
Journal of Grid Computing (2024) 22:62
https://doi.org/10.1007/s10723-024-09777-z

RESEARCH

CMK: Enhancing Resource Usage Monitoring across
Diverse Bioinformatics Workflow Management Systems

Robert Nica · Stefan Götz · Germán Moltó

Received: 26 February 2024 / Accepted: 23 July 2024
© The Author(s) 2024

Abstract The increasing use of multiple Workflow
Management Systems (WMS) employing various
workflow languages and shared workflow repositories
enhances the open-source bioinformatics ecosystem.
Efficient resource utilization in these systems is cru-
cial for keeping costs low and improving processing
times, especially for large-scale bioinformatics work-
flows running in cloud environments. Recognizing this,
our study introduces a novel reference architecture,
Cloud Monitoring Kit (CMK), for a multi-platform
monitoring system. Our solution is designed to gen-
erate uniform, aggregated metrics from containerized
workflow tasks scheduled by different WMS. Central
to the proposed solution is the use of task labeling
methods, which enable convenient grouping and aggre-
gating of metrics independent of the WMS employed.
This approach builds upon existing technology, pro-
viding additional benefits of modularity and capacity
to seamlessly integrate with other data processing or
collection systems. We have developed and released

R. Nica · G. Moltó (B)
Instituto de Instrumentación para Imagen Molecular (I3M), Cen-
tro mixto CSIC - Universitat Politècnica de València, Camino de
Vera s/n, Valencia 46022, Spain
e-mail: gmolto@dsic.upv.es

R. Nica (B) · S. Götz
BioBam Bioinformatics S.L., Avenida Peris y Valero 78-23,
Valencia 46006, Spain
e-mail: bogni@doctor.upv.es

S. Götz
e-mail: sgoetz@biobam.com

an open-source implementation of our system, which
we evaluated on Amazon Web Services (AWS) using
a transcriptomics data analysis workflow executed on
two scientific WMS. The findings of this study indi-
cate that CMK provides valuable insights into resource
utilization. In doing so, it paves the way for more effi-
cient management of resources in containerized scien-
tific workflows running in public cloud environments,
and it provides a foundation for optimizing task con-
figurations, reducing costs, and enhancing scheduling
decisions. Overall, our solution addresses the imme-
diate needs of bioinformatics workflows and offers a
scalable and adaptable framework for future advance-
ments in cloud-based scientific computing.

Keywords Cloud computing · Monitoring · High-
throughput computing · Workflow management
systems · Bioinformatics infrastructure

1 Introduction

Generating increasingly large and complex datasets
has become standard in modern biological research.
Cloud computing, available from providers like Ama-
zon Web Services (AWS) [1], Google Cloud [2], or
Microsoft Azure [3], empowers research communi-
ties to self-provision customized virtual computing
infrastructures. These public Cloud providers allocate
computing, storage, networking, and services to users,
allowing them to perform computations on a pay-as-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-024-09777-z&domain=pdf

 62 Page 2 of 19 Journal of Grid Computing (2024) 22:62

you-go basis. The capacity, versatility, and ability to
provision on-demand computing resources make cloud
computation services appealing to researchers handling
big data, such as bioinformaticians.

Complementary to cloud computing, the transition
from Virtual Machines (VM) to software containers has
marked a significant shift in scientific computing. VMs
are commonly used in Cloud platforms to provide the
computation substrate on which applications are exe-
cuted, together with the isolation boundary, according
to a set of predefined templates that specify the capabil-
ities regarding numbers of virtual CPUs and disk stor-
age, among other criteria. However, in recent years,
a lighter kind of virtualization, called software con-
tainers [4], has become the de facto standard for run-
ning scientific algorithms [5]. Benefits of running soft-
ware bundled in containers include minimal overhead
[6], compared to virtual machines, and inclusion of all
dependencies necessary for running the software; these
aspects streamline the execution of tools and scripts
created in different programming languages like R,
Python, or Perl [7,8].

In the context of bioinformatics, Cloud computing
and container technology are often used synergistically
to improve workflows or pipelines, offering scalable
resources and reproducible environments for the effi-
cient handling of complex sequences of data analy-
sis tasks. Reproducibility, an aspect of research that
becomes increasingly difficult with more complex data
analysis tasks, is essential for validating scientific find-
ings and ensuring the integrity of the study. Bioinfor-
maticians, in particular, often face challenges associ-
ated with sharing fully reproducible analysis pipelines
[9]. Established best practices for ensuring data repro-
ducibility include the use of standardized workflow
languages, such as the Common Workflow Language
(CWL) [10], or the Workflow Description Language
(WDL) [11], all of which provide the ability to define
complex computational tasks in a structured, interop-
erable format and share workflows across different
computing environments without the need to alter the
underlying code. Moreover, adherence to the FAIR
Data Principles and FAIR Computational Workflows
[12] allows researchers to identify processing-specific
requirements. An additional measure to help ensure
data reproducibility, provenance tracking [13], captures
the entire life cycle of the data in a workflow [14,15];
however, it has yet to be adopted broadly. Finally, most
of the software tools used in science are available in

software containers that bundle dependencies and can
be executed with simple commands or combined in
workflows with other tools. These scientific workflows
are often shared with the scientific community through
workflow repositories such as Dockstore [16] or Work-
flowHub [17].

It is within this context that Workflow Manage-
ment Systems (WMS) like Toil [18], Cromwell [11],
miniwdl [19], or Nextflow [20], become integral. Such
WMS offer a way to accurately automate and orches-
trate the execution of complex workflows and process
large amounts of data. Furthermore, they are compati-
ble with standard systems of clusters and cloud comput-
ing services and can therefore be leveraged in analyses
of large datasets. The most commonly adopted cloud
services for WMS task computation are batch systems
like AWS Batch [21], Azure Batch [22], and Google
Batch [23], which dynamically allocate resources to
meet the requirements of the analysis tasks. WMS acts
as an easily accessible entry point for the user and hides
the complexity of the analysis on the back-end. A WMS
can run as a server (e.g., Cromwell and Galaxy) [24],
where one instance of the WMS controls the execution
of many workflows, or as a head task (e.g., Nextflow
and miniwdl), where many WMS instances run in par-
allel with each controlling the execution of a single
workflow.

To enhance the functionality and interoperability
of WMS like those previously described, efforts have
been made to establish uniform communication pro-
tocols within the bioinformatics computational envi-
ronment (Fig. 1). The Global Alliance for Genomics
& Health (GA4GH) has played a key role in this
effort through the introduction of their Task Execution
Schema (TES) [25], which specifies a communication
protocol between the WMS and the computation envi-
ronment. While direct implementation of TES by Cloud
services is still pending, open-source TES server imple-
mentations, like Funnel [26], offer a bridge, facilitating
compatibility among different WMS.

Complementing the TES, GA4GH also developed
the Workflow Execution Service Schema (WES) [27],
which defines an API to provide a consistent framework
for developers to build compatible workflow execution
systems. The WES specification includes endpoints for
submitting workflows in accepted workflow languages,
monitoring the execution progress, and retrieving the
results. A WES implementation can leverage multi-
ple workflow runners and support various workflows.

123

Journal of Grid Computing (2024) 22:62 Page 3 of 19 62

Fig. 1 Example of workflow languages, workflow runners and back-end processing connected through GA4GH WES and TES speci-
fication implementations

The runners can then delegate the task execution to a
common TES implementation. Many runners already
implement execution support for most commonly used
processing back-ends, like Slurm [28] clusters or Batch
cloud services, to schedule tasks directly on these sys-
tems.

Overall, WMS, when employed according to the
established best practices, simplify the process of
running scientific algorithms in the cloud, providing
researchers with instant access to virtually unlimited
computing infrastructure and services without the has-
sle of provisioning and maintaining in-house clusters.

Despite these developments, resource allocation and
monitoring in the Cloud environments pose a signifi-
cant challenge, particularly since scientific tools may
irregularly/unequally use assigned resources. This hap-
pens because each analytical task individually speci-
fies resources needed in terms of the number of CPUs,
memory, or disk space necessary for the execution.
Thus, these values should be carefully selected to pro-
vide the task with enough resources for execution
while avoiding over-provisioning resources that will
not be used. A clear illustration of the consequences
of resource mismanagement is evident in a June 2022
study conducted by Forrester Consulting for HashiCorp
[29]. The study highlighted that a substantial percent-
age of cloud-related expenses incurred by companies
were attributed to “idle or underused resources” (66%)
and “overprovisioning of resources” (59%). This phe-
nomenon, often called “cloud waste”, underscores the
financial implications of inefficient resource utiliza-
tion.

The monitoring services offered by cloud providers
display the use of resources in the cloud infrastructure
at the virtual machine level or in terms of cluster reser-

vation percentage. However, these services do not allow
for the inspection of resource use for individual con-
tainers running alongside others in a cluster. To address
this gap, a custom system is needed to extract infor-
mation about how each container’s assigned resources
are used and determine how the resources should be
adjusted for the tasks. This need also extends to creat-
ing container resource requirements profiles based on
the task parameters and data.

