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Abstract Previous studies indicate that water storage over a large part of the Middle East

has been decreased over the last decade. Variability in the total (hydrological) water flux

(TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage

changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian,

Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our

investigation is performed based on the TWF that are estimated as temporal derivatives of

terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experi-

ment (GRACE) products and those from the reanalysis products of ERA-Interim and

MERRA-Land. An inversion approach is applied to consistently estimate the spatio-tem-

poral changes of soil moisture and groundwater storage compartments of the seven basins

during the study period from GRACE TWS, altimetry, and land surface model products.

The influence of TWF trends on separated water storage compartments is then explored.

Our results, estimated as basin averages, indicate negative trends in the maximums of TWF

peaks that reach up to -5.2 and -2.6 (mm/month/year) over 2003–2013, respectively, for

the Urmia and Tigris–Euphrates basins, which are most likely due to the reported mete-

orological drought. Maximum amplitudes of the soil moisture compartment exhibit neg-

ative trends of -11.1, -6.6, -6.1, -4.8, -4.7, -3.8, and -1.2 (mm/year) for Urmia,

Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively.
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Strong groundwater storage decrease is found, respectively, within the Khazar -8.6 (mm/

year) and Sarakhs -7.0 (mm/year) basins. The magnitude of water storage decline in the

Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly

accumulated TWF indicating a contribution of human water use, as well as surface and

groundwater flow to the storage decline over the study area.

Keywords Tigris–Euphrates � Iran � GRACE � Reanalysis � Inversion � Total water flux
(TWF) � Terrestrial water storage (TWS)

1 Introduction

Recent studies report declining trends in terrestrial water storage (TWS, a vertical inte-

gration of surface water, soil moisture, groundwater, and biomass water content) over a

large region of the Middle East and Western Asia (e.g., Voss et al. 2013; Forootan et al.

2014; Joodaki et al. 2014; Madani 2014; Al-Zyoud et al. 2015). The decline is believed to

be mainly due to the climate change, as well as increasing demands on freshwater (surface

water and groundwater) needed to support food production and economic activities of the

increasing population in the region (UNEP 2003; Gleick 2004). In fact, decreasing the

large-scale total water flux (TWF), known as precipitation ‘P’ minus evapotranspiration

‘E’ minus surface runoff ‘R’ (P–E–R), reflects a cumulative impact of direct and indirect

anthropogenic modifications of the water cycle (e.g., Famiglietti and Rodell 2013; Eicker

et al. 2015), and can be considered as an indicator of the ‘meteorological drought’ (e.g.,

Kusche et al. 2016). Kaniewski et al. (2012) discuss the climate change and water vari-

ability within the northwest part of the Middle East and show that variability in precipi-

tation plays a critical role on crop yields, productivity, and economic systems within the

region. Precipitation deficit therefore mainly causes the water storage deficit experienced in

the Middle East.

Trigo et al. (2010) and Hosseinzadeh Talaee et al. (2014) indicate that a prolonged

meteorological drought condition might contribute to water storage shortage in the region

or its ‘hydrological drought’. In this study, large-scale TWS and TWF changes are assessed

over the Tigris–Euphrates (shared by Turkey, Syria, Iraq, Iran and Kuwait) and Iran’s six

major basins (defined according to FAO 2009), which cover a large area of the arid and

semiarid parts of the Middle East. The aim is to understand the contributions of the TWF

deficit and the human water use to the TWS decline during 2003–2013.

Monitoring networks to obtain meteorological (e.g., precipitation and evapotranspira-

tion) and hydrological (water storage in surface and subsurface) parameters are quite

sparse within the Middle East. Obtaining large-scale information (e.g., over trans-boundary

river basins) is further compounded by the lack of trust between the countries or due to

political interests. Such conditions, therefore, justify the exploration of alternative moni-

toring tools that can provide reliable information on meteorological and hydrological

processes, which are necessary for managing drought and flood-related impacts, as well as

improving the water resources management in the region (e.g., Greenwood 2014; Madani

2014).

Since late 2002, monthly TWS changes have been obtained by processing the Gravity

Recovery and Climate Experiment mission (GRACE, Tapley et al. 2004) observations.

GRACE’s unique products along with complementary observations (e.g., satellite

altimetry) and modeling techniques (e.g., land surface model, ‘LSM,’ simulations) can be

used for basin scale water balance studies (see, e.g., Kusche et al. 2012; Schumacher et al.
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2016; Wouters et al. 2014 for a review). For example, GRACE and LSM were applied in

Voss et al. (2013) to monitor groundwater variability over the Tigris–Euphrates river

basin, and in Joodaki et al. (2014) to estimate anthropogenic contributions to groundwater

loss over Iran. Both studies supported the model simulation results by Döll et al. (2012),

which indicate that the rates of TWS decline due to anthropogenic water use reached up to

100 mm/year. Forootan et al. (2014) on their part introduced an inversion technique to

estimate surface and subsurface water storage changes from GRACE combined with LSM

simulations and altimetry observations. A multisensor approach was applied by Tourian

et al. (2015) to separate the contribution of surface and subsurface storage compartments in

the TWS decline over northwest Iran (the Urmia basin), where Urmia Lake has been

shrinking. In both studies, negative rates of surface and subsurface storage changes are

found to be significant and have accelerated since 2007.

Recent studies point to the fact that the contributions of climate change and hydrological

processes are dominant drivers to water storage decline mainly within the Tigris–Euphrates

river basin. For instance, Longuevergne et al. (2012) illustrate that surface water storage

changes (estimated from altimetry measurements) within those regions that include lakes and

reservoirs contribute to almost 50% of GRACE TWS trend. By combining various remote

sensing data and LSM outputs in a hydrological model, Mulder et al. (2015) indicate that the

GRACE TWS depletion within northern Iraq during 2007–2009 is mainly explained by a

lake mass exploitation. In fact, hydrological processes such as surface and groundwater

(lateral) flow might significantly change TWS patterns as has been discussed, e.g., in Scanlon

et al. (2015). This impact is expected to be strong within the Tigris–Euphrates river basin

and to a less extent within Iran’s river basins, e.g., Urmia and Persian basins, see, e.g.,

Hosseini and Ashraf (2015) for more details, and Fig. 1 for the location of the basins.

