Empirical Software Engineering (2021) 26: 44
https://doi.org/10.1007/510664-021-09940-0

®

Check for
updates

An empirical investigation of organic software product lines

Mikaela Cashman’-2 @ . Justin Firestone3 © . Myra B. Cohen' @ .
Thammasak Thianniwet? - Wei Niu®

Accepted: 15 January 2021 / Published online: 25 March 2021
© The Author(s) 2021

Abstract

Software product line engineering is a best practice for managing reuse in families of soft-
ware systems that is increasingly being applied to novel and emerging domains. In this work
we investigate the use of software product line engineering in one of these new domains,
synthetic biology. In synthetic biology living organisms are programmed to perform new
functions or improve existing functions. These programs are designed and constructed using
small building blocks made out of DNA. We conjecture that there are families of products
that consist of common and variable DNA parts, and we can leverage product line engi-
neering to help synthetic biologists build, evolve, and reuse DNA parts. In this paper we
perform an investigation of domain engineering that leverages an open-source repository of
more than 45,000 reusable DNA parts. We show the feasibility of these new types of prod-
uct line models by identifying features and related artifacts in up to 93.5% of products, and
that there is indeed both commonality and variability. We then construct feature models for
four commonly engineered functions leading to product lines ranging from 10 to 7.5 x 10%°
products. In a case study we demonstrate how we can use the feature models to help guide
new experimentation in aspects of application engineering. Finally, in an empirical study
we demonstrate the effectiveness and efficiency of automated reverse engineering on both
complete and incomplete sets of products. In the process of these studies, we highlight key
challenges and uncovered limitations of existing SPL techniques and tools which provide a
roadmap for making SPL engineering applicable to new and emerging domains.

Keywords Software product lines - Synthetic biology - Reverse engineering - BioBricks

1 Introduction

Software product line (SPL) engineering has become a best practice for modeling, build-
ing, and managing families of software systems. It is epitomized by the use of common and

The first co-author is employed at Oak Ridge National Laboratory (a government-funded organization).

Communicated by: Laurence Duchien, Thomas Thiim and Paul Griinbacher

This article belongs to the Topical Collection: Configurable Systems

P< Mikaela Cashman
mcashman.isu@gmail.com

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09940-0&domain=pdf
http://orcid.org/0000-0003-0620-7830
http://orcid.org/0000-0002-1927-2036
http://orcid.org/0000-0003-2443-2425
http://orcid.org/0000-0003-3826-1276
mailto: mcashman.isu@gmail.com

44 Page2of 43 Empir Software Eng (2021) 26: 44

variable building blocks that can be combined in different ways as guided by a well-
specified model (the feature model) (Clements and Northrop 2002). SPL engineering stems
from the need to ensure efficient reuse and to improve system quality. It was originally
restricted to commercial software development, where SPLs’ assets could be well man-
aged and planned. However, in recent years SPL engineering practices have moved into
the broader software engineering community, and these are being applied to many types of
non-commercial systems such as the Linux Kernel (Lotufo et al. 2010) and to traditional
(highly-configurable) software systems such as gcc and Firefox (Garvin et al. 2013).

At the same time, the software development community has been gravitating towards
open-source repositories such as GitHub, a marketplace where developers can find libraries
and other reusable components. It is natural, therefore, that the SPL community has begun
applying the idea of SPL engineering directly to open-source systems by defining open-
source product lines (Sincero et al. 2007), and to other emerging domains such as cyber-
physical systems (Cleland-Huang et al. 2018) and the Internet of Things (IoT) (Ayala et al.
2015; Cetina et al. 2009; Tzeremes and Gomaa 2018). Recently, Montalvillo and Diaz have
proposed techniques to aid SPL practices within GitHub (Montalvillo and Diaz 2015).

In this paper, we ask whether SPL engineering can be applied to yet another emerg-
ing domain, that of synthetic biology. Synthetic biology, the practice of engineering living
organisms by modifying their DNA, has advanced quickly over the last 30 years (Cameron
et al. 2014). It is being used for sensing heavy metals for pollution mitigation (Bereza-
Malcolm et al. 2014), development of synthetic biofuels (Whitaker et al. 2015), engineering
cells to communicate and produce bodily tissues (Rossello and Kohn 2010), emerging med-
ical applications (Kis et al. 2015; Weber and Fussenegger 2012), and basic computational
purposes (Daniel et al. 2013). Synthetic biologists design new functionality, encode this in
DNA strands, and insert the new DNA part into a living organism such as the common K-
12 strain of the bacteria Escherichia coli (E. coli). As the organism reproduces, it replicates
the new DNA along with its native code and builds proteins that perform the encoded func-
tionality. In essence, the biochemist is programming the organism to behave in a new way.
Hence, we call these organic programs.

As DNA strands have become easy to engineer by simply purchasing a desired sequence,
the field of synthetic biology has rapidly grown. For instance, each year 300+ teams of stu-
dents (high school through graduate) compete in the International Genetically Engineered
Machine (iGEM) Competition. Teams build genetically engineered systems to solve real-
world problems (iGEM Competition 2018). Students are required to submit the engineered
parts along with their designs and experimental results back into an open-source collection
of DNA parts called BioBricks. This BioBrick repository (called The Registry of Standard
Parts) iGEM Registry 2018) contains over 45,000 DNA parts and can be viewed as a Git
repository for DNA. In this paper we utilize this as our exemplar system, but we note that
companies and other institutions are likely building their own private, commercial instances
of this type of repository.

DNA parts are often advertised as “LEGO” pieces that can be combined in many ways to
form new genetic devices. However, these LEGO pieces come with no building instructions.
An engineer begins a project by developing a blueprint for the organic program they want to
build. They will have a general plan for the type of features they want their system to have
(such as a part that produces a fluorescent protein or expresses a gene in the presence of a
particular chemical). To bring this creation to fruition they must find the corresponding parts
in a repository or in the literature. Next they build the associated working organic system
following an architecture that merges the features together. However, this architecture can

@ Springer

Empir Software Eng (2021) 26: 44 Page3of 43 44

require significant domain knowledge to develop. Rather than expecting engineers to create
architectures from scratch, we hypothesize that SPL engineering can be used.

In our initial study on this topic (Cashman et al. 2019), we explored the idea of using
software product line engineering with the goal of helping developers in synthetic biology.
We conjecture that there are families of products that consist of common and variable DNA
parts, just as we see in other open-source repositories and that we have what we call organic
software product lines (OSPLs). In this paper we extend this work and evaluate this claim
in more depth and rigor. We have added two new engineered functions to our study and
incorporate repetition and statistical analysis. In our original paper we provided only a single
instance of reverse engineered feature model. In this paper, we separate reverse engineering
into its own empirical study and apply this to all of our models. We also collect statistics over
340 runs to evaluate the quality of the results. We have also identified several interesting
directions for SPL engineering techniques that may be applicable to other emerging SPL
domains as well. This includes the need for continued attention and better support of (1) SPL
evolution; (2) duplicate features; (3) scalability of reverse engineering; and (4) interactive
feature modeling from incomplete sets of products. Last we have expanded the background
and related work.

The contributions of this work are:

1. A mapping of software product line engineering to the domain of synthetic biology
resulting in organic software product lines;

2. Empirical evidence demonstrating the potential reuse and existence of both commonal-
ity and variability in the BioBricks repository;

3. A study with four manually and automatically reverse engineered feature models, show-
ing that we can build feature models which have potential to help synthetic biologists;
and

4. A discussion on key challenges and limitations of existing techniques for organic
software product lines and its implications for the software product line engineering
community.

In the next section we present background on synthetic biology and a motivating exam-
ple. Section 3 presents background on software product lines. We then propose the notion
of an organic software product line (OSPL) in Section 4. We provide a roadmap for our
evaluation in Section 5. We follow this with a feasibility study (Section 6), a case study
demonstrating OSPLs in practice (Section 7), and an empirical study of automated reverse
engineering of OSPLs (Section 8). We discuss the implications and future of OSPLs in
Section 9. We end with conclusions and future work.

2 Living Organisms as Programs

Synthetic biology has been defined as a process “to design new, or modify existing,
organisms to produce biological systems with new or enhanced functionality according to
quantifiable design criteria” (Anderson et al. 2012). This definition highlights the use of
design. It begins with an abstracted model, which is then implemented by inserting strands
of DNA (encoded with specific functionality) into a living cell. We can view the organism
as the compiler that takes the DNA and translates it to machine level code, creating proteins
that the organism uses to perform different functions. Just as machine code is written in 1s
and Os, biology is written in the four DNA bases adenine (A), thymine (T), cytosine (C), and
guanine (G). It follows that we can view synthetic biology as a programming discipline.

@ Springer

44 Page 4 of 43 Empir Software Eng (2021) 26: 44

This analogy of programming biology is not a new concept (Bornholt et al. 2016; Cai
et al. 2010; Elowitz and Leibler 2000; Gardner et al. 2000; Nielsen et al. 2016; SBOL
2019; Tavella et al. 2018; Weber et al. 2007). There is even a programming language called
the Synthetic Biology Open Language (SBOL) which defines a common way to repre-
sent biological designs (SBOL 2019). Researchers have used synthetic biology to create
a context-free grammar using BioBricks (Cai et al. 2010), automated design of genetic
circuits with NOT/NOR gates (Nielsen et al. 2016), and bacterial networks to use DNA
for data storage (Bornholt et al. 2016; Tavella et al. 2018). There are also several exam-
ples of organic programs inspired by classic computer science constructs such as a genetic
oscillator (Elowitz and Leibler 2000), a genetic toggle switch (Gardner et al. 2000), and a
time-delay circuit (Weber et al. 2007).

At its core, synthetic biology breaks down a biological process into smaller functions,
each of which can be represented by a DNA part. These parts can be put together in various
combinations to make new functions. The largest open-source repository of DNA parts is
called the Registry of Standard Parts iGEM Registry 2018) (BioBrick repository for short).
Parts have been contributed to this registry through the iGEM Competition. Although par-
ticipants from iGEM are the most frequently documented users of the repository, anyone
can use it to find appropriate parts for their designs.

iGEM describes itself as a competition where teams “design, build, test, and measure a
system of their own design using interchangeable biological parts and standard molecular
biology techniques” (iGEM Competition 2018). Each year about 6,000 students partici-
pate, designing projects which often address various regional problems such as pollution
mitigation. Teams are judged by community experts and can be awarded a medal (bronze,
silver, and gold) corresponding to the impact and contributions of their project. A gold
medal team must achieve several goals such as modeling their project, demonstrating their
work through experimentation, collaborating with other teams, addressing safety concerns,
improving pre-existing parts or projects, and contributing new parts.

2.1 Motivating Example

We next present a motivating example derived from our case study demonstrating the
potential of SPL engineering in this domain.

Cell-to-cell signaling is a common function of synthetic biology. It represents a key com-
munication mechanism for cellular organisms. A sender organism communicates with a
receiver organism which can respond to the signal by emitting a chemical reporter. Sup-
pose an engineer wants to build a cell-to-cell signaling system from scratch. If the engineer
has no additional resources other than an online repository and their knowledge of synthetic
biology, then this approach is ad hoc. As in software development, they often would expect
to use existing modules and only customize parts that are specific to their needs. If they
want to reuse existing modules, then this analogy is similar to someone searching GitHub
for code that performs a particular function. Suppose the user searches the BioBrick reposi-
tory for “signalling” (with two “1” characters). They will be redirected to a single page with
a list of parts. It consists of eight senders, 11 receivers, and 464 “other” parts. If, however,
the user searches with U.S. English convention for “signaling” the query returns 789 hits,
each with its own page to investigate. It is important to note that not all of these hits link
to parts actually involved in cell-to-cell signaling. Some are links to pages that simply have
the word “signaling” in them. This demonstrates the difficulty of any free-text search.

An alternate strategy is to search based on function using the field “Browse parts and
devices by function.” Figure 1, steps #1 and #2, show this in the BioBrick repository.

@ Springer

Empir Software Eng (2021) 26: 44 Page50f43 44

Registry of Standard Biological Parts

p Blusynthasls Parts involved in the production or degradation of che

a Cell-cell signsllr\g and quorum sensing: Parts involved in intercell

Browse Cata|o Browse y !lp Cell death: Parts involved in killing cells.
Well Documented Parts Promoters
Frequently Used Parts RBS

repository assembly protocols help

. Colirold: Parts involved in taking a bacterial photograph.

All The Parts Coding sequences i Conjugation: Parts involved in DNA conjugation between bacteria.
Terminators
Backbones Motility and chemotaxis: Parts involved in motility or chemotaxis of

Function
Odor production and sensing: Parts the produce or sense odorant

Cell-cell signalling

< Back to Catalog
= Promoters (?) -@=@ Trang

ptional regulators (?) -@s Enzymes (?) <@ Translational units (?) -@@ Composite parts

Promoters

These promoters are all re]
cell membranes. The sig
promoters listed herg

¥ o cell signalling. Cell signalling is often mediated by a small molecule or peptide that diffuses between cells and can diffuse throug
ing molecule is recognized by a receptor protein (often located in or near the membrane of the cell) that regulates the activity of the
Ectly, or via a signalling cascade.

Mori

Name Description Promoter Sequence Eﬁm‘;&"‘ H:gm,‘ Length Doc Status
BBa_l1051 Lux cassette right promoter . .. tgttatagtcgaatacctetggeggtoata 68| 1735 In stock
BBa_I14015 P(Las) TetO . .. tittggtacactcectatcagtgatagaga 170 | 1524 | In stock
BBa_I14016 P(Las) CIO . . citttiggtacactacctctggeggtgata 168 1523 | In stock
BBa_[14017 P(Rh) . . . tacgcaagaaaatggtttgttatagtcgaa 51| 13707 | In stock
BBa_I739105 E:;:‘\e F;’°’“°‘9' (LuxR/HSL, positive / cl, . . catgcgtgttgataacaccgtgegtgttga 99| 3259 | Notin stock
BBa_I746104 P2 promoter in agr operon from S. aureus agattgtactaaategtataatgacagtga 96 | 1753 | In stock
BBa_I751501 plux-cl hybrid promoter . .. glgtigatgctittatcaccgeeagtggta 66| 1222 | Notin stock

Fig.1 Browse by function — Cell-to-cell signaling

There are 10 functions listed including “Cell-to-cell signaling and quorum sensing.” Parts
are sorted (Fig. 1—step #3) into various lower-level categories on this page. Many are
basic parts that include 39 promoters, 13 transcriptional regulators, 12 enzymes, and 21
translational units. There is also a separate list of 138 composite (or aggregate) parts.