2 Goals

Detailed monitoring is crucial for identifying and
debugging issues during the container’s execution, such
as a lack of memory, CPU, or disk space. Additionally,
by closely monitoring the resources a task uses, it is
possible to adjust the resources assigned and optimize
the execution costs, which is essential in a cloud envi-
ronment where prices vary depending on the resources
used. Furthermore, predictive models can be developed
to forecast the costs of an analysis based on previous
executions, enabling efficient scheduling of tasks with
an awareness of the estimated duration and size of the
resources needed for the execution [30]. In addition to
the requirement for detailed monitoring of individual
tasks, effective monitoring across diverse systems and
the necessity of unified metrics are equally important
as researchers more frequently utilize multiple WMSs
to run workflows from public repositories, which are
often defined in different workflow languages.

In response to these challenges, we present a
resource usage monitoring solution tailored for scien-
tific WMS. We propose a flexible, event-driven archi-
tecture that works on multiple platforms and collects

123

 62 Page 4 of 19 Journal of Grid Computing (2024) 22:62

detailed and aggregated data across various WMS
tasks. The system uses existing monitoring components
and includes task labeling for efficient data organiza-
tion. Built with current technologies, it is modular and
integrates easily with other systems. Initially imple-
mented on AWS, our solution is adaptable to various
cloud or in-house platforms, demonstrating its wide
applicability and scalability.

The Cloud Monitoring Kit (CMK) architecture is
especially useful to researchers with a background
in cloud systems development who are looking for a
solution providing transparency in the use of cloud
resources by scientific analysis workflows. CMK is
designed to provide essential insights through its intu-
itive dashboards, which display individual and aggre-
gated metrics relevant to job performance. For instance,
developers can leverage these tools to monitor resource
consumption and tweak system configurations during
the development phase or integration of tools into the
execution environment, thereby enhancing efficiency
and performance. Meanwhile, operations staff benefit
from the capabilities for continuous performance mon-
itoring and troubleshooting, which are crucial for main-
taining system reliability. The system offers scientists
a robust analytical platform to scrutinize data, facili-
tating informed decisions regarding system configura-
tions. This adaptability of the CMK makes it particu-
larly valuable in settings where precise resource man-
agement and systematic optimization are essential.

After the introduction, the remainder of the paper
is structured as follows. First, we conduct a survey of
related scientific work and monitoring solutions cur-
rently employed in Workflow Management Systems
(WMS) operating within cloud back-ends. This review
provides an insightful overview of the existing land-
scape in resource management and monitoring tech-
nologies. We then look into the core design of our pro-
posed monitoring system, focusing on its architecture
and innovative features that distinguish it from existing
solutions. Then, we present a detailed evaluation and
analysis of the results obtained from implementing our
proposed solution. This section showcases the effec-
tiveness of our system in real-world scenarios, high-
lighting its impact on enhancing resource management
in cloud-based bioinformatics workflows. The paper
ends with a reflection on our findings and a discus-
sion of future research directions. We explore how this
monitoring solution can be leveraged to advance the
field of bioinformatics, addressing current challenges

and anticipating future needs in this rapidly evolving
domain.
3 Related Work

Recent studies underscore the necessity of monitoring
to adaptively scale resources and mitigate service dis-
ruptions. Integrating various tools to assess resource
requirements from historical bioinformatics analysis
metrics represents a significant advancement in cloud
resource management. Fahad et al. (2017) describe the
critical importance of monitoring tools for optimizing
cloud resource deployments [31]. This work is comple-
mented by the work of Birje and Bulla (2020), who pro-
vide a comparative analysis of commercial and open-
source monitoring solutions [32], and Tyryshkina et
al. (2019) [30], who demonstrate the utility of regres-
sion and classification models in estimating runtimes
and memory needs. A comprehensive survey by Righi
et al. (2019) [33] on system monitoring, data predic-
tion, and resource management details the relationship
between monitoring metrics, resource scheduling, and
AI-based load prediction algorithms and provides a
cohesive view of the current landscape. In the con-
text of bioinformatics, CWL workflows are commonly
employed to create workflow pipelines for analysis;
the introduction of CWL-metrics by Ohta et al. (2019)
[34] offers a framework for analyzing workflow tasks
resource requirements within CWL workflows. Sci-
entific workflows consist of thousands of highly par-
allelized tasks executed in distributed environments;
therefore, advanced methods for tracing and investigat-
ing performance metrics and task behavior are required.
Bader et al. (2022) propose a monitoring framework
to address this need while indicating a need for better
integration between workflow and resource managers
to improve metric exchange and scheduling decisions
[35]. Together, these studies underscore the signifi-
cance of advanced monitoring systems in cloud envi-
ronments. They highlight various strategies for improv-
ing resource management, from adaptive scaling to
selecting optimal cloud service instances. However,
they also highlight an unmet need for a straightfor-
ward way to achieve efficient resource monitoring. To
address this knowledge gap, the capacity to monitor
and comprehensively assess resource requirements was
integrated in CMK to aid in future resource allocation
efficiency through detailed task metrics analysis across
diverse workflow management systems in bioinformat-
ics analysis workflow environments. In this way, the

123

Journal of Grid Computing (2024) 22:62 Page 5 of 19 62

scientific contribution of CMK lies in its provision of a
robust, flexible solution for bioinformatics researchers,
enhancing both the efficiency and cost-effectiveness
of cloud-based scientific computing for bioinformatics
workflow executions.

The open-source WMS frameworks used in sci-
entific computation can provide information regard-
ing resource use of tasks executed inside a workflow;
however, each has limitations regarding aggregation,
configurability, and/or granularity. We summarize the
documented capabilities of 7 WMS and 1 TES in
Table 1 and provide a detailed example in Section 5.
In the table, “Aggregated” metrics refer to summaries
of resources at a task/workflow level (e.g., maximum
CPU/Memory usage or total CPU time) and are usually
available at the end of the execution. “Configurable”
refers to the option to configure which metrics should
be recorded, to add more metrics (e.g., via plugins), or
to set up an external system where to store the met-
rics; finally, “Fine-grained” refers to the ability to see
continuous metrics in real-time throughout the execu-
tion of each task. The metrics are useful in different
scenarios, as explained in the following sections.

The first framework analyzed, Nextflow, monitors
CPU usage, memory consumption, and disk usage for
each process in the pipeline. It can also monitor the
usage of cluster-specific resources, such as the number
of nodes and CPU cores allocated to the pipeline. The
Nextflow monitoring data can be shown in a final exe-
cution report, but it does not allow the metrics to be
exported to other systems (e.g., into a shared metrics
database) besides the report file, or extending the mon-

Table 1 Task resource usage monitoring capabilities for some
of the most commonly used WMS referenced in bioinformatics
publications, as stated in their documentation

WMS/TES Aggregated Configurable Fine-grained

Nextflow � − −
Galaxy � � �*

cwltool � − −
Toil − − −
Cromwell − − −
Snakemake − − −
miniwdl − − −
Funnel (TES) − − −

itoring functionality, nor does it include fine-grained
metrics.

The second framework analyzed, Galaxy [24] uses
plugins to collect and display metrics for task execu-
tions. Galaxy can be configured with the Telegraf [36]
monitoring agent to read fine-grained metrics, being
the most configurable in terms of monitoring from the
reviewed frameworks.

The third framework, cwltool, is the reference
implementation of the CWL standard. Although cwl-
tool does not include task metrics out of the box,
the project cwl-metrics [34] implements a system to
capture aggregated task execution metrics following
task conclusion and store them in Elasticsearch [37], a
search engine over massive datasets, for later inspec-
tion. It does not include fine-grained metrics.

The reference GA4GH TES implementation, called
Funnel, can run tasks on different back-ends and could
be used by multiple WMS to delegate task execution;
however, it does not yet consider task resource usage
monitoring. A monitoring system applied to the TES
service could be an excellent way to unify the monitor-
ing of tasks arriving from different WMS frameworks
into one TES implementation.

To our knowledge, task resource usage metrics are
not reported from the Cromwell, Toil, Snakemake, or
miniwdl frameworks. To summarize the findings of our
assessment of the state of the art, most WMS frame-
works do not provide task resource usage metrics, and
most of those that do are not detailed enough and/or do
not support customization.

There are several Cloud-specific commercial solu-
tions available for monitoring of resource usage,
including Dynatrace [38], Datadog [39], and Influx-
Data [40]. While these support tracing of requests
across different distributed cloud systems and address
the needs of specific application services, like databases
or webservers, they do not comprehensively collect
and associate metrics tailored for analyzing the use
of resources during scientific workflow execution out
of the box. General-purpose monitoring stacks are
designed to monitor various metrics and platforms
and are often used by tools, like cwl-metrics or the
Galaxy WMS, to build the specific monitoring solu-
tion. Some well-known monitoring stacks are the
ELK Stack (Elasticsearch, Logstash, Kibana) or the
Prometheus/Grafana stack, which can be changed into a
Telegraf/Time Series Database/Grafana stack. Grafana

123

 62 Page 6 of 19 Journal of Grid Computing (2024) 22:62

[41] is an open-source analytics and interactive visual-
ization web application. Telegraf, an open-source agent
for data collection, is also part of the InfluxData stack
and can be used in almost any environment where there
is a need to collect and send metrics to a central location.
As our goal was to provide a solution for monitoring of
resource usage of workflow tasks, we investigated the
resource utilization of workflow tasks being executed
within software containers, which provided insights
into how specific tasks use their assigned resources.

