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Abstract
Machine learning (ML) techniques have become pervasive across a range of different applications, and are now widely used 
in areas as disparate as recidivism prediction, consumer credit-risk analysis, and insurance pricing. Likewise, in the physical 
world, ML models are critical components in autonomous agents such as robotic surgeons and self-driving cars. Among the 
many ethical dimensions that arise in the use of ML technology in such applications, analyzing morally permissible actions 
is both immediate and profound. For example, there is the potential for learned algorithms to become biased against certain 
groups. More generally, in so much that the decisions of ML models impact society, both virtually (e.g., denying a loan) and 
physically (e.g., driving into a pedestrian), notions of accountability, blame and responsibility need to be carefully considered. 
In this article, we advocate for a two-pronged approach ethical decision-making enabled using rich models of autonomous 
agency: on the one hand, we need to draw on philosophical notions of such as beliefs, causes, effects and intentions, and 
look to formalise them, as attempted by the knowledge representation community, but on the other, from a computational 
perspective, such theories need to also address the problems of tractable reasoning and (probabilistic) knowledge acquisition. 
As a concrete instance of this tradeoff, we report on a few preliminary results that apply (propositional) tractable probabil-
istic models to problems in fair ML and automated reasoning of moral principles. Such models are compilation targets for 
certain types of knowledge representation languages, and can effectively reason in service some computational tasks. They 
can also be learned from data. Concretely, current evidence suggests that they are attractive structures for jointly addressing 
three fundamental challenges: reasoning about possible worlds + tractable computation + knowledge acquisition. Thus, 
these seems like a good starting point for modelling reasoning robots as part of the larger ecosystem where accountability 
and responsibility is understood more broadly.
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Introduction

Machine learning (ML) techniques have become perva-
sive across a range of different applications, and are now 
widely used in areas as disparate as recidivism predic-
tion, consumer credit-risk analysis, and insurance pricing 
(Chouldechova, 2017; Khandani et al., 2010). Likewise, in 
the physical world, ML models are critical components in 
autonomous agents such as robotic surgeons and self-driv-
ing cars. Among the many ethical dimensions that arise in 
the use of ML technology in such applications, analyzing 

morally permissible actions is both immediate and profound. 
For example, there is the potential for learned algorithms to 
become biased against certain groups. More generally, in so 
much that the decisions of ML models impact society, both 
virtually (e.g., denying a loan) and physically (e.g., driv-
ing into a pedestrian), notions of accountability, blame and 
responsibility need to be carefully considered.

Many definitions have been proposed in the literature 
for such ethical considerations (Friedler et al., 2016; Allen 
et al., 2005), but there is considerable debate about whether 
a formal notion is appropriate at all, given the rich social 
contexts that occur in human–machine interactions. Valid 
arguments are also made about the challenges about model 
building and deployment (Crawford, 2021a, b): everything 
from data collection to denouncing responsibility when 
technology goes awry can demonstrate and amplify abuse 
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of power and privilege. Such issues are deeply intertwined 
with legal and regulatory problems (Etzioni & Etzioni, 2017; 
Stilgoe, 2018).

Be that as it may, what steps can be taken to enable 
ethical decision-making a reality in AI systems? Human-
in-the-loop systems are arguably required given the afore-
mentioned debate (Zanzotto, 2019; Kambhampati, 2020; 
Crootof et al., 2022), but such loops still need to interface 
with an automated system of considerable sophistication that 
in the very least reasons about the possible set of actions. In 
particular, simply delegating responsibility of critical deci-
sions to humans in an ad hoc fashion can be problematic. 
Often critical actions can be hard to identify immediately 
and it is only the ramification of those actions that raise 
alarm, in which case it might be too late for the human 
to fix. Moreover, understanding the model’s rationale is a 
challenge in itself, as represented by the burgeoning field 
of explainable artificial intelligence (Rudin, 2019; Doshi-
Velez et al., 2017; Belle & Papantonis, 2020). So a careful 
delineation is needed as to which parts are automated, which 
parts are delegated to humans, which parts can be obtained 
from humans a priori (i.e., so-called knowledge-enhanced 
machine learning (Cozman & Munhoz, 2021)), but also how 
systems can be made to reason about their environment so 
that they are able to capture and deliberate on their choices, 
however limiting their awareness of the world might be. In 
the very least, the latter capacity offers an additional layer 
of protection, control and explanation before delegating, as 
the systems can point out which beliefs and observations 
led to their actions.