Another strategy would be to search for previous projects that built a cell-to-cell sig-
naling system. For example, one might locate the 2017 iGEM team from Arizona State
University (ASU) (Arizona State University 2017). Looking on this team’s web page would
lead the user to find models for 30 composite parts for cell-to-cell signaling. While this
is an improvement over the prior approaches and provides a roadmap to build the system
(along with results of the study), it is limited to the 30 products that the ASU team chose to
use in their experiments. As we will show, there are many more ways to build a cell-to-cell
signaling system.

What if, instead of starting from scratch, the synthetic biologist begins this process with
the feature model shown in Fig. 2 (a subset of a feature model from our empirical study)?
From this model the user immediately can see the architecture of their system. First, they
learn that any cell-to-cell signaling system has three basic parts: a sender, a receiver, and
a reporter. They see the reporter is also optional (you may have a system that recognizes a
signal and does not respond). Instead of having to look at hundreds of possible parts, the
user can also see there are only two possible parts for each of the three components.

If users wanted to test the effectiveness of various receivers in this system, they could
slice this model to get a specific set of products. They could also design experiments to
test products that have not yet been analyzed in the laboratory. Once they complete their
experiments, users could add their results back to the Registry as annotations. This is a

@ Springer

44 Page 6 of 43 Empir Software Eng (2021) 26: 44

‘ Cell_to_Cell_Signaling ‘ Legend:
B el E—
[] Abstract Feature
[Reporter|
> > [Concrete Feature

‘ProteiLA‘ ‘Pn;.einiB‘ ‘ProteiLM‘ Prot\einiN‘ ‘Protei}ix H P;;;;iniY‘

® Mandatory
O Optional

/'\ Alternative Group

Fig.2 Example feature model for a cell-to-cell signaling system

small example, but it demonstrates how software product line engineering could help users
construct valid cell-to-cell signaling programs.

As further motivation, if we return to the ASU team’s experiments, one of their goals was
to investigate the issue of crosstalk, or the interactions between various parts. To test this,
they designed experiments with multiple combinations of senders and receivers. Without
realizing it, they defined a family of products for cell-to-cell signaling and evaluated the
individual products. If they were working with a feature model they would have been able to:
1) efficiently sample the product space; 2) know how much of the space they explored; and
3) add constraints when they found crosstalk between parts. They could then annotate the
feature models and create assets to describe their findings which could be used by another
team working on a similar project. In essence, they could leverage the power of SPLs. We
explore these opportunities in more depth in our subsequent studies.

3 Software Product Lines

Software product line (SPL) engineering is a best practice for modeling, building, and man-
aging reuse in families of software systems (Clements and Northrop 2002; Benavides et al.
2010; Pohl et al. 2005; Thiim et al. 2014a). The practice stems from the need to ensure
efficient reuse and to improve system quality in large software systems that have both vari-
able and common components. It is epitomized by the use of common and variable building
blocks (called features) that can be combined in different ways to create individual prod-
ucts. An essential component of an SPL is the feature model which is a representation of
the entire product space (Kang et al. 1990; Clements and Northrop 2002; Benavides et al.
2010). SPLs can be represented using a set of first order logic constraints, from which all
possible products can be enumerated. The feature model provides a visual representation of
this space in a compact and human readable view. Feature models represent individual fea-
tures as nodes in a tree with dependencies (constraints) shown between these nodes. Some
features will be mandatory to all products, some will be optional, and others are alternative
or OR groupings. Constraints that cannot be shown graphically, are encoded as cross-tree
constraints. Underlying the feature model is a logical representation of all constraints of
the system. Common feature modeling tools exist such as FeatureIDE (Thiim et al. 2014b).
Feature models are used to guide product creation, product maintenance and can also be
used to support software testing activities (Benavides et al. 2010; Thiim et al. 2014b).

As an example consider a company that develops a line of cellular phones and the accom-
panying feature model in Fig. 3. The software product (cell phone) is depicted at the root
of a tree. This software product line has a variety of features such as the operating system,
storage components, media, and a network protocol. Each of these features have different
options available to them, for example the operating system could be Android or iOS. Since

@ Springer

Empir Software Eng (2021) 26: 44 Page 7 of 43 44

CellPhone Legend:
o o —— o P—— e
Talk |Text |Operating_System Network‘ SD_ Card Media‘ ébswad ieature
= =S @ oncrete Feature
n " ® Mandatory
Andriod |iOS |LTE 5G ‘Bluetooth Camera | Music_ Casting .
= Optional
A Or Group

i i => .
Music_Casting Bluetooth Alternative Group

Fig.3 An example feature model for a product line of cell phones

our cell phone can not have dual operating systems, these features are part of an alternative
group. Some of these features are optional (SD_Card), and some are mandatory (network
protocol). We can also observe that the network feature has three options—LTE, 5G,
and Bluetooth—in an OR group meaning we can have one or several of these feature.
There is also a cross-tree constraint in this model where Music_Casting requires the
Bluetooth feature to be included. Each cell phone in their line of products will be a
combination of these features.

3.1 Automated Reverse Engineering

While software product line engineering relies heavily on the use of feature models, these
are often not kept up to date as a system evolves, or don’t exist at all when designing a
software product line from existing products (Nadi et al. 2014). Therefore researchers have
built techniques to extract constraints from source code (Nadi et al. 2014, 2015; Kenner
et al. 2010), or to synthesize feature models from intermediate languages (She et al. 2011;
Andersen et al. 2012). There have also been some recent approaches that forgo synthesis,
and reverse engineer feature models directly from a set of products using evolutionary algo-
rithms (Lopez-Herrejon et al. 2012, 2015) and multi-objective algorithms (Assuncéo et al.
2017; Thianniwet 2016). In our own recent work, we have built the Software Product Line
Reverse Engineering Optimization framework, SPLRevO (Thianniwet and Cohen 2015).
SPLRevO uses a genetic algorithm to search for a feature model that closely describes
an existing set of products. It is based on an earlier framework by Lopez-Herrejon et al.
(2012) and Lopez-Herrejon et al. (2015), ETHOM, An Evolutionary Algorithm for Opti-
mized Feature Models. SPLRevO provides an improved fitness function which optimizes
the number of products matched to the existing software system, and supports more complex
cross-tree constraints in its representation than ETHOM. These methods can extract fea-
ture information from different starting points such as through the use of an existing set of
products (Lopez-Herrejon et al. 2012, 2015; Thianniwet 2016; Thianniwet and Cohen 2015;
Assuncdo et al. 2017), from plugins (Acher et al. 2011), or from source code (Nadi et al.
2014; Kenner et al. 2010; Thianniwet 2016; Assuncgao et al. 2017). The fitness functions
for reverse engineering vary between tools, but are based on the correctness of representing
the final set of products for the software product line by some measure that compares how
well the feature model represents only the valid products (those which are defined by the
feature model and its constraints). We present a single fitness function used for our study in
Section 8.

Another trend has been to focus on large, open-source product lines (Lotufo et al. 2010;
Montalvillo and Diaz 2015; Sincero et al. 2007) and the concept of a software ecosystem,
where the community modifies and customizes product lines using a common platform and

@ Springer

44 Page 8of 43 Empir Software Eng (2021) 26: 44

look (Plakidas et al. 2016). It is possible to reverse engineer feature models from large, open-
source projects such as the Linux, Debian, and FreeBSD kernels (Galindo et al. 2010; She
et al. 2011). By extracting feature dependencies and descriptions from the code bases and
documentation, engineers can determine feature groups, mandatory features, constraints,
and invalid configurations based on packages which cannot be installed (dead features).

3.2 Software Product Lines in Other Domains

Software product line engineering was originally restricted to commercial software devel-
opment, where SPLs’ assets could be well managed and planned. However, in recent years
SPL engineering practices have moved into the broader software engineering community,
and these are being applied to many types of non-commercial highly-configurable software
systems such as the Linux Kernel, gcc, and Firefox (Swanson et al. 2014; Lotufo et al.
2010).

Further still, product line engineering has recently been applied in many emerging domains
including smart homes (Cetina et al. 2009), drone systems (Cleland-Huang et al. 2018), nan-
odevices (Lutz et al. 2012), and Internet of Things (IoT) devices (Ayala et al. 2015; Tzeremes
and Gomaa 2018; Quinton et al. 2012). There is also a push towards open-source product
lines (Sincero et al. 2007; Lotufo et al. 2010; Montalvillo and Diaz 2015) and the concept of
a software ecosystem, where the community modifies and customizes product lines using
a common platform and look (Plakidas et al. 2016). Lutz et al. (2012) studied a family of
DNA nanodevices. They look at DNA and study chemical reaction networks (CRNs), rather
than a living synthetically engineered organism as we do in this work. Their line of organic
programming leverages CRNs, which are sets of concurrent equations that can be compiled
into single strands of DNA (Winfree 1995). This work is complementary to ours.

3.3 Other Related Work

This paper follows a long line of research on software product lines. We do not attempt
to summarize all of that work here, but point readers to several good surveys on this
topic (Benavides et al. 2010; Thiim et al. 2014a). While, it is possible to represent variabil-
ity and perform configuration without the use of a software product line, (e.g. see (Hubaux
et al. 2012)), in this work we chose software product line engineering as our representation,
since be believe the existence of a visual feature model is an important construct for our
intended users. As discussed in (Firestone and Cohen 2018), the synthetic biologist may
find applying traditional software engineering techniques challenging.

Ours is not the first analysis of the BioBricks repository. Valverde et al. (2016) examined
the relationships within the repository from a network perspective to gain an understand-
ing of the software complexity, and they also consider it to be a software ecosystem. Our
work has been inspired by all of the related work to demonstrate the use of domain engi-
neering to build a family of synthetic biology products which can be analyzed and reasoned
about using traditional SPL engineering techniques as a way to guide synthetic biologists
throughout the design-built-test cycle.

4 Organic Software Product Lines (OSPLs)

In this section we present the notion of an organic software product line which merges
synthetic biology and software product line engineering. We note that it was not too long

@ Springer

Empir Software Eng (2021) 26: 44 Page 9 of 43 44

ago that the software product line community asked whether open-source applications such
as the Linux kernel should be considered product lines given that they are not managed and
developed in the traditional manner (Lotufo et al. 2010; Sincero et al. 2007). This has led
to a broader view of SPLs. We ask the same question now of organic programs. Is there a
mapping between traditional software product line engineering and synthetic biology that
allows for managed development and reuse?

As Clements and Northrop (2002) state, the output of domain engineering should contain
(1) a product line scope, (2) a set of core assets, and (3) a production plan. This feeds
into application engineering, which uses the production plan and scope to build and test
individual products. Our focus in this work is primarily on domain engineering, however
we do touch upon application engineering in our third research question.

4.1 Assets

To begin, we need to identify what constitutes a core asset for this domain. Assets in tradi-
tional software product lines can include a software architecture, reusable software compo-
nents, performance models, test plans and test cases, as well as other design documents. In
organic programs, we see similar elements.

First, the synthetic biology open language—SBOL—(or a similar representation) is used
to define the functionality of a snippet of DNA code. This serves as an important design
document for individual features. SBOL models can be composed and aggregated leading
to composite models. The SBOL model for the simplest, stand-alone functional biological
unit (called a transcriptional unit) can be seen in Fig. 4. It is composed of four basic DNA
parts, each represented with a unique glyph: the promoter, ribosome binding site, coding
sequence, and terminator.

The DNA sequence is also a reusable software component. Like code it is not tangi-
ble, but must be implemented as a program and compiled to a machine level (or byte-code
level) representation. DNA can be synthesized into a physical strand which can be inserted
into a compiler (the living organism) for translation to machine level code (via the biologi-
cal processes of transcription and translation of DNA via RNA into proteins). Other assets
such as test cases and test plans can be constructed which define either laboratory exper-
iments or virtual simulations. Both lead to evaluation of the program’s expected, versus
observed, functionality. Additional assets in the form of design documents and documen-
tation can be provided, such as safety cases (Firestone and Cohen 2018) and higher level
system architecture such as GenoCAD (Cai et al. 2010).

4.2 Domain Engineering

During domain engineering the engineer defines the product line scope by choosing a family
of behavior such as a type of molecular communication. They also define the common and

Terminator

oy —

Promoter Coding Sequence

Fig.4 SBOL model of a transcription unit. This composite part is composed of four basic DNA parts: The
promoter (also called a regulator), ribosome binding site (RBS), coding sequence, and terminator

@ Springer

44 Page 100f43 Empir Software Eng (2021) 26: 44

variable features and their relationships. An example of commonality is the transcription
unit (Fig. 4). The specific choices for promoters and binding sites defines the variability.
When inserted into their host organisms at specific binding sites, the sets of DNA sequences
define unique sets of products. Last, a production plan can be created in combination with
a feature model and constraints. The feature model and constraints show how the DNA
parts, as features, form a family of products, along with experimental notes on expected
environmental conditions or other assumptions that are required for the program to run
correctly. We define a feature as a DNA part as it is the primitive element (basic unit) in
synthetic biology.

4.3 Application Engineering

In this context, application engineering involves combining the expected parts using stan-
dard DNA cloning techniques for insertion into a living organism (Quan and Tian 2009).
The synthetic DNA sequences are typically built into a circular strand of DNA called a plas-
mid. This plasmid is inserted into the living host where its sequence will integrate with the
organism’s core DNA and begin transcription and translation which mimics compilation of
code. Just as with traditional product lines, it is up to the engineer to adhere to constraints
and only compose products defined in the feature model, otherwise unexpected behavior
may occur. As in traditional software, some constraints may be hard-coded into the program,
while some may represent a domain expectation instead.

5 A Roadmap for Evaluating Organic Software Product Lines

In the following sections we evaluate our ability to apply these concepts to an existing DNA
repository and a set of commonly engineered biological functions. We split this into three
separate studies of increasing rigor. Figure 5 shows the layout of our study. The first study
(Section 6) is a feasibility study asking about the potential for reuse and the existence of
both commonality and variability in this repository—a necessary conjecture for the defini-
tion of OSPLs. We then build four feature models from this repository, each for a different
engineered function. Our second study (Section 7) presents a case study on an existing syn-
thetic biology project. We ask how common SPL analyses can provide benefit to end users
for typical tasks such as reasoning about the size of the product line and which products
to test. We then obtain informal feedback from several synthetic biologists on these results.
Our last study (Section 8) is an empirical evaluation of the effectiveness and efficiency of
automated reverse engineering. In order for OSPLs to be adopted in practice, automated
reverse engineering is likely to be a key tool for aiding synthetic biologists who are not

Feasibility Study Case Study Empirical Study
Section 6 Section 7 Section 8
Characteristics of Build Feature Applying End-to-End Analysis Automated Reverse Engineering
an SPL? Models on an Existing Project (efficiency/effectiveness)

Fig.5 Roadmap of our evaluation. We present three studies of increasing rigor. The first is a feasibility study
with 2 research questions. The second is a case study on an existing project. The last is an empirical study of
automated reverse engineering

@ Springer

Empir Software Eng (2021) 26: 44 Page 11 0f 43 44

necessarily experts at feature modeling. Supplemental data for each of our studies along
with the reverse engineering tool used in our last study can be found on our website.!