To address the apparent lack of resource monitor-
ing and management capabilities of open-source WMS
frameworks, our aim was to develop a task resource
usage monitoring solution that can be used with diverse
bioinformatics WMS. Designed to be an event-driven
reference architecture for a multi-platform monitoring
system, our proposed framework addresses the con-
straints of existing cloud monitoring systems while
enabling the collection of detailed and aggregated data
across different WMS tasks. The latter is achieved
via task labeling, facilitating convenient grouping and
metrics aggregation. Examples of labels include user
ID, workflow ID, tool name, etc. Our comprehensive
approach builds upon existing technology to provide
new, previously unavailable benefits in terms of mod-
ularity and capacity to be integrated with other data
processing or collection systems. We implemented our
framework as a serverless platform on AWS; however,
the same functional components can be adapted to other
cloud providers or in-house platforms, highlighting the
broad applicability and scalability of the system.

Scientific data analysis, particularly in bioinformat-
ics, with many different tools, parameter configura-
tions, and file sizes, requires special monitoring to opti-
mize the use of resources. While some WMS include
basic monitoring, to the best of our knowledge, no
generic solution for monitoring scientific workflows
exists. The novelty of CMK lies in this solution being
WMS-independent and using labeling for generaliza-
tion and integration with these WMS without actual
changes in the code of the tools.

4 Architecture of the Monitoring System

The architecture proposed in this work comprises an
advanced monitoring system, the Cloud Monitoring Kit
(CMK), to collect, store, and access metrics of bioinfor-
matics workflow tasks being executed in a container-
based batch-processing environment. Even though the
solution is applied here to bioinformatics, the same
principles can be extended to other domains that use
similar WMS. This monitoring system offers insights
into resource use at a granular level for every task exe-
cuted in the system, as well as metrics for grouped tasks
based on labels that the user and administrator define
in the system. It also summarizes the use of resources
based on these defined groups. The architecture shown
in Fig. 2 is defined via generic components that will be
later instantiated to a particular implementation on a
public Cloud provider. Therefore, the proposed archi-
tecture can be generalized to support multiple comput-
ing back-ends.

Cloud

Monitoring System Components

Subscribe to Metrics

Explore Metrics Collect Metrics

Existing Batch Processing Components

query
&post

publish trigger

access

publish

task
state

update

subscribe run task

Cluster Node

runquery stats

Running Containers Node Agent

Subscription Integrations

Other TSD Integrations

write manage

register
node

Cluster ManagerBatch ProcessingDefault Event BusTask Change RuleTask Change Handler

fn
Statistics Event Bus

Container Engine APIMonitoring AgentTime Series DatabaseMetrics Dashboards

Fig. 2 Architecture of CMK defined with generic components.
The gray area includes the components commonly found in
container-based batch-processing systems. The white areas on

the left include components required to gather, process, and visu-
alize advanced task-level monitoring metrics

123

Journal of Grid Computing (2024) 22:62 Page 7 of 19 62

4.1 Proposed Architecture

A container-based batch-processing environment re-
quires the deployment of a cluster, a set of virtual-
ized computing nodes on which containers are executed
with the help of a Container Orchestration Platform
such as Kubernetes [37], Nomad [42], or Amazon ECS
[43], in the case of AWS Batch. At the core of the mon-
itoring system is the monitoring agent, which runs as
a service on each cluster node. The agent is respon-
sible for connecting to the Container Engine API at
the node level and collecting metrics regarding the use
of available resources by each container running on the
same node. The agent only needs to capture the metrics
visible at the container level, and there are no require-
ments regarding the container image content for the
monitoring to work. The collected metrics are saved
into a Time Series Database (TSD) for future explo-
ration. The TSD is a specialized database optimized
for handling time-series data and has built-in functions
and operators that allow for efficient data exploration.
Each TSD entry contains the values of the resource use
metrics, labeled with attributes such as the task and
node IDs. Task attribute labeling is useful for creating
detailed queries to the database and extracting statistics
on data groups, such as task duration or resource usage
statistics, arranged by task utility or by any custom label
like user, project, etc. These aggregated metrics enable
comparison of the statistical values between changes in
bioinformatics tool versions or execution environment
configurations. The TSD is available for direct query-
ing, allowing the full range of collected metrics to be
inspected and resource usage dashboards to be created.

TSD integrations like dashboards or REST APIs can
be configured to query the database and show met-
rics and indicators in a management web, e.g., with
a TES or WES front-end. Additionally, every time a
task is completed, the batch system notifies a default
event bus that a task-change event has occurred. A

task-change rule captures these events and invokes a
handler function, which queries the database to create
aggregated statistics and publish them into the Statis-
tics Event Bus. Other components can be integrated
with this custom event bus to perform further process-
ing or to store the aggregated statistics long-term for
later use. The advantage of integrating a system with
the Statistics Event Bus over the direct connection to
the TSD is that the integration would receive the new
events in real-time once the aggregation is performed.
This can be used in examples like long-term storage,
insertion into other systems, or further processing and
addition of other computed metrics into the database.
The Statistics Event Bus can be disabled if no other
integrations are used.

The labeling of tasks can be done through con-
tainer labels or environment variables. These key-value
entries can be set either in the workflow or by config-
uration when the task is submitted. These labels can
be collected via the monitoring agent. The different
workflow language standards and alternative frame-
works already allow or adopt this functionality. The
TES specification, for instance, includes optional tags
and environment variables that can be assigned to the
submitted tasks. One important aspect to consider for
the task labeling capabilities is that the submission sys-
tem is responsible for forwarding those to the container
attributes.

4.2 Implementation

A summary of the services, including three cloud
providers (AWS, Azure, and Google Cloud) and open-
source platforms, through which our proposed archi-
tecture can be implemented is shown in Table 2. For a
proof-of-concept demonstration, we implemented our
architecture on the AWS public cloud platform, as it
is an established leader in cloud service offerings and
is widely adopted in bioinformatics research. More-

Table 2 Equivalence of components between three cloud providers and open-source options

Component AWS Azure Google Open Source

Time Series Database Amazon Timestream Azure Time Series Insights Cloud Bigtable InfluxDB, Prometheus

Batch Processing AWS Batch Azure Batch Batch Kubernetes, Nomad

Function AWS Lambda Azure Functions Cloud Functions Open FaaS, OpenWhisk

Event Bus Amazon EventBridge Azure Service Bus Pub/Sub Kafka, RabbitMQ

123

 62 Page 8 of 19 Journal of Grid Computing (2024) 22:62

over, because different scientific WMS support the
AWS task scheduler (AWS Batch) for the execution of
tasks [11,19,20], an AWS implementation represents
an ideal use case for this monitoring system.

To align with the DevOps practice Infrastructure as
Code (IaC), and to facilitate collaboration, version con-
trol, and deployment, the architecture was implemented
using the AWS Cloud Development Kit (CDK). The
CDK framework provides a practical solution for cloud
infrastructure management, allowing the definition and
provision of AWS resources, like databases and lambda
functions using familiar programming languages. The
CDK application is synthesized into an AWS Cloud-
Formation [44] template, a lower-level declarative for-
mat that can be deployed in AWS. A diagram of the
proposed architecture with AWS components is shown
in Fig. 3.

In the AWS implementation, metrics are collected
from tasks running in AWS Batch, which is configured
with EC2 Compute Environments. These EC2 Com-
pute Environments are a cluster of nodes that can scale
automatically to match the resources required by the
tasks in the queue.

As the proposed solution is designed to be scal-
able and handle large-scale, distributed batch task envi-
ronments, the architecture is implemented on server-
less services-including the database, functions, and
event bus-allowing the system to scale automatically
in response to increased usage. In this case, server-
less services refer to cloud computing models in which

the cloud provider automatically manages the alloca-
tion and provisioning of servers. Additionally, the agent
component of the system runs on each cluster node, so
it is scalable with the number of nodes in the clus-
ters, ensuring that the monitoring system can adapt to
changing resource usage patterns.

For metrics collection, we used Telegraf, a production-
ready, open-source, plugin-based server agent for col-
lecting, transforming, and reporting metrics. Telegraf is
widely used in many applications, including monitor-
ing databases, systems, or IoT sensors; has a minimal
memory footprint on the nodes; supports the collec-
tion of metrics from many systems, as well as options
for data output that are configurable via plugins. Tele-
graf can fulfill many monitoring requirements through
plugins, which can enable the capture of node met-
rics (e.g., system load, CPU power, or temperatures),
which might be useful in some cases. For the AWS
Cloud environment in our use case, the container met-
rics are collected using the Docker Input plugin, which
connects to the internal Docker API of the host node
via the docker.socks file to read the container statis-
tics. The Telegraf agent is deployed as a Service on the
ECS cluster corresponding to the AWS Batch Compute
Environment, meaning the agent runs as a container in
each node in parallel with the batch tasks.