Main thesis

Our view is that a two-pronged approach is needed in the 
least. On the one hand, we have to draw on philosophical 
notions and look to formalise them, as attempted by the 
knowledge representation community. Indeed this com-
munity has looked to capture beliefs, desires, intentions, 
time, space, abstraction and causality in service of formal 
notions that provide an idealised perspective on epistemol-
ogy grounded in, say, a putative robot’s mental state (Brach-
man et al., 1992; Fagin et al., 2003; Halpern, 2016, 2017; 
Beckers & Halpern, 2019; Belle, 2020a; Reiter, 2001). But 
the topic of knowledge acquisition, i.e., how the relevant 
propositions can be acquired from data is largely left open. 
Moreover, the topic of reasoning, i.e., of computing truths 
of acquired knowledge is a long-standing challenge owing 
to the intractability of propositional reasoning and the unde-
cidability of first-order logic, and many higher-order logics.

On the other hand, although ML systems do successfully 
address acquisition from data, mainstream methods focus 
on atomic classification tasks, and not the kind of complex 
reasoning over physical and mental deliberation that humans 

are adept in. (There are exceptions from robotics and rein-
forcement learning, of course, but these all attempt some 
form of mental state modeling (Albrecht & Stone, 2018), 
and in the very least, reasoning about possible worlds (Sar-
dina et al., 2006.)) Moreover, issues about robustness in the 
presence of approximate computations remain.

As a concrete instance of this tradeoff, we report on a few 
preliminary results that apply (propositional) tractable prob-
abilistic models (TPMs) to problems in fair ML and auto-
mated reasoning of moral principles. Such models are com-
pilation targets for certain types of knowledge representation 
languages, and can effectively reason in service of some 
computational tasks. More recently, they have been shown 
an alternative scheme to encode joint distributions, permit-
ting many probabilistic computations (conditional probabili-
ties, marginals, expectations) to be efficient. Consequently, 
they are now being learned directly from data. In particular, 
current evidence suggests that they are attractive structures 
for jointly addressing three fundamental challenges1:

–	 reasoning about possible worlds (as required by logics of 
knowledge, intentions and norms) +

–	 tractable computation (as required for real-time behavior 
and/or scalability) +

–	 knowledge acquisition (so that not all domain knowledge 
is provided by experts).

In particular, on the topic of fairness, it is shown that 
the approach enables an effective technique for determin-
ing the statistical relationships between protected attributes 
and other training variables. This could then be applied as 
a pre-processor for computing fair models. On the topic 
of moral responsibility, it is shown how models of moral 
scenarios and blameworthiness can be extracted and learnt 
automatically from data as well as how judgements be com-
puted effectively. In both these themes, the learning of the 
model can be conditioned on expert knowledge allowing 
us to represent and reason about the domain of interest in a 
principled fashion. In fact, we also discuss results on embed-
ding general independence and interventional constraints 
on pre-trained TPMs. We then conclude the article with 
observations about the interplay between tractability, learn-
ing and knowledge representation in the context of ethical 
decision-making.

1  Incidentally, current computational approaches to machine ethics 
have attempted either bottom-up or top-down pipelines—the latter 
using learning and the former using formal languages; see discus-
sions and references in Tolmeijer et al. (2020), Charisi et al. (2017), 
and Hammond and Belle (2021). There is a need to provide frame-
works that bridge reasoning and learning in a computationally attrac-
tive way.
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At the outset, it should be noted that TPMs applied in 
the above manner are largely propositional, and thus not 
yet extended to modalities and norms. Nonetheless, these 
seems like a good starting point for modelling reasoning 
robots as part of the larger ecosystem where accountability 
and responsibility is understood more broadly.

Differences to knowledge‑enhanced machine 
learning

It is worth noting that the overall spirit of our argument 
may seem to be along the lines of knowledge-enhanced 
ML, there are subtle differences. Indeed, the argument for 
unifying logic and learning is well-established, by numer-
ous communities, including inductive logic programming 
(ILP; Muggleton et al., 2012), statistical relational learning 
(SRL; De Raedt et al., 2016) and neuro-symbolic AI (Hit-
zler, 2022). However, it should be noted that these areas 
are primarily motivated by the need to improving classical 
ML (Murphy, 2012) or compete directly with it by means 
of domain knowledge and/or logical structure. We argue 
instead that there is need for the urgent uptake of actions, 
moral principles, causality, explanations, mental modeling 
and agency. (Capturing temporal events is not uncommon 
in the SRL literature (Tran & Davis, 2008), for example, 
but such notions need to be treated as first-class citizens; 
not surprisingly, actions have received more attention (Nitti, 
2016; Sanner, 2011)).