To obtain information on regional/global TWF changes, many studies use weather

forecast model reanalysis products such as ERA-Interim from the European Centre for

Medium-range Weather Forecasts (ECMWF, Dee et al. 2011), and the Modern Era Ret-

rospective Analysis for Research and Applications (MERRA) from NASA (Rienecker

et al. 2011). Lorenz and Kunstmann (2012), for example, assessed the representation of the

hydrological cycle in three widely used reanalyses products provided by the European and

American centers. Their results indicate that the TWF derived from reanalysis products

might represent limited skills particularly due to biases, and the effects of anthropogenic

modification that are particularly difficult to quantify (Simmons et al. 2010). Compared to

in situ observations, skill of the reanalyses might change from a region to another (see, e.g.,

Forootan et al. 2016; Khandu et al. 2016). On the other hand, Rodell et al. (2004a) indi-

cated that the temporal rate of changes in GRACE TWS is directly related to the changes in

TWF through the water balance equation. Therefore, GRACE TWS estimations can be

used to evaluate climate variability over river basins.

The contribution of this study is therefore threefold; (i) to apply TWF estimated from

GRACE and reanalysis products for investigating possible changes in the seasonality

(magnitude and spread of annual and semiannual peaks) and trends in the hydrological

fluxes over 2003–2013, (ii) as large-scale ocean–atmosphere interactions potentially affect

the rainfall and temperature of the region (e.g., Sabziparvar et al. 2010; Tabari et al. 2014);

their contributions to the TWF changes are determined by considering the dominant cli-

mate variabilities associated with El Niño Southern Oscillation (ENSO), North Atlantic

Oscillation (NAO), and Mediterranean Oscillation (Hasanean 2004), and (iii) to apply the

inversion methodology in Forootan et al. (2014) to separate GRACE TWS into surface and

subsurface (soil moisture and groundwater) compartments. The trends and seasonality of

the separated subsurface storage changes (in iii) are then explored, and their relationships
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to the TWF changes (in i and ii) discussed. Our motivation to address the variability in

subsurface compartments is due to their importance for drought monitoring as soil mois-

ture is the main driver of vegetation growth and consequently evapotranspiration (e.g.,

AghaKouchak et al. 2015), as well as groundwater that is the main source of freshwater

within the arid and semiarid regions (e.g., Richey et al. 2015). It should be pointed out that

for the signal separation, the methodology in Forootan et al. (2014) is adopted since, unlike

other studies, it retains the spatial resolution of LSMs and GRACE gridded products (see

e.g., Awange et al. 2014; Forootan 2014, Chap. 5.4), which is important for hydrological

assessments (see e.g. Schumacher et al. 2016). The spatial coverage of the current con-

tribution also extends the previous studies to cover the entire Iran and the Tigris–Euphrates

river basin. To the best of our knowledge, variability in the TWF from GRACE and

reanalysis products has not been addressed over the region.

Fig. 1 An overview of the study region that consists of the seven basins. The upper figure shows the
average annual rainfall over the Middle East (FAO 2009), while the lower figure, the six main (first order)
basins of Iran and the Tigris–Euphrates river basin are depicted by the red lines inside the satellite map
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In the following, we describe the study region and its climate characteristics in Sect. 2,

and four different types of data (reanalysis total fluxes, climate indices, GRACE TWS, and

LSM simulations) in Sect. 3. In Sect. 4, the main analysis techniques are introduced, while

the results are reported in Sect. 5. Finally, in Sect. 6, a summary and conclusions are

provided.

2 Study Region

A box extending from 29�–63�E and 24�–43�N is defined to extract TWS and TWF from

GRACE, LSM, and reanalysis products. The six main (also called ‘first order’) basins of

Iran (FAO 2009), and the Tigris–Euphrates river basin are considered in the study region,

which have the following characteristics:

• Iran covers a total area of about 1.75 million km2 (FAO 2009) and includes two large

mountain chains; the Alborz that extends from the northwest to northeast and separates

the dry central part from the green coastline regions of the Caspian Sea, as well as

Zagros that runs from the northwest along the western border to the southern shore

lines and continues to the southeastern boundaries. Considering the topography and

hydrological conditions, the six main basins (catchments) are (1) ‘Khazar,’ 0.175

million km2, (2) ‘Persian Gulf and Oman Sea,’ 0.4375 million km2, (3) ‘Lake Urmia,’

0.0525 million km2, (4) ‘Markazi’ (Central Plateau), 0.91 million km2, (5) ‘Hamun,’

0.1225 million km2, and (6) ‘Sarakhs’ (Kara-Kum), 0.0525 million km2, which are

shown in Fig. 1. In the following, basin (2) and (3) are simply referred to as ‘Persian’

and ‘Urmia,’ respectively. Iran is mostly located in an arid and semiarid climate except

10% of its area (Khazar), which has a subtropical condition. Annual precipitation falls

from October through to April. An annual average of 228 mm precipitation is reported

over Iran, which is considered as the main renewable water resource, with a maximum

of 2227 mm in the Khazar basin and less than 50 mm in parts of the Markazi basin

(FAO 2009). The very dry climate in the center (Markazi) is due to the particular

extension of Alborz and Zagros that blocks atmospheric circulations and evaporation

transport (Heshmati 2013).

• The trans-boundary Tigris–Euphrates river basin with a total area of 0.88 million km2

is located to the west of Iran (see Fig. 1). The Tigris and Euphrates are the main rivers

of this basin, which originate from the eastern mountains of Turkey and join at the

south east of Iraq (called Shatt Al-Arab), and finally empty into the Persian Gulf. In

addition to the northern mountains, some high mountains exist in the west of Tigris–

Euphrates that are riparian only to the Euphrates and the extensive lowlands extend to

the south and east. The climatic condition of Tigris–Euphrates varies from subtropical

in the northern and mountainous parts to the arid and semiarid climate in the south.

3 Data

3.1 Reanalysis Flux Products

• ERA-Interim is a global atmospheric reanalysis produced by ECMWF (Dee et al.

2011). Several gridded products, describing the ocean, land surface and the
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atmospheric (covering the troposphere and stratosphere) conditions have been pro-

duced in a fully integrated–coupled system. The system produces 3–6-hourly predic-

tions with a spatial resolution of � 0:79� � 0:79�. Gridded precipitation (P),

evapotranspiration (E), and runoff (R) products over 2003–2013 are downloaded from

the ECMWF website (http://apps.ecmwf.int/datasets/) to estimate monthly (TWF, i.e.,

P–E–R) over the study region.

• MERRA-Land is the latest American global reanalysis for the satellite era (1979

onwards) produced by NASA using the Goddard Earth Observing Data Assimilation

version 5 (GEOS-5, Rienecker et al. 2011). The retrospective analyses is run at a

relatively high spatial resolution (0:67� � 0:50�) at 1–6 hourly time intervals focusing

mainly on the assimilation of the global hydrological cycle by integrating a variety of

observing systems (such as satellite- and ground-based observations). Monthly total

fluxes are derived from the MERRA-Land through the website (http://gmao.gsfc.nasa.

gov/research/merra/merra-land.php). Our motivation to select the ‘land’ component is

due to the improved skill of MERRA-Land in reconstructing soil moisture and runoff

over MERRA (see, e.g., Reichle et al. 2011).