Configured with the Telegraf agent for storage of
the collected metrics is an output plugin for Amazon
Timestream, a serverless service offered by AWS that
eliminates tasks, like server provisioning and scaling,

AWS Cloud

Existing AWS Batch Processing ComponentsMonitoring System Components

EC2 instance - Compute Environment Cluster Node

Subscribe to Metrics

Explore Metrics Collect Metrics

query
&post

publish trigger

access

publish

task
state

update

subscribe run task

runquery stats manage

Subscription Integrations

Other TSD Integrations

write

(Amazon Timestream)
Time Series Database

(Telegraf)
Monitoring Agent

(Grafana)
Metrics Dashboards

(ECS Agent)
Node Agent

(Amazon EventBridge)
Statistics Event Bus

(AWS Lambda)
Task Change Handler

(Amazon EventBridge)
Task Change Rule

(Amazon EventBridge)
Default Event Bus

(AWS Batch)
Batch Processing

(Amazon ECS)
Cluster Manager

Running Containers
(Docker)

Container Engine API

register
node

Fig. 3 Architecture diagram of the monitoring system imple-
mented on AWS infrastructure, monitoring the AWS batch tasks.
The gray area includes the components found in AWS Batch. The

white areas on the left include the AWS components required to
gather, process, and visualize advanced task-level monitoring
metrics

123

Journal of Grid Computing (2024) 22:62 Page 9 of 19 62

that are common in traditional relational databases.
Timestream efficiently stores and retrieves time series
data by offering unique built-in functions, such as time-
based windowing and interpolation, which are not typ-
ically available in standard SQL databases. Because
Timestream’s pricing is usage-based, with charges
derived from the amount of data written, queried, and
stored, it is adaptable to fluctuating workloads. For new
users seeking to test this service, a free tier is available
for one month that allows testing within reasonable lim-
its. Together, these aspects make Timestream a practi-
cal choice for managing and analyzing time series data
in the AWS implementation of our solution.

With regards to data access, there are multiple ways
this can be achieved, depending on use case and integra-
tions with other systems or components. Timestream,
for example, allows data to be queried directly on the
service website or via the service API using SQL-
based queries. Alternatively, Grafana [41], an open-
source monitoring and observation platform, provides
interactive visualizations and can be integrated with
Timestream, allowing the creation of dashboards that
show Timestream data. In our reference architecture,
we show how the Grafana dashboard can be used for
direct visualization of resources used by a task or by a
group of tasks (Figs. 7 and 8).

In addition to user metrics, the aggregated task statis-
tics can be accessed at the time of creation by sub-
scribing to a custom Statistics Event Bus, where task
metrics are aggregated and published every time a task
is completed. Components that subscribe to the Statis-
tics Event Bus are configured internally in AWS, and
the security and access are configured via internal sys-
tem policies. To route events from various sources
in our reference framework to their appropriate tar-
gets based on user-specified rules, we employ Amazon
EventBridge, a managed service that supports event-
driven architectures. Overall, this software architec-
ture pattern enables different system components to
communicate with each other through events without
being directly connected, thus promoting decoupling
and scalability. Other services like Amazon SNS [45]
can be used either together with Amazon EventBridge,
or replacing it, to achieve similar real-time event notifi-
cation and decoupling of components, specially when
working with integrations outside of AWS.

Regarding cost, in certain use cases, our monitoring
system can be used free of charge for up to a month.

While all services that comprise the monitoring sys-
tem follow the serverless principles managed by AWS,
meaning that the use-based cost structure considers the
number of requests and/or the size of the data pro-
cessed, some services, like AWS Lambda and Ama-
zon EventBridge, have a free tier, permitting certain
use cases to run on these services at no cost within
specified usage boundaries. Amazon Timestream has a
one-month free tier with boundaries that limit the size
of the ingested and queried data besides the size of the
stored metrics. The AWS Batch service is free, and only
the EC2 instances are charged as part of the execution
environment. Additionally, the Grafana dashboards we
provide can be installed in the Grafana Cloud service,
which provides a free account with up to three users
forever. After the limitations to the free services are
exceeded, the cost is proportional to the number of
tasks, the time the monitoring system is active, and
the size of the metrics processed and stored.

We show in the next section that CMK can be used
as-is for different WMS with the same compute back-
end. If we were to change components of this architec-
ture, we would need to adjust the surrounding linked
components to address the changes. To use another con-
tainer engine for example, the Telegraf agent should
be configured with another data input plugin that can
read the task resources metrics. The metrics names
can be overridden to match the current ones and to be
able to reuse the same dashboards. Alternatively, the
queries in the dashboards and the aggregation func-
tions must be adjusted accordingly. Changing Ama-
zon Timestream with another Time Series Database,
for example, would require adjusting the Telegraf con-
figuration to write the metrics into that database, and
the queries from the Grafana dashboards and aggre-
gation function would need to be adjusted to translate
any Timestream-specific functions or features to their
equivalents in the target database SQL syntax dialect.

To use CMK in other cloud providers or in-house
clusters, the same architecture would need to be re-
implemented with the respective components. The use
of CMK in a hybrid HPC-cloud environment to unify
metrics would be possible as long as the local and cloud
configurations concur in storing the same metrics. To
simplify the architecture, all Telegraf agents from cloud
and HPC should send the data to the same database.
With the current implementation, adding access for the
HPC to write metrics in Amazon Timestream is possi-

123

 62 Page 10 of 19 Journal of Grid Computing (2024) 22:62

ble. Besides this, the Task Change Handler should be
called from the HPC task manager to trigger the task
summary metrics creation.

5 Evaluation

5.1 Introduction

This section evaluates the monitoring system using
a commonly used bioinformatics workflow as a case
study. To test the system functionality, we deployed the
infrastructure in an AWS Batch compute environment,
configuring two WMS (Nextflow and miniwdl) to run
an example workflow for gene expression analysis. We
first observed what metrics we could capture in addi-
tion to those reported by the cloud or the WMS. Then,
we evaluated how the labeling options could enhance
the utility of these aggregated metrics. In the following
subsections, we describe the workflow implemented to
evaluate our monitoring system to provide an exam-
ple of a real-world context to which our system can be
applied. Next, we provide details on the configuration
of the AWS compute environment used for running the
tasks, the configuration of the monitoring system, and
the two WMSs used. Then, we explore our labeling
setup for this use case, followed by a short description
of the workflow and the data used. Finally, we observe
the captured metrics, comparing them with what could
be obtained from the WMS, and the cloud in the same
run.

5.2 Workflow Description

To provide a use case for the evaluation of CMK, we
used a published workflow for transcript expression
quantification analysis [46]. This workflow, shown in
Fig. 4, uses RNA sequencing (RNA-seq) data and a
genome reference file as inputs to create a sequencing
quality report and a transcript expression quantifica-
tion table as output using three processing tools: 1.)
The FastQC tool is executed independently for each
set of paired sequencing reads to create the quality con-
trol report; 2.) the Salmon Index algorithm creates an
index of the reference genome, which is used, along
with the paired-reads dataset, in 3.) the Salmon Align-
ment Quantification step to create an alignment quan-
tification.

input

tools

output

ref

transcriptome

reads_ch

paired reads

index

SALMON_INDEX

quant

SALMON_ALIGN_QUANT

qc

FASTQC

quantification results quality results

Fig. 4 A diagram of the evaluation workflow containing input
and output files in white and the tools in gray

We used example data from two NCBI projects
to execute the selected workflow. The first project
was NCBI BioProject PRJNA419302, comprised of
12 BioSamples for Monilinia laxa and one reference
transcriptome assembly (TSA: Monilinia laxa, tran-
scriptome shotgun assembly). The second project was
the NCBI BioProject PRJNA325641 comprised of 12
BioSamples for Neisseria gonorrhoeae and a reference
transcriptome (Neisseria gonorrhoeae FA 1090 [GCA
000006845]).

5.3 AWS Compute Environment

After implementing the workflow definition in the
Nextflow and WDL languages and adding labels for
grouping and aggregating metrics, the workflow tasks
were executed on AWS Batch. We used the AWS
Core Environment template, available in the Genomics
Workflows on the AWS website [47], which config-
ures AWS Batch as a base computing environment to
use with WMS. The VM hardware setup in the tem-
plate contains a range of CPU performance, balanced
general-purpose, and memory-optimized hardware to
cover different possible task requirements. This is a
multi-node configuration where the environments auto-
matically grow by adding new VMs as needed. Fol-
lowing AWS Batch setup, we configured the Nextflow
v23.04.1 and miniwdl v1.11.0 workflow managers to
send the tasks to the AWS Batch service. The full
compute environment configuration is available in the
project GitHub repository,1 and the schematic is shown
in Fig. 5.

1 CMK - https://github.com/biobam/cmk

123

https://github.com/biobam/cmk

Journal of Grid Computing (2024) 22:62 Page 11 of 19 62

Local Computer

WMSWorkflows

AWS Cloud

AWS Batch

Task

EC2 Instance

Job Queue

miniwdl>_

Nextflow>_

CMK

Tasks Metrics

Fig. 5 Schema of the configuration for this evaluation. The two
WMS running on a local computer were configured to commu-
nicate with AWS Batch to schedule tasks in a queue. The tasks

execution running in the ECS cluster associated with this Batch
Compute Environment is monitored and can be explored in the
Grafana Dashboards

5.4 Monitoring Configuration

The monitoring system CDK cloud application was
deployed in the same region and account as the AWS
Compute Environment used for computation.

