 −2 3 −3 1 0 0

−2 2 −4 6 −4 1 0
2 −2 5 −10 10 −5 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Note that we have

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 0 1 0 0
2 2 0 0 1 0
2 2 0 0 0 1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

·

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 2 1 0 0
0 0 3 3 1 0
0 0 4 6 4 1

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 2 1 0 0
2 2 3 3 1 0
2 2 4 6 4 1

⎞

⎟⎟⎟⎟
⎟⎟
⎠

.

That gives us the following proposition.

Proposition 4 The element
(
1+x
1−x , 1+x

1−x

∣∣∣ 1
(1−x)2

, x
1−x

)
of aR(2) is a pseudo-involution.

Proof We have

b∗(x) =
(
1

∣∣∣∣ − 1

(1 − x)2
,

x

1 − x

)−1 1 + x

1 − x
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=
(
1

∣∣
∣∣ − 1

(1 + x)2
,

x

1 + x

)
1 + x

1 − x

= 1 − x

(1 + x)2
2

1 − x
1+x

= 1 − 2

1 + x
= 1 − x

1 + x
,

which expands to give 1 − 2, 2,−2, . . ..
We then obtain that

a∗∗(x) =
(
1,−1 − x

1 + x

∣∣∣
∣ − 1

(1 + x)2
,

x

1 + x

)
1 + x

1 − x

= 1 − 2x
1 − x

1 + x
− x2

(1 + x)2
2(1 + x)

1 + x − x

= 1 − x

1 + x
.

Thus,

M−1 =
(
1 − x

1 + x
,
1 − x

1 + x

∣
∣∣∣

1

(1 + x)2
,

x

1 + x

)
.

We can now show that

M−1 = Ī · M · Ī .

Thus, we have

I = M · M−1

= M · Ī · M · Ī
= (M · Ī ) · (M · Ī )
= (M · Ī )2.

Thus, M is a pseudo-involution. 	

It is possible to extend this result to higher orders. For instance, we can consider

the almost Riordan array of third order defined by
(
1+x
1−x , 1+x

1−x , 1+x
1−x

∣∣∣ 1
(1−x)2

, x
1−x

)
. The

corresponding matrix has

Mn,k = [xn]xk 1 + x

1 − x
, k < 3;

Mn,k = [xn] xk

(1 − x)k−1 , k ≥ 3,
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and begins

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
2 2 2 1 0 0 0 0
2 2 2 2 1 0 0 0
2 2 2 3 3 1 0 0
2 2 2 4 6 4 1 0
2 2 2 5 10 10 5 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

.

The inverse of this matrix begins

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0
−2 1 0 0 0 0 0 0
2 −2 1 0 0 0 0 0

−2 2 −2 1 0 0 0 0
2 −2 2 −2 1 0 0 0

−2 2 −2 3 −3 1 0 0
2 −2 2 −4 6 −4 1 0

−2 2 −2 5 −10 10 −5 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

3 Involutions in the group of almost Riordan arrays

Let R = (
g(x), f (x)

)
be an ordinary Riordan array of order 2, which means that

R2 = I . We call such a Riordan array R an involution. Multiplying R with itself, we
get

R2 = I ⇔ (
g(x), f (x)

) · (
g(x), f (x)

) = (1, x),

and

(
g(x)g

(
f (x)

)
, f

(
f (x)

)) = (1, x), (7)

which gives us f
(
f (x)

) = x , and g
(
f (x)

) = 1
g(x) .

Searching for involutions among the almost Riordan matrices, we suppose that we
have the involution

(
a(x)

∣∣g(x), f (x)
)
, so we want

(
a(x)

∣∣g(x), f (x)
) · (

a(x)
∣∣g(x), f (x)

) = (1|1, x)

which becomes

((
a(x)

∣∣g(x), f (x)
) · a(x)

∣∣∣g(x) · g( f (x)), f
(
f (x)

)) = (1|1, x). (8)
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The same conditions as in the case of the involutions of (7) are satisfied for the internal
generating functions g(x) and f (x) of (8), while for the initial column on the left, we
have that

(
a(x)

∣∣g(x), f (x)
) · a(x) = a0a(x) + xg(x)

a
(
f (x)

) − a0
f (x)

= a0a(x) + xg(x)a
(
f (x)

)

f (x)
− a0xg(x)

f (x)

= a0

(
a(x) − xg(x)

f (x)

)
+ xg(x)a

(
f (x)

)

f (x)
, (9)

which has to be equal to 1. According to the definition of an almost Riordan array,
the generating function of the initial column a(x) is a power series in F0 , while also
g(x) ∈ F0, and f (x) ∈ F1.