3.2 Climate Variability Indices

Large-scale ocean–atmosphere interactions have a significant impact on the Earth’s climate

and water resources (Moron et al. 1998). To characterize these oscillations, climate vari-

ability indices have been produced to represent the activities of major phenomena such as

the Southern Oscillation Index (SOI, for ENSO), Mediterranean Oscillation Index (MOI),

and the North Atlantic Oscillation (NAO) index that might have significant influences on

the large-scale climate and water storage variability within our study region (Hasanean

2004).

• ENSO is the largest inter-annual climate variability phenomenon in the Tropical

Pacific, which affects the climate of many regions of the Earth (Trenberth 1990;

Forootan et al. 2016). El Niño refers to the negative phase on ENSO that brings winter

precipitation to the Middle East and the opposite phase La Niña causes less than normal

precipitation variability (Nazemosadat and Cordery 2000). ENSO events are calculated

using the pressure difference between Tahiti and Darwin and represented by SOI

(https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/).

• MOI is computed from sea level pressure over the western and eastern Mediterranean

Sea that generates regional circulations affecting the climate of Europe and the Middle

East (Martin-Vide and Lopez-Bustins 2006). During negative MOI phases, the

probability of above average winter precipitation is significantly less than the positive

phases. From several versions of existing MOI, this study employs the Algiers-Cairo

MOI, which is based on the normalized pressure difference between Algiers (36.4�N,
3.1�E) and Cairo (30.1�N, 31.4�E) (Conte et al. 1989). This index is downloaded from

the Climatic Research Unit (http://www.cru.uea.ac.uk/data).

• NAO is a multiannual variability in the atmosphere, which is most pronounced in

winter. It is characterized with the NAO index, which is defined as the pressure

difference between Ponta Delgada, Azores (38�N, 26�W) and Akureyri Iceland (66�N,
18�W) (Rogers 1984). During the positive phase of NAO (negative phase of NAO),

stronger (weaker) than usual surface winds and wintertime storms move from west to

east across North Atlantic (Cullen and deMenocal 2000). As a result, wetter and

warmer (drier and cooler) winter conditions occur over the northern Europe and the
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east coast of the USA, while drier and cooler winters occur over Greenland and the

Mediterranean extending into the Middle East (Ghasemi and Khalili 2008).

3.3 Total Water Storage Products from GRACE

GRACE Level 2 products consist of (almost) monthly gravity field solutions that have

been released from three different processing centers. The latest release of the gravity

field solutions up to degree and order 90 and are available from the official providers

CSR, GFZ, and JPL. Following the recommendations in Sakumura et al. (2014), this

study employs an ensemble mean of these fields (covering 2003–2013) to reduce the

noise. Degree 1 coefficients are replaced by those in Swenson et al. (2008) in order to

account for variations in the Earth’s center of figure with respect to the Earth’s center of

mass. The zonal degree 2 spherical harmonic coefficients ðC20Þ are replaced by those in

Cheng et al. (2013) (see also http://grace.jpl.nasa.gov) since they are found to be better

estimated.

GRACE Level 2 products contain correlated errors (due to measurement errors, sam-

pling of the mission, and background errors, see, e.g., Forootan et al. 2013 and Schu-

macher et al. 2016), which express themselves as striping patterns in the spatial domain.

These errors mask hydrological signals and make their detection difficult (Kusche 2007).

Before computing monthly TWS fields, the DDK2 decorrelation filter (Kusche et al. 2009)

is applied to suppress the correlated noise. Monthly residual gravity field solutions are

computed by subtracting the temporal average of 2003–2013 from each month. The

residual coefficients are then transformed into 1� � 1� grid of TWS over the study region

following Wahr et al. (1998). It is worth mentioning here that GRACE TWS estimations

are affected by signal attenuation and leakage due to the spatial averaging introduced by

the filtering techniques. These errors impact on the estimated long-term trends. From the

assessed basins, TWS estimations of Khazar, Urmia, and Sarakhs exhibit bigger leakage

errors than the other basins due to their smaller area and the existing mass anomalies. For

example, spatial leakage associated with the strong water fluctuations within the Caspian

Sea and the strong storage trend in Urmia Lake influence the estimation of changes in soil

moisture and groundwater storage compartments of their surrounding regions (see also

Longuevergne et al. 2012).

3.4 Global Land Surface Models

The Global Land Data Assimilation System (GLDAS, Rodell et al. 2004b) is a land

surface model (LSM), which has been fed by meteorological forcing and employing data

assimilation techniques. GLDAS provides off-line near-real-time datasets with global

coverage. The water balance components from three versions of GLDAS, i.e., NOAH,

MOSAIC, and VIC at 1� � 1� (http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings) are

used as a priori information to separate GRACE TWS (see Sect. 4.1). From each model

output, a vertical summation of the total column soil moisture (TSM), snow water

equivalent (SWE), and canopy water storage (CWS) are used. Note that the groundwater

variations are not simulated by GLDAS and will be computed as a residual of TWS and

other storage compartments. The possible lateral water storage flow has not been explicitly

considered in the GLDAS simulations, which might be important within the Tigris–

Euphrates river basin.
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A summary of the datasets used in this study is presented in Table 1. All the gridded

datasets of various spatial and temporal resolutions were averaged to a common grid of

1� � 1� at monthly scales for a fair comparison that is described in the following section.

3.5 Post-processing of TWS and TWF Products

3.5.1 Proper Filtering of TWS Derivatives and Reanalysis Fluxes

Considering the water balance equation
dWðtÞ
dt ¼ PðtÞ � EðtÞ � RðtÞ (Rodell et al. 2004a),

the right-hand side should be replaced by monthly reanalysis products (here ERA-Interim

and MERRA-Land), and the left-hand side by estimating a numerical derivative of the

GRACE TWS time series. In this formulation, the runoff is simulated from the land

component of ERA-Interim and MERRA-Land. This simulation has already improved the

representation of the reanalysis outputs when compared to remote sensing and in situ

observations (Reichle et al. 2011). The rate of storage change
dWðtÞ
dt for a particular month is

computed by averaging the two preceding and following months using a central differ-

entiation operator (1=8; 1=4;�1=4;�1=8). However, this operation has a smoothing effect,

and therefore, a proper filter should be applied to P–E–R to avoid possible phase shifts.

This is done by convolving an optimum (temporal) central smoothing filter (2/44, 11/44,

18/44, 11/44, 2/44) with DDK2-filtered reanalysis TWF (P–E–R) time series as suggested

by Eicker et al. (2015).