A configuration file specifies a list of parameters
that set up the monitoring on the Computation Core
Environment set up with the AWS template, e.g., the
clusters and network IDs where the agent should be
deployed as a service or database names and persistence
duration boundaries.

5.4.1 Data Staging and Task Execution Structure

Data staging is the process by which the data to be
analyzed is made available for a task. The data is com-

monly stored in an object storage service in cloud envi-
ronments. Unless the analysis can stream the data to
be processed, the data is copied locally for the dura-
tion of the execution, where the algorithm can access it
directly via POSIX [48] standards. The contrary applies
to the output results that are usually moved from the
local storage to the long-term storage for persistence.
Figure 6 illustrates three patterns for data staging and
task execution seen in different WMS and TES imple-
mentations: a) wrapper - the pre- and post-staging pro-
cesses are executed inside the same container as the
algorithm; b) sidecar - a controller task handles the
staging of the data and runs the main algorithm task on
the same node, providing the paths to the local data;
c) individual tasks - different tasks perform the staging
and can run on the same or different nodes, as the data is

a) wrapper

Persistent Storage

b) sidecar

run

Controller Algo

Local Storage

c) individual tasks

Cluster Storage

Pre Algo

Task Storage

Post

ClusterNodeTask

Pre Algo Post

Fig. 6 Schema of three approaches for task data staging seen in different TES and WMS implementations

123

 62 Page 12 of 19 Journal of Grid Computing (2024) 22:62

localized into cluster-shared storage that is accessible
to all tasks. The data staging approach influences how
the metrics are captured. As we measure the resources
used by the container, the metrics of the wrapper option
(a) contain the staging and task processes together as
one task, while the sidecar (b) and individual tasks
(c) options clearly separate the metrics by tasks. For
this evaluation, we simplified the use case by having
only one option, wrapper cases (a). Nextflow already
schedules tasks with the wrapper pattern where a script
passed to the task handles the data staging inside the
same container execution. For miniwdl, which would
have an individual-tasks structure by default, we com-
pose the pre-and-post commands in the workflow to
stage the data. This way, the metrics should display
a similar execution pattern when the same tasks run
regardless of the WMS.

5.5 Labels

Labels are key-value pairs attached to the metrics when
captured by the CMK. The label keys to be stored need
to be listed in the configuration. The value of the labels
can either come from the task execution environment,
or it can be provided through the WMS when submit-
ting a workflow. There is only one required label for the
system to work, one that uniquely identifies each task.
The property “taskIdLabel” in the CMK configuration
specifies the key of this identifier. In our case, running
on AWS Batch, this key is “AWS_BATCH_JOB_ID”,
and its value is provided by the service in the task
environment. This label is used internally to create
task-aggregated metrics. While additional labels are
not mandatory, they enrich the exploration of resource
usage. The labels act as partitions and are useful in
grouping tasks and visualizing statistics of one task
group that matches one or many labels. The same labels
should be used across multi-platform or multi-WMS
deployments. The tool code repository documents a list
of labels that are often useful to capture in a scientific
workflow configuration environment.

For this evaluation, we enable tracking of the follow-
ing labels: a) “C_WMS” - the name of the WMS that
scheduled the task; b) “C_TOOL” - the name of the soft-
ware running in the container; and c) “C_DATASET”
- the name representing the input data, which in most
cases is the name of the input file. Additional labels
of interest (e.g., user ID or workflow ID) can be easily

added by listing them in the CMK configuration and by
adding the corresponding labels to the workflow tasks
when scheduling the workflow.

For the labeling part of the monitoring system, the
WMS is required to forward these environment vari-
ables to the Docker container running the task, a pro-
cess that is monitored by the agent that reads the labels.
The original workflow has been modified to add these
three custom labels to the tasks as environment vari-
ables. Nextflow allows the specification of ’container
options’ to set the values for the labels. For fixed param-
eters, like C_WMS, the value can be set globally in the
configuration file for all tasks; for dynamic values, like
C_DATASET, they must be set to change dynamically
with each task execution, depending on the input file
name. The standard WDL, on the other hand, is cur-
rently adding language support for assigning environ-
ment variables to the tasks.2 For now, this support is
adopted by the miniwdl WMS, which we use in this
evaluation, starting with software version 1.8.0 as an
experimental feature.

5.5.1 Metrics Comparison

We provide a comparative analysis of the monitoring
capabilities of our system (CMK), alongside existing
solutions like CloudWatch and Nextflow, across key
dimensions in Table 3. “Workflow Aggregated Met-
rics” offer a high-level view of workflow processes,
such as total CPU hours and execution time. In contrast,
“Task Aggregated Metrics” provide granular details on
individual tasks, including metrics like average and
peak CPU usage and total CPU time. Additionally,
“Container-independent Ability to Capture Metrics”
refers to the system’s capacity to collect data with-
out depending on container-specific elements, ensuring
broader applicability. “Near Real-time Host Metrics”
focus on the continuous monitoring of the host environ-
ment, tracking real-time performance and resource uti-
lization, while “Near Real-time Task Metrics” concen-
trate on the detailed observation of each task’s resource
usage during execution, which is critical for identifying
inefficiencies and bottlenecks. Finally “Custom Aggre-
gated Metrics” enhance the system’s versatility, allow-
ing users to compile metrics based on specific labels for

2 The approved pull request #504 of the specification reposi-
tory adds support for environment variables (https://github.com/
openwdl/wdl/pull/504)

123

https://github.com/openwdl/wdl/pull/504
https://github.com/openwdl/wdl/pull/504

Journal of Grid Computing (2024) 22:62 Page 13 of 19 62

Table 3 Comparison of metrics that can be obtained from CMK, compared to the AWS-provided CloudWatch metrics and the metrics
provided by the WMS

Description CMK CloudWatch Nextflow

Workflow Aggregated Metrics � − �
Task Aggregated Metrics � − �
Container-independent ability to capture metrics � � −
Near real-time host metrics � � −
Near real-time task metrics � − −
Custom aggregated metrics � − −

tailored analyses, such as aggregating data by user ID
or tool. This comprehensive classification underlines
the CMK system’s strengths in providing detailed, real-
time, and customizable monitoring solutions compared
to its counterparts.

In our case, the AWS cloud provider provides met-
rics on the infrastructure used, like metrics of the hosts,
overall cluster metrics, or metrics grouped internally
by the task-definition name. These metrics are useful
for understanding how the overall resources are being
used, but they do not allow to determine resource use
at the task level.

At the end of workflow execution, Nextflow pro-
vides a report that contains workflow-aggregated
metrics-like the total CPU hours used to execute all the
tasks in the workflow-and displays plots of the distri-
bution of resources, aggregated for each process name,
from an overall workflow point of view. The HTML
report generated post-execution also includes totals for
each task, but it does not include real-time task metrics
or details of the use of resources during the execution.
Moreover, the metrics are collected in the background
of each tasks’ execution, and are dependent on the avail-
ability of additional tools (awk, date, grep, ps, sed, tail,
tee) inside each task container for the metrics collection
to work. This means that “distroless” images that con-
tain only the application and its runtime dependencies
(i.e., one of the container best practices [49]), will not
report metrics unless the image is wrapped in another
container layer to add these dependencies. Since the
metrics in CMK are collected at the container level
with one agent running on each computation node, it
has no container environment requirements and is com-
patible with any image. CMK collects all the metrics
that can be viewed by workflow or in general for all
tasks of some grouping. Going beyond the capabili-

ties of Nextflow’s grouping of a workflow view, our
labeling methodology allows for more flexible statis-
tics grouping and filtering, like grouping tasks by the
container image, including all tasks from all workflows
executed in a time window, or grouping tasks by any
other custom labels, for example, to see the total CPU
hours of one user ID. Additionally, our system is com-
patible with different WMS tools, and it adds moni-
toring capabilities to the ones that do not yet provide
them, like miniwdl.

Two preconfigured dashboards are provided with
CMK to explore the collected metrics, one at a task
level with continuous metrics, showing the use of met-
rics throughout the execution time (Fig. 7), and one with
aggregated metrics and charts grouped by the available
labels (Fig. 8). Any configured labels can be selected in
the aggregated dashboards to filter and group the tasks.

5.6 Evaluating CMK in an Industry Context: A Case
Study

To assess the applicability of the proposed system in an
industrial setting, we implemented CMK for workflow
management at BioBam Bioinformatics (BioBam), a
life science company that offers software solutions to
accelerate genomics research. BioBam’s software plat-
form, OmicsBox [50] (formerly known as Blast2GO
[51]), comprises a suite of tools that facilitate the anal-
ysis and interpretation of biological data. These tools
are designed to make complex bioinformatics analyses
accessible to a wider range of researchers, including
those without extensive computational backgrounds.
The company leverages AWS to accommodate the
execution of bioinformatics algorithms, thereby sup-
porting computational resource-intensive research in
genomics, transcriptomics, and metagenomics.