6 Feasibility Study

Our first study evaluates the feasibility of organic software products lines (OSPLs) as
described in Section 4. In this feasibility study we ask two questions:

— RQI1: What characteristics of a DNA repository are consistent with that of a software
product line?
— RQ2: What are the characteristics of feature models built from a DNA repository?

6.1 RQ1: What Characteristics of a DNA Repository are Consistent with that of a
Software Product Line?

We evaluate the required elements of a software product line—assets, and existence of both
commonality and variability—as defined in Section 4 for organic software product lines. To
demonstrate the feasibility of OSPLs these elements must exist in a DNA repository.

6.1.1 Methodology

We use as our subject DNA repository the Registry of Standard Biological Parts (the
BioBrick repository) hosted by the international genetically engineered machine (iGEM)
competition as described in Section 4 (iGEM Registry 2018). We choose this subject as it is
the largest open-source DNA repository and continues to grow (on average 2,995 parts are
added each year). Recall in Section 4 we define a feature as a DNA part as it is the primi-
tive element (basic unit) in synthetic biology. In the BioBrick repository these are referred
to as BioBrick parts. A product is the compilation of multiple basic BioBricks that together
perform a cohesive function.

To obtain the core assets of the system, we use the BioBrick API to pull data for all parts
up through December of 2018, consisting of 47,934 entries (iGEM API 2018). Each entry
contains information such as the part_id, part_name, part_type, uses, and creation_date. The
part_id is a unique alpha-numerical tag for each part (e.g. BBa_J23106). The part_name is
chosen by the user uploading the part. The part_type defines the main functionality of the
part such as regulatory, composite, coding, ribosome binding site, and scar site. Uses defines
how many times a part has been requested by a community user. This can tell us how useful
a part is to the community.

To obtain additional assets we perform a manual evaluation of 200 randomly chosen
composite parts. Each part’s web page in the BioBrick repository can contain several addi-
tional assets including the SBOL model, the ruler model (an alternative to SBOL), the raw
DNA sequence, single/double strand sequence, part description in plain text, and results
of experimentation from iGEM teams. We randomly sample 200 composite parts from the
repository, and two authors independently identify whether they contained each of these
assets. We use two authors to reduce bias of subjectivity in determining whether an asset is
present (e.g., how much of a textual description constitutes an asset). The two authors next

Thttps://sites.google.com/view/splc-dnafeatures

@ Springer

https://sites.google.com/view/splc-dnafeatures

44 Page 120f43 Empir Software Eng (2021) 26: 44

compare their responses, and any discrepancies are resolved between them, or in discus-
sion with a third author. Out of 1,400 decisions, the two authors initially agreed on 1,340
(95.7%) of the decisions. The criteria of determination for each asset was as follows:

— SBOL model: The “Subparts” section contains symbols that have a direct translation
into symbols found in the SBOL 2.0 set of glyphs.

— Ruler model: The “Ruler” section contains at least one subpart name.

— DNA sequence: The “Get part sequence” section returns a non-empty result.

— Single/Double Strand (aka SS/DS): The “SS” or “DS” section contains a DNA
sequence.

— Textual description: The page provides some textual information about the part. The
information must be more than could be determined by the name of the part alone.

— Experimental results: The page provides any experimental results regarding the use
of the part or a direct link to a results page.

6.1.2 Threats to Validity

We discuss several threats to validity of this study and our mitigations. First, with respect
to external validity, there is only one DNA repository used in this study, which means our
results may not generalize to all open source DNA systems. However, we chose the largest
open source repository. A second threat to external validity is that we chose only 200 parts
to manually analyze for assets and this is only a small percentage of the complete set of
parts and may not generalize to the full database. However, we performed the part selection
randomly, and therefore assume this is a representative sample.

With respect to internal validity, we used the BioBrick API to pull data from the reposi-
tory and acknowledge there could be mistakes in our queries. However, we have manually
validated these, and have provided both the database and the scripts on our external website
for others to re-validate. Two authors of this study made the determinations for the presence
of assets which could lead to bias. However, the analysis was first performed independently
and compared. 95.7% of the decisions matched. A third author was involved when an easy
resolution on consensus was not initially reached.

6.1.3 Results

Assets We evaluate the existence and use of the core assets (the code) and additional assets.
Starting with the core assets, there are 47,934 BioBrick parts at the time of this publication.
Table 1 shows the counts of parts by function. The largest category, coding, has over 10,000
parts. These are sequences that encode specific proteins. The second most frequent category
(9,966) is composite part. A composite part is composed of two or more basic parts (i.e., an
aggregate class or function). All of the top ten categories have more than 1,000 parts. We
can consider these reusable assets for building products.

To demonstrate the usage of the core assets we look at the use count for each part. The
use count specifies how many times a request for the part was made by an external user. This
is similar to a GitHub checkout. Table 2 displays these results. We can see that the majority
of parts (about 71%) are never requested. Approximately 27% are used between one and ten
times. Then we see a small percentage of parts (under 2%) that are used more than 11 times.
Of this group, some parts are used more than 100 times. This demonstrates the repository
consists of many reusable core assets. The parts with high use may show potential com-
monality between projects, and the parts with lower use may represent potential variability.

@ Springer

Empir Software Eng (2021) 26: 44 Page 13 0f 43 44

Table 1 Part types for all

BioBrick parts in the repository part-type # parts part-type # parts
Coding 10,265 RBS 769
Composite 9,966 Primer 685
Regulatory 4,165 Plasmid 681
Intermediate 3,506 Project 656
Generator 2,425 Terminator 518
Reporter 2,310 Signalling 511
Device 2,277 Plasmid_Backbone 454
DNA 1,717 Tag 385
Other 1,419 Scar 121
Measurement 1,162 Inverter 117
RNA 976 Cell 75
Protein_Domain 917 T7 57
Translational _Unit 880 Conjugation 51
Temporary 866 Promoter 3

We leave a complete analysis as future work. We see a similar phenomenon in traditional
software repositories with a large abundance of code, but a comparatively small number of
highly used modules (Zhu et al. 2014).

To evaluate the existence of additional assets we study the following assets described
in Section 6.1.1: SBOL model, ruler model, DNA sequence, single/double strand (SS/DS),
textual description, and experimental results. All of these assets may be useful to a user
interested in how a part can fit into their construct. Table 3 displays the results. 79.5% of
parts included the SBOL format and 89.5% contain the ruler model. Most of them included
the raw DNA sequence (93.5%) and 91.0% have SS or DS representation (we note that if a
part has either the SS or DS, they had the other representation as well so we chose to group
them together). 89.5% had a basic textual description, and only 20.5% of parts included any
additional experimental results.

A characteristic often associated with software product lines in practice is their degree
of evolution. To ask if the same characteristic applies to OPSLs we analyze the parts added
to the repository over time. Each year on average 2,996 parts are added, and the cumulative
number of parts since the start of the repository in 2003 to 2018 can be seen in Fig. 6. We can
see the increase in parts follows a linear trend. This demonstrates that the repository is still
actively used and new features are continuing to be added. Figure 7 displays the number of
each type of part added over time. We can see that the majority of parts (averaged into one
group of “Others”) are added at a small and stable level. The outlier part types are coding,

Table 2 BioBrick use counts

based on number of user requests # of Uses # of Parts
0 34,091 (71.12%)
1-10 13,117 (27.36%)
11-50 602 (1.26%)
51-100 61 (0.13%)
101+ 63 (0.13%)

@ Springer

44 Page 14 of 43 Empir Software Eng (2021) 26: 44

Table 3 Assets present in 200 random composite parts

Asset SBOL Ruler DNA SS/ Textual Experimental
model model sequence DS description results
% parts 79.5% 89.5% 93.5% 91.0% 89.5% 20.5%

composite, and regulatory parts which increase in abundance over time. Since new parts
are added over time, it is reasonable to assume resulting models built from this repository
will also evolve. We further discuss this how this may lead to the need for tool support for
maintenance of evolving feature models in Section 9.

Variability To examine variability we focus on the transcription unit, the most basic func-
tion (see Fig. 4). There are 4,165 promoters, 769 ribosome binding sites (RBSs), 10,265
coding sequences, and 518 terminators. If we underestimate the possible product space by
counting one of each part (a standard practice is to use two terminators which will increase
the space by a large factor) we have on the order of 1.7 x 10'3 (17 trillion) products
representing transcription units.

There are also 9,966 parts labeled as composite in the repository (meaning they were
built from basic parts and added back into the repository). Each represents one customized
product built from the core components, again showing variability.

Commonality Not every product is completely distinct from others. Products will share
certain common features with other products in their biological functionality. There are
ten functional categories listed in the BioBrick repository. Each of these categories can
represent one set of products, and they will share common architectural elements. Two
examples of this include: (1) a kill switch will always have a trigger and an effect; and (2) a
cell-to-cell signaling system will always have a sender, receiver, and reporter. In Section 7
we examine a real family of products that has 14 common features.

6.1.4 Summary of RQ1

We identified and characterized several characteristics required to build a software product
line in the BioBrick repository. The repository contains 47,934 core assets and is increasing

20000 30000 40000 50000
| | | |

Cummulative Number of Parts

10000
1

0
1
°

T T T T T T T T T T T T T T T T
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Year

Fig.6 Cumulative number of parts over time fitted with a linear trend line (R? of 0.9813)

@ Springer

Empir Software Eng (2021) 26: 44 Page 150f 43 44

’

Legend 7
Coding /
= -= = Composite /
=== -= Regulator /
1000+ Other T~ ==

0 /

5 /

o 7

—

9] - ’

3 N -5 T /

o N e

g ~ /. N\’ /

= 500 /7 S~/ /.

0.

Fig.7 Number of parts by type added to the BioBrick repository each year. All other part types were averaged
into the “Other” category. The error bars represent the minimum and maximum for each year in all other part
type categories

at a linear rate with an average of 2,996 parts being added each year. There is a mixture of
actively used parts and specialized parts. There is variability in the ways to build the basic
building block of any synthetic system (1.7 x 10'3 ways to create a transcriptional unit),
and there is commonality between products of the same biological function (e.g., sender,
receiver, and reporter in cell-to-cell signaling). We identify six additional assets that are
present in as many as 93.5% of products and as few as 20.5% of products.

6.2 RQ2: What are the Characteristics of Feature Models Built from a DNA
Repository?

While RQI evaluates the feasibility of the definition of OSPLs, RQ2 evaluates the imple-
mentation of OSPLs. We focus on domain engineering by constructing and evaluating four
feature models for distinct functions in the BioBricks repository.

6.2.1 Methodology

We build feature models for three different biological functions: cell-to-cell signaling, kill
switch, and viral vectors. The BioBrick repository sorts parts into ten common biologi-
cal functions: biosafety, biosynthesis, cell-to-cell signaling and quorum sensing, cell death,
coliroid, conjugation, motility and chemotaxis, odor production and sensing, DNA recom-
binations, and viral vectors. We select the three functions with the greatest number of parts
(biosafety, cell-to-cell signaling, and viral vectors). Biosafety has several subcategories, and
we choose the subcategory with the most parts —kill switch. The viral vector function can
be split into two main categories: the gene of interest (GOI) and the capsid. We consider
these two as separate models. We discuss the detail of the construction of each model next.
Since each model required domain knowledge to construct we were restricted to a sample
of three functions resulting in four models.

@ Springer

44 Page 16 0of 43 Empir Software Eng (2021) 26: 44

Cell-to-Cell Signaling Cell-to-cell signaling is a key cellular communication mechanism
by means of secreting and sensing small molecules such as peptides or proteins between a
sender and a receiver. The receiver will then issue some type of response such as fluorescing,
expressing a gene, or creating some other chemical signal. For example, quorum sensing is
a type of cell-to-cell signaling. When quorum sensing is applied to synthetic biology, two
groups of organisms are generally engineered: the first group acts as the sender, and the
second as the receiver. The receiver will exhibit a type of behavioral response at a certain
concentration (a quorum) of signals from the sender. Quorum sensing is used by bacteria
for antibiotic production, motility, and biofilm formation (Miller and Bassler 2001).

To build a feature model for cell-to-cell signaling, we forward-engineer the parts listed
under the cell-to-cell signaling category of the BioBrick repository. We employ basic knowl-
edge of the structure of a cell-to-cell signaling systems such as the transcription unit and
the three main components (sender, receiver, reporter). We then sort the parts based on their
features. There are 39 promoters, 13 transcriptional regulators, 10 biosynthesis enzymes, 2
degradation enzymes, 21 transitional units, and 138 composite parts in this category. Since
we want to map systems down to the lowest level of feature we ignore the composite parts.
We also discuss our design with a synthetic biology researcher (also an author of this paper),
an iGEM team representative whose project was on a form of cell-to-cell signaling, and
several graduate students familiar with the domain knowledge of cell-to-cell signaling (not
authors of this paper).

Kill Switch A kill switch is a safety mechanism which triggers cellular death, typically by
engineering cells to produce proteins which destroy cellular membranes. Common triggers
include exposure to specific chemicals, temperature ranges, pH levels, or frequencies of
light. A kill switch is usually designed to activate if the host cells escape their intended
operating environment. There have been recent improvements for temperature-sensitive kill
switches (Stirling et al. 2017) and pH-sensitive kill switches (Stirling et al. 2019). For a
good survey of kill switches used in the iGEM competition, see Whitford et al. (2018).

To build the kill switch feature model we manually review all of the wiki pages from the
110 teams who earned a gold medal in the 2017 iGEM competition (Firestone and Cohen
2018). Fourteen teams mention some type of kill switch in their design. We went to these
14 team pages and reviewed their designs for a kill switch by noting the features of their
designs (such as the trigger and method of cell death). The exact set of teams is listed on
our supplementary website. Our model was also reviewed by a synthetic biology researcher
(also an author of this paper).

Viral Vectors Viral vectors are an essential component of gene therapy in which the thera-
peutic gene of interest is inserted into a transportation vector (called a capsid) to be delivered
into a cell (Naso et al. 2017). The gene of interest (GOI) can then replicate and implement its
functionality. For example, it can produce insulin in the case of a diabetic host (Levine and
Leibowitz 1999). Adeno-associated virus (AAV) is a recent popular choice for a transport
vector due to its low pathogenicity and minimal recognition by the immune system (Aponte-
Ubillus et al. 2018; Naso et al. 2017). AAV can be customized for the desired gene to be
transported into the cell and is the subject of our feature models.