3.5.2 Filtering of LSM Storage Simulations

GRACE Level 2 products are (i) originally expanded in terms of spherical harmonics

and (ii) filtered using the DDK2 (a low-pass filter) to suppress the noise. Both (i) and

(ii) introduce a smoothing (damping) impact to the signal content of GRACE products.

In order to have similar spectral structure as those of GRACE TWS, storage simula-

tions of the LSMs are first expanded to the spherical harmonic domain using a

numerical integration as in Wang et al. (2006). Then, the DDK2 filter is applied to

smooth the storage products. This procedure is consistent with the post-processing in

Forootan et al. (2014).

Table 1 Summary of the datasets used in this study

Product Type Spatial resolution
[lat 9 lon]

Temporal
resolution

Coverage Data used

GRACE TWS (CSR, GFZ, JPL
(RL05)

1� � 1� Monthly Global 2003–2013

ERA-Interim Reanalysis 0:79� � 0:79� Monthly Global 2003–2013

MERRA-land Reanalysis 0:67� � 0:50� Monthly Global 2003–2013

Global land surface
models

(VIC, NOAH,
Mosaic)

1� � 1� Monthly Global 2003–2013

Climate indices NAO, SOI, MOI Time series Monthly Specific
regions

2003–2013
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4 Method

4.1 Inversion to Separate GRACE TWS into Storage Compartments

In terms of storage compartments, GRACE TWS over the study region consists of storage

changes in soil moisture (XSoil), groundwater (XGroundwater), canopy (XCanopy), snow

(XSnow), and surface water XSurfacewater. Thus,

XTWS ¼ XSoil þ XGroundwater þ XCanopy þ XSnow þ XSurfacewater; ð1Þ

where storage changes of XSoil;XCanopy, and XSnow can be obtained from GLDAS model

simulations. Estimations of XSurfacewater can be introduced by converting altimetry mea-

surements to storage following, e.g., Moore and Williams (2014). Groundwater

(XGroundwater) estimation is missing in land surface models such as GLDAS and therefore is

estimated here after solving the inversion.

Forootan et al. (2014) demonstrated that a direct reduction of subsurface and surface

storage compartments from GRACE TWS to estimate, e.g., groundwater variability over the

region might be erroneous. This is due to the fact that (a) hydrological model simulations and

altimetry measurements are not perfectly consistent with GRACE TWS estimations and

(b) GRACE-derived TWS estimation is contaminated by spatial leakages, which should be

addressed by applying a proper post-processing technique (e.g., Long et al. 2015).

In this study, similar to Forootan et al. (2014), surface storage (from altimetry) and

other compartments from GLDAS are used as a priori information for an inversion process.

Therefore, the time series of soil moisture, canopy, snow, and surface water over the study

region (29�–63�E and 24�–43�N, and covering 2003–2013) are decomposed using tem-

poral-independent component analysis (tICA, Forootan and Kusche 2012, 2013) into

independent temporal patterns and associated spatial base functions as

XSoil=Canopy=Snow=Surfacewater ¼ ASoil=Canopy=Snow=Surfacewater SSoil=Canopy=Snow=Surfacewater; ð2Þ

where A contains temporal and S stores spatial patterns. Then, the spatial patterns (in S) are
considered as invariant and are fitted to GRACE TWS to estimate updated temporal

patterns that are consistent with GRACE observations as

ÂSoil=Canopy=Snow=Surface water ¼
�
½SSoil SCanopy SSnow SSurface�T ½SSoil SCanopy SSnow SSurface�

��1

½SSoil SCanopy SSnow SSurface�T XTWS;

ð3Þ

where XTWS contains GRACE TWS time series. To reconstruct the contribution of each

storage compartment, one can use the updated temporal variability in Eq. (3) and their

corresponding invariant spatial patterns as

X̂Soil=Canopy=Snow=Surfacewater ¼ ÂSoil=Canopy=Snow=Surfacewater SSoil=Canopy=Snow=Surfacewater: ð4Þ

The reconstructed values in Eq. (4) are consistent with GRACE TWS estimations (since

the temporal patterns have been fitted to GRACE within the inversion). The separated

storage compartments are of the same spatial resolution as the introduced LSM and

altimetry-derived base functions. This feature was missing in most of previous studies as

they only presented basin average mass variations. As different LSM products have been

used in the inversion procedure, i.e., by inserting each product in Eqs. (2)–(3), accordingly,

a new estimation of the storage compartments that provides a chance to estimate
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uncertainty of the separated compartments is derived. This uncertainty has been considered

in the trend estimation performed in the following sections. Groundwater variability over

the region of study is then computed as the differences between GRACE TWS and the

reconstructed storage compartments (from Eq. (4)) as

X̂Groundwater ¼ XTWS � ðX̂Soil þ X̂Canopy þ X̂Snow þ X̂SurfaceÞ: ð5Þ

4.2 Stepwise MLR Method

In order to extract trends, seasonal, and climate variability from TWF time series, multiple

linear regression (MLR) that contains a trend component (e.g., linear), periodic compo-

nents (e.g., annual and semiannual cycles), and normalized climate indices is applied to

account for variability associated with large-scale phenomena, i.e.,

xðtÞ ¼ b0 þ b1 � t þ b2 cosð2ptÞ þ b3 sinð2ptÞ þ b4 cosð4ptÞ þ b5 sinð4ptÞ
þ b6 M ðtÞ þ b7Hð M ðtÞÞ þ b8 N ðtÞ þ b9Hð N ðtÞÞ
þ b10 S ðtÞ þ b11Hð S ðtÞÞ þ �ðtÞ;

ð6Þ

where y(t) contains the time series of observations (e.g., total fluxes) at time t. MLR

coefficients, determined using least squares adjustment (LSA), consist of b0 as an offset

depending on the starting point of the time series, b1 representing the linear trend, b2 and
b3 for the annual cycle, b4 and b5 corresponding to the semiannual cycle, b6 and b7
indicating changes due to the Mediterranean Oscillation, b8 and b9 representing changes

due to NAO, and finally, changes due to ENSO described by b10 and b11. In Eq. (6),

M ðtÞ; N ðtÞ, and S ðtÞ indicate temporally normalized time series of MOI, NAO, and

SOI, respectively. The annual and semiannual cycles have already been removed from the

time series of these indices before being inserted in Eq. (6). To extract the out-of-phase

changes of observations, the Hilbert transformation (Hð:Þ, Horel 1984) is used to shift the

time series of indices in the frequency domain by 90� (see also, Forootan et al. 2016).

Finally, �ðtÞ is assumed to be an independent error term, which follows a normal distri-

bution ð��Nð0; r2� ÞÞ and stands for the deviations between observations and the MLR

model. The time series of climate indices (including the annual and semiannual cycles) and

their respective Hilbert transforms are shown in Fig. 2.