With regards to the particular case of TPMs, precisely 
because it has roots in the uncertainty modelling and SRL 
communities, there is only preliminary work on machine 
ethics. Moreover, TPM-related research is also preliminary 
in relating them to expressive KR languages, especially with 
epistemic, modal and dynamic operators. So, the results here 
do not take the desired steps yet, but recent work indicate 
promising directions in which we could proceed. We illus-
trate the conceptual overlaps in Fig. 1. There are notable 
exceptions to this categorization, of course, and so this rough 
depiction only serves to lump together the main themes of 
different camps: 

(1)	 ILP and SRL’s emphasis on integrating reasoning and 
learning for leveraging deduction machinery and expert 
knowledge (Muggleton et al., 2012; De Raedt & Kerst-
ing, 2011);

(2)	 Neuro-symbolic AI’s unification of deductive machin-
ery and learning (d’Avila Garcez et al., 2002);

(3)	 TPMs trace their roots to SRL, among other things, 
to concretely tackle the intractability of logical and 
probabilistic reasoning via knowledge compilation 
(Darwiche, 2002a; Darwiche et al., 2016);

(4)	 Recent works using TPMs for ethical and causal AI, 
discussed below in this article; and

(5)	 Desiderata explicated above, on unifying above devel-
opments with actions, norms, agency, beliefs and other 
epistemologically grounded concepts.

Long road ahead

It should finally be noted that the research agenda is only 
taking a small step towards automation that is accountable. 
Computational solutions make strong assumptions about 
the environment in which the learning and acting happens. 
Generally, even data collection can amplify positions of 
privilege, and there are multiple opportunities for failure 
and misspecification. Orchestrating a framework where 
this kind of information and knowledge can be communi-
cated between automated systems and humans is not at all 
obvious, and is an open challenge (Du et al., 2022; Smart 
et al., 2020). Implementing one or more formal definitions, 
besides, can either lead to inconsistencies in optimization 
objectives (Saxena et al., 2019; Smart et al., 2020; Verma & 
Rubin, 2018; Xiang & Raji, 2019), or might fail altogether 
on more wholistic fairness ideals such as egalitarianism 
(Kuppler et al., 2021; Jasso, 1983). A research agenda such 
as ours does not shed any light on such issues, and is largely 

Fig. 1   A rough illustration of existing paradigms. Well-established 
areas (top row): SRL on the left, and neuro-symbolic AI on the right. 
Recent development (middle row): TPMs the left, TPMs for ethical 
and causal AI on the right. Desiderata (bottom row). Abbreviations 
used: R reasoning, BK background knowledge, L learning/knowledge 
acquisition, DL deep learning, C causality, E machine ethics, T tracta-
bility, N norms, beliefs and intentions



	 V. Belle 

1 3

22  Page 4 of 12

orthogonal. All we suggest is that in so much as complex 
systems permit the formal specification of environments and 
epistemological notions, which undoubtedly demands tracta-
ble reasoning over possible worlds together with knowledge 
acquisition, our agenda might offer some promise. Indeed, 
the two-pronged approach is not advocated as a solution to 
broader problems, and it is unclear whether abstract models 
can imbibe cultural and sociopolitical contexts in a straight-
forward manner. Our agenda allows us to specify norms for 
human–machine interaction, provide goals and situations to 
achieve, model the machine’s beliefs, and allow the machine 
to entertain models of the user’s knowledge. This seems like 
a good starting point for contextual modelling and interact-
ing with reasoning robots. It is then understood that this 
needs to be a part of the larger ecosystem where account-
ability and responsibility is understood more broadly (Aplin 
et al., 2022; Naiseh et al., 2022a, b; Smart et al., 2020).

Key challenges

Given the close connection with many existing areas of AI, 
such as SRL (as seen above), as well as the difficulty in spec-
ifying the delineation from the larger ecosystem in which the 
formal model is deployed, it is worth articulating what the 
key challenges are. From existing research on knowledge-
enhanced ML (Belle, 2021) and knowledge representation 
(Lakemeyer et al., 2007), we notice issues such as (taken 
verbatim from Belle (2021)):

–	 “What knowledge does a system need to have in advance 
– i.e., provided by the modeler – versus what can be 
acquired by observations?” and

–	 “How does the system generalize from low-level observa-
tions to high-level structured knowledge?”

still apply. However, with ethical concerns, a whole range of 
sociopolitical concerns need to be mapped, or at least suit-
ably interfaced with computational solutions. Chief among 
them is this:

–	 Which principles are worth studying computationally? 
How are they to be formalized, and how can these com-
putational mechanisms interface with notions of account-
ability and responsibility, broadly construed?

This is arguably a meta-level question, and a deep one. 
Accuracy measures, communicating explanations, and fac-
toring sources of error as a result of misspecification and 
distribution drift (Gunning, 2016a; Arrieta et al., 2020; Belle 
& Papantonis, 2020; Rudin, 2019) need to be ultimately cou-
pled with normative judgements to position the impact of AI 
systems (Bonnefon et al., 2016; Hurtado et al., 2021; Malle 
& Scheutz, 2018; Mao & Gratch, 2012; Stilgoe, 2018).

Be that as it may, assuming the scope of automation has 
been determined, the following questions arise in the very 
least:

–	 What sort of environment–actor model is needed for the 
formalization? From the environment side, do we need 
concepts such as time, space, observable, controllable 
and uncontrollable variables? From the actor side, do 
we need notions for knowledge, belief, beliefs of others, 
intentions, communication, and social cues (Williams, 
2012; Petrick & Foster, 2013)?