A first result is the following.

Proposition 5 If
(
g(x), f (x)

)
is an involution inR, then

(
1|g(x), f (x)

)
is an involu-

tion in aR(1).

Proof We have a(x) = 1 and thus

a0

(
a(x) − xg(x)

f (x)

)
+ xg(x)a

(
f (x)

)

f (x)
= 1 − xg(x)

f (x)
+ xg(x)

f (x)
= 1,

as required. 	

By choosing a(x) = xg(x)

f (x) , we get a power series in F0, and Eq. (9) becomes

a0

(
a(x) − xg(x)

f (x)

)
+ xg(x)a

(
f (x)

)

f (x)
= xg(x)a

(
f (x)

)

f (x)

=
xg(x)

f (x)g
(
f (x)

)

f
(
f (x)

)

f (x)

Applying the conditions of (7), we have that this is equal to 1. Hence, we have proven
the following proposition.

Proposition 6 Let
(
g(x), f (x)

)
be an ordinary Riordan involution, then the almost

Riordan array
(
a(x)

∣∣g(x), f (x)
)
is also an involution if a(x) = xg(x)

f (x) .

For the Riordan family of subgroups which are solely defined by their second
generating function f ,

H [r , s, p] =
{((

f (z)

z

)r

( f ′(z))s
(

f (z) − 1

z − 1

)p

, f (z)

) ∣∣∣
∣(r , s, p) ∈ Q

3, f (z) ∈ F1

}
,

we only need the condition f = f̄ , as the g function depends on f [4].
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Corollary 2 Let H f [ρ, σ, π ] =
( (

f (x)
x

)ρ (
( f ′(x)

)σ
(

f (x)−1
x−1

)π

, f (x)

)
be a Rior-

dan involution, then the almost Riordan array

((
f (x)

x

)ρ−1 (
f ′(x)

)σ
(

f (x) − 1

x − 1

)π ∣∣
∣∣

(
f (x)

x

)ρ (
f ′(x)

)σ
(

f (x) − 1

x − 1

)π

, f (x)

)

is also an involution.

Example 4 Let f (x) = − x
1+x , so H f [1, 1, 1]will be

(
f (x)
x f ′(x) f (x)−1

x−1 , f (x)
)
, which

corresponds to the matrix

(
1 + 2x

(1 + x)4(1 − x)
,− x

1 + x

)
=

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
1 −3 −3 −1 0 0 0 0

−4 2 6 4 1 0 0 0
10 2 −8 −10 −5 −1 0 0

−18 −12 6 18 15 6 1 0
30 30 6 −24 −33 −21 −7 −1

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

,

which is an involution, as f = f̄ . Now, the almost Riordan matrix which contains
H f [1, 1, 1] and it is also an involution will be

(
f ′(x) f (x) − 1

x − 1

∣∣
∣∣
f (x)

x
f ′(x) f (x) − 1

x − 1
, f (x)

)
=

(
1 + 2x

(1 + x)3(1 − x)
,− x

1 + x

)

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0
2 1 2 1 0 0 0 0

−3 1 −3 −3 −1 0 0 0
6 −4 2 6 4 1 0 0

−8 10 2 −8 −10 −5 −1 0
12 −18 −12 6 18 15 6 1

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

We note that in the general case, the almost Riordan array
(
xg(x)
f (x)

∣
∣∣g(x), f (x)

)
is in

fact a Riordan array. It coincides with the Riordan array
(
xg(x)
f (x) , f (x)

)
. Iterating, we

have the following proposition.

Proposition 7 If
(
g(x), f (x)

)
is an involution in R, then so is

(
xn

f (x)n g(x), f (x)
)
.

Proof Let
(
g(x), f (x)

)
be an involution. That means f (x) = f̄ (x) and g

(
f (x)

) =
1

g(x) . For the Riordan array
(
G(x), f (x)

)
, where G(x) = xn

f (x)n g(x), it can be easily
shown that

G
(
f (x)

) = 1

G(x)
.
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This is so since we have

G
(
f (x)

) = ( f (x))n

( f ( f (x)))n · g(x) = ( f (x))n

xn · g(x) = 1

G(x)
.

	

We also note that the Riordan array

(
xn

f (x)n g(x), f (x)
)
can also be written as an

almost Riordan array as

(
xn

f (x)n g(x)

∣∣∣∣
xn

f (x)n g(x), f (x)

)
.