In order to find a significant MLR model with the best fit, Eq. (6), it is applied itera-

tively by systematically adding and removing coefficients b0 to b11 and testing the sta-

tistical significance of the regression. This approach, known as the stepwise regression

(Draper and Smith 1998), begins with an initial model (Eq. (6)) and then compares the

explanatory power of incrementally larger and smaller models. The goal of variable

selection in the stepwise method is to achieve a balance between simplicity (as few

predictive terms as possible) and fit (as many predictive terms as needed). In general, the

order of adding/removing parameters does not change the final results of the implemented

step-wise regression. However, one must make sure that the time series of climate indices

(used here as base-functions during fitting the models) are not highly dependent.

4.2.1 Testing MLR Coefficients

In order to assess whether a MLR model is globally significant, we formulate a null

hypothesis test by considering all coefficients at the same time as H0: b0 ¼ � � � ¼ b11 ¼ 0

600 Surv Geophys (2017) 38:591–615

123



(Hoffmann 2010). The significance of the MLR results is evaluated based on the p value of

an F-statistic that is defined as the lowest significance level at which a null hypothesis can

be rejected. For any a\p value, the null hypothesis cannot be rejected, while the null

hypothesis is rejected when a[ p value. At each step of the stepwise MLR, the p value of

an F-statistic is computed to test the significance of the MLR model with and without a

particular predictor. If a term is currently in the model, the null hypothesis is that the term

would have a zero coefficient if added to the model as in Draper and Smith (1998).

5 Results

First, the quality of GRACE estimated TWF against those of reanalysis derived from ERA-

Interim and MERRA-Land is assessed. The same post-processing described in Sect. 3.5 is

applied to both products. Correlation coefficients between the TWF estimates derived from

GRACE and ERA-Interim/MERRA-Land indicate a slightly better agreement between

GRACE and ERA-Interim compared to between GRACE and MERRA-Land (see fig-

ures in the Appendix). A comparison between basin-averaged GRACE and ERA-Interim

total fluxes is also shown in the Appendix, which indicates a high agreement in most of the

basins except within Markazi (the driest basin) and the semiarid Hamun. The TWF

products are compared after removing the seasonal cycles, where the residual signals are

still found to be consistent (results are not shown here). However, the correlation decreased

as the annual cycle significantly contributed to the correlation values.

Basin average TWF is computed from GRACE and reanalysis for the seven basins, and

the results are plotted in Fig. 3. GRACE basin averages are estimated in the spectral

domain following Kusche et al. (2011). Error bars for GRACE derivatives are obtained by
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Fig. 2 Monthly climate variability indices and their Hilbert transformed time series, topMOI, middle NAO,
and bottom SOI
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propagating the errors of GRACE products obtained from CSR. Consistent with previous

studies, e.g., Long et al. (2014), the TWF changes from GRACE indicate a considerable

noise after 2011, which is likely due to increase in the magnitude of errors in GRACE

TWS products. All the TWF estimations are temporally centered, as we do not interpret the

(uncertain) constant bias between GRACE TWF and the reanalyses. The overall com-

parisons indicate that the TWF estimates from ERA-Interim represent a better fit to those

of GRACE (confirming the correlation results in the Appendix). The TWF estimations of

MERRA-Land represent smaller amplitudes than those of GRACE and ERA-Interim

except in the three basins of Tigris–Euphrates, Khazar and Urmia, which receive more

precipitation than the other basins. A comparison between the global GRACE TWF and

those from reanalysis products is provided in Eicker et al. (2015) whose results indicate

that the skill of reanalysis products changes from one location to another, making a report

on the superiority of one against the other difficult.

In Table 2, the linear trends fitted to the peaks of the basin-averaged GRACE TWF are

presented. The peaks are selected for estimation since in the semiarid regions, the amount

of peak to peak changes in TWF is the main driver of yearly TWS changes (see similar

computation in, e.g., Swenson and Wahr 2009). Trends are computed during the shorter

time drought period of 2003–2007 and 2007–2013 (after the meteorological drought), as

Fig. 3 Comparison between basin-averaged TWFs from GRACE products (TWS derivatives) and those
from reanalysis ERA-Interim and MERRA-Land products. The graphs correspond to Iran’s six major river
basins and the Tigris–Euphrates river basin. The time series are centered with respect to their temporal
means. The green lines represent the linear trend fitted to the TWF peaks
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well as over the entire period of study 2003–2013. During the period of 2003–2007,

strongest decreasing trends (that likely indicate the impacts of meteorological drought) are

found over Urmia, Tigris–Euphrates, Persian, Markazi, and Hamun. The linear trend of the

TWF time series within the Sarakhs basin is found to be increasing. The linear trends over

2007–2013 are found to be mostly positive, making the overall trend (2003–2011) smaller

than those of 2003–2007 as can be seen in Table 2. As the spread of seasonal peaks

remains almost constant during the period of study, one can conclude that, over

2003–2007, the region exhibited an overall meteorological drought as has been reported by

FAO (2009). Since the estimated linear trends in TWF are equivalent with the accelera-

tions of TWS changes, one can see from Table 2 that the period of assessment is important

for drawing a conclusion. For example, the most significant water depletion (TWS

acceleration) is found during the 2003–2007 period in most of the assessed basins. A

comparison between annually accumulated TWF and TWS is presented in Sect. 5.2.

5.1 Exploring Total Flux Changes by Stepwise MLR

In this section, Eq. (6) is used to examine the contribution of seasonal components (annual

and semiannual) along with dominant climate variability in the region (introduced by de-

seasoned climate indices) in the TWF changes of the seven river basins. The best fitted

models that describe the basin averages of Fig. 3 are determined using stepwise MLR

(Sect. 4.2), and the results are summarized in Table 3. The results show that the dominant

variability of TWF is mainly related to the annual components. From the climate

Table 2 Linear trends of basin-
averaged TWF (mm/month/year)
from GRACE products over the
seven river basins of this study

Basin 2003–2007 2007–2013 2003–2013

Tigris–Euphrates -6.6 ± 0.4 7.5 ± 0.3 -2.6 ± 0.1

Khazar 1.1 ± 0.4 3.7 ± 0.2 1.2 ± 0.1

Persian -4.0 ± 0.4 5.3 ± 0.3 -2.3 ± 0.1

Urmia -7.1 ± 0.4 12.5 ± 0.3 -5.2 ± 0.1

Markazi 2.8 ± 0.4 2.1 ± 0.3 0.5 ± 0.1

Hamun -2.0 ± 0.3 1.5 ± 0.2 2.5 ± 0.1

Sarakhs 3.1 ± 0.4 -1.3 ± 0.3 1.9 ± 0.1

Table 3 Best fitted MLR models for describing the TWF changes of the seven basins