–	 How can the formal principles be embedded in the sys-
tem? That is, is expert knowledge used for the training of 
a ML model (e.g., signals for back-propagation in neu-
ral networks (Hoernle et al., 2022; Gajowniczek et al., 
2020)), or as background knowledge against which all 
entailments necessarily hold (Muggleton et al., 2012)? If 
the former, what kind of robustness guarantee is needed 
to ensure that the signal is not corrupted over the learning 
epochs? If the latter, how we do prepare against the brit-
tleness of expert knowledge given complex social cues?

–	 Which principles are expert-level statements (e.g., prob-
abilistic independence between variables) versus those 
whose weights need to be adjusted as per population data 
(e.g., learn the probability with which a viral infection 
spreads in older Asian males)?

–	 How are different user-level objectives balanced? For 
example, maximizing accuracy might be at odds with 
achieving fairness; different notions of fairness may con-
flict with each other; and explanations might be given to 
deliberately mislead the end user (Weller, 2019).

These challenges notwithstanding, we think some progress 
towards the broader program can be made using the follow-
ing strategy: ethical notions are attempted to be formalized 
using rich epistemic logics, as seen in recent proposals on 
blameworthiness, consequentialist and deontological norms 
(Chockler & Halpern, 2004; Pagnucco et al., 2021), and this 
is coupled with an account of knowledge acquisition.

Some of the work discussed below are instances of this 
type of low-hanging fruit, and we hope they provide inspira-
tion for the broader program.

Impact

One recent episode serves to highlight the impact of machine 
learning models, and necessitates the appropriate applica-
tion of ethical constraints and de-biasing to ML models. 
Pro-Publica, a US-based entity specialising in not-for-profit 
journalism, published an article suggesting that an algo-
rithm widely used to predict the probability of re-offense 
in criminals was biased against black offenders (Angwin 
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et al., 2016). The article raised concerns about the fairness 
and efficacy of the Correctional Offender Management Pro-
filing for Alternative Sanctions (or COMPAS) algorithm, 
which is widely used in the US justice system. Their article 
received criticism from both members of the academic com-
munity (Flores et al., 2016) and Northpointe, the company 
who created the algorithm (Dieterich et al., 2016). Their 
primary complaint concerned the metric used by ProPub-
lica to measure discrimination; the original concerns about 
racial bias were based mainly on the discrepancy in false 
positive and false negative rates between black and white 
offenders. This analysis was critiqued in part because the 
initial complaint failed to appreciate that the outcome of 
the algorithm was not a prediction of future behaviour per 
se, but actually a risk allocation. ProPublica defined a false-
positive as any individual considered “high-risk” who did 
not re-offend, whereas in reality the risk categories were 
simply an indication of reoffence probability.

This episode illustrates the situation where there is the 
potential for injustices to arise as a consequence of bias on 
the basis of training over sensitive factors and variables. Ide-
ally, such factors should be outside the purview of the algo-
rithm’s decision making process. Moreover, it is apparent 
that many criteria used to determine fairness are mutually 
incompatible (Friedler et al., 2016), and that caution should 
be used when selecting the criterion for a specific situation. 
This can lead to significant discrepancies in the interpreta-
tion of the same model and its outcomes.

One key dynamic often ignored in mainstream fair-
ness literature is how such decisions might play out in an 
always-online and continuous operative setting, such in 
robot-assisted surgery and robotic social care. (See Creager 
et al. (2020) for a notable exception of a formal nature.) In 
such applications, designers may not have the opportunity 
to unplug the system, and reflect on the decision being a 
proxy for historical behavior versus future actions. If a face 
recognition system of a robot failed, for example, to detect 
a human being in the vicinity owing to their skin color, we 
should expect irrevocable damages, such as crashing into 
the person, during the robot’s operation. Likewise, when the 
system fails to recognize how its actions could be influenced 
by the human’s sensitive attributes, such as race and gender, 
we should expect catastrophic scenarios also in applications 
such as robot-assisted surgery (Hurtado et al., 2021).

When it comes to responsibility and blame, the need for 
delineating the human–machine boundary is a challenge. In 
the well-studied infamous trolley problem (Thomson, 1985), 
a putative agent encounters a runaway trolley headed towards 
five individuals who are unable to escape from the imminent 
collision, leading to their deaths. The agent, however, can 
save them by diverting the trolley to a side track by means 
of a switch, but at the cost of the death of another individual, 
who happens to be on this latter track. But the real-world 

instance of such problems is far more complex. When a 
self-driving car exhibits problematic behavior, the notion 
of blame is a multi-faceted issue. In so much as the car lev-
erages machine learning models, service failures can be to a 
variety of factors from faulty training to an overly optimistic 
assessment of the error margin. So assigning blame to the 
‘guilty’ party is a tricky affair (Leo & Huh, 2020). Indeed, 
some have to argued that in light of the fatality from the 
crash of the Tesla Model S in 2016, responsibility in the 
presence of ML models is essentially a governance issue 
(Stilgoe, 2018). Recently funding calls (e.g., tas.ac.uk) 
on trust in autonomous systems also reflect this thinking, and 
thereby advocating that verifiability and robustness are also 
facets that feature in this context.