The set of viral vector parts in the BioBrick repository is a set of 103 parts that can
be used to create a version of the Adeno-associated virus (AAV2). All but one of these
parts (which we eliminate from our set of parts) was added to the repository by the 2010
iGEM team from Freiburg (Freiburg Bioware 2010). The Freiburg team created a “Virus
Construction Kit” to allow other users to create an AAV?2 virus. To build the feature model,

@ Springer

Empir Software Eng (2021) 26: 44 Page 17 of 43 44

we use the list of parts in the BioBrick repository catalog page, and domain knowledge from
the Freiburg iGEM team including their “Virus Construction Kit Manual.” In review of the
Freiburg team we identified two main components of a viral vector system, the gene of
interest (GOI) vector and the capsid vector. The GOI vector represents the gene of interest
that will be transported into the host. The capsid vector represents the container that the
gene of interest will be transported in. We consider these two separate feature models. We
also employ domain knowledge from a synthetic biology researcher (also an author of this
paper) and a graduate student with domain knowledge of viral vectors (not an author of this

paper).
6.2.2 Threats to Validity

With respect to external validity, we chose to model only four feature models which means
our results may not generalize to all biological functions, however we select widely used
and diverse functions to model. This helps to ensure our results are as broad as possible.
While other functions may result in different models, we believe the basic principles will
still apply. For example, the transcription unit will appear in some form in all organic feature
models due to biological constraints.

With respect to internal validity, we acknowledge the authors of this paper manually
constructed the features models and these have not been used to construct actual products.
Hence, we cannot confirm that all of the constraints and features have been captured. How-
ever the models were built by two different authors and were discussed with several domain
experts (both authors and non-authors of this paper) who agreed these were valid represen-
tations of intended functions. We also include the final models as artifacts on our websites
for other researchers to evaluate and refine.

6.2.3 Results
We present all four of our reverse engineered models and discusses their characteristics.

Model(1) Cell-to-Cell Signaling Figure 8 shows the overall cell-to-cell signaling feature
model we constructed. The feature model follows a hierarchical model with variation points
at the transcriptional unit level as a sub-feature model. Because the full cell-to-cell signaling
model is too large to show here, we visually present only some of these sub-feature models
and describe the rest in text (the complete model is on our supplementary website). Note that
any numerals appearing below features indicate the number of obfuscated features which
will appear if those nodes are expanded.

To compute the number of products in this model we used the dedicated SPL analysis
tool FAMA (Benavides et al. 2007) (the model was too large for FeatureIDE to calculate the
number of products). As seen in Table 4 the cell-to-cell signaling model has 160 features
and 7.5 x 10?0 total number of products. The sender and receiver each have 11,448,000
products. The reporter has 5,724,000 products. We describe the components of the feature
model next.

Promoter One promoter is needed for the sender, one for the receiver, and one for the
reporter. A promoter has three features: constitutiveness, activation, and repression. A pro-
moter may have a different level of constitutive expression (meaning it expresses on its
own, without being activated by any protein). We found parts that categorize this as weak,
medium, or strong. A promoter can also be activated (increased expression) by a protein.

@ Springer

44 Page 18 0f 43 Empir Software Eng (2021) 26: 44

Cell_to_ Ce\l S\gnallmg

Promoter S g CcdmgSequence S Termlnator S ‘ Promoter B RB! B CodmgSequence B Termmator B
\17\ \12\ \17\ \4\ \24\

y—’—\ccd.ngsequence R| [Teminsior_R|

(129 (24)

‘weak R‘ ‘medlum R‘ ‘hngh R‘ ‘LuxA R‘ ‘RhIA R‘ ‘LasArR‘ ‘CmA R‘ ‘TetR R‘ ‘IambdacIR R‘ ‘LacR R‘ ‘RhIR R‘ ‘LuxR”R‘ ‘LasR R‘ ‘pZZCZR R

Fig.8 Top levels of the cell-to-cell signaling feature model

We identified four proteins listed under cell-to-cell signaling promoters. We also identified
seven proteins that could be used for repression.

We represent the three features of a promoter (constitutive, activation, repression) with an
OR relationship. Each of the parts below these features have an Alternative relationship. In
our model one promoter alone has 159 possible configurations. The model for the receiver
promoter is expanded and can be seen in Fig. 8.

RBS The next high-level feature is the ribosome binding site (RBS). This part will have the
same variation in the sender, receiver, and reporter. Since the cell-to-cell signaling catalog
does not include RBS parts, we looked at all RBS parts in the repository. They are sorted
into different collections, so we use the community collection. The functional differences
between them is in their protein expression level (“strength”). This feature in the SPL has
eight possible configurations.

Coding Sequence (Protein) The next part is the coding sequence. We limit this model
to only coding sequences which encode for creation of specific proteins. We have identi-
fied five proteins in the cell-to-cell signaling catalog. In addition to a protein, a function is
required to be chosen, either transcriptional regulation or an enzyme. An enzyme can either
be for biosynthesis or degradation. There is also an optional LVA tag which reduces the pro-
teins’ half-life. The coding sequence parts have 30 possible configurations. This model is
shown in Fig. 9.

Coding Sequence (Reporter) The other type of coding sequence we model represents the
encoding of the reporter’s signal. We identify four possible behavioral responses: green
fluorescence, biofilm production, antibiotic production, and a kill switch.

Terminator The final part is the terminator. There are no terminators listed in the cell-to-
cell signaling catalog, so we look at all terminators in the repository. Terminators can be in

Table 4 Summary of feature

models Model # of Features # of Products
Cell-to-Cell Signaling 160 7.5 x 1020
Kill Switch 23 882
Viral Vector—GOI 11 40
Viral Vector—Capsid 15 10

@ Springer

Empir Software Eng (2021) 26: 44 Page 19 0of 43 44

CodingSequence S

 [Functon_5| [DAL%ETS]
— — T
‘ LungzS ‘ ‘ RhICS_S ‘ ‘ LasCS_S ‘ ‘ CinCS_S ‘ ‘ aiiCS_S ‘ ‘ Transcriptional _Regulator_S ‘ ‘ Enzyme_S ‘

— T

‘ BiosyntH;sri;_S ‘ ‘ Degrrrértriration_S ‘

Fig.9 Sub-feature model of a protein coding sequence

the forward direction, reverse direction, or bidirectional. We only consider forward direc-
tional terminators in this model. In the BioBrick catalog there are 24 terminators available.
It is common to choose two terminators to ensure transcription stops, so in our model we
allow choosing one or two (a {1,2} OR relation) terminators. The terminator parts allow 300
possible configurations.

Model(2) Kill Switch The constructed feature model is shown in Fig. 10. The trigger type
(left side) is of particular interest because synthetic biologists will want to engineer kill
switches to activate only under certain conditions. The kill switches we reviewed can be
triggered under several different conditions: temperature ranges; presence or absence of
specific chemicals; low pH levels; or exposure to specific frequencies of natural light. Each
of those trigger conditions ends in leaf nodes which are the BioBrick IDs correlated to spe-
cific DNA sequences. The promoters, RBSs, coding sequences, and terminators show which
BioBricks can be used to complete a transcription unit for a kill switch. The visualization
branch is optional. It provides visual evidence that the switch is working through produc-
tion of fluorescent proteins. As seen in Table 4 this model has 23 features and represents
882 kill switches.

Models(3 & 4) Viral Vectors The components of building a viral vector are split into two
models: the gene of interest which holds the gene to be inserted into the organism, and
the capsid which encases the gene for transportation. We build these two feature models

Kill_Switch

/// Codingigequence
BBa_BOO30‘ ‘BBa_BOO34‘ ‘BBa_JGllOl‘ | Visualization Typical
(12) .

// Protein_Itself| | BBa_B0010| | BBa_B0012

- o
‘MembraneiLysis‘ ‘Inhibitisynthesis‘ Natura+ Light

— ® g 2
Trigger_Type BBa_K2486027 | |BBa_K2516003

e A A

Constitutive TR
BBa_J23106 | | Between 35C_47C| |Presence_of Absence _of Below_7
BBa_K2301003 BBa_K1231000

BBa_K206000| |BBa_R0010

Fig. 10 A feature model for a kill switch. A numeral on a leaf represents how many nodes are in their subtrees
(obfuscated)

@ Springer

44 Page 200f 43 Empir Software Eng (2021) 26: 44

separately. Figure 11 has the feature model for the gene of interest (GOI) and Fig. 12 has
the feature model for the capsid.

The GOI model has 11 features and represents 40 products (Table 4). A product must
contain the left and right ITRs, a promoter, and a gene of interest. There are two options
for a promoter (pCMYV and phTERT) and the gene of interest can either be florescence (two
color options) or suicide (three options). There are two optional features (Beta-globin_intron
and hGH_Terminator). These features were experimented on by the Freiburg team and were
suggested to be used, but remain optional elements.

The capsid model represents 15 features and 10 products (Table 4). There are two pro-
moters required for the REP proteins. The four Rep proteins and three Cap proteins are
mandatory. The pS_TATAless promoter is also mandatory. The optional features are the
HIS-tag and one of four linkers.

6.2.4 Summary of RQ2

We successfully built four feature models for distinct biological functions with variable and
common features. The diversity of the chosen models demonstrates the feasibility of feature
models in practice for synthetic engineers, we believe our concepts will extend to other
biological functions as well. Table 4 shows summaries of all four models. The total number
of products range from 10 to 7.5 x 10?0, Three of these models come from two separate
teams of synthetic biology researchers showing how we can apply organic software product
line engineering in practice.

6.3 Study Summary

We have demonstrated the feasibility of organic software product lines by showing the exis-
tence of core and additional assets, and demonstrating both commonality and variability.
We built four feature models for three distinct biological functions showing the feasibility
of implementing OSPLs.

7 Case Study: Applying End-to-End Analysis for Developers of Organic
Programs

Section 6 demonstrates the feasibility of organic software product lines. In this study we
investigate what benefits organic software product line engineering can provide in practice.
We evaluate whether OSPL engineering can help us reason about a system while performing
different tasks of development which include (a) building and understanding the product
space, (b) choosing products to build and test, and (c) communicating domain knowledge to

‘VlraIVector GOl Plasmld‘

m m ‘Beta globln |ntron‘ ‘Gene c;?lnterest‘ ‘hGH Termlnator‘ rlght ITR
\pCMv\ \phTERT\ \Huorescence\ h

N N

mVenus ‘ mCherry‘ ‘ Cytosine deammase‘ ‘ mGMK TK30‘ ‘ mGMK SR39‘

Fig. 11 Viral Vector Gene of Interest (GOI) feature model

@ Springer

Empir Software Eng (2021) 26: 44 Page 21 0of 43 44

‘ ViralVector Capsid _Plasmid ‘
‘ (oo Rrales] [Ficing] [Ciker

//\\ = T~ - = N -
Rep78| [Rep68| [Reps2| |Repad

Fig. 12 Viral Vector Capsid feature model

@
‘ Cap_ proteins

the broader community. We choose to follow an existing research team’s project in order to
compare their experience with the use of OSPLs, to understand how SPL engineering could
have aided their design and subsequent results.

7.1 Methodology

To evaluate the benefits of OSPLs we place ourselves in the role of a synthetic developer by
studying the 2017 iGEM team from Arizona State University (ASU). We begin by referring
to the team’s project web page (Arizona State University 2017). Since their complete set of
parts is not available in the repository we contacted the team and were granted permission to
view the parts through a cloud-based informatics platform called Benchling. This lab page
included the basic parts for each of their products. Their research has since been published
and their Benchling link can be found in that article (Tekel et al. 2019).

Recall in quorum sensing, there are two groups of organisms: the first group acts as the
sender, and the second as the receiver. The receiver produces one type of protein, and will
exhibit a type of behavioral response at a certain concentration (a quorum) signaled by a
protein sent by the sender. The two proteins will combine causing the receiver to respond
(for example, the receiving organism may turn green).

The choice of protein for the sender and the receiver plays an important role. Some com-
binations of proteins cause crosstalk for the receiver which can render the system inefficient
or even useless. As stated on the ASU team’s project web page (Arizona State University
2017):

Knowing the rates of induction also allows for greater precision when designing
genetic circuits.

The team’s research goal was to experiment on how different combinations of these proteins
interact which causes crosstalk. The team chose ten different proteins for the sender (Aub,
Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, Sin), three different proteins for the receiver (Las,
Lux, Tra), and three different proteins for the reporter (Las, Lux, Tra).

In this study we perform a slice using the slicing functionality in FeatureIDE (Thiim et al.
2014b). We also generate samples of feature model product spaces by using combinatorial
interaction testing. For this we use CASA (Garvin et al. 2011).

7.1.1 Threats to Validity

In this case study we examined a single project, quorum sensing. It is possible that other
projects may not benefit as much from OSPL engineering, creating a threat to external valid-
ity. However, given the wide range of biological functions, and our prior study indicating
that many functions have OSPL characteristics, it is likely this work will generalize to other
functions. We also used only a single sampling technique to demonstrate the possibility of

@ Springer

44 Page22of43 Empir Software Eng (2021) 26: 44

reducing the experimental testing space, CIT. However, this is a common technique used to
find interactions (the goal of the ASU study).

With respect to internal validity, we acknowledge the authors of this paper built the fea-
ture models, however for each subject, we used extensive documentation from the original
project and asked external domain experts (both synthetic biology scientists and graduate
students with domain expertise in the biological function related to the model) for help val-
idating the models. We used existing tools to perform the slicing and CIT sampling. It is
possible that there are faults in these tools, however, we did some manual verification and
we provide all of our artifacts on our external website.

7.2 Results

We first present our model for the Arizona State University’s project, then present several
examples of analysis that could be performed by a research team.

7.2.1 Providing a Broader View of the Product Space

Though perhaps unintentionally, the ASU team’s project represents a feature model. We
formalize it by manually reverse-engineering their project feature model from their web
page. Figures 13 and 14 show the resulting sender and receiver models respectively (herein
referred to together as the ASU model). This model contains the high-level features: sender
and receiver. The receiver contains both a regulator and reporter. Each feature has four basic
parts (promoter, RBS, coding sequence, terminator) and the sender has an extra feature to
incorporate a red fluorescence. Many of the features are mandatory. The points of variability
lie in the sender’s coding sequence, the regulator’s coding sequence, and the reporter’s pro-
moter. This model represents a total of 90 products. To conduct their experiments, the ASU
team added a constraint between the regulator’s coding sequence and the reporter’s pro-
moter (they are required to be the same). Thus their experiment tested 30 of these products
in the laboratory. We call this the ASU experimental model.