Basin Best fitted model Model p value Adjusted R2

Tigris–Euphrates Annual&SOI -2.59e-49 0.87

Khazar Annual&NAO 3.29e-48 0.86

Persian Annual&Semiannual&MOI 1.15e-38 0.79

Urmia Annual&SOI 4.88e-52 0.88

Markazi Annual&MOI 4.32e-22 0.59

Hamun Annual 5.96e-08 0.24

Sarakhs Annual&MOI 1.01e-15 0.46

The calculated p values and the adjusted coefficients of multiple determination show that all the selected
models are significant at the 95% confidence level except over the Hamun and Sarakhs basins with adjusted

coefficient of determination (adjusted R2, Colin and Windmeijer 1997) less than 0.5
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variability indices, SOI is found to be significant over the Tigris–Euphrates and Urmia

basins; NAO over Khazar (see also, Cullen and deMenocal 2000; Cullen et al. 2002;

Turkes and Erlat 2003); and MOI affecting the TWF variability in the Persian, Markazi,

and Sarakhs basins. No significant influences of the examined indices are found over the

Hamun basin. Table 3 shows the best fitted models adjusted to the basin average TWF time

series and summarizes the statistics obtained from the fittings. The coefficients of the best

fitted models in Table 3 are estimated via a least squares adjustment and the amplitudes of

the significant components are presented in Table 4.

The significance of the above fitted models for the TWF time series of each grid point

within the study region is also examined by estimating the p values. Figure 4 shows the

spatial distribution of the p value, in which those time series that do not reject the null

hypothesis are shown in red. The results indicate that the estimated models (Table 3) fairly

well describe the TWF variability in the study region.

Table 4 Average amplitudes of TWF (mm/month) over the seven basins of this study, shown in Fig. 1

Basin Annual Semiannual MOI NAO SOI

Tigris–Euphrates 82 ± 3 – – – 4 ± 2

Khazar 101 ± 4 – – 10 ± 3 –

Persian 54 ± 3 5 ± 2 7 ± 2 – –

Urmia 211 ± 7 – – – 11 ± 5

Markazi 26 ± 2 – 7 ± 1 – –

Hamun 29 ± 5 – – – –

Sarakhs 67 ± 7 – 12 ± 5 – –
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Fig. 4 Test results to assess the significance of the fitted MLR models (Table 3) fitted to the GRACE TWF
time series (spatial distribution of the p values). Insignificant regions are shown by red color
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5.2 Inverted Soil and Groundwater Storage Changes

The inversion method presented in Sect. 4.1 is applied here to estimate storage variability

in soil layers and groundwater compartments. Considering Eq. (1), a priori information of

soil moisture, canopy, and snow are obtained from the GLDAS models (Sect. 3.4) over a

box 29�–63�E and 24�–43�N (that includes the seven basins), covering the period 2003–

2013. Information on the surface water compartment is obtained by converting altimetry

measurements over the Caspian Sea, Persian and Oman Gulfs, Lake Urmia (37�420N
45�190E), and Lake Tharthar (33�580N 43�110E) to storage changes following Moore and

Williams (2014). All altimetry measurements are downloaded from (http://www.pecad.fas.

usda.gov/cropexplorer/global_reservoir/) except those of the Persian and Oman Gulfs from

(http://www.star.nesdis.noaa.gov/sod/lsa/SeaLevelRise/LSA_SLR_timeseries.php). The sur-

face water storage changes of the Black Sea, Mediterranean Sea, and Red Sea are not

considered here since they represent negligible spatial leakage compared to the storage

signals of the considered river basins (see also, Forootan et al. 2014).

The time series of soil moisture, canopy, snow, and surface water are decomposed using

the tICA (Eq. 2) into independent temporal patterns (A) and associated spatial base

functions (S). The spatial patterns S are chosen as invariant base functions and fitted to

GRACE TWS (using Eq. 3) to estimate updated temporal patterns. Their individual con-

tributions are then reconstructed using Eq. (4). Groundwater variability over the region of

study is computed using Eq. (5). The details of this fitting is very similar to that of

Forootan et al. (2014), therefore, the results are not shown here.

Time series of GRACE TWS, groundwater, and soil moisture changes are estimated for the

Tigris–Euphrates and Iran’s six major basins, and the results shown in Fig. 5. From the

storage compartments, we only show those of soil moisture and groundwater since their

contribution to TWS changes is bigger than the others. GRACE TWS basin averages are

computed in the spectral domain as in Kusche et al. (2011). In Fig. 5, black lines indicate an

Fig. 5 Time series of GRACE TWS, groundwater, and soil moisture changes (in mm) derived for the seven
river basins of this study. Black lines are computed by averaging GRACE TWS from GFZ, CSR, and JPL
products. Solid blue lines represent an average of reconstructed soil moisture estimations using NOAH,
MOSAIC, and VIC as priori information. Solid red lines show the average of groundwater estimations.
Dashed lines correspond to the inversion results estimated by inserting various a priori storage
compartments. The error bars are not shown in this figure
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average of GRACE TWS computed using GFZ, CSR, and JPL products and basin averages of

the reconstructed soil moisture changes are shown by the blue lines. Finally, groundwater

basin averages (red lines) are estimated as the differences between GRACE TWS (black lines)

and the fitted soil moisture estimations (blue lines). It is worth mentioning that the uncertainty

of the signal separation is computed by repeating the inversions by introducing MOSAIC,

NOAH, and VIC as inputs for soil moisture, canopy, and snow variability, as well as by

introducing GRACE TWS errors from the CSR products. Although the error bars are not

shown in Fig. 5, their impacts on the trend estimation are considered and shown in Fig. 6.

The largest annual amplitude of groundwater is found over the Khazar, Sarakhs, and

Tigris–Euphrates basins. The biggest soil moisture seasonality is found in the Urmia,

Tigris–Euphrates, and Persian basins. Over the Khazar, Hamun, Markazi, and Sarakhs

basins, the seasonality of soil moisture and groundwater is found to be similar. The results

corroborate the fact that a better understanding of groundwater changes is essential for

hydrological and geophysical studies. Table 5 summarizes the annual amplitudes of TWS,

soil moisture, and groundwater in each basin. The results of Fig. 5 indicate that most of the

basins exhibited water storage decline during the period of study. Error bars are estimated

by propagating the uncertainty of each storage compartment to the linear trend component

(Koch 1999). Bigger negative trends in future soil moisture and groundwater changes is

expected as it has been suggested by future climate projections, e.g., simulated in IPCC-

CMIP5 over 2020–2050 (see e.g., Zahid et al. 2014).