We now exhibit some simple involutions in the almost Riordan group.

Proposition 8 The almost Riordan array of first order given by

(
1

1+x

∣
∣∣∣ − 1, x

)
, and

which begins

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 0 −1 0 0 0 0

−1 0 0 −1 0 0 0
1 0 0 0 −1 0 0

−1 0 0 0 0 −1 0
1 0 0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

is an involution.

Proof We must show that

(
1

1+x

∣∣∣∣ − 1, x

)
.

(
1

1+x

∣∣∣∣ − 1, x

)
= I . We have

(
1

1 + x

∣∣∣∣ − 1, x

)
.

(
1

1 + x

∣∣∣∣ − 1, x

)
=

((
1

1 + x

∣∣∣∣ − 1, x

)
1

1 + x

∣∣∣∣1, x
)

.

Now for h(x) = 1
1+x , we have h̃(x) = −1

1+x . Thus, we have

(
1

1 + x

∣
∣∣∣ − 1, x

)
· 1

1 + x
= 1

1 + x
+ x · (−1) ·

( −1

1 + x

)
= 1 + x

1 + x
= 1.

Thus, we have

(
1

1 + x

∣∣∣∣ − 1, x

)2

= (1|1, x)

as required. 	

Example 5 In like fashion, we can show that the almost Riordan array of first order
given by

(
1

1 − x

∣∣∣∣ − 1 + x

1 − x
,−x

)
,
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which begins

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 −2 1 0 0 0 0
1 −2 2 −1 0 0 0
1 −2 2 −2 1 0 0
1 −2 2 −2 2 −1 0
1 −2 2 −2 2 −2 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,

is an involution.

There is a general constructionwhich allows us to find, for any given almost Riordan
array of first order, an almost Riordan array that is an involution.

Proposition 9 Let
(
a(x)

∣∣g(x), f (x)
)
be an almost Riordan array of first order. Then,

the almost Riordan array defined by the product

(
a(x)

∣∣g(x), f (x)
) ·

(

a0 + xã
(
f̄ (−x)

)

g
(
f̄ (−x)

)
∣∣∣∣

1

g
(
f̄ (−x)

) , f̄ (−x)

)

is an involution in the group of almost Riordan arrays of first order.

Proof Using the product rule in the group of almost Riordan arrays of first order, we
find that the product is equal to (1|1, x). 	


The similar result for Riordan arrays is given in [3].

Example 6 We consider the almost Riordan array of first order which begins

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 2 2 1 0 0 0
1 3 3 3 1 0 0
1 5 5 5 4 1 0
1 8 8 8 8 5 1

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

This is defined by

(
1

1−x

∣∣∣∣
1

1−x−x2
, x(1 + x)

)
. We have f̄ (x) = xc(−x), where c(x) =

1−√
1−4x
2x is the generating function of the Catalan numbers. Then, 1

g
(
f̄ (x)

) = 1 − x .

We find that the product of the proposition is then given by

(
1

1 − x

∣
∣∣
∣

1

1 − x − x2
, x(1 + x)

)
·
(
4 + 5x + 3x2 + x(1 + x)

√
1 − 4x

2(2 + x)

∣
∣∣
∣1 + x,−xc(x)

)

.
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This matrix begins

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0
2 −1 0 0 0 0 0
2 −2 1 0 0 0 0
2 −4 4 −1 0 0 0
0 −6 12 −6 1 0 0

−6 −10 34 −24 8 −1 0
−30 −16 102 −86 40 −10 1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

The Riordan array part of the above product is given by

(
1

1 − x − x2
, x(1 + x)

)
· (
1 + x,−xc(x)

)

=
(
1 + x + x2

1 − x − x2
,−x(1 + x)c

(
x(1 + x)

))
.

In order to work out the first term of the resulting almost Riordan array, we set

b(x) = 4 + 5x + 3x2 + x(1 + x)
√
1 − 4x

2(2 + x)
�⇒ b̃ = (1 + x)(3 + √

1 − 4x)

2(2 + x)
.

Then, the first term is given by

1 · 1

1 − x
+ x

1 − x − x2
b̃
(
x(1 + x)

)

= 4 + x − 4x2 − 4x3 − 5x4 + x(1 − x)(1 + x + x2)
√
1 − 4x − 4x2

2(1 − x)(1 − x − x2)(2 + x + x2)
.

The involution in the group of almost Riordan arrays of first order that we seek is then
given by

(
4 + x − 4x2 − 4x3 − 5x4 + x(1 − x)(1 + x + x2)

√
1 − 4x − 4x2

2(1 − x)(1 − x − x2)(2 + x + x2)

∣∣∣∣

1 + x + x2

1 − x − x2
,−x(1 + x)c

(
x(1 + x)

))
.