123

 62 Page 14 of 19 Journal of Grid Computing (2024) 22:62

Fig. 7 Example detailed
metrics of CPU usage, CPU
time, and memory usage
from the individual task
dashboard

Fig. 8 Example of
aggregated metrics
exploring the use of
resources filtering the
“C_TOOL” label for a
specific value, showing a
histogram of the aggregated
values during a time interval

123

Journal of Grid Computing (2024) 22:62 Page 15 of 19 62

Despite the many diverse bioinformatics algorithms
executed by BioBam daily, the company did not have a
way to monitor workflow resource use in detail. There-
fore, it presented an optimal use case for evaluating the
CMK architecture and testing its functionality. CMK
allowed BioBam to conduct advanced monitoring to
identify and mitigate the company’s potential cloud
waste. Implementing CMK into BioBam’s setup illus-
trates its potential to enhance resource efficiency and
reduce operational costs in cloud-based bioinformatics
computing.

CMK was configured to run on the company’s AWS
cloud infrastructure, which is based on AWS Batch, to
gather metrics of the tasks that arrive in the system.
Information regarding the monitoring of resource use
of over 70 cloud-executed bioinformatics algorithms
at BioBam was collected over the course of approxi-
mately 6 months. The initial benefits of using the mon-
itoring system were evident in deploying new algo-
rithms. CMK assisted the developers in setting the con-
tainer resource requirements by simplifying the process
of benchmarking tools and providing data to recog-
nize resource usage patterns. Another significant ben-
efit was the help in diagnosing tasks that fail or abnor-
mally extend beyond their expected completion times.
By providing detailed analytics on resource usage and
execution patterns, the system aided developers in iden-
tifying inefficiencies or resource bottlenecks that may
cause these issues.

A “Cloud Waste” dashboard was created in Grafana
to better understand resource usage efficiency. This
dashboard aimed to measure the gap between resources
allocated to tasks and their actual utilization, offering
a comprehensive overview of all executed algorithms.
Initially focusing on the most utilized algorithms and
those consuming significant resources over extended
periods, this analysis has led to notable improvements.

From the algorithms that produced the most cloud
waste, the top three were cd-hit, hmmscan, and dia-
mond. Cd-hit, used for clustering, initially had been
configured to run with 24 vCPUs, and CMK detected
a waste of 95% based on CPU usage. After seeing the
average and peak CPUs, it was reconfigured to run with
8 CPUs, and the waste was lowered to 79%. Assigning
fewer resources could cause the task to run longer but
more efficiently if the tool itself cannot effectively use
all the CPUs assigned. Another example is hmmscan,
which performs Pfam search to predict coding regions

in sequences. Initially configured with 6 vCPUs and
12 GB of memory, producing a cloud waste of 79%
After seeing the patterns of CPU and memory for dia-
mond, a tool for sequence alignment, clustering, and
classification, two different CPU/memory configura-
tions were created: one for large databases like NR
(Non-Redundant Proteins), and the other for smaller
databases like Swissprot. Additionally, the memory,
even though not reserved directly, seems useful to cache
the large sequence database files, with more memory
allowing for faster read access.

As seen above, CMK provides an overview of the
executions in the cloud that can focus on one tool or
details of a tool, based on labels. Certain algorithms that
consistently allocated more resources than necessary
were identified and adjusted to match their needs more
closely. Various configurations have been adopted for
algorithms with a high variability of resource require-
ments influenced by parameters, e.g., the target query
database, to optimize resource use. Long-running tasks
characterized by fluctuating resource demands-periods
of high or low CPU usage-were examined to find or
develop alternative computational environments that
could adapt to these changes more efficiently, poten-
tially by migrating tasks or tailoring the environment
to the task’s current phase. These enhancements have
yielded tangible benefits, directly contributing to cost
savings by optimizing cloud resource usage and indi-
rectly by reducing developers’ time configuring or trou-
bleshooting algorithms. The monitoring and optimiza-
tion of task configurations is an ongoing process in the
company.

The modular structure of CMK facilitated the inte-
gration of an extension to compute and capture the cost
of tasks running on spot VMs. Spot VMs allow users to
bet on lower pricing for computing capacity, with the
risk of resources being reclaimed by AWS at any time.
This extension uses real-time data of the spot instance
price and the proportion of resources allocated to the
task, enabling more precise cost management.

Based on the initial success of the implementation of
CMK at BioBam, further developments are planned to
extend the system’s capabilities, such as exploring the
use of historical data to improve predictions on resource
needs for future tasks. This approach aims to refine how
resources are allocated to cloud tasks, enhancing effi-
ciency and reducing costs, benefiting both the company
and the end users.

123

 62 Page 16 of 19 Journal of Grid Computing (2024) 22:62

5.7 Discussion

We gained several insights during the implementa-
tion of CMK. Firstly, deploying the Telegraf agent
was straightforward for capturing container metrics
due to its plugin-based architecture, which allowed
easy configuration and container metric collection.
Next, integrating the Time Series Database (TSD), in
our case Amazon Timestream, was effective due to
Timestream’s serverless architecture and built-in func-
tions for handling time-series data, which made it an
ideal choice for storing and querying metrics. Addi-
tionally, setting up Grafana to visualize these met-
rics was quick and highly valuable, as the interactive
dashboards facilitated easy exploration of the collected
data. Finally, implementing a labeling system for tasks
also proved beneficial, enabling flexible grouping and
aggregation of metrics; this approach allowed catego-
rization and analysis of resource usage based on various
dimensions, such as workflow, tool, and dataset.

We also gained insights regarding potential chal-
lenges that users should be aware of during the imple-
mentation. Initially, node removal issues arose in the
ECS cluster because the Telegraf agent ran continu-
ously. This problem was resolved by configuring the
agent to start only when other tasks were on the node.
Additionally, managing the deployment through AWS
CDK provided flexibility and reproducibility but added
complexity; users unfamiliar with CDK might find it
challenging to maintain and update the infrastructure.
Furthermore, another drawback of the CMK is related
to the measuring time interval. The default configu-
ration of the Telegraf agent in CMK measures met-
rics every 10 seconds, which might not be suitable for
all kinds of workflows. For instance, workflows with
bursts of short tasks that only last a few seconds will
not have detailed progress metrics captured; instead,
some summary metrics are available after the tasks ter-
minate and are captured before the container instance
is removed from the system. Lastly, defining meaning-
ful custom aggregated metrics can be difficult due to
the diversity of options and the specificity required to
successfully align these with the research goals and
operational needs.

As an easily accessible starting point, researchers
and organizations can take the CMK system and deploy
it as-is on top of the AWS Batch compute environ-
ment. With minimal configuration of labels and using
the provided dashboards, users can explore the metrics

and gain insights into their resource usage. The initial
setup of CMK provides significant value by offering
detailed monitoring capabilities with minimal effort.
Using visualization tools like Grafana is crucial for
exploring and understanding the collected metrics, and
setting up additional meaningful dashboards based on
clear monitoring objectives like reducing cloud waste.
Monitoring should be seen as an ongoing process,
with regular reviews of collected data, configuration
adjustments, and task setting optimizations based on
observed patterns. This iterative approach will lead to
continuous improvements in resource management.

6 Conclusion and Future Works

We have introduced a reference event-driven cloud-
native architecture capable of enhanced resource uti-
lization monitoring across multiple WMS in cloud
computing environments. This architecture is designed
to aggregate and analyze metrics from containerized
tasks scheduled by various workflow systems, effec-
tively addressing the critical need for understanding
resource efficiency and cost optimization in large-
scale bioinformatics workflows. The architecture lever-
ages task labeling methods, enabling the grouping and
aggregation of metrics in a WMS-agnostic manner.
This approach simplifies the monitoring process and
enhances the system’s versatility. The system’s modu-
lar design ensures easy integration with existing data
processing and collection systems, offering a flexible
and scalable solution for diverse cloud computing back-
ends.

A reference implementation of this architecture for
AWS, named CMK, has been created using the CDK
framework; it has been released as open-source to sup-
port tasks running on AWS Batch Compute Environ-
ments and to serve as a foundation for future devel-
opments. Additionally, this approach aligns well with
the principles of IaC, promoting best practices in col-
laboration, version control, and deployment in cloud
environments.

The implementation of our system has been eval-
uated by running a common bioinformatics workflow
from two different WMS, where we were able to mon-
itor the resource usage of the tasks running in the
workflows and to explore the resulting metrics in the
provided Grafana dashboards. Additionally, the results
of applying this system to an industrial setting (i.e.,

123

Journal of Grid Computing (2024) 22:62 Page 17 of 19 62

BioBam’s computing environment) highlight the ben-
efits of having the transparency and additional insights
that the monitoring system provides. These insights can
lead to cost reduction and optimizations in a setting
where thousands of bioinformatics jobs are scheduled
daily.

First, the collected metrics can be used to optimize
the use of resources in the cloud to ensure that tasks
reserve adequate resources. Secondly, tasks can be fine-
tuned to better use those resources by adjusting inter-
nal threads or flows, resulting in faster analysis and
decreased processing times. Thirdly, different profiles
can be created to assign increased or reduced process-
ing power to a task increase or decrease parallelization
based on inputs, and reduce the time to results. Finally,
the full modularity and flexibility of the monitoring
system-to add data size metrics or cloud infrastructure
cost metrics per task through task termination events
and to add additional metrics through configuring plu-
gins with Telegraf-allows users to address their unique
data analysis needs.