The linear trends of soil moisture and groundwater changes over the whole period of

2003–2013 and the shorter period of 2007–2013 are estimated (see Fig. 6). The shorter

period is selected to assess whether the rate of decline in water storage has changed after

2007 since both the TWF time series (Fig. 3) and the storage results of Fig. 6 indicate a

change in the temporal evolution in 2007. Comparing the rates in Fig. 6, a negative

acceleration in soil moisture changes can be seen over all the basins except Urmia

(*-11.2 mm/year) and Tigris–Euphrates (*-6.5 mm/year). The rate of change in

groundwater over the Persian basin is found being close to zero and almost steady through

the period of study, while within the Tigris–Euphrates river basin, a steady decline of

groundwater at a rate of *-5.7 mm/year is found. Over the other basins, the groundwater

Fig. 6 Linear rates of soil moisture and groundwater changes (mm/year) through the whole period of study
2003–2013, and 2007–2013 that is reported as the beginning of a drought period in the Middle East
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depletion has increased as can be seen in Fig. 6. The trend and acceleration of the

groundwater storage compartment within most of the basins is very different from those of

soil moisture and cannot be explained by changes in the reanalysis TWF time series of

Fig. 3. To illustrate this, monthly reanalysis TWF rates are converted to monthly storage

and accumulated over each year. The results are then compared to the accumulated

GRACE TWS basin averages that are shown in Fig. 7. Within the Hamun, Persian, and

Markazi basins, we find fairly good correspondence between accumulated storage changes

as all the curves indicate similar trends and fluctuations. Within Khazar, Urmia, Sarakhs,

and Tigris–Euphrates basins, however, the storage changes estimated from reanalyses are

different from GRACE mainly after 2008. A part of the differences can be explained with

the longer memory of TWS changes, which was under influence of the long-term

Table 5 Annual amplitudes of GRACE TWS, groundwater, and soil moisture changes derived for the seven
river basins

Basins Soil moisture annual Groundwater annual GRACE TWS annual

Tigris–Euphrates 34 ± 3 18 ± 3 52 ± 6

Khazar 29 ± 3 34 ± 4 63 ± 7

Persian 23 ± 2 3 ± 0 30 ± 2

Urmia 60 ± 5 15 ± 3 79 ± 8

Markazi 19 ± 2 13 ± 2 32 ± 4

Hamun 2 ± 1 5 ± 2 6 ± 3

Sarakhs 16 ± 2 22 ± 3 38 ± 5

The values are provided in mm, averaged over the basin area

Fig. 7 Yearly mean TWS from GRACE and reanalyses within the seven river basins of this study. Mean
annual storage of 2004–2012 has already been removed from the plots
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meteorological drought (before 2008). Thus, only few normal or high seasons of rainfall

might not be able to change the trend of TWS. Human use impact, such as irrigations or

over exploitation of groundwater within these basins as reported in previous studies, e.g.,

Voss et al. (2013) and Al-Zyoud et al. (2015), is another possible interpretation that

describes the differences between GRACE and reanalysis results.

In order to better understand the behavior of water storage changes within the study region,

tICA (Eq. 2) is applied to extract the main temporally independent patterns of the recon-

structed soil moisture (Eq. 4) and estimated groundwater (Eq. 5) time series. Figure 8a shows

the first two dominant independent modes of soil moisture in which the first mode (spatial and

temporal IC1 in Fig. 8a) indicates annual changes while the second mode (spatial and tem-

poral IC2 in Fig. 8a) shows a linear trend over the region. Both modes together represent

� 62% of soil moisture variability over the study area. The annual amplitude is found to be

stronger (exceeding 150 mm) over the north and west of Iran, as well as Turkey. Negative

soil moisture trends are found to be distributed mostly over the Tigris–Euphrates, Khazar,

Urmia, Persian, and Markazi basins. Since the study region exhibits a strong depletion in

groundwater, the first independent mode of groundwater shows the distribution of linear

trend (spatial and temporal IC1 in Fig. 8b), while the annual oscillation of the groundwater

is captured by the second mode (spatial and temporal IC2 in Fig. 8b). Strong groundwater

storage decrease is found over the southern part of Tigris–Euphrates and the northern part of

Persian (with a rate of up to -60 mm/year). Positive groundwater trends (with a rate of

up to 38 mm/year) are found along the Zagros chain (boundary of the Markazi and Persian

basins), which is likely caused by the ice melting accelerated after 2007. A part of the trend

might be due to the uplift, which might reach 5 mm/year (Oveisi et al. 2009). Further

research should be done to accurately separate the observed deformation and storage sig-

nals. The annual amplitudes of groundwater are found to be almost half of the annual soil

moisture variability, but over some regions it reaches almost 110 mm. It is worth men-

tioning that no obvious trend exists in the annual modes of soil moisture and groundwater

(respectively, IC1 in Fig. 8a and IC2 in Fig. 8b). Considering the whole 2003–2013, the

annual amplitude of 2007–2009 is found to be smaller. This observations suggest that the

contribution of human water use in the storage decline of the study area is likely dominant.

6 Summary and Conclusions

Previous studies indicate that water storage over a large area of the Middle East has been

decreasing over the last decade. However, fewer attempts have been made to quantify the

changes in the amount of total water flux [TWF, as precipitation (P), evapotranspiration

(E), and river discharge (R), and separate compartments of the terrestrial water storage

(TWS), including soil moisture and groundwater and other compartments]. These have

been assessed in this study over the Tigris–Euphrates river basin and Iran’s six major

basins covering 2003–2013. Skills of the Gravity Recovery and Climate Experiment

(GRACE) products to represent the TWF (P-E-R) is compared to the European Centre for

Medium-range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) and the Modern

Era Retrospective Analysis for Research and Applications (MERRA-Land) products. Our

results indicate a negative trend in the TWF over the study region that is most likely due to

cFig. 8 Results of the tICA (Forootan and Kusche 2012, 2013) method applied to the reconstructed soil
moisture (a) and estimated groundwater (b). For both a and b, the independent components are ordered
according to the magnitude of variance they represent
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the reported meteorological drought. Using a stepwise multilinear regression technique, the

contribution of climate indices in the TWF changes is identified. The contribution of the

Southern Oscillation Index (a representative of the El Niño Southern Oscillation) is found

to be significant over the Tigris–Euphrates and Urmia. The Mediterranean Oscillation

Index is found to be significant over the Persian, Markazi, and Sarakhs basin, while North

Atlantic Oscillation (NAO) is found being only significant over the Khazar basin (see

Table 4 for the amount of contributions).