4 Quasi-involutions in the group of almost Riordan arrays

We present two methods of constructing almost Riordan quasi-involutions based on
quasi-involutions that come from intersections of known Riordan subgroups [9,12],
and using their quasi-compressions [5]. First, by adjoining an extra column on the left
of a Riordan quasi-involution, and then by replacing the initial column of such matrix.
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We consider the quasi-involution [8]

(
g(x), xg(x)

) =
(
1 − x2 − √

1 − 6x2 + x4

2x2
,
1 − x2 − √

1 − 6x2 + x4

2x

)

.

The corresponding matrix begins

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0
0 4 0 1 0 0 0 0 0
6 0 6 0 1 0 0 0 0
0 16 0 8 0 1 0 0 0
22 0 30 0 10 0 1 0 0
0 68 0 48 0 12 0 1 0
90 0 146 0 70 0 14 0 1

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

.

The initial column of this matrix is given by the aerated large Schroeder numbers

1, 0, 2, 0, 6, 0, 22, 0, 90, 0, 394, 0, 1806, 0, 8558, . . . .

The inverse of this matrix begins

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

−2 0 1 0 0 0 0 0 0
0 −4 0 1 0 0 0 0 0
6 0 −6 0 1 0 0 0 0
0 16 0 −8 0 1 0 0 0

−22 0 30 0 −10 0 1 0 0
0 −68 0 48 0 −12 0 1 0
90 0 −146 0 70 0 −14 0 1

⎞

⎟⎟
⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

We say that when an aerated matrix has an inverse with the same elements as the
original matrix, except that the signs change on alternate nonzero diagonals, then the
matrix is a quasi-involution. A Riordan array

(
g(x2), xg(x2)

)
is a quasi-involution

if its inverse is given by
(
g(−x2), xg(−x2)

)
. This will be the case if and only if the

Ω1,1-sequence of the array satisfies Ω1,1(x) = 1
Ω1,1(−x) [8]. For the matrix above, we

have Ω1,1 = 1+x
1−x .
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4.1 Adding a new column

Recently, it has been shown that certain types of quasi-involutions of different levels
can be related by

W = Q2k .Q
−1
k , (10)

where Q2k is a 2k-aerated Riordan quasi-involution, while Qk is a Riordan matrix
which is based on the generating functions of Q2k and holds the quasi-involution
property. We name Qk as the (k-aerated) quasi-compression of Q2k , whileW is called
the quasi-transitional matrix [5].

Equation 10 gives us

(
F(x)

x
, F(x)

)
=

(
f (x)

x
, f (x)

)
.

(
f ∗(x)
x

, f ∗(x)
)−1

(11)

where F(x) = x
k
√√

1−cx2k+cxk
, f (x) = x

2k
√

1−cx2k
, and f ∗(x) = x

k
√

1−cxk
.

Now, by adding a column on each of the arrays on the RHS of (11), we have:

(
A(x)

∣∣∣
∣

1
2k
√
1 − cx2k

,
x

2k
√
1 − cx2k

)
.

(
a(x)

∣∣∣
∣

1
k
√
1 + cxk

,
x

k
√
1 + cxk

)

where A, a ∈ F0, and their quasi-transitional matrix becomes

(

A(x) + a
(
f (x)

) + 1

∣∣
∣∣

1
k
√√

1 − cx2k + cxk
,

x
k
√√

1 − cx2k + cxk

)

(12)

We note that A(x) needs to be a 2k-aerated, and a(x) a k-aerated formal power series,
as we see on the following example.

Example 7 Let the Riordan quasi-involution

Y =
(

1√
1 − 8x2

,
x√

1 − 8x2

)
=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

1 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 · · ·
4 0 1 0 0 0 0 · · ·
0 8 0 1 0 0 0 · · ·
24 0 12 0 1 0 0 · · ·
0 64 0 16 0 1 0 · · ·

160 0 120 0 20 0 1 · · ·
...

...
...

...
...

...
...

. . .

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,
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and let

σY =
(
K (x)

∣∣
∣∣

1√
1 − 8x2

,
x√

1 − 8x2

)
=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
A 0 1 0 0 0 0 0 · · ·
0 4 0 1 0 0 0 0 · · ·
B 0 8 0 1 0 0 0 · · ·
0 24 0 12 0 1 0 0 · · ·
Γ 0 64 0 16 0 1 0 · · ·
0 160 0 120 0 20 0 1 · · ·
...