Be that as it may, even if it the case that in practice, 
the situations encountered by self-driving cars should not 
involve extreme choices such as whether to save the pas-
senger or the pedestrian, it is still useful for the AI systems 
to act in line with human values and preferences (Etzioni 
& Etzioni, 2017). Imbuing such systems with the ability to 
reason about moral value, blame, and intentionality is one 
possible step towards this goal.

Two‑pronged approach

Our view is that a two-pronged approach is likely needed. 
On the one hand, we have to draw on philosophical notions 
and look to formalise them, as attempted by the knowledge 
representation community. For example, Malle et al. (2014) 
argue that for blame to emerge, an agent must be perceived 
as the cause of a negative event. Similarly, Chockler and 
Halpern (2004) provide an account for the degree of respon-
sibility (versus an ‘all or nothing’ definition). There are 
numerous earlier proposals still about social norms, obliga-
tion and intentions (Broersen et al., 2001; Georgeff et al., 
1998; Jennings, 1993), but they do not necessarily discuss 
moral factors and blame. To a large extent, nonetheless, 
these approaches do not focus on the learning of models 
(actions, beliefs and utilities).

Let us reiterate that, not surprisingly, a large body of work 
has been considered on ethical artificial intelligence. The 
topic of fairness has become an increasingly important issue 
within the field of ML, both in academic circles (Kusner 
et al., 2017; Zafar et al., 2017; Dwork et al., 2011; Kam-
ishima et al., 2011; Friedler et al., 2016), and more recently 
in the public and political domains (Angwin et al., 2016; 
Flores et al., 2016). But as argued previously, much of this 
literature is focused on the one-shot decision, and very lit-
tle work has considered the impact of fair behavior in an 
always-online and continuous operative setting, although 
there are some exceptions (Hurtado et al., 2021; Creager 
et al., 2020). As we expect such settings to involve norms 
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and beliefs, a framework that admits the representation of 
such epistemic notions alongside fairness considerations 
seems pertinent.

It is worth remarking that learning from human demon-
strations, which is a popular scheme in robotics literature, 
might be akin to learning patterns from historical data. Thus, 
just as we expect prejudiced behavior to be embodied and 
amplified if fairness constraints are not explicitly specified 
in one-shot decision making, we should also expect that a 
robot might embody prejudiced behavior from demonstra-
tions. (Admittedly, this is true in principle, as demonstra-
tions are highly controlled settings where explicit prejudices 
will likely not be on display in an obvious manner; nonethe-
less, implicit prejudices, such as the absence of training data 
on underrepresented groups, will likely be present.)

Overall, as far as the fairness literature is concerned, we 
think incorporating richer models of social interaction are 
largely lacking. The opposite problem is true for the moral 
reasoning literature. The latter literature, by design, is built 
on rich models of agency, beliefs and norms, but is lacking 
in effective learning mechanisms. For example, the formali-
zation of Halpern and Kleiman-Weiner (2018) is a notable 
step towards a rigorous proposal for reasoning about causes 
and blameworthiness. This is essentially based upon prior 
work done by Chockler and Halpern (2004) and Halpern 
and Pearl (2005). These frameworks are also related to the 
intentions model of Kleiman-Weiner et al. which consid-
ers predictions about the moral permissibility of actions via 
influence diagrams (Kim et al., 2018), though unlike our 
efforts here all of these works are primarily theoretical and 
there is no emphasis on learning or tractability. Interestingly, 
the use of tractable architectures for decision-making itself 
is recent (Bhattacharjya & Shachter, 2012; Melibari et al., 
2016). See Hammond and Belle (2021) for detailed discus-
sions. Moreover, undoubtedly, there is a spectrum of ethical 
issues between fairness and responsibility. Responsible sys-
tems need to be fair, but can involve a range of capabilities 
from social reasoning to verifiable behavior and from error 
reporting to delegation of decisions (Dignum, 2019).

There is an interesting but somewhat orthogonal devel-
opment in the related and relevant area of explainable arti-
ficial intelligence (Gunning, 2016b). Although the primary 
emphasis in the area is in exposing a ML model’s deci-
sion boundary via simplification and rule extraction (Arri-
eta et al., 2020; Belle & Papantonis, 2020), a number of 
recent approaches stemming from acting and planning are 
attempting to build a mental model of the user (Kambham-
pati, 2020). The idea is that system explanations would be 
catered to the user’s (intuitive) expectation while also grad-
ually refining the system’s model of the world. Although 
tractability and end-to-end learning is not always explicitly 
addressed, such initiatives fit in squarely with our desiderata.