Moving forward, integrating our framework with
a greater variety of WMS and processing backends
will showcase the broad application of the proposed
architecture; researchers and developers who work with
diverse WMS will find this compatibility invaluable
for monitoring and optimizing their workflows. We
aim to simplify the deployment process by making it
available as parametrized CloudFormation templates.
Each cloud provider has its own alternative to Cloud-
Formation. OpenTofu [52] would be an open-source
alternative for IaC, compatible with multiple clouds.
The current CDK application might be harder to keep
up with for users not familiar with the framework.
Exploration into the use of advanced predictive analyt-
ics and machine learning using the data generated by
the proposed architecture can further aid researchers
in optimizing their cloud resource usage, potentially
leading to substantial cost savings and improved effi-
ciency in handling large-scale data-processing tasks.
An application for this is estimating more precisely
the real needs of tasks before execution. Incorporating
checkpoint/restore-related applications could enhance
the management of long-running tasks. This feature
would be particularly advantageous in fields with inten-
sive computational tasks, providing means to maintain
progress and manage resources more effectively. By

monitoring metrics like CPU throttling, memory swap-
ping, and out-of-memory/disk errors, the system could
detect whether the adjustment is too tight and can up-
scale the executing node or migrate the task to an envi-
ronment with more resources.

Acknowledgements We thank BioBam for supporting this col-
laboration, in particular E. Presa Díez and M. Benegas Coll for
suggesting and providing links to suitable datasets for the work-
flow evaluation. Additionally, we would like to thank S. Hewitt
for providing writing and editing assistance.

Author contributions R.N. conceptualized the project and
methodology, developed the platform, and wrote the manuscript.
S.G. and G.M. provided project oversight and guidance and
acquired the funding required to perform the work. All authors
reviewed the manuscript.

Funding Information Open Access funding provided thanks
to the CRUE-CSIC agreement with Springer Nature. This
work has received funding from the Valencian Innovation
Agency (AVI) file INNTA3/2021/5 (INNODOCTO). GM and
RN would like to thank Grant PID2020-113126RB-I00 funded
by MICIU/AEI/10.13039/501100011033. This work was sup-
ported by the project “An interdisciplinary Digital Twin Engine
for science” (interTwin) that has received funding from the
European Union’s Horizon Europe Programme under Grant
101058386.

Data Availability The CMK platform and configurations tested
were made available to the community as an open-source devel-
opment in GitHub at https://github.com/biobam/cmk.

Declarations

Ethics approval and consent to participate Not applicable

Consent for publication Not applicable

Competing interests The authors declare no competing inter-
ests.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

123

https://github.com/biobam/cmk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 62 Page 18 of 19 Journal of Grid Computing (2024) 22:62

References

1. Amazon Web Services (AWS). https://aws.amazon.com/
(2023)

2. Google Cloud. https://cloud.google.com/ (2023)
3. Microsoft Azure. https://azure.microsoft.com/ (2023)
4. Siddiqui, T., Siddiqui, S.A., Khan, N.A.: Comprehensive

Analysis of Container Technology. 2019 4th International
Conference on Information Systems and Computer Net-
works, ISCON 2019, 218–223 (2019). https://doi.org/10.
1109/ISCON47742.2019.9036238

5. Hale, J.S., Li, L., Richardson, C.N., Wells, G.N.: Containers
for portable, productive, and performant scientific comput-
ing. Comput. Sci. Eng. 19(6), 40–50 (2017). https://doi.org/
10.1109/MCSE.2017.2421459

6. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated
performance comparison of virtual machines and Linux con-
tainers. ISPASS 2015 - IEEE International Symposium on
Performance Analysis of Systems and Software, 171–172
(2015). https://doi.org/10.1109/ISPASS.2015.7095802

7. Giorgi, F.M., Ceraolo, C., Mercatelli, D.: The R Lan-
guage: An Engine for Bioinformatics and Data Science. Life
(Basel, Switzerland) 12(5) (2022). https://doi.org/10.3390/
LIFE12050648

8. Fourment, M., Gillings, M.R.: A comparison of com-
mon programming languages used in bioinformatics.
BMC Bioinform. 9(1), 1–9 (2008). https://doi.org/10.1186/
1471-2105-9-82/TABLES/1

9. Baker, M., Penny, D.: Is there a reproducibility cri-
sis? Nature 533(7604), 452–454 (2016). https://doi.org/10.
1038/533452A

10. Amstutz, P., Crusoe, M.R., Tijanić, N., Chapman, B.,
Chilton, J., Heuer, M., Kartashov, A., Leehr, D., Ménager,
H., Nedeljkovich, M., Scales, M., Soiland-Reyes, S., Sto-
janovic, L.: Common Workflow Language, v1.0. Figshare
(2016). https://doi.org/10.6084/M9.FIGSHARE.3115156

11. Voss, K., Auwera, G.V.d., Gentry, J., Voss, K., Auwera, G.,
Gentry, J.: Full-stack genomics pipelining with GATK4 +
WDL + Cromwell. ISCB Comm. J. 6 (2017). https://doi.
org/10.7490/F1000RESEARCH.1114634.1

12. Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo,
D., Gil, Y., Crusoe, M.R., Peters, K., Schober, D.: FAIR
Computational workflows. Data Intell. 2(1–2), 108–121
(2020). https://doi.org/10.1162/DINT_A_00033

13. Herschel, M., Diestelkämper, R., Ben Lahmar, H.: A sur-
vey on provenance: What for? What form? What from?
VLDB J. 26(6), 881–906 (2017). https://doi.org/10.1007/
S00778-017-0486-1

14. Khan, F.Z., Soiland-Reyes, S., Sinnott, R.O., Lonie, A.,
Goble, C., Crusoe, M.R.: Sharing interoperable workflow
provenance: A review of best practices and their practi-
cal application in CWLProv. GigaSci 8(11), 1–27 (2019).
https://doi.org/10.1093/GIGASCIENCE/GIZ095

15. Missier, P., Belhajjame, K., Cheney, J.: The W3C PROV
family of specifications for modelling provenance metadata.
ACM Int. Conf. Proc. Ser. 773–776 (2013). https://doi.org/
10.1145/2452376.2452478

16. O’Connor, B.D., Yuen, D., Chung, V., Duncan, A.G.,
Liu, X.K., Patricia, J., Paten, B., Stein, L., Ferretti,
V.: The Dockstore: enabling modular, community-focused

sharing of Docker-based genomics tools and workflows.
F1000Research 6:52 6, 52 (2017). https://doi.org/10.12688/
f1000research.10137.1

17. Goble, C., Soiland-Reyes, S., Bacall, F., Owen, S., Williams,
A., Eguinoa, I., Droesbeke, B., Leo, S., Pireddu, L.,
Rodríguez-Navas, L., Fernández, J.M., Capella-Gutierrez,
S., Ménager, H., Grüning, B., Serrano-Solano, B., Ewels,
P., Coppens, F.: Implementing FAIR digital objects in
the EOSC-Life workflow collaboratory (2021). https://
doi.org/10.5281/ZENODO.4605654 . https://zenodo.org/
record/4605654

18. Vivian, J., Rao, A.A., Nothaft, F.A., Ketchum, C., Arm-
strong, J., Novak, A., Pfeil, J., Narkizian, J., Deran, A.D.,
Musselman-Brown, A., Schmidt, H., Amstutz, P., Craft, B.,
Goldman, M., Rosenbloom, K., Cline, M., O’Connor, B.,
Hanna, M., Birger, C., Kent, W.J., Patterson, D.A., Joseph,
A.D., Zhu, J., Zaranek, S., Getz, G., Haussler, D., Paten, B.:
Toil enables reproducible, open source, big biomedical data
analyses. Nature Publishing Group (2017). https://doi.org/
10.1038/nbt.3772

19. chanzuckerberg/miniwdl: Workflow Description Language
developer tools & local runner. https://github.com/
chanzuckerberg/miniwdl (2023)

20. Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P.P.,
Palumbo, E., Notredame, C.: Nextflow enables reproducible
computational workflows. Nat. Biotechnol. 35(4), 316–319
(2017). https://doi.org/10.1038/NBT.3820

21. AWS Batch. https://aws.amazon.com/batch/ (2023)
22. Azure Batch. https://azure.microsoft.com/en-us/products/

batch/ (2023)
23. Google Batch. https://cloud.google.com/batch/ (2023)
24. Giardine, B., Riemer, C., Hardison, R.C., Burhans, R., Elnit-

ski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I.,
Taylor, J., Miller, W., Kent, W.J., Nekrutenko, A.: Galaxy:
A platform for interactive large-scale genome analysis.
Genome Res. 15(10), 1451–1455 (2005). https://doi.org/10.
1101/gr.4086505

25. TES specification. https://github.com/ga4gh/
task-execution-schemas (2023)

26. Funnel. https://ohsu-comp-bio.github.io/funnel/ (2023)
27. WES Specification. https://github.com/ga4gh/

workflow-execution-service-schemas (2023)
28. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple

linux utility for resource management. Lect. Notes Comput.
Sci. (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 2862, 44–60
(2003). https://doi.org/10.1007/10968987_3