If we compare this ASU model to the reverse engineered model presented in
Section 6.2.3 (we call this the cell-to-cell signaling model), the ASU model is not a direct
subset of the cell-to-cell signaling model. In practice it should be. We would have expected
the products in the models to overlap, as seen in Fig. 15a. However the actual overlap can
be seen in Fig. 15b. We can see that only 12 products overlap between the ASU model and
the cell-to-cell signaling model. There are an additional 78 products that the cell-to-cell
signaling model misses.

ASU2017 _QuorumSensing

[sefder]

Receiver

=S (24)

RBS;gimC CodingS’e’ciuenceisimC il';r:niinatoris

800347‘$7mC mCh‘erry 800!075 800!275
/ N

S| [Esa_s] [Las_S] ‘Lu;_S‘ ‘I;;{I_S‘ “I‘?};a_S‘ [sin_s]

CodingSeq |;|en<:67 S

[Aub_s| ‘Bja_g‘ ‘Bra:S‘ ‘Cer/

Fig. 13 The sender slice from a feature model for the 2017 Arizona State University’s iGEM project (ASU
Model)

@ Springer

Empir Software Eng (2021) 26: 44 Page 23 of 43 44

ASU2017 _QuorumSensing
Sender

Promter_R| [RESR| [CodingSequence_R| |Termigtor R Promoter_B| |[RBY B| [CodingSequence B| [Termigtor B
AN PON
Bo034 R| | . [Boolo_R| [Booi2 R| | BOOéZ_B GFP_B‘_EOO40 Booto_B| [Bool B
e o

Fig. 14 The receiver slice from a feature model for the 2017 Arizona State University’s iGEM project (ASU
Model)

To understand why there is such a small overlap we examine the features each model
considers. The ASU team’s experimental focus is on the interactions of protein features for
the sender, regulator, and reporter, so the points of variation were chosen on these three
variables. We would expect a complete set of proteins to be documented on the cell-to-cell
signaling page, but they are not comprehensively listed in the BioBrick repository.

Both models are valid representations of quorum sensing systems, however they come
from different resources and their products differ. This highlights a key problem with the
current method of engineering a model—there is a lack of complete information available.
Ideally a complete set of products would be available, however this may not always be
possible. For example, two engineers might have two different sets of domain knowledge
resulting in two different (but both correct) models of the system. This demonstrates the
need for collaborative modeling tools (Kuiter et al. 2019) to allow users to merge domain
knowledge and reconcile multiple models. We further discuss this in Section 9.

7.2.2 Testing and Analysis

We next move to testing and analysis of our applications. Assume the ASU team uses the
cell-to-cell signaling model to drive their experiments instead of working from scratch. We
demonstrate how they could have used this feature model to help with testing and analysis.

Since the ASU team focuses only on the proteins, they could take a slice of the cell-
to-cell signaling model. This would yield the model in Fig. 16 (called protein slice) which

Cell-to-Cell
Signaling model

Cell-to-Cell
Signaling model
(7.5 x 10%)

ASU model
(90)

24

ASU
experiment
(30)

ASU
experiment
(30)

(a) (b)

Fig. 15 The overlap of the feature models and ASU experimentation. The sum of each circle is in parentheses

@ Springer

44 Page 24 of 43 Empir Software Eng (2021) 26: 44

—@- : A
Cell_to_ Cell_Signaling_ Protein_ Slice

CodingSequence_R

Protein_R

CodingSequence_S

LuxCSisHRhlcsis ‘ [LasCs_s Hc.ncsszancsfs |

Activation B

\ LuxAV:BJ‘VVV‘VI;P;IZ’\:é || La‘sAw:l;‘”‘VEirr;AiB \

[Luxcs_R| \Rhlc'siR\ ‘LasC‘SiR‘ \Cinﬁsz\ [aiics_R|

Fig. 16 A slice of the complete cell-to-cell signaling feature model focuses on protein combinations to mimic
the ASU team’s experiment (protein slice)

represents 100 products. This is significantly fewer than the total product space (7.5 x 1020),
but more than what the ASU team eventually tested (30).

We could also employ common sampling methods such as combinatorial interaction
testing (CIT) which samples broadly across a set of features (Cohen et al. 1997). Using
sampling allows us to test a larger space of combinations. We used CASA (Garvin et al.
2011) to build a 2-way CIT sample of the ASU model. In this scenario an interaction is
between two proteins. We can cover all pairs of proteins in the complete model using 30
tests. Note that ASU also tested 30 products, but in order to scope the project they applied
their own constraint that does not test for possible interactions between the regulator and
reporter proteins.

We also built a 2-way CIT sample for the cell-to-cell signaling model, covering all pairs
of all features. This resulted in 715 tests, a significant (rounding to 100%) reduction of the
entire configuration space (7.5 x 102%). Each of these samples and their product overlaps
can be seen in Fig. 17. All samples can be found on our associated website.

Using CIT would provide ASU a more systematic method of approaching the interaction
space, leading to a more broad sample. This could reduce possible bias when developing
experimental designs.

ASU model Cell-to-Cell Signaling

model

2-way ASU Key

CIT sample

Cell-Cell ASU

experiment

715

11 ASU
experiment
(30)

Fig. 17 Product overlap between each of the feature models and possible samples

@ Springer

Empir Software Eng (2021) 26: 44 Page 25 0of 43 44

7.2.3 Domain Expert Feedback

Though we do not perform a user study in this work, we informally requested feedback from
several domain experts including a synthetic biology researcher and iGEM team advisor
(also an author of this paper), two iGEM teams (the same teams used as inspiration to build
the quorum sensors model and the viral vector models), and two graduate students working
in synthetic biology (not authors of this paper).

Comments included: “it would be very helpful for new scientists or beginning iGEM
teams to understand how different components can be combined to create a working
product”, and “very helpful for students on their first day” to learn the required domain
knowledge, but also later on when the teams need to locate specific parts to user. One iGEM
team representative said they “could see the models being useful for future teams that are
interested in assembling a biosensor circuit” (regarding the quorum sensor model), but that
the current models are limited to specific interests. They suggested the use would increase
if we broadened the use to “other biosensor transcription factors (receivers) or synthases
(senders) of other molecules”. It was also mentioned incorporating additional part informa-
tion “such as promoter strength, inducibility, etc, then it would be even more powerful as a
tool”. Other feedback also echoed this by discussing other compatibility issues that could
arise when combining multiple plasmids or under different organism hosts. We discuss this
extension in the form of annotations in our future work. We also received feedback that
the iGEM BioBrick repository is difficult to navigate due to the lack of categorization and
standardization, thus it was commented that “any tool that could help iGEM teams better
visualize or design their parts would greatly benefit the community”. We plan to conduct a
user study as future work, but this informal feedback demonstrates the potential benefit to
synthetic biology research teams in practice.

7.2.4 Case Study Summary

We have demonstrated application engineering by placing ourselves in the role of a syn-
thetic biology research team and designing a feature model representative of their project.
We found that software product line methodologies can aid researchers designing a new
project domain space or utilizing existing models benefiting from existing domain knowl-
edge. In comparing the ASU experimental model to the full cell-to-cell signaling model
from our feasibility study, we see there is discrepancy in domain knowledge between the
entire repository and the iGEM team. This signals the potential benefits of SPL engineer-
ing. We further highlight this potential by demonstrating the use of slicing and sampling
to provide a systematic way to more broadly sample the product space. Finally we pro-
vide informal feedback from a variety of domain experts and synthetic biology researchers
describing their perceived benefits of the models.

8 Empirical Study—Effectiveness and Efficiency of Automated Reverse
Engineering

We now present an empirical evaluation of the effectiveness and efficiency of automated
reverse engineering in the domain of organic software product lines. Having an automated
way to construct the feature model artifact based on a given set of products, provides the last
piece of the puzzle for synthetic biologists. Reverse engineering does not require biologists
to learn fundamentals of modeling and designing an SPL from the top down, while still

@ Springer

44 Page 26 0of 43 Empir Software Eng (2021) 26: 44

allowing them to use (and potentially refine) this important artifact. In order for reverse
engineering to be practical and beneficial, it must be both correct (effective) and efficient.
Thus we ask the following research question:

— RQI: What is the effectiveness and efficiency of automated reverse engineering?
8.1 Methodology

We utilize an existing reverse engineering tool, SPLRevO developed by Thianniwet and
Cohen (2015, 2016), although other similar tools could be used. This tool accepts either
(1) a set of constraints based on domain knowledge describing the compatibility of the
DNA parts, or (2) a set of products which represent the software product line. SPLRevO
uses a genetic algorithm to automatically build a feature model that represents all products.
The fitness function (described below) aims to maximize the coverage of the set of desired
products while minimizing any undesired (additional) products using a penalty.

8.1.1 Objects of Study

We reverse engineer four models from the prior studies: Arizona State University exper-
imental (ASU), kill switch, viral vector gene of interest (GOI), and viral vector capsid.
By choosing diverse subjects we reduce threats to selection bias. Since we have a known
oracle for the first two subjects we can compare results to manually constructed models.
The latter two subjects allow us to investigate how effective automated reverse engineer-
ing starting from an incomplete model. The current prototype of SPLRevO we use for this
experiment can handle up to 27 features when reverse engineering from products.? There-
fore, we reduced the ASU model from 30 to 27 features by selecting two of the common
features (BO010 and BO012) and merging them into one feature (BO015) for the sender, reg-
ulator, and reporter (e.g. BO010_S+B0012_S—B0015_S, BO010_R+B0012_R—B0015_R,
etc.). Since there are 15 features in the ASU model that are common to all products, we
could have chosen any of those features to combine or remove while still representing the
same 30 products. In order to satisfy computational resources, we removed the six features
under the visualization branch. We chose this branch because it is optional with respect to
the functionality of a kill switch. That reduced the model to 12 features and 105 products to
use as inputs to SPLRevO. We run all of our experiments 100 times except for our largest
model (ASU) for which we were only able to complete 40 runs due to its long runtimes.

8.1.2 Independent Variable

We perform two types of reverse engineering: (1) from a set of complete products and (2)
from an incomplete set of products. We use this differentiation as the independent vari-
able. Reverse engineering from a complete set of products can be performed during system
maintenance, or when there is a domain expert who can generate a set of products represent-
ing the entire product line to use as a predefined oracle. If we can enumerate all products,
the fitness function is optimal when the feature model matches the original set of products
exactly. An example is the set of 90 quorum sensors from ASU. However, in practice, we
often do not have the full set of products and/or it may be too large to enumerate. In this
scenario, we can use an incomplete set of products. We do not know the optimal fitness, but

>There are similar limitations with other SPL reverse engineering tools

@ Springer

Empir Software Eng (2021) 26: 44 Page 27 of 43 44

approximate it by trying to get as close to the original set of products as possible. This type
of reverse engineering can be used to approximate a good starting point for a feature model.

To create a complete set of products (the known oracle) we generate the set of prod-
ucts for the ASU and kill switch directly from the feature models in our feasibility study
(Section 6.1.3). We generate the incomplete set of products for the viral vector models from
the following methodology. We began by obtaining all 102 parts in the BioBrick reposi-
tory under the category of viral vectors (iGEM Viral Vectors 2018). We then partitioned the
parts into parts associated with the gene of interest (GOI) vector (20 parts) and the capsid
vector (82 parts). We use the ruler model (an alternative to SBOL and one of our assets
in Section 6.1.1) to identify the main components of each part to use as the features of the
products. The catalog list contains both products and basic parts, we discuss implications
of this in Section 8.2.1. We eliminated basic parts since these cannot be considered prod-
ucts, and used the remaining parts as our input product list to SPLRevO. For the GOI set of
products we removed any part that had three or fewer basic parts, leaving us with 11 unique
products. For the capsid vector we removed all parts that did not include a type of promoter
and at least one other part, resulting in 18 unique products. The full set of products including
the basic parts can be found on our supplementary website.

8.1.3 Dependent Variables

To evaluate effectiveness of the reverse engineered models we utilize the following metrics:
precision, recall, validity, and F-measure. We refer to the products used as input to SPLRevO
as the in_products and the products represented by the reverse engineered model as the
out_products. The precision is the ratio of matched products to all output products (1).
Precision is a real value ranging from 0 to 100 where 100.0% precision occurs when the
engineered model has no additional products. The complementary metric recall is the ratio
of all matched products to all input products (2). Recall is a real value ranging from 0 to
100 where 100% recall occurs when the model covers all input products. The F-measure is
the weighted harmonic mean of precision and recall (3). Intuitively, we need the model that
covers the most input products but also has less additional products. Thianniwet and Cohen
(2015) show that the validity fitness function in SPLRevO performs the best to reverse
engineering feature models.
in_products Nout_products

Precision = 1
out_products 1

in_products Nout_products
Recall = P - P 2
in_products

2 x Precision x Recall
F-Measure = — 3)
Precision + Recall

log, (in_products Nout_products + 1)

Validity = — o - logy(out _products — (in_products N out_products) + 1) (4)

log, (out_products + 1)

The fitness function increases when the input products are valid, and decreases when
products not in the input set are considered valid by the feature model. 100% validity rep-
resents the optimal model (covers all input products, no more and no less). The formal
definition of validity can be seen in (4). We use the default value for the weight of penalty
at 10% (a = 0.1) to slightly penalizing additional products while gives higher priority to
the number of matched products.

@ Springer

44 Page 280of 43 Empir Software Eng (2021) 26: 44

To evaluate the efficiency we utilize the runtime of SPLRevO. This evaluation assesses
the practicality of automated reverse engineering in practice. To compute runtime we use
long java.lang.management . ThreadMXBean. getCurrentThreadCpuTime ()
to capture the total CPU time for the current thread in nanoseconds (beginning to end).

8.1.4 Experimental Setup

We ran 200 generations and 100 runs in SPLRevO for the kill switch and viral vector mod-
els. Due to the large number of features in the ASU model we use 400 generations and 40
runs. We find the validity plateaued at these settings (full data can be found on our sup-
plementary website). All experiments were run on a high-speedy cluster on a single node
constrained to 2GHz with 4 CPUs and 32GB RAM each (HCC 2020). We choose one
reverse engineered model from each subject to visually display in the results. We choose the
model that obtained the highest validity, in the case of a tie we choose the model with the
least number of cross tree constraints. In the case of a further tie, we randomly select one of
the models.