Progress on tractable learning

As discussed in the previous sections, there are numerous 
works on capturing complex epistemic and ethical notions, 
and independently, on learning fair models. However, strik-
ing a balance between tractability, learning and reasoning 
is challenging, and we now discuss a few representative 
examples where there is emphasis on tractable reasoning 
and learning. The below works are also very recent, which 
indicates the preliminary nature of the integration of ethical 
notions. But as will become clear, it is already bearing fruit, 
which makes this research direction promising.

In Farnadi et al. (2018), the key observation made is that 
the standard fairness literature focuses solely on attributes 
of individuals. A richer language is needed to capture the 
relationships between individuals and entities, such as social 
networks and familial connections. Using the statistical rela-
tional language of probabilistic soft logic (PSL; Bach et al., 
2017), they focus on ensuring predictive parity in their mod-
els (Dwork et al., 2011; Hardt et al., 2016). PSL is a lan-
guage for specifying relational syntactic sugar to hinge-loss 
Markov random fields, which offers tractability by approxi-
mation. In particular, certain classes of probabilistic que-
ries in PSL correspond to integer linear programs, which 
are intractable, but admit convex programming relaxations, 
which can be solved in polynomial time. It is assumed, how-
ever, the domain and the logical rules governing the rela-
tionships is specified by an expert, thus the emphasis is on 
inference as opposed to structure learning.

In Varley and Belle (2021), the construction of a new 
procedure for pre-processing data is proposed to ensure fair 
training. That is, first the proposal identifies subsets of mutu-
ally independent variables within a training set by leverag-
ing the tractable learning regime of sum–product networks 
(SPNs; Gens & Domingos, 2013). This allows the technique 
to identify a collection of ‘safe’ variables, where the contri-
bution of the protected attribute is removed. This way the 
pre-processed data can be used to train a fair model using 
any ML approach.

A natural direction to consider here is whether declara-
tive knowledge and acquired structure can be interleaved, 
which is an important theme in SRL (De Raedt et al., 2016). 
Expert knowledge is especially interesting in the fairness 
literature as it allows us to flexibly define the discrimination 
patterns of interest. The recent work of Papantonis and Belle 
(2021) allows SPNs to be trained over prior probabilistic and 
interventional constraints. Interestingly, in very recent work, 
Choi et al. (2020) study the implementation of fairness by 
encoding independence constraints directly when training 
circuits. Thus, this work indirectly shows how the strands 
on fairness and constraints could be unified.
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In a related context, the tractable model of Kisa et al. 
(2014), so-called probabilistic sentential decision diagrams 
(PSDDs), allows for the specification of logical rules, for 
example, and certain kinds of probabilistic dependencies. 
Leveraging that, Choi et al. (2020) propose the learning the 
fair PSDDs by encoding the independence assumptions of 
a fair distribution as prior knowledge. Such ideas, as men-
tioned earlier, broadly align with the notion of knowledge-
enhanced ML (Cozman & Munhoz, 2021; Belle, 2017, 
2020b), where a bridge between symbolic logic and ML is 
suggested for data efficiency, among other reasons.

The work of Hammond and Belle (2021) deviates from 
this emphasis on fairness in instead focusing on blame-
worthiness, as introduced by Halpern and Kleiman-Weiner 
(2018). The idea is that the causal model (the structural 
equations) is expected from the expert, by the learning of 
the probability distributions governing action outcomes, as 
well as the cost of the actions (which ultimately determines 
the least blameworthy course of action) is obtained from 
data. This leads to a hybrid (between data-driven and rule-
based methods) computational framework for moral reason-
ing, which utilizes the specification of causal models, and 
at the same time exploits many of the desirable properties 
of PSDDs (such as tractability, semantically meaningful 
parameters, and the ability to be both learnt from data and 
include logical constraints). They show that the models 
in their experiments are reasonable representations of the 
distributions over the moral scenarios that they are learnt 
from. Moreover, the learnt utility functions are able to match 
human preferences with high accuracy using very little data. 
This leads to blameworthiness reasoning that is, prima facie, 
in line with human intuitions.

Beyond these, a number of directions are relevant, that 
hint at both conceptual as well as practical connections with 
the development above. In Papantonis and Belle (2022), 
it is shown that TPMs, along with decision trees, Bayes-
ian network classifiers and random forests are essentially 
multilinear models. This immediately leads to an effective 
scheme for generating counterfactual explanations (Wachter 
et al., 2017), including with diversity constraints (Mothilal 
et al., 2020), the latter having been previously explored only 
for differentiable models. It turns out that explanations of 
this type can be given a distinctly logical interpretation: in 
explainable AI, we are interested in selecting data points 
with particular properties; for example, with counterfactu-
als, we are after a point whose label is the opposite of the 
one considered. By expressing the input–output behavior 
of classifiers over discrete features as Boolean theories, we 
can provide a Boolean formula characterizing desired points 
and that is precisely the explanation (Darwiche & Marquis, 
2021).