29. HashiCorp State of Cloud Strategy Survey. https://www.
hashicorp.com/state-of-the-cloud (2022)

30. Tyryshkina, A., Coraor, N., Nekrutenko, A.: Predicting
runtimes of bioinformatics tools based on historical data:
Five years of Galaxy usage. Bioinformatics 35(18), 3453–
3460 (2019). https://doi.org/10.1093/BIOINFORMATICS/
BTZ054

31. Fahad, A.M., Ahmed, A.A., Kahar, M.N.M.: The impor-
tance of monitoring cloud computing: An intensive review.
IEEE Region 10 Annual International Conference, Proceed-
ings/TENCON 2017-December, 2858–2863 (2017). https://
doi.org/10.1109/TENCON.2017.8228349

32. Birje, M.N., Bulla, C.: Commercial and open source
cloud monitoring tools: A review. Learn. Anal. Intell.

123

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/
https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/MCSE.2017.2421459
https://doi.org/10.1109/MCSE.2017.2421459
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.3390/LIFE12050648
https://doi.org/10.3390/LIFE12050648
https://doi.org/10.1186/1471-2105-9-82/TABLES/1
https://doi.org/10.1186/1471-2105-9-82/TABLES/1
https://doi.org/10.1038/533452A
https://doi.org/10.1038/533452A
https://doi.org/10.6084/M9.FIGSHARE.3115156
https://doi.org/10.7490/F1000RESEARCH.1114634.1
https://doi.org/10.7490/F1000RESEARCH.1114634.1
https://doi.org/10.1162/DINT_A_00033
https://doi.org/10.1007/S00778-017-0486-1
https://doi.org/10.1007/S00778-017-0486-1
https://doi.org/10.1093/GIGASCIENCE/GIZ095
https://doi.org/10.1145/2452376.2452478
https://doi.org/10.1145/2452376.2452478
https://doi.org/10.12688/f1000research.10137.1
https://doi.org/10.12688/f1000research.10137.1
https://doi.org/10.5281/ZENODO.4605654
https://doi.org/10.5281/ZENODO.4605654
https://zenodo.org/record/4605654
https://zenodo.org/record/4605654
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://github.com/chanzuckerberg/miniwdl
https://github.com/chanzuckerberg/miniwdl
https://doi.org/10.1038/NBT.3820
https://aws.amazon.com/batch/
https://azure.microsoft.com/en-us/products/batch/
https://azure.microsoft.com/en-us/products/batch/
https://cloud.google.com/batch/
https://doi.org/10.1101/gr.4086505
https://doi.org/10.1101/gr.4086505
https://github.com/ga4gh/task-execution-schemas
https://github.com/ga4gh/task-execution-schemas
https://ohsu-comp-bio.github.io/funnel/
https://github.com/ga4gh/workflow-execution-service-schemas
https://github.com/ga4gh/workflow-execution-service-schemas
https://doi.org/10.1007/10968987_3
https://www.hashicorp.com/state-of-the-cloud
https://www.hashicorp.com/state-of-the-cloud
https://doi.org/10.1093/BIOINFORMATICS/BTZ054
https://doi.org/10.1093/BIOINFORMATICS/BTZ054
https://doi.org/10.1109/TENCON.2017.8228349
https://doi.org/10.1109/TENCON.2017.8228349

Journal of Grid Computing (2024) 22:62 Page 19 of 19 62

Syst. 3, 480–490 (2020). https://doi.org/10.1007/
978-3-030-24322-7_59/FIGURE

33. da Rosa Righi, R., Lehmann, M., Gomes, M.M., Nobre,
J.C., Costa, C.A., Rigo, S.J., Lena, M., Mohr, R.F., Oliveira,
L.R.B.: A survey on global management view: toward com-
bining system monitoring, resource management, and load
prediction. J. Grid Comput. 17(3), 473–502 (2019). https://
doi.org/10.1007/S10723-018-09471-X/METRICS

34. Ohta, T., Tanjo, T., Ogasawara, O.: Accumulating com-
putational resource usage of genomic data analysis work-
flow to optimize cloud computing instance selection.
GigaScience 8(4), 1–11 (2019). https://doi.org/10.1093/
GIGASCIENCE/GIZ052

35. Bader, J., Witzke, J., Becker, S., Loser, A., Lehmann, F.,
Doehler, L., Vu, A.D., Kao, O.: Towards advanced moni-
toring for scientific workflows. Proceedings - 2022 IEEE
International Conference on Big Data. Big Data 2709–2715
(2022). https://doi.org/10.1109/BIGDATA55660.2022.
10020864

36. Telegraf | InfluxData. https://influxdata.com/telegraf (2024)
37. Elasticsearch: The Official Distributed Search & Analytics

Engine | Elastic. https://www.elastic.co/elasticsearch (2024)
38. Cloud monitoring | Dynatrace. https://www.dynatrace.com/

platform/cloud-monitoring/ (2023)
39. Cloud Monitoring as a Service | Datadog. https://www.

datadoghq.com/ (2023)
40. InfluxDB Cloud | InfluxData. https://www.influxdata.com/

products/influxdb-cloud/ (2023)
41. Grafana: The open observability platform | Grafana Labs.

https://grafana.com/ (2024)
42. Nomad by HashiCorp. https://www.nomadproject.io/

(2024)
43. Fully Managed Container Solution - Amazon Elastic Con-

tainer Service (Amazon ECS) - Amazon Web Services.
https://aws.amazon.com/ecs/ (2024)

44. Infrastructure As Code Provisioning Tool - AWS CloudFor-
mation - AWS. https://aws.amazon.com/cloudformation/
(2024)

45. What is Amazon SNS? - Amazon Simple Notification Ser-
vice. https://docs.aws.amazon.com/sns/latest/dg/welcome.
html (2024)

46. Wratten, L., Wilm, A., Göke, J.: Reproducible, scalable, and
shareable analysis pipelines with bioinformatics workflow
managers. Nat. Methods 18(10), 1161–1168 (2021). https://
doi.org/10.1038/s41592-021-01254-9

47. Genomics Workflows on AWS. https://docs.opendata.aws/
genomics-workflows/quick-start.html (2023)

48. IEEE SA - IEEE 1003.1-2001 (POSIX). https://standards.
ieee.org/ieee/1003.1/1389/ (2021)

49. Bage, A.P., Saxena, S., Singh, Y.: A brief review on
lightweight practice of docker vulnerabilities. Software
Engineering Approaches to Enable Digital Transforma-
tion Technologies 18–24 (2023). https://doi.org/10.1201/
9781003441601-2

50. OmicsBox - Bioinformatics Made Easy, BioBam Bioinfor-
matics. https://www.biobam.com/omicsbox/ (2023)

51. Götz, S., García-Gómez, J.M., Terol, J., Williams, T.D.,
Nagaraj, S.H., Nueda, M.J., Robles, M., Talón, M., Dopazo,
J., Conesa, A.: High-throughput functional annotation and
data mining with the Blast2GO suite. Nucleic Acids Res.
36(10), 3420–3435 (2008). https://doi.org/10.1093/NAR/
GKN176

52. OpenTofu. https://opentofu.org/ (2024)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1007/978-3-030-24322-7_59/FIGURE
https://doi.org/10.1007/978-3-030-24322-7_59/FIGURE
https://doi.org/10.1007/S10723-018-09471-X/METRICS
https://doi.org/10.1007/S10723-018-09471-X/METRICS
https://doi.org/10.1093/GIGASCIENCE/GIZ052
https://doi.org/10.1093/GIGASCIENCE/GIZ052
https://doi.org/10.1109/BIGDATA55660.2022.10020864
https://doi.org/10.1109/BIGDATA55660.2022.10020864
https://influxdata.com/telegraf
https://www.elastic.co/elasticsearch
https://www.dynatrace.com/platform/cloud-monitoring/
https://www.dynatrace.com/platform/cloud-monitoring/
https://www.datadoghq.com/
https://www.datadoghq.com/
https://www.influxdata.com/products/influxdb-cloud/
https://www.influxdata.com/products/influxdb-cloud/
https://grafana.com/
https://www.nomadproject.io/
https://aws.amazon.com/ecs/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://doi.org/10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9
https://docs.opendata.aws/genomics-workflows/quick-start.html
https://docs.opendata.aws/genomics-workflows/quick-start.html
https://standards.ieee.org/ieee/1003.1/1389/
https://standards.ieee.org/ieee/1003.1/1389/
https://doi.org/10.1201/9781003441601-2
https://doi.org/10.1201/9781003441601-2
https://www.biobam.com/omicsbox/
https://doi.org/10.1093/NAR/GKN176
https://doi.org/10.1093/NAR/GKN176
https://opentofu.org/

	CMK: Enhancing Resource Usage Monitoring across Diverse Bioinformatics Workflow Management Systems
	Abstract
	1 Introduction
	2 Goals
	3 Related Work
	4 Architecture of the Monitoring System
	4.1 Proposed Architecture
	4.2 Implementation

	5 Evaluation
	5.1 Introduction
	5.2 Workflow Description
	5.3 AWS Compute Environment
	5.4 Monitoring Configuration
	5.4.1 Data Staging and Task Execution Structure

	5.5 Labels
	5.5.1 Metrics Comparison

	5.6 Evaluating CMK in an Industry Context: A Case Study
	5.7 Discussion

	6 Conclusion and Future Works
	Acknowledgements
	References