8.1.5 Threats to Validity

With respect to external validity we chose only four models to reverse engineer, however,
these are representative from our other studies. We also used only a single reverse engineer-
ing tool, which is limited to 27 features. We acknowledge that we could have biased the
results in our choice of feature merging, however, this was only necessary for one of the
models. We also acknowledge that other tools could have been used, however, SPLRevO
has been shown to be competitive with existing tools and the other tools have similar lim-
itations with respect to scalability. We provide both our tool and resulting models on our
external website.

With respect to internal validity, we acknowledge that the reverse engineering tool may
have faults, however, we manually validated the models and provide the resulting models
on our website. SPLRevO is a stochastic tool, both with respect to the effectiveness and
efficiency. To reduce this threat, we ran it multiple times on each model and report both the
averages and standard deviations.

With respect to construct validity, we could have chosen different metrics. However,
we use commonly used metrics such as F-measure, recall, and precision which have been
used in other papers on reverse engineering. Our complexity metrics are also commonly
used elsewhere. We clearly describe the metrics chosen, citing related work in which those
metrics were proposed or used.

8.2 Results

We next present our results for the two methods of reverse engineering.

Table 5 contains a summary of results. The models with a complete set of products are
on top, followed by the incomplete set of products. For each model we show the number
of starting products (In Prod.), the number of features, followed by the reverse engineered
number of products, the fitness (validity) and runtime in minutes. We show the average
and standard deviation for the last three columns. The average validity for the complete set
of products is higher than the incomplete set of products. The ASU model has a validity
of 94.37% with a standard deviation of 5.34 and the kill switch has a validity of 98.16%
with a standard deviation of 3.50. In contrast the GOI and capsid models’ validity ranges

@ Springer

Empir Software Eng (2021) 26: 44 Page 29 of 43 44

Table 5 Effectiveness and efficiency metrics. Average and standard deviations over all runs of reverse engi-
neering using SPLRevO on all four subject models. The top two subjects were reverse engineered from
a complete set of products. The bottom two subjects were reverse engineered from an incomplete set of
products

Model Runs In Prod. Features Products Validity % Runtime (min)

AVG SD AVG SD AVG SD

Complete set of products

ASU 40 30 26 49.58 2486 9437 534 17.15h 3.46h

KillSw. 100 105 16 11448 3657 98.16 3.50 18.53 2.70
Incomplete set of products

GOI 100 11 11 19.31 11.04 9044 2.86 1.06 0.29

Capsid 100 22 18 113.18 5147 8334 3.18 15.84 3.89

from only 83.34-90.44%. If we look at the number of products, ASU and the kill switch
have an average number of products close to the input set although there is a large standard
deviation. This large deviation in the number of products is not unexpected since one change
in a feature will propagate to changes in many products. In practice, if resources allow, an
engineer may run their reverse engineering tool multiple times and choose the best result.
The ASU model took the longest at an average of 17.15 hours. This model took longer due
to having more features and thus a larger search space, but achieved an average of 94.37%
validity within 400 generations. The kill switch three models took on average 18.53 min
with a standard deviation of 2.70 min. The runtime is correlated more with the number
of features (exponentially with an R? of 0.9765) than with the independent variable. The
capsid model ran faster than the kill switch, but also has fewer features.

Boxplots for all four effectiveness metrics can be seen in Fig. 18. For all four metrics
the complete product reverse engineering is higher than the incomplete product reverse
engineering although there is a lot of variance for precision and recall. Across the board,
the validity is high and we see little variation. This demonstrates that we can achieve high
coverage of the input products when reverse engineering. The kill switch has the highest
median precision while the ASU model median precision drops below 75%. A low precision
means the tool is generating excessive products (false positives). Examining the data more
closely we see that 17 of the 40 runs do achieve 100% precision, while only the first (GOI)
incomplete model achieves this precision at least once. With recall we see that all four
models have perfect recall in at least some of the run, but the recall for the subjects reverse
engineered from complete products is higher on average.

Out of the 17 ASU models that have 100% validity, 10 have the fewest number of cross-
tree constraints (1), a randomly chosen representative can be seen in Fig. 19. It was able to
provide us with a model that closely resembles the hand-built model and has 100% valid-
ity. Though the models represent the same products, their physical structure is different.
The SPLRevO model grouped the sender’s protein coding sequences together like the ASU
model (Groupl). Group2 represents the proteins for the regulator and reporter. Instead of
adding a cross-tree constraint like the ASU team did for their experiment, the SPLRevO
model uses mandatory relations for these under Group2. The rest of the features are all
mandatory.

For the kill switch model, 73 of the runs finished with 100% validity and 56 of those
had zero cross-tree constraints. We randomly chose one to display in Fig. 20. If we

@ Springer

44 Page30o0f43 Empir Software Eng (2021) 26: 44

o o
1 — ° = —_
= = =
- 8 ==
R — i : i
8 1 T‘ 8 1
° o
Z 81 £ 81 ° —
2 a ° : :
& 2 i |
o “ 3 E
o] o] i
Q Q :
o o o 4
T T T T T T T T
AsU Kill-Switch [ele] Capsid AsU Kill-Switch [cle]} Capsid
(a) (b)
8 8
=] 2 o
° 8 : i
8 8 S - .
[o o
. °
S - o
S g4 X 8
5 g °
@ ° ° 3
1% Q
© 2 ° 1 : x 2
o : :
T NI ==}
o 4 o 4
T T T T T T T T
ASU Kill-Switch Gol Capsid AsU Kill-Switch Gol Capsid
(c) (d)

Fig. 18 Effectiveness metrics on all four reverse engineered models over all runs

compare this model to the manually reverse engineered model from Section 6.2, we notice
that the parts are grouped in the same manner (promoters, RBS, coding sequence, termina-
tor). However the domain knowledge of the abstract features are missing such as Trigger
Type and Visualization as seen in Fig. 10.

ASU_SPLRevO_r8

Aub_S Héjfafsj\:\;ajr;_s\ Cer_s| \Esa;s\\ ‘La\s_s‘ s ‘Rhli_jS:i‘?TI;;a?_?Si‘7‘7siin_S‘ EOO*O_B

o1 s)

mCherry S| [Boofs B [Boo%s R [Books s

‘ Lux_rrk; ‘VVV‘/Lasbox_ BH ;I:fa_R ‘

Luxbox_B | |Las_R| | Trabox_B

Fig. 19 ASU reverse-engineered feature model using SPLRevO. We note that the one cross-tree constraint
created two false optional features so the displayed feature model is simplified

@ Springer

Empir Software Eng (2021) 26: 44 Page310of43 44

Kill Swn:ch _SPLRevO_r51

[Grous3_RES

BBa K2301003‘ ‘BBa K1231000‘ ‘BBa J23106‘ ‘BBa Kzoeooo\ ‘BBa R0010 | ‘BBa_BOO30H BBa_TB’0034‘”‘ BBa_J61101| |BBa_B0015

\ Group2_CodingSequence_Kill Type ‘

‘BBaiKZVAiQVGVKVJZ;‘”V‘VVI%BaiK628000‘ |BBa_K112000 | ‘BBaiK'l”12806HBBa7K2301000HBBaiK2301001‘ |BBa_K2516003

Fig. 20 Kill switch reverse-engineered feature model using SPLRevO

Out of the 100 runs of the GOI model, one has 100% validity representing 11 products
which we present in Fig. 21. This automatically engineered model closely matches our man-
ual model where Group?2 represents the options for the promoter and Group3 represents the
options for the gene of interest. The left and right ITRs are mandatory. The only difference
between the models is that the reverse engineered model requires either the Beta-globin
intron or the hGH terminator (or both). In contrary, the manual model allows neither to be
selected.

The best capsid model out of 100 runs performed with 88.32% validity representing 60
products and can be seen in Fig. 22. Though this model is structurally difficult to interpret,
we notice several attributes. Many features appear to be optional such as the VP proteins,
HIS-tag, and the linkers. We can also see that if we have the Rep78 protein, the Rep68 and
Rep40 are also required. These attributes align with the domain knowledge we learned in
RQ2. The rest of the feature model however shows differences.

8.2.1 Further Analysis and Discussion

In order to learn more about the quality of the design, we examine the complexity of
the engineered models. We note, that the reverse engineering tool does not explicitly use
this metric as part of their search, but it is possible to reduce complexity using a multi-
objective approach (Thianniwet 2016). One metric we utilize is the height of the feature
model which is measured by the longest distance from the root to any leaf. A second
metric used by Hemaspaandra and Schnoor (2011) is to count the number of cross-tree con-
straints. A third metric we use described by Thianniwet (2016) (simply called complexity)
is the sum of the total number of nodes of the expression tree representation of the feature
model (Benavides et al. 2006).

The complexity (Fig. 23a) of the model reverse engineered from the complete products
was highest with an average of 420.5 for the ASU model and 272.8 for the kill switch. The

‘VlraIVector GOI SPLRevO r34‘

| [right ITR

Beta- globln |ntrrron ‘ ‘ hGH Termmator‘ ‘ pCMV‘ ‘ phTERT ‘ Group3

‘Cytosme deammase‘ mVenus CFP ‘mCherry‘ ‘mGMK TK30

Fig.21 GOl reverse engineered feature model using SPLRevO

@ Springer

44 Page32of43 Empir Software Eng (2021) 26: 44

‘ ViralVector Capsid SPLRevO rl14 ‘

p5 TATAless
O
[p%0]

Fig.22 Capsid reverse engineered feature model using SPLRevO

ASU model also had the highest height (Fig. 23b) of 5.8 where the kill switch had the short-
est height (1.4). The complexity measurement of the models reverse engineered from the
partial products was 136.5 for the GOI model and 196.1 for the capsid with average heights
of 2.6 and 4.6 respectively. Since these models are more broad compared to reverse engi-
neering from a known oracle, it follows they would be less complex. The height however is
mixed between the four models not providing us with any real trend (Table 6).

Last, we performed a statistical analysis to determine if we can draw any stronger con-
clusions between the two groups. We used the Shaprio-Wilk test (Shapiro and Wilk 1965)
in R (R Core Team 2013) and determined that the validity, runtime, and complexity do not
consistently follow a normal distribution (with p < 0.05). Therefore we used the nonpara-
metric Mann-Whitney U test to compare our subjects (Hollander et al. 2013). If we compare
the set of models reverse engineered by complete products (ASU and kill switch) with the
model reverse engineered by partial products (GOI and capsid) we find the validity, runtime,
and complexity are all statistically different (p < 10~'9). However the subjects themselves
are a confounding variable. In a pair-wise Mann-Whitney U test among all four subjects we
find statistically differences in the validity, runtime, and complexity. Due to the number of
subjects and diversity of these models, we can not isolate the difference between reverse

o
3
< —_ J—
° —
o A H © - o
< o
(=] [72] o
z *] 2
g g - -
2 & :
£ ” - £ :
O &7 E 8 B ; E
© ; £ <4 : —
e o : = : i :
3 = | L
2 | : 3 ~ 4 |:| o
. E ° E i
S | — I
- T T T T T T T T
ASU Kill-Switch GOl Capsid ASU Kill-Switch GOl Capsid

(a) (b)

Fig.23 Complexity metrics on all four reverse engineered models over all runs

@ Springer

Empir Software Eng (2021) 26: 44 Page330of 43 44

Table 6 Complexity metrics. Average and standard deviations over all runs of reverse engineering using
SPLRevO on all four subject models. The top two subjects were reverse engineered from a complete set of
products. The bottom two subjects were reverse engineered from an incomplete set of products

Model Complexity Height #CTC

AVG SD AVG SD AVG SD
ASU 420.5 11.6 5.8 1.7 2.8 2.0
KillSwitch 272.8 6.3 1.4 0.5 0.6 1.0
GOl 136.5 12.8 2.6 0.9 3.6 23
Capsid 196.1 21.8 4.6 1.2 3.7 2.4

engineering from complete and partial products. We leave this type of a study as future work
where we can build a larger sample set and a new experimental design (see Section 10).

8.2.2 Summary of Empirical Study

We performed reverse engineering for two use cases, in the presence of a complete set of
products and in the case of having only a partial set of products. In the case of a known ora-
cle 42.5% of runs achieved 100% validity in the ASU model and 72.7% for the kill switch.
In the absence of domain knowledge we were able to reverse engineer one model with
100% validity (average of 90.44%) and the best capsid model had 88.32% validity (aver-
age of 83.34%). Three of the four models finished in less than 20 min with the exception
of the ASU model which took on average 17.15 h due to its large size. This is a reason-
able one-time cost to construct an initial model, though since we found the runtime to be
exponentially correlated with the number of features scalability may become an issue as the
number of features increases. We discuss further in Section 9. All four models were sta-
tistically different with respect to the respective metrics, therefore we were unable to draw
strong conclusions based on our independent variables.

While the models starting from a complete set of products produced models with higher
average validity, we believe there is still an opportunity to reverse engineer from a smaller
set of products. This can be used early in the design phase when the user is unsure of the
structure of the final software product line or when they simply do not want to start from
scratch (as we have done). If the user provides a set of products, but they are not complete
(such as the viral vector models), relaxation could be used to allow them to interactively
improve their model perhaps with interactive reverse engineering tool support. We believe it
would be an interesting line of future work to develop tools that can build such incomplete
feature models.

9 Implications: the Future of OSPL Engineering
In our evaluation of organic software product lines (OSPLs), we discovered several chal-

lenging characteristics that we believe help to provide a roadmap for the continued extension
of SPL engineering research. In the following discussion, we highlight the key challenges

@ Springer

44 Page 34 of 43 Empir Software Eng (2021) 26: 44

that have emerged, and highlight specific areas of future SPL engineering research and may
aid the future design of OPSLs specifically. We also discuss how this might extend to other
emerging software product lines such as other open-source applications, IoT, robotics, and
more.

9.1 Importance of Tools Supporting SPL Evolution

Most software systems have a cycle of evolution and maintenance. Software product lines,
therefore, are dynamic and require modifications over time. This is especially evident in
open-source product lines. For example, Montalvillo and Diaz (2015) present a feature
model that is updated as commits are made. Likewise, we see in our feasibility study
(Section 6) that the number of parts in the repository is increasing at a linear rate. This
means new features are being added each year, calling for new feature models over time.
Though we leave a formal evolutionary study as future work, we do observe several dif-
ferent transformations that can occur. In any evolving product line it may be necessary to
have tools to modify the models and keep track of version history. In an open-source model,
collaborative feature modeling tools will be needed to allow multiple users to contribute
their domain knowledge and refine the models over time. As such some recent work has
emerged to formalize evolutionary operations on SPLs and their feature models (Mitschke
and Eichberg 2008; Nieke et al. 2016; Ananieva et al. 2019; Hinterreiter et al. 2019). For
example temporal feature models (Hinterreiter et al. 2019; Nieke et al. 2016) develop a first-
class notation for evolution in a feature model. However, tool support for evolution is still
minimal (Marques et al. 2019).