On the topic of causality, in Zečević et al. (2021), it is 
shown that we might train TPMs directly on interventional 

distributions, allowing for effective inference from such 
distributions. In that regard, Darwiche (2022b) considers a 
more comprehensive exploration of how TPMs could serve 
as a scalable and powerful vehicle for causal reasoning.

Incidentally, TPMs are also being explored for a range 
of computational challenges from other disciplines. For 
example, Treiber et al. (2020) explore privacy-preserving 
machine learning using SPNs. In Galindez Olascoaga et al. 
(2021), analogous to the bespoke computation of deep 
learning on GPUs, hardware-specific strategies for TPM 
inference is investigated. In Huang et al. (2021), the clas-
sical simulation of quantum algorithms is explored using 
circuits. These explorations suggest that TPMs might 
serve as a common computational substrate for several 
components in an AI system, perhaps leading to deeper 
interoperability.

While the related literature discussed above pertain 
mostly to inference with propositional languages, let us 
briefly comment on developments on the logical expressive-
ness side. For concreteness, we center this discussion around 
probabilistic logic programs (and ProbLog De Raedt et al. 
(2007), in particular).

As discussed before, the compilation of ProbLog to TPMs 
is well-understood (Fierens et al., 2011a). This has led to 
various exciting extensions of ProbLog that also rest on cir-
cuits for reasoning. For example, DeepProbLog (Manhaeve 
et al., 2018) integrates low-level concepts obtained from 
deep learning pipelines with symbolic reasoning, the latter 
attained through logic programming machinery. In Vennek-
ens et al. (2010), interventions and counterfactuals defined 
over structural equations are unified with ProbLog. In Smith 
et al. (2022), recognizing a user or agent’s intent is captured 
in ProbLog. Independently of these developments, there is 
existing work on using circuits for epistemic logics (Bienv-
enu et al., 2010), and the use of circuits of problem classes 
beyond NP (Darwiche et al., 2016, 2018), including modal 
reasoning. It is therefore not inconceivable that such machin-
ery could be further unified with epistemic extensions of 
logic programs (Cabalar et al., 2020; Wang & Zhang, 2005), 
including those supporting nested probabilistic beliefs (Belle 
& Levesque, 2015).

Discussion and conclusions

There are altogether three takeaways articulated in this 
article: 

(1)	 In so much as computational machinery can be applied 
to ethical concerns in complex AI applications, a model 
for tractable learning together with a reasoning module 
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for epistemological notions, actions and effects is fun-
damental.

(2)	 The only computational model available for the latter is 
derived from epistemic logic and its variants (including 
state-based models, belief-level planning frameworks 
and expressive dynamic modal logics (Kaelbling & 
Lozano-Pérez, 2013; Kaelbling et al., 1998; Sanner & 
Kersting, 2010; Belle & Lakemeyer, 2017)).

(3)	 An emerging paradigm for tractable probabilistic learn-
ing is based on knowledge compilation target languages 
such as propositional circuits.

In sum, TPMs offers the most compelling computational 
framework for tractability + logical reasoning about possible 
worlds + knowledge acquisition, and hence it is a worth-
while starting point for the endeavor.

As mentioned before, the tractable learning paradigm is 
in its early years. And, at least as far as capturing a broad 
range of knowledge representation languages is concerned, 
there is altogether less emphasis on mental modeling and 
agency. (First-order expressiveness is yet another dimension 
for allowing richness in specifications, as already admitted 
by some relational probabilistic models (Getoor & Taskar, 
2007), lifted approaches (Van den Broeck, 2011) and pro-
posals with an explicit causal theory such as Salimi et al. 
(2020) and Vennekens et al. (2010)). In contrast, readers 
may want to consult discussions in Kambhampati (2020) and 
Hammond and Belle (2021) on knowledge representation 
approaches where a more comprehensive model of the envi-
ronment and its actors is considered, but where knowledge 
acquisition and learning are either ignored or dealt with in 
careful, limited ways.