...
...

...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,

be the same matrix with the extra column

1, 0, A, 0, B, 0, Γ , 0,Δ, 0, E, 0, Z , 0, H , 0,Θ, 0, I .. (13)

on the left.
We need σY · (σY )−1 = I , where

(σY )−1 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·

−A 0 1 0 0 0 0 0 · · ·
0 −4 0 1 0 0 0 0 · · ·
B 0 −8 0 1 0 0 0 · · ·
0 24 0 −12 0 1 0 0 · · ·

−Γ 0 64 0 −16 0 1 0 · · ·
0 −160 0 120 0 −20 0 1 · · ·
...

...
...

...
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

which leads us to the equations

B = 4A

Δ = 4(3Γ − 7A)

Z = 4(5E − 320Γ − 3, 904A)

...

Hence, the sequence (13) is expressed as the formal power series

K (x) = 1+ Ax2 +4Ax4 +Γ x6 +4(3Γ −7A)x8 + Ex10 +4(5E −320Γ −3, 904A)x12 +· · · ,

(14)
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and we say that the almost-Riordan array

σY =
(
K (x)

∣∣
∣∣

1√
1 − 8x2

,
x√

1 − 8x2

)

is a quasi-involution in αR(1).
For the quasi-compression of σY , we take the Pascal-like array

σY ∗ =
(
k(x)

∣∣∣∣
1

1 − 8x
,

x

1 − 8x

)
,

where, by working similarly, we get

k(x) = 1 + αx + 4αx2 + γ x3 + (12γ + 22α)x4 + · · · . (15)

And the formal power series K (x) and k(x) from (14) to (15) respectively, are used
in (12) to link these two quasi-involutions through Eq. 10.

4.2 Replacing a column

We also define quasi-involutions in αR, by replacing the first column of a given
quasi-involution. Again, we have the quasi-involution of the form

(
f (x)

x
, f (x)

)
=

(
1

2k
√
1 − cx2k

,
x

2k
√
1 − cx2k

)
.

Since the Riordan array structure of the matrix that we are going to construct starts

from the second column, its generating function will be f 2(x)
x , while the multiplier

function remains the same. So, we have

U2k =
(
B(x)

∣
∣∣∣
f (x)

x
f (x), f (x)

)
=

(
B(x)

∣
∣∣∣

x
k
√
1 − cx2k

,
x

2k
√
1 − cx2k

)
,

and

U−1
k =

(

b(x)

∣∣
∣∣

x
k
√

(1 + cxk)2
,

x
k
√
1 + cxk

)

,

the inverse of the almost-Riordan matrix which is constructed by its quasi-
compression. So, their quasi-transitional matrix W = U2k ·U−1

k is

⎛

⎝B(x) + x f (x)
k−1
2

(
b

(√
f (x)

x

)
− 1

) ∣
∣∣
∣

x f (x)

k
√

(
√
1 − cx2k + cxk)2

,
x

k
√√

1 − cx2k + cxk

⎞

⎠

(16)
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Example 8 Using the same Riordan quasi-involution as in Example 7, we have the
almost-Riordan array

τY =
(

Λ(z)

∣∣∣∣
z

1 − 8z2
,

z√
1 − 8z2

)
=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 · · ·
A 0 1 0 0 0 0 0 · · ·
0 8 0 1 0 0 0 0 · · ·
B 0 12 0 1 0 0 0 · · ·
0 64 0 16 0 1 0 0 · · ·
C 0 120 0 20 0 1 0 · · ·
0 512 0 192 0 24 0 1 · · ·
...

...
...

...
...

...
...

...
. . .

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

and working similarly as in Example 7, we get that

Λ(x) = 1 + Ax + 6Ax2 + Cx3 + (280A + 14C)x4 + · · · (17)

Additionally, the quasi-compression of τY is

τY ∗ =
(

λ(x)

∣∣∣
∣

x

(1 − 8x)2
,

x√
1 − 8x

)
,

where
λ(x) = 1 + ax + 8ax2 + cx3 + (512a − 16c)x4 + · · · . (18)

Again, the formal power series Λ(x) and λ(x) from (17) and (18) respectively, are
used in (16) to link these two quasi-involutions through Eq. (10).

We note that for the appropriate values of the parameters A, B,C, D, . . . and
a, b, c, d, . . . of the almost-Riordan arrays with a replaced column, these matrices
are equal to their equivalent quasi-involutions of the Riordan group.
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