There has been a recent increase in tool development such as by Kuiter et al. (2019),
where users can view and modify feature models dynamically. In the domain of OSPL, we
see the importance of both collaborative feature modeling and evolution being included in
tool development.

9.2 Importance of Constructs that Support Duplicate Features

We observed two types of duplication in parts across these models. In one situation we have
the same part appear multiple times in the model (and can appear multiple times within
one configuration). For example, in the ASU model seen in Fig. 14, the same proteins (Las,
Lux, and Tra) can be used in both the regulator and the reporter. In another situation we see
complete branches of the model duplicated. For example, in the same ASU model we see
the branch for the Terminator_R and Terminator_B map to identical DNA parts.

In this study we choose to handle it by creating a new feature for each duplicate (cloning),
and appending an identifier. For example in the case of duplicated proteins (e.g. Las) in the
regulator and reporter we had the features Las_R and Las_B. Though this does work, we
lose the information that both these features are functionally identical. We see the need for
future work in alternative model abstractions to allows designs that may have duplicated
features or other architectural elements without losing potentially valuable information.

It is possible that multi product lines could be beneficial (Damiani et al. 2019; Holl et al.
2012; Trujillo-Tzanahua et al. 2018) to help with this representation. A multi product line
breaks down a large-scale system into a set of several self-contained and independent prod-
uct lines. Concepts such as multi-level feature trees making use of mappings to a reference
model (Reiser and Weber 2006) and cloned features may also apply to OSPLs.

@ Springer

Empir Software Eng (2021) 26: 44 Page350f43 44

9.3 Need for More Scalable Reverse Engineering

We see a need for increased scalability of reverse engineering tools. We had to reduce
both the ASU and the kill switch model to be able to fit the scope of SPLRevO. Thian-
niwet and Cohen (2016) demonstrated that if we can use a set of constraints instead of
products, reverse engineering can increase in scalability. Even their work however, was lim-
ited to approximately 100 features. In general, we need more scalable reverse engineering
approaches. We also need ways to easily obtain sets of constraints, without building a fea-
ture model. We suggest the use of a domain specific language to help the domain experts
interface with product line engineering. We believe all of these topics are interesting avenues
for future work and will impact both organic and traditional software product lines.

9.4 Incomplete Feature Models

We explored the idea of using an incomplete set of products as inputs to reverse engineer-
ing. In the case of the viral vector models we used the products directly from the catalog.
However, some of these parts may be only parts of complete products (such as only one half
of a transcriptional unit). There was a notable decrease in the validity of the feature models
that were reverse engineered with these incomplete products. Having incomplete products
intuitively leads to greater variability than in reality. Thus we may not want to optimize
for 100% validity in these cases. We believe it is an interesting direction to study both the
effect that partial products have on the performance of automated reverse engineering, and
on alternative algorithms for constructing these models. For example, if we have a priori
information on the presence of partial products we could better account for the increase in
variability. We also see incomplete feature models as a starting point for interactive feature
modeling. If we have domain experts who lack SPL expertise, the idea of starting with an
incomplete model could allow them to refine and specify the true feature model they had in
mind.

9.5 Towards a Domain Specific Language

Last, we see an opportunity to develop more techniques for domain experts (who may not
understand feature modeling) to work with product line engineers to build models that are
functionally useful. It would be useful to provide some domain specific tools that can be
used to generate sets of constraints, rather than require the user to either build the full feature
model or list a set of products by hand. These tools are orthogonal to the feature model. As
suggested by (Hubaux et al. 2012) domain specific languages and feature modeling can be
used together to provide a rich SPL engineering environment.

In software product line engineering, one method of describing variability within C code
isby use of ifdefs. Each i fdef canrepresent a feature that will either be compiled or not
depending on some programmatic conditional. Similarly, we can think of segments of DNA
(contained in parts) as ifdefs. These parts will be implemented (or not) depending on
conditionals that are based on the biological relevance of the parts. As a small example, if we
represented the variability from our example cell-to-cell signaling FM (Fig. 1) as 1fdefs,
it might look like the pseudocode in Listing 1. We see functions defined for both the sender
and receiver which are mandatory. The sender contains an ifdef for HIGH_.EXPRESSION.
If HIGH_EXPRESSION is defined then we would choose to use the part that encodes
for Protein_A, otherwise we would use Protein_B. Similarly, the receiver checks whether

@ Springer

44 Page 36 0of 43 Empir Software Eng (2021) 26: 44

// Choose sender protein
Sender (){
#ifdef (HIGH_EXPRESSION)
Protein_A ();
#else
Protein_B ();
#endif

}

// Choose receiver protein
Receiver (){
#ifdef (LOW_SENSITIVITY)
Protein_M ();
#else
Protein_N ();
#endif

}

// Choose reporter protein (optional)
#ifdef (REPORTER)
Reporter () {
#ifdef (FLUORESCE)
Protein_X ();
#else
Protein_Y ();
#endif

}
#endif

Listing 1 Pseudocode defining the variability in a cell-to-cell signaling system

LOW_SENSITIVITY is defined to decide which protein gets compiled into the DNA plas-
mid. Since the reporter is optional its functionality is only written if REPORTER is defined.
Then the choice of protein depends on the definition of FLUORESCE.

There are other related tools such as GenoCAD which defined a grammar for parts in
the BioBrick repository (Cai et al. 2010). There has also been recent work on automation of
genetic designs (Storch et al. 2019). Combining these types of automated approaches with
the design principles of software product lines could be an interesting avenue for future
work to provide end users with a domain oriented toolkit. Furthermore, assembly of syn-
thetic DNA sequences can be automated by the use of DNA synthesis methods (Hughes and
Ellington 2017; Ma et al. 2012). By combining the design of constructs with a DSL and
automated assembly, could lead to a fully automated design process.

10 Conclusions and Future Work
In this paper, we have shown how the emerging programming field of synthetic biology can

potentially benefit from software product line engineering. We first presented the notion of
an organic software product line. We then used the largest open-source DNA repository to

@ Springer

Empir Software Eng (2021) 26: 44 Page37 of 43 44

analyze: 1) whether there are assets which are reused and products that share common and
variable elements; 2) whether we can build feature models to represent the products in this
repository; 3) how common SPL techniques can be used to benefit product line development
in this domain; and 4) whether we can leverage reverse engineering tools.

We found reusable assets, commonality, and variability in the repository. We were able
to build feature models to represent several common functions. We then demonstrated how
we might automatically reverse engineer a model and how this can help users test and rea-
son about the product space more comprehensively. We also uncovered a set of challenges
leading to a roadmap for new research in SPL engineering.

In future work we plan to investigate building a domain specific language for generating
SPL constraints, and evaluating this approach in practice with teams of synthetic biologists,
perhaps in the iGEM Competition. We also plan to investigate challenges that are shared
with modern SPLs including scalability, dynamic feature models, and collaborative SPLs.
To further explore the difference between reverse engineering from complete versus partial
products, we plan to design a follow-up study by artificially creating a set of partial products
from our set of complete products.

Acknowledgements We would like to thank the Haynes Lab at Emory University (formally Arizona State
University) for sharing additional artifacts with us, especially Dr. Karmella A. Haynes and Dr. Stefan Tekel.
This work is supported in part by NSF Grant CCF-1901543, National Institute of Justice Grant 2016-R2-
CX-0023, and NSF Grant CBET-1805528. This work was also supported by ORNL Post-Doc Educational
Investment funds, and funding was provided by the Center for Bioenergy Innovation (CBI) under Contract
No. DE-AC05-000R22725. The Center for Bioenergy Innovation is a U.S. Department of Energy Bioenergy
Research Center supported by the Office of Biological and Environmental Research in the DOE Office of
Science.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P (2011) Reverse engineering architectural fea-
ture models. In: Proceedings of the 5th European conference on software architecture, ECSA. Springer,
Berlin, pp 220-235

Ananieva S, Kehrer T, Klare H, Koziolek A, Lonn H, Ramesh S, Burger A, Taentzer G, Westfechtel B (2019)
Towards a conceptual model for unifying variability in space and time. In: Proceedings of the 23rd
international systems and software product line conference—volume B, SPLC 19, New York, pp 4448

Andersen N, Czarnecki K, She S, Wkasowski A (2012) Efficient synthesis of feature models. In: Proceedings
of the 16th international software product line conference, vol 1, SPLC *12, pp 106-115

Anderson J, Strelkowa N, Stan GB, Douglas T, Savulescu J, Barahona M, Papachristodoulou A (2012)
Engineering and ethical perspectives in synthetic biology. EMBO Rep 13(7):584-590

Aponte-Ubillus JJ, Barajas D, Peltier J, Bardliving C, Shamlou P, Gold D (2018) Molecular design for
recombinant adeno-associated virus (rAAV) vector production. Appl Microbiol Biotechnol 102:1045-
1054

Arizona State University (2017) ASU iGEM 2017: engineering variable regulators for a quorum sensing
toolbox. Last Accessed: June 13, 2019

@ Springer

http://creativecommonshorg/licenses/by/4.0/

44 Page 38o0f43 Empir Software Eng (2021) 26: 44

Assuncdo WKG, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A (2017) Multi-objective reverse
engineering of variability-safe feature models based on code dependencies of system variants. Empir
Softw Eng 22(4):1763-1794

Ayala I, Amor M, Fuentes L, Troya J (2015) A software product line process to develop agents for the IoT.
Sensors 15(7):15640-15660

Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (2006) A first step towards a framework for the automated
analysis of feature models. Managing Variability for Software Product Lines: Working With Variability
Mechanisms 85:86

Benavides D, Segura S, Trinidad P, Ruiz-cortés A (2007) FAMA: tooling a framework for the automated
analysis of feature models. In: Proceedings of the 1st international workshop on variability modelling of
software-intensive systems, VAMOS, pp 129-134

Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20 years later: a
literature review. Inf Syst 35(6):615-636

Bereza-Malcolm LT, Mann G, Franks AE (2014) Environmental sensing of heavy metals through whole cell
microbial biosensors: a synthetic biology approach. ACS Synth Biol 4(5):535-546

Bornholt J, Lopez R, Carmean DM, Ceze L, Seelig G, Strauss K (2016) A DNA-based archival storage
system. ACM SIGARCH Comput Architect News 44(2):637-649

Cai Y, Wilson ML, Peccoud J (2010) GenoCAD for iGEM: a grammatical approach to the design of standard-
compliant constructs. Nucl Acids Res 38(8):2637-2644

Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol
12(5):381-390

Cashman M, Firestone J, Cohen MB, Thianniwet T, Niu W (2019) DNA as features: organic software product
lines. In: Proceedings of the international systems and software product line conference, SPLC, pp 1-11

Cetina C, Giner P, Fons J, Pelechano V (2009) Using feature models for developing self-configuring smart
homes. In: 5th International conference on autonomic and autonomous systems, pp 179-188

Cleland-Huang J, Vierhauser M, Bayley S (2018) Dronology: an incubator for cyber-physical systems
research. In: Proceedings of the 40th international conference on software engineering: new ideas and
emerging results, ICSE, pp 109-112

Clements P, Northrop L (2002) Software product lines: practices and patterns, Addison-Wesley, Boston

Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG system: an approach to testing based on
combinatorial design. IEEE Trans Softw Eng 23(7):437-444

Damiani F, Lienhardt M, Paolini L (2019) A formal model for multi software product lines. Sci Comput
Program 172:203-231. https://doi.org/10.1016/j.scico.2018.11.005

Daniel R, Rubens JR, Sarpeshkar R, Lu TK (2013) Synthetic analog computation in living cells. Nature
497(7451):619-623

Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335—
338

Firestone J, Cohen MB (2018) The assurance recipe: facilitating assurance patterns. In: Proceedings of
the international conference on computer safety, reliability, and security (SAFECOMP), ASSURE
workshop, pp 22-30

Freiburg Bioware (2010) Freiburg bioware iGEM 2010: virus construction kit for therapy. Last Accessed: 6
Nov 2019

Galindo JA, Benavides D, Segura S (2010) Debian packages repositories as software product line models.
Towards automated analysis. In: ACoTA, pp 29-34

Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature
402:339-342

Garvin BJ, Cohen MB, Dwyer MB (2011) Evaluating improvements to a meta-heuristic search for
constrained interaction testing. Empir Softw Eng 16(1):61-102

Garvin BJ, Cohen MB, Dwyer MB (2013) Failure avoidance in configurable systems through feature locality.
In: Assurances for self-adaptive systems—principles, models, and techniques, vol LNCS 7740. Springer,
pp 266-296

HCC (2020) Holland computing center documentation

Hemaspaandra E, Schnoor H (2011) Minimization for generalized boolean formulas. In: Proceedings of the
22nd international joint conference on artificial intelligence, pp 566-571

Hinterreiter D, Nieke M, Linsbauer L, Seidl C, Pridhofer H, Griinbacher P (2019) Harmonized temporal
feature modeling to uniformly perform, track, analyze, and replay software product line evolution. In:
Proceedings of the 18th ACM SIGPLAN international conference on generative programming: concepts
and experiences, GPCE 2019, pp 115-128

Holl G, Griinbacher P, Rabiser R (2012) A systematic review and an expert survey on capabilities supporting
multi product lines. Inf Softw Technol 54(8):828-852

@ Springer

https://doi.org/10.1016/j.scico.2018.11.005

Empir Software Eng (2021) 26: 44 Page390of 43 44

Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, vol 751. Wiley, New York

Hubaux A, Jannach D, Drescher C, Murta L, Ménnisté T, Czarnecki K, Heymans P, Nguyen T, Zanker M
(2012) Unitying software and product configuration: a research roadmap. In: Proceedings of the 2012
international conference on configuration, CONFWS’12, vol 958, pp 31-35

Hughes RA, Ellington AD (2017) Synthetic dna synthesis and assembly: putting the synthetic in synthetic
biology. Cold Spring Harbor Perspect Biol 9(1):a023812

iGEM API (2018) Registry of standard biological parts API. iGEM Foundation. Last Accessed: 13 June 2019

iGEM Competition (2018) International genetically engineered machine competition. iGEM Foundation.
Last Accessed: 13 June 2019

iGEM Registry (2018) Registry of standard biological parts. iGEM Foundation. Last Accessed: June 13:2019

iGEM Viral Vectors (2018) Viral vectors based on the adeno-associated virus. iGEM Foundation. Last
Accessed: 13 June 2019

Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-oriented domain analysis (foda) feasibility
study. Tech. Rep. CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA

Kenner A, Kistner C, Haase S, Leich T (2010) Typechef: toward type checking #ifdef variability in c. In:
Proceedings of the 2nd international workshop on feature-oriented software development, pp 25-32

Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R (2015) Mammalian synthetic biology: emerging medical
applications. J R Soc Interface 12(106):1-18

Kuiter E, Krieter S, Kriiger J, Leich T, Saake G (2019) Foundations of collaborative, real-time feature mod-
eling. In: Proceedings of the 23rd international systems and software product line conference—volume
A, SPLC. ACM, pp 257-264

Levine F, Leibowitz G (1999) Towards gene therapy of diabetes mellitus. Mol Med Today 5(4):165-171

Lopez-Herrejon RE, Galindo JA, Benavides D, Segura S, Egyed A (2012) Reverse engineering feature mod-
els with evolutionary algorithms: an exploratory study. In: Fraser G, Teixeira de Souza J (eds) Search
based software engineering. Springer, Berlin, pp 168—182

Lopez-Herrejon RE, Linsbauer L, Galindo JA, Parejo JA, Benavides D, Segura S, Egyed A (2015) An
assessment of search-based techniques for reverse engineering feature models. J Syst Softw 103:353—
369

Lotufo R, She S, Berger T, Czarnecki K, Wkasowski A (2010) Evolution of the linux kernel variability
model. In: Proceedings of the 14th international conference on software product lines: going beyond,
SPLC, pp 136-150

Lutz RR, Lutz JH, Lathrop J1, Klinge TH, Mathur D, Stull DM, Bergquist TG, Henderson ER (2012) Require-
ments analysis for a product family of DNA nanodevices. In: Proceedings of the 20th IEEE international
requirements engineering conference, RE, pp 211-220

Ma S, Tang N, Tian J (2012) Dna synthesis, assembly and applications in synthetic biology. Curr Opin Chem
Biol 16(3-4):260-267

Marques M, Simmonds J, Rossel PO, Bastarrica MC (2019) Software product line evolution: a systematic
literature review. Inf Softw Technol 105:190-208

Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165-199.
pMID:11544353

Mitschke R, Eichberg M (2008) Supporting the evolution of software product lines. In: ECMDA traceability
workshop (ECMDA-TW), pp 87-96

Montalvillo L, Diaz O (2015) Tuning GitHub for SPL development: branching models & repository oper-
ations for product engineers. In: Proceedings of the 19th international conference on software product
line, SPLC, pp 111-120

Nadi S, Berger T, Kistner C, Czarnecki K (2014) Mining configuration constraints: static analyses and
empirical results. In: Proceedings of the 36th international conference on software engineering, pp 140-
151

Nadi S, Berger T, Kistner C, Czarnecki K (2015) Where do configuration constraints stem from? An
extraction approach and an empirical study. IEEE Trans Softw Eng 41(8):820-841

Naso MF, Tomkowicz B, 3rd WLP, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene
therapy. BioDrugs 31:317-334

Nieke M, Seidl C, Schuster S (2016) Guaranteeing configuration validity in evolving software product
lines. In: Proceedings of the tenth international workshop on variability modelling of software-intensive
systems, VaMoS ’16. Association for Computing Machinery, New York, pp 73-80

Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, Ross D, Densmore D, Voigt CA
(2016) Genetic circuit design automation. Science 352(6281):aac7341-1-aac7341-11

Plakidas K, Stevanetic S, Schall D, Ionescu TB, Zdun U (2016) How do software ecosystems evolve? a quan-
titative assessment of the R ecosystem. In: Proceedings of the 20th international systems and software
product line conference, SPLC, pp 89-98

@ Springer

44 Page40of43 Empir Software Eng (2021) 26: 44

Pohl K, Bockle G, van Der Linden FJ (2005) Software product line engineering: foundations, principles and
techniques. Springer Science & Business Media

Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PloS
One 4(7):1-6

Quinton C, Rouvoy R, Duchien L (2012) Leveraging feature models to configure virtual appliances. In:
Proceedings of the 2nd international workshop on cloud computing platforms, CloudCP. ACM, pp 2:1-
2:6

R Core Team (2013) R: a language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna. http://www.R-project.org/

Reiser MO, Weber M (2006) Managing highly complex product families with multi-level feature trees. In:
14th IEEE international requirements engineering conference (RE’06). IEEE, pp 149-158

Rossello RA, Kohn DH (2010) Cell communication and tissue engineering. Commun Integr Biol 3(1):53-56

SBOL (2019) Synthetic biology open language. SBOL Research Group. Last Accessed: 13 June 2019

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3/4):591-611

She S, Lotufo R, Berger T, Wkasowski A, Czarnecki K (2011) Reverse engineering feature models. In:
Proceedings of the 33rd international conference on software engineering, ICSE. ACM, pp 461-470

Sincero J, Schirmeier H, Schroder-Preikschat W, Spinczyk O (2007) Is the linux kernel a software product
line? In: Proceedings of the 2nd SPLC workshop on open source software and product lines, pp 1-4

Stirling F, Bitzan L, O’Keefe S, Redfield E, Oliver JW, Way J, Silver PA (2017) Rational design of
evolutionarily stable microbial kill switches. Mol Cell 68(4):686—-697.e3

Stirling F, Naydich A, Bramante J, Barocio R, Certo M, Wellington H, Redfield E, O’Keefe S, Gao
S, Cusolito A, Way J, Silver P (2019) Synthetic cassettes for pH-mediated sensing, counting and
containment. bioRxiv

Storch M, Haines MC, Baldwin GS (2019) DNA-BOT: a low-cost, automated DNA assembly platform for
synthetic biology. bioRxiv

Swanson J, Cohen MB, Dwyer MB, Garvin BJ, Firestone J (2014) Beyond the rainbow: self-adaptive
failure avoidance in configurable systems. In: Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering, pp 377-388

Tavella F, Giaretta A, Dooley-Cullinane TM, Conti M, Coffey L, Balasubramaniam S (2018) DNA molec-
ular storage system: transferring digitally encoded information through bacterial nanonetworks. IEEE
Transactions on Emerging Topics in Computing 1801.04774

Tekel SJ, Smith CL, Lopez B, Mani A, Connot C, Livingstone X, Haynes KA (2019) Engineered orthogo-
nal quorum sensing systems for synthetic gene regulation in Escherichia coli. Front Bioeng Biotechnol
7(80):1-12

Thianniwet T (2016) SPL-XFactor: a framework for reverse engineering feature models. The University of
Nebraska-Lincoln

Thianniwet T, Cohen MB (2015) SPLRevO: optimizing complex feature models in search based reverse
engineering of software product lines. In: Proceedings of the 1st North American search based software
engineering symposium, NasBASE, pp 1-16

Thianniwet T, Cohen MB (2016) Scaling up the fitness function for reverse engineering feature models. In:
Symposium on search-based software engineering, SSBSE, pp 128-142

Thiim T, Apel S, Kistner C, Schaefer I, Saake G (2014a) A classification and survey of analysis strategies
for software product lines. ACM Comput Surv (CSUR) 47(1):1-45

Thiim T, Késtner C, Benduhn F, Meinicke J, Saake G, Leich T (2014b) FeatureIDE: an extensible frame-
work for feature-oriented software development. Sci Comput Program 79:70-85. Experimental Software
and Toolkits (EST 4): a special issue of the workshop on academic software development tools and
techniques (WASDeTT-3 2010)

Trujillo-Tzanahua GI, Judrez-Martinez U, Aguilar-Lasserre AA, Cortés-Verdin MK (2018) Multiple soft-
ware product lines: applications and challenges. In: Mejia J, Mufioz M, Rocha A, Quifionez Y,
Calvo-Manzano J (eds) Trends and applications in software engineering, pp 117-126

Tzeremes V, Gomaa H (2018) A software product line approach to designing end user applications for the
internet of things. In: ICSOFT

Valverde S, Porcar M, Peretd J, Solé RV (2016) The software crisis of synthetic biology. bioRxiv

Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat Rev Genet
13(1):21-35

Weber W, Stelling J, Rimann M, Keller B, Daoud-El Baba M, Weber CC, Aubel D, Fussenegger M (2007) A
synthetic time-delay circuit in mammalian cells and mice. Proc Natl Acad Sci USA 104(8):2643-2648

@ Springer

http://www.R-project.org/

Empir Software Eng (2021) 26: 44 Page 41 0of 43 44

Whitaker WB, Sandoval NR, Bennett RK, Fast AG, Papoutsakis ET (2015) Synthetic methylotrophy: engi-
neering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.
Curr Opin Biotechnol 33:165-175

Whitford CM, Dymek S, Kerkhoff D, Mérz C, Schmidt O, Edich M, Droste J, Pucker B, Riickert C,
Kalinowski J (2018) Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a
high-fidelity biosafety system for synthetic biology applications. J Biol Eng 12(1):1-28

Winfree E (1995) On the computational power of DNA annealing and ligation. In: DNA based computers

Zhu J, Zhou M, Mockus A (2014) Patterns of folder use and project popularity: a case study of GitHub reposi-
tories. In: Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering
and measurement. ACM, pp 1-4

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Mikaela Cashman is a postdoctoral research associate at Oak Ridge
National Laboratory in the Biosciences Division. She received her
Ph.D. in Computer Science at Iowa State University and her Masters
in Computer Science from the University of Nebraska-Lincoln. Her
research centers around the application of software engineering meth-
ods to the scientific domain (mainly the Biosciences). Her technical
areas of interest include: software testing, machine learning, systems
biology, and synthetic biology. She has further interest in bioinfor-
matics workflows and algorithms, high performance computing, and
in GPU programming. Her research aspirations focus on building
bridges between the computational and biological sciences.

Justin Firestone is an Assistant Professor of Practice in the Jeffrey
S. Raikes School of Computer Science and Management and in the
Department of Computer Science and Engineering at the University
of Nebraska-Lincoln. He also holds a Juris Doctor degree from the
University of Nebraska College of Law. While pursuing his Ph.D. in
Computer Science, he was a recipient of the GRF-STEM fellowship
from the National Institute of Justice. His interdisciplinary research
focuses on the intersection of computer science, synthetic biology,
and regulatory frameworks, including how traditional software engi-
neering principles could apply to synthetic biology. In addition to
teaching core courses at the Raikes School, he also teaches Cyberlaw
at the law college.

@ Springer

44 Page42of43

Empir Software Eng (2021) 26: 44

@ Springer

Myra B. Cohen is a Professor and the Lanh and Oanh Nguyen Chair
in Software Engineering in the Department of Computer Science at
Iowa State University. She received her Ph.D. from the University of
Auckland, New Zealand. Her research interests are in software testing
of highly-configurable software, search based software engineering,
applications of combinatorial designs, and synergies between systems
and synthetic biology, and software engineering. She is the recipi-
ent of a National Science Foundation CAREER award, an Air Force
Office of Scientific Research Young Investigator Award, and four
ACM Distinguished Paper awards. She is an ACM Distinguished
Scientist.

Dr. Thammasak Thianniwet is a lecturer and researcher in the
School of Information Technology and DIGITECH at Suranaree Uni-
versity of Technology in Thailand. He received the B.Eng and M.Eng
degrees in computer engineering from Suranaree University of Tech-
nology and the PhD degree in computer science from the University
of Nebraska - Lincoln. He is interested in static software analysis,
software testing, software product lines, software engineering, data
analytics, Al business intelligence, IoT and smart applications.

Dr. Wei Niu is an associate professor in the Chemical and Biomolec-
ular Engineering Department at University of Nebraska - Lincoln.
She received her PhD degree from Michigan State University. Her
research focuses on metabolic engineering, protein engineering, and
synthetic biology. She is interested in pathway design and strain
engineering for the conversion of biomass into value-added prod-
ucts and the implementation of nonnatural amino acids for functional
diversification of proteins.

Empir Software Eng (2021) 26: 44 Page 43 0of 43 44

Affiliations

Mikaela Cashman'2 @ . Justin Firestone® © . Myra B. Cohen' © .
Thammasak Thianniwet?* - Wei Niu®

Justin Firestone
jfiresto@cse.unl.edu

Myra B. Cohen
mcohen @iastate.edu

Thammasak Thianniwet
thammasak @sut.ac.th

Wei Niu
wniu2 @unl.edu

1 Department of Computer Science, Iowa State University, Ames, IA 50011-1090, USA

2 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

3 Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-
0115, USA

4 DIGITECH and School of Information Technology, Suranaree University of Technology, Nakhon
Ratchasima, Thailand

5 Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE
68588-0115, USA

@ Springer

http://orcid.org/0000-0003-0620-7830
http://orcid.org/0000-0002-1927-2036
http://orcid.org/0000-0003-2443-2425
http://orcid.org/0000-0003-3826-1276
mailto: jfiresto@cse.unl.edu
mailto: mcohen@iastate.edu
mailto: thammasak@sut.ac.th
mailto: wniu2@unl.edu

	An empirical investigation of organic software product lines
	Abstract
	Introduction
	Living Organisms as Programs
	Motivating Example

	Software Product Lines
	Automated Reverse Engineering
	Software Product Lines in Other Domains
	Other Related Work

	Organic Software Product Lines (OSPLs)
	Assets
	Domain Engineering
	Application Engineering

	A Roadmap for Evaluating Organic Software Product Lines
	Feasibility Study
	RQ1: What Characteristics of a DNA Repository are Consistent with that of a Software Product Line?
	Methodology
	Threats to Validity
	Results
	Assets
	Variability
	Commonality

	Summary of RQ1

	RQ2: What are the Characteristics of Feature Models Built from a DNA Repository?
	Methodology
	Cell-to-Cell Signaling
	Kill Switch
	Viral Vectors

	Threats to Validity
	Results
	Model(1) Cell-to-Cell Signaling
	Promoter
	RBS
	Coding Sequence (Protein)
	Coding Sequence (Reporter)
	Terminator
	Model(2) Kill Switch
	Models(3 & 4) Viral Vectors

	Summary of RQ2

	Study Summary

	Case Study: Applying End-to-End Analysis for Developers of Organic Programs
	Methodology
	Threats to Validity

	Results
	Providing a Broader View of the Product Space
	Testing and Analysis
	Domain Expert Feedback
	Case Study Summary

	Empirical Study—Effectiveness and Efficiency of Automated Reverse Engineering
	Methodology
	Objects of Study
	Independent Variable
	Dependent Variables
	Experimental Setup
	Threats to Validity

	Results
	Further Analysis and Discussion
	Summary of Empirical Study

	Implications: the Future of OSPL Engineering
	Importance of Tools Supporting SPL Evolution
	Importance of Constructs that Support Duplicate Features
	Need for More Scalable Reverse Engineering
	Incomplete Feature Models
	Towards a Domain Specific Language

	Conclusions and Future Work
	References
	Affiliations