It is also interesting to note that although many expres-
sive languages (Van den Broeck et al., 2010; Fierens et al., 
2011b) are known to compile to tractable models, this is 
purely from the viewpoint of reasoning, or more precisely, 
probabilistic query computation. What is likely needed is a 
set of strategies for reversing this pipeline: from a learned 
tractable model, we need to be able to infer high-level rep-
resentations. In the absence of general strategies of that sort, 
the more modest proposal is perhaps to interleave declara-
tive knowledge for high-level patterns but allow low-level 
patterns to be learnt, which then are altogether compiled for 
tractable inference. Indeed, the literature discussed above 
do take steps of this sort. For example, Hammond and Belle 
(2021) expect an expert to provide the causal model, but 
learns the probabilities and utilities from data. Analogously, 
Choi et al. (2020) and Papantonis and Belle (2021) expect 
the provision of independence independence assumptions 
of a distribution, but the underlying probabilistic model and 
distribution is learnt from data. There is also an emerging lit-
erature on abstraction, and how high-level concepts might be 
mapped to low-level data (Beckers & Halpern, 2019; Belle, 

2020a): adapting that literature in conjunction with table 
learning might be promising too.

It is worth noting that there are other paradigms of trac-
table learning, including but not limited to those based on 
the probably approximately correct (PAC) learning seman-
tics (Juba, 2013). These have recently enjoyed extensions 
to expressive logical languages, including non-trivial frag-
ments of first-order logic (Belle & Juba, 2019; Mocanu 
et al., 2020). These might serve as an alternative paradigm 
to TPMs in service of our overall objectives, which could be 
an interesting direction for the future.

Let us conclude with key observations about the results 
discussed. The results can be seen occupying positions on 
a spectrum: the fairness result simply provides a way to 
accomplish de-biasing, but does not engage with a spec-
ification of the users or the environment in any concrete 
way. Thus, it is closer to mainstream fairness literature. The 
moral reasoning result is richer in that sense, as it explicitly 
accounts for actors and their actions in the environment. 
However, it does not explicitly infer how these actions and 
effects might have come about—these might be acquired 
via learning, for example—nor does it reason about what 
role these actions play amongst multiple actors in the 
environment. Thus, clearly, in the long run, richer formal 
systems are needed, which might account for sequential 
actions (Batusov & Soutchanski, 2018) and multiple agents 
(Ghaderi et al., 2007). However, this reverts the position 
back to the issues of tractability and knowledge acquisition 
not being addressed in such proposals. So, the question is 
this: can we find ways to appeal to TPMs (or other structures 
with analogous properties) with such rich formal systems? 
As mentioned, it is known that certain probabilistic logi-
cal theories (Fierens et al., 2011b) can be reduced to such 
structures, so perhaps gentle extensions to those theories 
(and as well as reversing the pipeline) might suggest ways 
to integrate causal epistemic models and tractable learning.

We have repeatedly emphasized the notion of tractability 
as a desirable characteristic for the computational model to 
have. But what if certain ethical notions are provably intrac-
table? Should we then only settle for approximate notions 
that are provably tractable, or abandon the issue of tractabil-
ity completely? There is no clear answer to this, and it might 
depend on the application at hand. Perhaps the situation is 
not dissimilar to the encountering of hard computational 
problems in the real world. Many computational tasks can 
be encoded as satisfiability and validity problems in propo-
sitional and higher-order logics, but satisfiability is NP-com-
plete already in finitary propositional logic. Although a great 
deal of attention has been dedicated to identifying when and 
where problems requiring exponential time emerge (Mitchell 
et al., 1992), very many real-world problems get solved, and 
in real-time no less (Barrett et al., 2009; Kautz & Selman, 
1992), prompting the search for technology that goes after 
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much harder classes beyond NP-complete (Gomes et al., 
2009; Ermon et al., 2013). So too might be our encounter 
with automating machine ethics: either certain intractable 
problems might be solved approximately, or fragments and 
restrictions may be applied so as to be solved exactly, or the 
seriousness of the situation may demand an exact solution 
regardless of the computational resources needed. What is 
clear, however, is that agents need to respond to signals and 
observations from the real-world, so tractability and scal-
ability in knowledge acquisition and reasoning are important 
considerations.

Beyond that technical front, as discussed in our introduc-
tion, much work remains to be done, of course, in terms 
of delineating automated decision-making from delegation 
and notions of accountability (Dignum, 2019; Crootof et al., 
2022). It is also worth remaking that computational solutions 
of the sort discussed in the previous section do make strong 
assumptions about the environment in which the learning 
and acting happens. In a general setting, even data collec-
tion can amplify positions of privilege, and moreover, there 
are multiple opportunities for failure and misspecification 
(Crawford, 2021a, b). Orchestrating a framework where this 
kind of information and knowledge can be communicated 
back and forth between automated systems and stakeholders 
is not at all obvious, and is an open challenge. In that regard, 
the two-pronged approach is not advocated as a solution to 
such broader problems, and indeed, it is unclear whether 
abstract models can imbibe cultural and sociopolitical con-
texts in a straightforward manner. However, it at least allows 
us to specify norms for human–machine interaction, pro-
vide goals and situations to achieve, model the machine’s 
beliefs, and allow the machine to entertain models of the 
user’s knowledge. We hope that this type of expressiveness 
offers additional protection, control, explanation and norma-
tive reasoning during the deployment of complex systems 
with ML components.
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