An inversion technique is also applied to separate GRACE TWS into soil moisture and

groundwater compartments. A decomposition of the separated results into (temporally)

statistically independent components (Sect. 5.2) indicates negative soil moisture trends

over the Tigris–Euphrates, Khazar, Urmia, Persian, and Markazi basins (see Fig. 8). Strong
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Fig. 9 Correlation coefficients between GRACE-derived and reanalysis TWF. GRACE and ERA-Interim
(top), and GRACE and MERRA-Land (bottom)
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groundwater storage decrease is found over the southern part of the Tigris–Euphrates river

basin and the northern part of the Persian basin. The rates of storage decline over the period

of 2003–2013 (Fig. 6) in the groundwater compartment are, however, bigger than the

decrease in the soil moisture compartment (Table 2). Within the basins with significant

agricultural activity, e.g., Khazar, Urmia, and Tigris–Euphrates, the annual accumulated

GRACE TWS is found to be different from those estimated by converting reanalysis TWF

to storage changes mainly after 2008. This likely suggests that the contribution of human

water use represents a dominant impact on the storage decline of these basins.
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Appendix

Temporal correlation coefficients are computed between the gridded TWF time series from

GRACE and reanalysis products. Our results indicate high (mostly bigger than 0.6) cor-

relation coefficients (at 95% confidence level, Fig. 9) between different products. Some

regions with very low correlation coefficients are also detected and are shown in blue
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Fig. 10 Comparison between basin average GRACE (x-axis) and ERA-Interim (y-axis) TWF changes
(mm/month) over the seven basins of this study
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(Fig. 9). Interpreting this inconsistency requires further research. In Fig. 10, we show the

bi-plot comparisons of TWF changes over the seven basins. The results indicate high

agreement between GRACE and reanalysis TWF estimations over Urmia (89%), Tigris–

Euphrates and Persian (87%), and Khazar (76%). Slightly worse correspondences are

found over the other basins as Sarakhs (67%), Markazi (58%), and Hamun (43%). The last

three basins are relatively drier than the first four basins with higher correspondence except

Persian whose area is a bigger than the other river basins. As expected, comparisons

between TWF derived from GRACE and MERRA-Land results in smaller correlations in

most of the basins as over Urmia (64%), Tigris–Euphrates (53%), Persian (78%), Khazar

(36%), Sarakhs (61%), Markazi (40%), and Hamun (29%). The bi-plots (of GRACE and

MERRA-Land) are not shown here.
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Forootan E, Didova O, Kusche J, Löcher A (2013) Comparisons of atmospheric data and reduction methods
for the analysis of satellite gravimetry observations. J Geophys Res Solid Earth 118:2382–2396.
doi:10.1002/jgrb.50160

Forootan E, Rietbroek R, Kusche J, Sharifi MA, Awange JL, Schmidt M, Famiglietti J (2014) Separation of
large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote
Sens Environ 140:580–595. doi:10.1016/j.rse.2013.09.025

Forootan E, Khandu K, Awange JL, Schumacher M, Anyah RO, van Dijk AIJM, Kusche J (2016) Quan-
tifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over
Australia. Remote Sens Environ 172:50–66. doi:10.1016/j.rse.2015.10.027

Ghasemi AR, Khalili D (2008) The association between regional and global atmospheric patterns and winter
precipitation in Iran. Atmos Res 88:116–133. doi:10.1016/j.atmosres.2007.10.009

Gleick PH (2004) Global freshwater resources: soft-path solutions for the 21st century. Science
302:1524–1528. doi:10.1126/science.1089967

Greenwood S (2014) Water insecurity, climate change and governance in the Arab world. Middle East
Policy 21(2):140–156. doi:10.1111/mepo.12077

Hasanean HM (2004) Middle East meteorology. UNESCO-EOLSS Joint Committee Secretariat, Paris
Heshmati AG (2013) Indigenous plant species from the drylands of Iran, distribution and potential for

habitat maintenance and repair. In: Heshmati GA, Squires VR (eds) Combating desertification in Asia,
Africa and the Middle East. Springer, New York

Hoffmann JP (2010) Linear regression analysis: applications and assumptions, 2nd edn. Brigham Young
University, Provo

Horel JD (1984) Complex principal component analysis: theory and examples. J Clim Appl Meteorol
23:1660–1673. doi:10.1175/1520-0450(1984)023\1660:CPCATA[2.0.CO;2

Hosseini M, Ashraf MA (2015) Application of the SWAT model for water components separation in Iran.
Springer Hydrogeology. ISSN: 2364-6454

Hosseinzadeh Talaee P, Tabari H, Ardakani S (2014) Hydrological drought in the west of Iran and possible
association with large-scale atmospheric circulation patterns. Hydrol Process 28:764–773. doi:10.1002/
hyp.9586

Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the
Middle East, from GRACE data, land surface models, and well observations. Water Resour Res
50:2679–2692. doi:10.1002/2013WR014633

Kaniewski D, Van Campoa E, Weiss H (2012) Drought is a recurring challenge in the Middle East. PNAS
109(10):3862–3867. doi:10.1073/pnas.1116304109

Khandu Awange JL, Kuhn M, Anyah R, Forootan E (2016) Changes and variability of precipitation and
temperature in the Ganges–Brahmaputra–Meghna River Basin based on global high-resolution
reanalyses. J Climatol Int. doi:10.1002/joc.4842

Koch KR (1999) Parameter estimation and hypothesis testing in linear models, 2nd edn. Springer, New York
Kusche J (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type

gravity field models. J Geod 81:733–749. doi:10.1007/s00190-007-0143-3
Kusche J, Schmidt R, Petrovic S, Rietbroek R (2009) Decorrelated GRACE time-variable gravity solutions

by GFZ, and their validation using a hydrological model. J Geod 83:903–913. doi:10.1007/s00190-
009-0308-3

Kusche J, Eicker A, Forootan E (2011) Analysis tools for GRACE and related data sets, theoretical basis.
The International Geoscience Programme (IGCP). IGCP 565: Supporting water resource management
with improved Earth observations. www.igcp565.org/workshops/Johannesburg_2011/_LectureNotes_
analysistools.pdf

Kusche J, Klemann V, Bosch W (2012) Mass distribution and mass transport in the Earth system. J Geodyn
59–60:1–8. doi:10.1016/j.jog.2012.03.003

Kusche J, Eicker A, Forootan E, Springer A, Longuevergne L (2016) Mapping probabilities of extreme
continental water storage changes from space gravimetry. Geophys Res Lett. doi:10.1002/
2016GL069538

Long D, Longuevergne L, Scanlon BR (2014) Uncertainty in evapotranspiration from land surface mod-
eling, remote sensing, and GRACE satellites. Water Resour Res 50:1131–1151. doi:10.1002/
2013WR014581

Long D, Yang Y, Wada Y, Hong Y, Liang W, Chen Y, Yong B, Hou A, Wei J, Chen L (2015) Deriving
scaling factors using a global hydrological model to restore GRACE total water storage changes for
China’s Yangtze River Basin. Remote Sens Environ 168:177–193. doi:10.1016/j.rse.2015.07.003
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